Holographic V-QCD at Finite Temperature

Matti Järvinen

University of Crete

25 September 2012

1. Review of (holographic) V-QCD models

[MJ, Kiritsis arXiv:1112.1261]

2. Turning on finite temperature

[Alho, MJ, Kajantie, Kiritsis, Tuominen arXiv:121x.xxxx]

Motivation

QCD: $SU(N_c)$ gauge theory with N_f quark flavors (fundamental)

▶ Often useful: "quenched" or "probe" approximation, $N_f \ll N_c$

However, many features cannot be captured in this approximation:

- Phase diagram of QCD at zero temperature, baryon density, and quark mass, varying x = N_f/N_c
- The QCD thermodynamics as a function of x
- Phase diagram as a function of baryon density
- \Rightarrow Veneziano limit: large N_f , N_c with $x = N_f/N_c$ fixed

Holographic V-QCD

Holographic bottom-up models (V-QCD) that describe the QCD phase diagram in the Veneziano limit

[MJ, Kiritsis arXiv:1112.1261]

- ► Conformal window for $x_c < x < x_{BZ}$, ChSB for $0 < x < x_c$
- Critical value $x_c \sim 4$ arising from dynamics
- Walking backgrounds for x slightly below x_c

The fusion

1. IhQCD: model for glue by using dilaton gravity

[Gursoy, Kiritsis, Nitti; Gubser, Nellore]

2. Adding flavor and chiral symmetry breaking via tachyon brane actions

[Klebanov, Maldacena; Bigazzi, Casero, Cotrone, latrakis, Kiritsis, Paredes]

Consider 1 + 2 with full backreaction \Rightarrow V-QCD models

Defining V-QCD

Degrees of freedom:

- $\blacktriangleright \ \tau \leftrightarrow \bar{q}q \ ; \qquad \lambda \leftrightarrow {\rm Tr} F^2$
- λ is identified as the 't Hooft coupling $g^2 N_c$

$$S_{\rm V-QCD} = N_c^2 M^3 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) \right] \\ - N_f N_c M^3 \int d^5 x V_f(\lambda, \tau) \sqrt{-\det(g_{ab} + \kappa(\lambda)\partial_a \tau \partial_b \tau)}$$

$$V_f(\lambda, \tau) = V_{f0}(\lambda) \exp(-a(\lambda)\tau^2); \qquad ds^2 = e^{2A}(dr^2 + \eta_{\mu\nu}x^{\mu}x^{\nu})$$

The simplest and most reasonable potential choices do the job!

Matching to QCD

- In the UV ($\lambda \rightarrow 0$):
 - UV expansions of the various potentials can be matched with the perturbative QCD beta function and the anomalous dimension of the quark mass/chiral condensate
 - \blacktriangleright After this, a single undetermined parameter in the UV: W_0
- \blacktriangleright In the IR, the tachyon action $\propto e^{-a(\lambda) au^2}$ must become small
 - ► V_g(λ) chosen as for Yang-Mills, so that a "good" IR singularity exists
 - V_{f0}(λ), a(λ), and κ(λ) chosen to produce tachyon divergence: several possibilities
 - > Extra constraints from the asymptotics of the meson spectra

Background analysis: zero temperature

Analysis of the backgrounds (*r*-dependent solutions of EoMs) at zero temperature

- Expect two kinds of solutions, with
 - 1. Nontrivial tachyon profile
 - 2. Identically vanishing tachyon
- ► Fully backreacted system ⇒ rich dynamics, complicated numerical analysis ...

However, main features can be understood without going to details

Effective potential

For solutions with $\tau = \tau_* = \text{const}$

$$S = M^3 N_c^2 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) - x V_f(\lambda, \tau_*) \right]$$

IhQCD with an effective potential

 $V_{\rm eff}(\lambda) = V_g(\lambda) - xV_f(\lambda, \tau_*) = V_g(\lambda) - xV_{f0}(\lambda)\exp(-a(\lambda)\tau_*^2)$

Minimizing for au_* we obtain $au_* = 0$ and $au_* = \infty$

► $\tau_* = 0$: $V_{\text{eff}}(\lambda) = V_g(\lambda) - xV_{f0}(\lambda)$; fixed point with $V'_{\text{eff}}(\lambda_*) = 0$

