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Scaling in high critical temperature superconductors
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[vAN DER MAREL&AL’03] [KasanARAZAL’10]

o A Quantum Critical Point at strong coupling is conjectured to be
responsible for these scaling properties.
Can holography help to understand the nature of QCPs at strong

. . jeg?
. coupling and their transport properties? 4:' NORDITA



Mapping the holographic quantum critical landscape

Holography enables us to describe strongly-coupled phases of
matter with a UV conformal fixed point (though strong effort to
generalise to other UV asymptotics).

It gives a clear prescription to do so: asymptotics of bulk fields are
mapped to sources and vevs of the dual field theory.

UV AdS,

=

This picture however does not constrain the IR of the theory much,
which might display universal scaling behaviour and give us ,
3 information about the ground state. < YNORDITA



Mapping the holographic quantum critical landscape

In particular, many phases might be competing in the IR.

uv

Phase 1
@ IR

How do we characterise these phases?
How do we determine the dominant one, the ground state?

To determine the ground state, it is particularly important to have a
reliable map of the possible IR phases, the flows to the UV as well as

ibl tum phase transitions. e
possible quantum phase transitions 4"NORDH‘A



@ Philosophy of the classification

@ Classes of solutions

@ Stability of RG flow

@ Optical conductivity and spectrum

© Charge transport and holographic lattices
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Mapping the holographic quantum critical landscape

One tool we can use is the concept of effective holographic
theories, [CHARMOUSIS, GOUTERAUX, KiM, KIRITSIS & MEYER ’10]:

e introduce a minimal set of operators irrelevant in the UV
but which will drive the IR dynamics (vector, scalar, etc.);

e write down an effective action describing these IR
dynamics;

e figure out possible (extremal) IR phases, according to
their symmetries: zero temperature, scaling backgrounds;
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Mapping the holographic quantum critical landscape (2)

e work out the nature of the deformations around them: a
relevant nonzero temperature deformation must exist;
enough irrelevant deformations are needed to connect to
the UV;

e construct flows to the UV (sometimes analytically, more
often numerically);

e determine the most stable in various regions of the phase
diagram (thermal/quantum phase transitions
with /without explicit/spontaneous symmetry breaking).
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Symmetries: hyperscaling

e We keep translation and rotation invariance (for now).

@ Break Poincaré symmetry,
but retain scaling symmetries t — A*t, x' — Ax’

ds® = —r~2de® + LPr2dr® + r 24X

which are supported by p-forms, massive vector fields or
runaway scalars [KACHRU&AL’08, TAYLOR’08, GOLDSTEIN&AL’09].

z = 1: AdSy;
7z — +o00: AdS, x R?:
z < +oo Lifshitz.

= Hyperscaling solutions: S ~ TS

)' B
LY NORDITA



Symmetries (2): hyperscaling violation

@ Break scale invariance in the metric Ansatz
2
ds? = ra’ (—r‘zzdt2 + L2r72dr? + r_2d*(2d))
This metric is only covariant under t — A?t, x' — A\x’

There is an effective spatial dimensionality dy = d — 6 such

that:
d—0

SNTZ

dp
~T%

hyperscaling violation [GoUuTERAUX&KIRITSIS 11, HUIJSE&AL’11,
DoNG&AL’12]

Using KK lifts, dy can be traced back to the
higher-dimensional spacetime [GourérauxgKiriTsis’11].
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The effective holographic action

5= [ d**3y=g [R - 067 — Z(O)F? + V(9) + Auii(Ar,)]

e Contains gravity, a gauge field (finite density) and a neutral

scalar [CHARMOUSIS, GOUTERAUX, KIM, KIRITSIS & MEYER’10].

@ The effective scalar potential has several competing terms

Verr (¢) = V(9) = Z(9)F? + Audir(Av, 0)
@ The scalar field can either settle to a constant extremizing
Vefr: hyperscaling solutions
@ Or display logarithmic running, and then the scalar couplings
can be approximated by exponentials (for instance)
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Cohesion /Fractionalisation in Holography

Zero density, rirrren’osl: Event horizon < Deconfinement
Finite density, [Liu&aLr’11,HArRTNOLL’11] .
Charged horizon < Fractionalisation

Separate contributions to the boundary charge density

Lifshitz
(z)

AdS2xR2

Reissner-Norstrom black hole Electron star [HarTnoLL&aL’10],
[MIT, LEIDEN’09] Superfluid [GUBSER&NELLORE,
HOROWITZ&ROBERTS’09]
Fractionalised phase Cohesive phase
LY NORDITA
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How to source charge density in the bulk

