

Daniel Fernández

Self-presentation:

The holographic pathway

Where do I come from Barcelona Bay of Biscay Toulouse Bilbao Mar Andorra Valladolid Zaragoxa Barcelona Madrid Palma d Mallorca Portugal Spain Lisbon Seville Algiers Gibralta Oran abat blanca Bilbao

Where do I come from... in the paperscape

A diagram of my research

- Probes
- Anisotropy

- Hydro description
- Something else

Holographic Plasmas

Emission of Cherenkov radiation

String endpoint moving sufficiently fast radiates mesons via Cherenkov.

- Energy loss $\sim \mathcal{O}(N_c)$ effect.
- Universal mechanism!
- Exactly calculable for $\mathcal{N}=4$ SYM plasma.

The study of probes is especially useful: they're produced within the same collision that produces the strongly coupled plasma itself.

(Backreaction ignored in the $N_{\rm f} \ll N_{\rm c}$ limit)

A study of anisotropy

QGP created in HIC is time dependent and anisotropic:

Holographic Plasmas

Thermodynamics of anisotropic brane

Probe limit: $\epsilon = \frac{N_{\rm f}}{N_{\rm c}}$ small.

But asymptotics of metric and embedding are different for $\epsilon = 0$ and for $\epsilon \neq 0$.

⇒ UV limit does not commute with probe limit.

 \Longrightarrow Trouble with counterterms!

- Historical motivation for **holographic renormalization**: Finiteness of the on-shell action.
- Actual motivation: (I. Papadimitriou, '10)

 Requirement that the variational problem at infinity be well defined.

Condition that determines S_b : $\frac{\mathrm{d}}{\mathrm{d}r}(S+S_b) \xrightarrow[r\to\infty]{} 0$

which amounts to a phase space transf.:

$$\left(\begin{array}{c} \pi \\ \phi \end{array}\right) \longrightarrow \left(\begin{array}{c} \Pi \\ \Phi \end{array}\right) = \left(\begin{array}{c} \pi + \frac{\delta S_{\rm b}}{\delta \phi} \\ \phi \end{array}\right)$$

additional requirement that the symplectic form must be preserved:

$$\Omega = \int \mathrm{d}^d x \; \delta \pi \wedge \delta \phi$$

Induced gravity at the boundary

FG-type expansion:
$$g_{\mu\nu} = g_{\mu\nu}^{(0)} r^2 + g_{\mu\nu}^{(1)} r + \dots$$

(D. Marolf, '08)

Formal construction: Promoting $g_{\mu\nu}^{(0)}$ to a dynamical field, define "induced gravity" partition function:

$$Z_{\text{bulk}} = \int \mathcal{D}g^{(0)} Z_{\text{bulk}}^{\text{Dir}} \left[g^{(0)} \right] = \iint \mathcal{D}\Phi \mathcal{D}g \ e^{iS_{\text{bulk}}}$$

$$\left(Z_{\text{bulk}}^{\text{Dir}}\left[g^{(0)}\right] = \iint_{g \to g^{(0)}} \mathcal{D}\Phi \,\mathcal{D}g \,e^{iS_{\text{bulk}}}\right)$$

In the semi-classical limit,

$$\delta S_{\text{bulk}} = \text{EOM} + 2 \left(T^{\mu\nu} \right) \delta g_{\mu\nu}^{(0)} \sqrt{g^{(0)}}$$

bdry. stress tensor

Natural bdry. cond. are such that $g^{(0)}$ free $\Rightarrow T_{\mu\nu} = 0$.

Claim: This theory corresponds to the induced gravity on the CFT.

$$\frac{\delta S_{\text{CFT}}}{\delta g_{\text{CFT}}} = T_{\mu\nu} = 0$$
 is the EOM expected in a theory with no EH term.

This corresponds to the limit $G_{\rm N} \to \infty$.

Holographic Superfluids

p-wave transport coefficients

Holography is useful to study transport properties of strongly correlated systems at finite temperature.

Take SU(2) Einstein-Yang-Mills theory in the bulk:

$$S = \frac{1}{2\kappa_5^2} \int d^5 x \sqrt{-g} \left[R - \Lambda - \frac{\alpha^2}{2} F_{MN}^a F^{aMN} \right] + S_{\text{bdy}}$$

with ansatz

$$A = \phi(r) \tau^3 dt + w(r) \tau^1 dx$$

chemical potential

$$\phi(r) \to \mu$$

spontaneous value acquired in broken phase:

$$w(r) \to w_1^b/r^2$$
, $w_1^b \propto \langle J_1^x \rangle \neq 0$

Study perturbations around this background and relations between sources and vevs to find

$$\begin{pmatrix} \langle J^y \rangle \\ \langle Q^y \rangle \end{pmatrix} = \begin{pmatrix} \sigma^{yy} & T\alpha^{yy} \\ T\alpha^{yy} & T\bar{\kappa}^{yy} \end{pmatrix} \begin{pmatrix} E_y \\ -(\nabla_y T)/T \end{pmatrix}$$

transport coefficients and viscosities

$$\eta_{yz} = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \langle T_{yz} T_{yz} \rangle$$

$$\eta_{xy} = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \langle T_{xy} T_{xy} \rangle$$