▶ $\tau_* \to \infty$: $V_{\text{eff}}(\lambda) = V_g(\lambda)$ (like YM, no fixed points)

Backgrounds at zero quark mass

Sketch of behavior in the conformal window $(x > x_c)$:

- Tachyon vanishes (no ChSB)
- ► IHQCD with $V_g \rightarrow V_{eff}$ ⇒ IR fixed point
- Dilaton flows between UV/IR fixed points

Right below the conformal window $(x < x_c; |x - x_c| \ll 1)$

- Dilaton flows very close to the IR fixed point
- "Small" nonzero tachyon induces an IR singularity

Result: "walking"

Numerical solutions for backgrounds

Important features

- 1. Miransky scaling as $x \rightarrow x_c$ from below
 - The ratio of the IR and UV scales behaves as expected
 - ▶ E.g. $\langle \bar{q}q \rangle \propto \sigma \sim \exp(-\kappa/\sqrt{x_c x})$, with calculable κ
- 2. Metastable/unstable Efimov vacua observed for $x < x_c$
- 3. Turning on the quark mass modifies the dynamics in a natural way

Finite temperature

Expected phase diagram

Finite temperature – definitions

Lagrangian unchanged

$$S_{\rm V-QCD} = N_c^2 M^3 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) \right] \\ - N_f N_c M^3 \int d^5 x V_f(\lambda, \tau) \sqrt{-\det(g_{ab} + \kappa(\lambda)\partial_a \tau \partial_b \tau)}$$

A more general metric, A and f solved from EoMs

$$ds^2 = e^{2A} \left(rac{dr^2}{f(r)} - f(r) dt^2 + d\mathbf{x}^2
ight) ; \qquad f(r) = 1 + \mathcal{O}(r^4)$$

Black hole thermodynamics:

$$f(r) = 4\pi T(r_h - r) + O((r - r_h)^2)$$
; $s = 4\pi M^3 N_c^2 e^{3A(r_h)}$

Potential choices

IR asymptotics of the potentials (a, κ, V_{f0})

- Potentials I lead to $au \sim e^{Cr}$ as $r \to \infty$
- Potentials II lead to $\tau \sim \sqrt{r}$ as $r \to \infty$

Behavior of the IR fixed point

- For potentials I & II, the fixed point exist for all values of x
- For potentials I_{*} & II_{*}, the fixed point exist only above some x_{*}

UV parameter W_0

- ▶ Use fixed values 0, 12/11, 24/11
- Or choose such that the Stefan-Boltzmann law for the thermodynamic functions is automatically obtained

Solutions & Parameters

Parameters:

- Black hole (BH) solutions most easily parametrized in terms of the horizon values τ_h, λ_h of the fields
- ► Can be mapped to physical parameters m_q (common quark mass) and T (temperature)

Types of solutions:

- 1. BH with vanishing tachyon chirally symmetric (λ_h)
- 2. BH with nontrivial tachyon chirally broken (λ_h, τ_h)

• We require below $m_q = 0$, which fixes τ_h

 In addition, at low temperatures, the thermal gas solutions (f ≡ 1) - no black hole ≃ zero T solutions

Black hole branches

Example: PotII at x = 3, $W_0 = 12/11$

Simple phase structure: 1st order transition at $T = T_h$ from thermal gas to (chirally symmetric) BH

More complicated cases:

- Left: chiral symmetry restored at 2nd order transition with $T = T_{end} > T_h$
- Right: Additional first order transition between BH phases with broken chiral symmetry

Also other cases ...

Thermodynamics

Example: PotII, x = 3, W_0 SB

Notice the crossover at high temperature

Phase diagrams on the (x, T)-plane

Potl $W_0 = 0$

 $W_0 = 12/11$

 $W_0 = 24/11$

Potl_{*} W₀ SB

PotII_{*} W₀ SB

Chiral condensate

 $\langle \bar{q}q \rangle(T)$, pressure and energy density in some cases having several transitions

Conclusion

- A class of holographic bottom-up models (V-QCD) was obtained by a fusion of IhQCD with tachyonic brane action
- A large class of V-QCD models have phase diagrams which meet expectations from QCD both at zero and at finite temperature
- Also in progress: fluctuation analysis (with Arean, latrakis, Kiritsis)

Extra slides

Extra slides . . .