5= [ d**ixy=g [R - 067 = Z(O)F* + V(9) + Auii(Ar,0)]

o Effective source to the right hand side of Gauss's law:

Viu(Z(9)F™) = Jeg(Au, @)
which might break or not the U(1) symmetry.

o A,Jl ~ W(¢)A?, massive vector fields, effective description
of holographic superfluids [GoutérauxgKiriTsIS 12];

o Ay Jly ~ —7(¢)P(Hioc) describing a charged ideal fluid of
fermions in the Thomas-Fermi limit [HarTnoLL&an’10];

o A, JLe ~ O(¢)F A F, Chern-Simons coupling

[DoNOS&GAUNTLETT’ 11]
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IR dynamics: relevant vs irrelevant operators

S= / d9xy/=g [R — 0¢® — Z($)F? + V() + Al (As, 0)]

The behaviour of the IR phase under scaling actions is determined by the
dimension of the IR operators

@ A relevant current breaks Poincaré symmetry = time and space
are anisotropic z # 1
In [cueser&NELLORE’09], interplay between AdS, and Lifshitz IR for
the superfluid phase.

@ A relevant scalar operator breaks scale invariance = hyperscaling
violation with 6 # 0, along with a runaway scalar in the IR.

@ A relevant source for the current breaks the conservation of the
electric flux = cohesive phases. Let us introduce a 'cohesion’
exponent:

/ Z(¢)x F ~r*
R

IR -
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The final ingredient: the conduction exponent

14

Up until now, we have discussed the scaling behaviour of the
metric, the scalar and the electric flux. There is a final ingredient,
related to the scaling of the electric component of the vector

At ~ rc_g_z dt
¢ is the conduction exponent (for reasons shortly apparent).

For fractionalised phases £ = 0, it parameterizes the violation of
the Lifshitz scaling t — \t?, x' — \x' by A;.

For cohesive phases £ # 0, £ also participates in the violation of
the Lifshitz scaling.

In that sense, it has a role similar to 6 for the metric.
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Overall classifications of solutions

Whether (partially) fractionalised (£ = 0) or not (£ # 0),
hyperscaling (6=0) or not (6 # 0), with or without a runaway
scalar, solutions organise themselves into two classes:

e The current is relevant in the IR: dynamical exponent z is
arbitrary but the conduction exponent ( = —dj.

e The current is irrelevant in the IR: dynamical exponent
z = 1, but the conduction exponent ( is arbitrary.

Details can be found in in

[GOUTERAUX&AL’10,GOUTERAUX&KIRITSIS 11, ’12,G0UTERAUX > 13]
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Given that

o the form of the metric is universal in terms of 8 and z

e the temperature scaling of entropy/free energy also
depends only on 6 and z

e the entanglement entropy only knows about ¢

Can we find observables which are sensitive to the origin of the
boundary charge density, e.g. to the behaviour of the electric
flux (£) and gauge field (¢)?
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From the IR to the UV

UV Ads4

IR
2,051

&

Recipe: perturb around the zero temperature solution with purely
radial, static deformations, and work out the modes.

B
ds? = (ds2)(0) (1 +1n (%) ) , n<l
B
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Irrelevant vs relevant modes

18

They can be of two kinds
e relevant: they grow towards the IR, and if turned on
prevent from reaching the IR geometry.
e irrelevant: they decay towards the IR, and allow to shoot
out to the UV.

This is equivalent to working out whether the IR geometry is a
stable ’fixed point’ of the RG flow or not.

They come by pairs (., and correspond (loosely) to the
insertion in the effective IR field theory of

/dd"xdtg@ O
Remember the scaling t — A\?t, X — AX.

By dimensional analysis, we expect

6++6_:d+2—62d9+2 R
< YNORDITA



IR scaling dimensions

There is always a universal pair: [, = 0 (rescalings of time)
and (3, = dy + z (nonzero temperature).

e z# 1, ( = —dy: all other pairs read

. 1 1
BL = 5(0’9 +2z)+ 5”(4@5)

with v(z,0,&) a nonuniversal piece.

e z=1,(# —dp:
© Massive vectors: same as z # 1
@ Electron stars: 3¢ + 3¢ =( -1
© Chern-Simons: B¢ + 3¢ =2+ (-6

Pair of modes with anomalous dimension
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Quantum fractionalisation transitions

[HarTNOLL&HUIJSE’11], [SONNER,WITHERS&AL’12], [GOUTERAUX&KIRITSIS’12]

IR
oo Y\ ;
Bifurcating point g
0+0 0+0

Cohesive phase Fractionalised phase

If there is a scale invariant fixed point (¢ = 0) with a relevant
deformation, there is a bifurcation in the RG flow: to reach this point
from the UV, the flow must be fine tuned.

