Fermi Surfaces in N=4 SYM

Some recent calculations by Christopher Rosen, Oliver DeWolfe, and Steve Gubser

In Field Theory

A Fermi surface is the place, k_F , where

In Gravity Theories

Bottom up finite density physics

In Gravity Theories

Bottom up finite density physics

In Gravity Theories

The top down alternative

In Gravity Theories

What about the fermions?

Find a background, study spin-1/2 fluctuations...

Important: fermion properties are no longer arbitrary

In Gravity Theories

Which Background?

Try the "2+1 Q" BHs \leftrightarrow N=4 SYM at (2x) finite density, T

$$a = \Phi_1(r) dt$$
 $\mathcal{A} = \Phi_2(r) dt$

 $\varphi = \phi(r)$

The functions A, h, B, Φ1, Φ2, and φ are cumbersome but explicitly known

In Gravity Theories

Workflow

 $\psi_{r \to \infty} \sim A(k)\sqrt{r} + B(k)r^{-3/2}$

where

 $\delta S_{\rm CFT} = \int \mathrm{d}^4 x \, A(x) \mathcal{O}_{\psi}(x)$

In Gravity Theories

Workflow

In Gravity Theories

Finite frequency fluctuations

$$G_R = \frac{Z}{\omega - v_F(k - k_F) + \Sigma(\omega, k)}$$

In the extremal 2+1 system, controlled by IR AdS2:

 $\Sigma(\omega,k) \sim e^{i\gamma_{k_F}} \omega^{2\nu_{k_F}}$

In these embeddings, self energy dominates...

$$\omega_* \sim (k - k_F)^z$$

where

 $z \equiv \frac{1}{2\nu_{k_F}}$

The extremal 2-Charge Solution

Background

This is important!

$$\Phi(r) = \frac{Q}{2L} \left(1 - \frac{Q^2}{r^2 + Q^2} \right)$$

The extremal 2-Charge Solution

Fermi surfaces exist

So do novel features at finite ω ...

Near the horizon, bulk fermions are "gapped":

for $\omega < \omega^*$ bulk modes damped, expect qp's

for $\omega > \omega^*$ bulk modes oscillatory, expect field theory dissipation

The extremal 2-Charge Solution

Low Energy Excitations

More like a Fermi liquid?

The extremal 2-Charge Solution

Low Energy Excitations

The extremal 2-Charge Solution

Low Energy Excitations

Up and Coming

In the 2+1-Q BHs

Need to understand instabilities better

In the 2-Q BH

Where are the quasi-normal modes??

Can a resolution of the singularity in terms of a higher dimension theory teach us anything important?

Lots more to do...