A step back: Glue – 5D dilaton gravity

For YM, "improved holographic QCD" (IhQCD): well-tested string-inspired bottom-up model

[Gursoy, Kiritsis, Nitti arXiv:0707.1324, 0707.1349] [Gubser, Nellore arXiv:0804.0434]

$$\mathcal{S}_{\mathrm{g}} = M^3 N_c^2 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} (\partial \phi)^2 + V_g(\phi) \right]$$

with Poincaré invariant metric

$$ds^2=e^{2A}(dr^2+\eta_{\mu
u}x^\mu x^
u)$$

▶ Potential $V_g \leftrightarrow \text{QCD } \beta$ -function

- $A \rightarrow \log \mu$ energy scale
- $e^{\phi} \rightarrow \lambda$ 't Hooft coupling $g^2 N_c$

 $V_g = rac{12}{\ell^2} (1 + c_1 \lambda + \cdots), \ \lambda o 0, \ V_g \sim \lambda^{4/3} \sqrt{\log \lambda}, \ \lambda o \infty$

Agrees well with pure YM, both a zero and finite temperature [Gursoy, Kiritsis, Mazzanti, Nitti; Panero; ...]

A step back: Adding flavor

- Fundamental quarks \rightarrow probe $D4 \bar{D}4$ branes in 5D
- ▶ For the vacuum structure only the tachyon is relevant
- A tachyon action motivated by the Sen action
 - Confining asymptotics of the geometry trigger ChSB
 - Gell-Mann-Oakes-Renner relation
 - Linear Regge trajectories for mesons
 - A very good fit of the light meson masses

[Klebanov,Maldacena]

[Bigazzi, Casero, Cotrone, latrakis, Kiritsis, Paredes hep-th/0505140,0702155; arXiv:1003.2377,1010.1364]

Backgrounds in the walking region

Beta functions along the RG flow (evaluated on the background), zero tachyon, YM $x_c \simeq 3.9959$

Generalization of the holographic RG flow of IhQCD

linked

to

$$\beta(\lambda, \tau) \equiv \frac{d\lambda}{dA}; \qquad \gamma(\lambda, \tau) \equiv \frac{d\tau}{dA}$$

$$\frac{dg_{\text{QCD}}}{d\log \mu}; \qquad \qquad \frac{dm}{d\log \mu}$$

The full equations of motion boil down to two first order partial non-linear differential equations for β and γ

"Good" solutions numerically (unique)

Miransky/BKT scaling

As $x \rightarrow x_c$ from below: walking, dominant solution

 BF-bound for the tachyon violated at the IRFP

 $\Delta = 2 \& \gamma_* = 1$ at the edge of the conformal window

- $T(r) \sim r^2 \sin(\kappa \sqrt{x_c x} \log r + \phi)$ in the walking region
- ► "0.5 oscillations" \Rightarrow Miransky/BKT scaling, amount of walking $\Lambda_{\rm UV}/\Lambda_{\rm IR} \sim \exp(\pi/(\kappa\sqrt{x_c-x}))$

Prediction for x_c

Dependence on the UV parameter W_0 and (reasonable) "IR choices" for the potentials

γ_{\ast} in the conformal window

Mass spectra

Parameters

Understanding the solutions for generic quark masses requires discussing parameters

- > YM or QCD with massless quarks: no parameters
- ► QCD with flavor-independent mass *m*: a single (dimensionless) parameter *m*/Λ_{QCD}
- ▶ In this model, after rescalings, this parameter can be mapped to a parameter (τ_0 or r_1) that controls the diverging tachyon in the IR
- x has become continuous in the Veneziano limit

Map of all solutions

All "good" solutions ($\tau \neq 0$) obtained varying x and τ_0 or r_1 Contouring: quark mass (zero mass is the red contour)

Mass dependence and Efimov vacua

Conformal window $(x > x_c)$

- For m = 0, unique solution with $\tau \equiv 0$
- For m > 0, unique "standard" solution with τ ≠ 0