Away from the critical value, the flow picks up the relevant deformation
and lands into a collection of stable hyperscaling violation fixed points: a

.o quantum critical line. ‘:' NORDITA



The electric perturbation problem = Schrodinger problem

Turn on a small electric field along x on the boundary:
Ay ~ ay(r)e ™t k=0

This usually couples to other perturbations of the metric and other
fields which couple to the vector field.

With a little work, the linearised, perturbed equations can be
decoupled [HorRowITZ&ROBERTS’09, GOLDSTEIN &AL’09, CHARMOUSIS&AL’10,
HartnoLL&TavanFar’11...] and take the form of a one-dimensional
Schrédinger equation

d2 - V7
S+ V3, = wEy, ViR = %
dp? p

Only when no magnetic fields.
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Spectrum of electric fluctuations

By examining the behaviour of V/, one can determine if the
spectrum is gapless or gapped.

In the UV, V = +00

o if d>2;
oifd=2and1/2 <A, < 1.

If V — 400 also in the IR, the spectrum is gapped.

o V= +oointhe IRiff p— 0= zdy <O0.

@ In the (locally) thermodynamically stable region dy/z > 0
this never happens, the spectrum is always gapless and the
system a conductor.
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AC conductivity scaling

27

The conductivity can now be written as a reflexion coefficient in
the Schrédinger potential.

Net amount of charge + conservation of momentum = (w)

2—dy

0 z#1, (= —dy: Re(o) ~ wP=——="171

e z=1, ( # —dp: Re(o) ~ wlt—=¢l-1

These exponents are always positive when the system is gapless,
negative when it is gapped.

It is very tempting to conjecture that

2#41,(#—dp:  Re(o) ~PF171 2
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Charge transport and lattices

Drude peak

/

Incoherent metal [Donos&HARTNOLL 12]

Mott insulator
- |

& |
eV

@ Metals: translation invariant IR ground states with irrelevant lattice
deformations (UV lattice) The resistivity decreases with the
temperature, the optical conductivity displays a Drude peak.

@ Insulators: localized phases, IR ground state has a relevant lattice
and the resisitivity increases when T decreases, while the optical
conductivity vanishes.

L

@ Incoherent metals: conduct at low w, no well-defined Drude peRy
4 " NORDITA
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Holographic realization monostrantioLr’ 121

Metallic phase: AdS; x R3 with  Insulating phase: Bianchi VI
irrelevant lattice deformations. spatial symmetry (ODEs)

—
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Continuous phase transition between the metallic (high pitch) and
insulating phase (low pitch), simulatneously quantum
fractionalisation phase transition.
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Ongoing work with A. Donos and E. Kiritsis

@ What controls the insulating behaviour from a geometrical
perspective?

@ Can we have more freedom in the scaling of the transport
observables?

@ Can this be detuned from a fractionalisation transition?

Ongoing work with A. Donos and E. Kiritsis:
Write down an effective holographic action for a running scalar, no
Chern-Simons term, 2 gauge fields

4 scaling exponents:

6, z (anisotropy between time and axis of the helix), ¢ and z

(spatial anisotropy between the plane and the axis of the helix)
2 27,2 2 2 -2, 2

g2 — 2 ~det Ledr +w1+w2+)\r w3

r22 + r2 r222

)' B
LY NORDITA

26



Phases with (ir)relevant current at zero temperature
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Incoherent metals and insulators at zero temperature

Phases with relevant currents are always insulators.

N R )
Phases with irrelevant currents can be insulators (blue, green)
or incoherent metals (red)
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Summary and outlook

@ Unified framework for translation-invariant extremal
backgrounds, whether scale invariant or hyperscaling violating:
"cohesion’ and ’'conduction’ exponents.

@ Scaling dimensions of IR operators typically depend on z, 6,

and &, can sum anomalously, can trigger quantum
fractionalisation transitions.

2#1,(#—dy  Re(o) ~ w3510 7

@ Local thermodynamic stability = gapless spectrum
@ How do such scaling exponents show up in other observables?

@ Generalisation to phases breaking translation invariance?
Ongoing for Bianchi VII, which has interesting

henomenology.
. P gy LY NORDITA