Holographic Superfluids

- p-wave hydrodynamics
- Spontaneous symmetry breaking of cotinuous symmetry
- Nambu-Goldstone boson in the spectrum
- New hydrodynamic mode:

$$\{ \{\mu, T, u_{\mu}\}, v_{\mu} = \partial_{\mu} \varphi \}$$

Eqs. of relativistic hydrodynamics, derivable from general considerations, consistent with:

$$\Psi = |\Psi| \, e^{\mathrm{i}\varphi}$$

(J. Bhattacharya, S. Bhattacharyya, S. Minwalla, A. Yarom, '11)

• Lorentz invariance
$$J^{\mu}_{\scriptscriptstyle \rm S} = J^{\mu}_{\scriptscriptstyle \rm S\ canon} + \sum_i v_i \mathcal{V}^{\mu}_i$$

- 2nd law of thermodynamics —
- Covariance under time reversal.

al.
$$\partial_{\mu}J_{\mathrm{S}}^{\mu} \geq 0$$

Phase φ is coherent superposition in the s-wave condensate. In our case,

$$U(1)_3 \xrightarrow[\text{SSB}]{} \mathbb{Z}_2$$

$$SO(3) \xrightarrow[\text{SSB}]{} SO(2)$$

3 Goldtone modes \Longrightarrow different hydrodynamics.

Holographic Thermalization

Far from equilibrium evolution of plasma

Relaxation of black hole

There are 2 alternatives:

- a) Create ffe state on the CFT, with external anisotropic source.
- b) Study isotropization of initial state in absence of external sources.

(P. Chesler, L. Yaffe '07) (M. Heller, D. Mateos '12)

Simple ansatz:

$$ds^{2} = 2dt dr - A dt^{2} + \Sigma^{2} e^{-2B} dx_{L}^{2} + \Sigma^{2} e^{B} d\vec{x}_{T}^{2}$$

$$\langle T_{\mu
u}
angle = rac{N_{
m c}^2}{2\pi^2} egin{pmatrix} \epsilon & 0 & 0 & 0 \ 0 & P_{
m L}(t) & 0 & 0 \ 0 & 0 & P_{
m T}(t) & 0 \ 0 & 0 & 0 & P_{
m T}(t) \end{pmatrix}$$

Numerical implementation:

- 1. Spatial grid on holographic direction: pseudo-spectral collocation method.
- 2. Time evolution via finite differences. (taking care of AH position)

Holographic Thermalization

Validity of hydro approximation out of eq.

Linearizing Einstein's equations around the final equilibrium state reproduces the expectation value of the boundary stress tensor with a 20% accuracy.

It would be interesting to understand the reason behind this relative precision.

Giving initial data

Initial data must describe two well-separated planar shocks, moving toward each other.

One shock would be $ds^2 = r^2 \left[-dx_+ dx_- + dx_\perp^2 \right] + \frac{1}{r^2} \left[dr^2 + h(x_\pm) dx_\pm^2 \right]$, with h a gaussian.

Generalization to inhomogeneous case

Periodic function in transverse direction:

$$g_{\mu\nu} = g_{\mu\nu}^{\text{BACKG}}(r, t, y) + e^{i k x} \delta g_{\mu\nu}(r, t, y)$$

(P. Chesler, L. Yaffe '10)

- **1.** Spatial grid on r: pseudo-spectral method.
- 2. Spatial grid on y: Fourier spectral method.
- **3.** Time evolution on t: via finite differences.

Numerical Techniques in AdS/CFT

Brane intersection solution in Supergravity

Problem: Find gravity dual to 3 dim. supersym. $SU(N_2)$ gauge th. with N_6 fundamentals.

M-theory uplift of N_6 coincident D6-branes at r=0:

 $\mathbb{R}^7 \times \text{Taub-NUT} \Longrightarrow M2 \text{ in this background?}$

Ansatz for M2-branes spanning t, x_1, x_2 :

$$ds^{2} = H^{-2/3} \left(-dt^{2} + dx_{1}^{2} + dx_{2}^{2} \right) + H^{1/3} \left(dy^{2} + y^{2} d\Omega_{3}^{2} + ds_{\text{TN}}^{2} \right)$$

$$F_{[4]} = dt \wedge dx_{1} \wedge dx_{2} \wedge dH^{-1}$$

Taub-NUT metric

(S. Cherkis, A. Hashimoto '02)

Fully backreacted solution found via H(z, y).

Generalization to non-extremal case: include additional functions f_1, f_2, \tilde{H} .

(This has not been found, but numerically it could be doable)

...and many analogous problems in AdS/CMT.

Thank you!