Low $0 < x < x_c$: Efimov vacua

- Unstable solution with $\tau \equiv 0$ and m = 0
- "Standard" stable solution, with $\tau \neq 0$, for all $m \ge 0$
- Tower of unstable Efimov vacua (small |m|)

Efimov solutions

- Tachyon oscillates over the walking regime
- $\Lambda_{\rm UV}/\Lambda_{\rm IR}$ increased wrt. "standard" solution

Efimov spiral

- Dots: numerical data
- Continuous line: (semi-)analytic prediction

Allows to study the effect of double-trace deformations

Effective potential: zero tachyon

Start from Banks-Zaks region, $\tau_* = 0$, chiral symmetry conserved $(\tau \leftrightarrow \bar{q}q)$, $V_{\text{eff}}(\lambda) = V_g(\lambda) - xV_{f0}(\lambda)$

- V_{eff} defines a β-function as in lhQCD Fixed point guaranteed in the BZ region, moves to higher λ with decreasing x
- Fixed point λ_* runs to ∞ either at finite $x(< x_c)$ or as $x \rightarrow 0$

Effective potential: what actually happens

- For x < x_c vacuum has nonzero tachyon (checked by calculating free energies)
- The tachyon screens the fixed point
- ▶ In the deep IR au diverges, $V_{\mathrm{eff}} o V_{g} \Rightarrow$ dynamics is YM-like

Where is x_c ?

How is the edge of the conformal window stabilized? Tachyon IR mass at $\lambda = \lambda_* \leftrightarrow$ quark mass dimension

$$-m_{\mathrm{IR}}^2\ell_{\mathrm{IR}}^2 = \Delta_{\mathrm{IR}}(4 - \Delta_{\mathrm{IR}}) = \frac{24a(\lambda_*)}{\kappa(\lambda_*)(V_g(\lambda_*) - xV_0(\lambda_*))}$$

$$\gamma_* = \Delta_{\rm IR} - 1$$

Breitenlohner-Freedman (BF) bound (horizontal line)

$$-m_{\mathrm{IR}}^2\ell_{\mathrm{IR}}^2 = 4 \ \Leftrightarrow \ \gamma_* = 1$$

defines x_c

Why $\gamma_* = 1$ at $x = x_c$?

No time to go into details ... the question boils down to the linearized tachyon solution at the fixed point

• For $\Delta_{\mathrm{IR}}(4 - \Delta_{\mathrm{IR}}) < 4$ $(x > x_c)$:

$$au(r) \sim m_q r^{\Delta_{\mathrm{IR}}} + \sigma r^{4 - \Delta_{\mathrm{IR}}}$$

For $\Delta_{\mathrm{IR}}(4 - \Delta_{\mathrm{IR}}) > 4$ (x < x_c):

$$au(r) \sim Cr^2 \sin\left[(\mathrm{Im}\Delta_{\mathrm{IR}})\log r + \phi
ight]$$

Rough analogy: Tachyon EoM \leftrightarrow Gap equation in Dyson-Schwinger approach Similar observations have been made in other holographic

frameworks

[Kutasov, Lin, Parnachev arXiv:1107.2324, 1201.4123]

Mass dependence

sQCD phases

The case of $\mathcal{N} = 1$ $SU(N_c)$ superQCD with N_f quark multiplets is known and provides an interesting (and more complex) example for the nonsupersymmetric case. From Seiberg we have learned that:

- ▶ x = 0 the theory has confinement, a mass gap and N_c distinct vacua associated with a spontaneous breaking of the leftover R symmetry Z_{N_c} .
- At 0 < x < 1, the theory has a runaway ground state.
- At x = 1, the theory has a quantum moduli space with no singularity. This reflects confinement with ChSB.
- At $x = 1 + 1/N_c$, the moduli space is classical (and singular). The theory confines, but there is no ChSB.
- At $1 + 2/N_c < x < 3/2$ the theory is in the non-abelian magnetic IR-free phase, with the magnetic gauge group $SU(N_f N_c)$ IR free.
- At 3/2 < x < 3, the theory flows to a CFT in the IR. Near x = 3 this is the Banks-Zaks region where the original theory has an IR fixed point at weak coupling. Moving to lower values, the coupling of the IR $SU(N_c)$ gauge theory grows. However near x = 3/2 the dual magnetic $SU(N_f N_c)$ is in its Banks-Zaks region, and provides a weakly coupled description of the IR fixed point theory.
- At x > 3, the theory is IR free.

Why is the BF bound saturated at the phase transition (massless quarks)??

$$\Delta_{\mathrm{IR}}(4 - \Delta_{\mathrm{IR}}) = \frac{24a(\lambda_*)}{\kappa(\lambda_*)(V_g(\lambda_*) - xV_0(\lambda_*))}$$

For
$$\Delta_{\text{IR}}(4 - \Delta_{\text{IR}}) < 4$$
:
 $\tau(r) \sim m_q r^{4 - \Delta_{\text{IR}}} + \sigma r^{\Delta_{\text{IR}}}$

- For $\Delta_{\text{IR}}(4 \Delta_{\text{IR}}) > 4$: $\tau(r) \sim Cr^2 \sin \left[(\text{Im}\Delta_{\text{IR}}) \log r + \phi \right]$
- Saturating the BF bound, the tachyon solutions will engtangle
 required to satisfy boundary conditions
- \blacktriangleright Nodes in the solution appear trough UV \rightarrow massless solution

Saturating the BF bound (sketch)

Does the nontrivial (ChSB) massless tachyon solution exist? Two possibilities:

- x > x_c: BF bound satisfied at the fixed point ⇒ only trivial massless solution (τ ≡ 0, ChS intact, fixed point hit)
- ► x < x_c: BF bound violated at the fixed point ⇒ a nontrivial massless solution exist, which drives the system away from the fixed point

Conclusion: phase transition at $x = x_c$

As $x \to x_c$ from below, need to approach the fixed point to satisfy the boundary conditions \Rightarrow nearly conformal, "walking" dynamics

Potentials I

$$\begin{split} V_g(\lambda) &= 12 + \frac{44}{9\pi^2}\lambda + \frac{4619}{3888\pi^4} \frac{\lambda^2}{(1+\lambda/(8\pi^2))^{2/3}} \sqrt{1 + \log(1+\lambda/(8\pi^2))} \\ V_f(\lambda,\tau) &= V_{f0}(\lambda)e^{-a(\lambda)\tau^2} \\ V_{f0}(\lambda) &= \frac{12}{11} + \frac{4(33-2x)}{99\pi^2}\lambda + \frac{23473 - 2726x + 92x^2}{42768\pi^4}\lambda^2 \\ a(\lambda) &= \frac{3}{22}(11-x) \\ \kappa(\lambda) &= \frac{1}{\left(1 + \frac{115 - 16x}{288\pi^2}\lambda\right)^{4/3}} \end{split}$$

In this case the tachyon diverges exponentially:

$$au(r) \sim au_0 \exp\left[rac{81 \ 3^{5/6} (115 - 16x)^{4/3} (11 - x)}{812944 \ 2^{1/6}} rac{r}{R}
ight]$$

Potentials II

$$\begin{split} V_g(\lambda) &= 12 + \frac{44}{9\pi^2} \lambda + \frac{4619}{3888\pi^4} \frac{\lambda^2}{(1 + \lambda/(8\pi^2))^{2/3}} \sqrt{1 + \log(1 + \lambda/(8\pi^2))} \\ V_f(\lambda, \tau) &= V_{f0}(\lambda) e^{-a(\lambda)\tau^2} \\ V_{f0}(\lambda) &= \frac{12}{11} + \frac{4(33 - 2x)}{99\pi^2} \lambda + \frac{23473 - 2726x + 92x^2}{42768\pi^4} \lambda^2 \\ a(\lambda) &= \frac{3}{22} (11 - x) \frac{1 + \frac{115 - 16x}{216\pi^2} \lambda + \lambda^2/(8\pi^2)^2}{(1 + \lambda/(8\pi^2))^{4/3}} \\ \kappa(\lambda) &= \frac{1}{(1 + \lambda/(8\pi^2))^{4/3}} \end{split}$$

In this case the tachyon diverges as

$$au(r) \sim rac{27 \ 2^{3/4} 3^{1/4}}{\sqrt{4619}} \sqrt{rac{r-r_1}{R}}$$

Gamma functions

