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...but Fermi Surfaces:
In Field Theory

A Fermi surface is the place,      , wherekF

Low energy excitations about this 
surface can be characterized by

GR =
Z

! � vF (k � kF ) + ⌃(!, k)

GR
�1(! = 0, k = kF ) = 0

Figure 1: Multiple fermi surface singularities correspond to nested spheres (left). When the signs
of kF are opposite and the excitation spectrum is the same at both surfaces, one interpretation is
a thick shell (right).

Finally, the ratio of the excitation width to its energy is given by

�

!⇤
= tan

✓
�kF
2⌫kF

◆
, k? > 0 ,

= tan

✓
�kF
2⌫kF

� ⇡z

◆
, k? < 0 .

(133)

Di↵erent formulas hold for Fermi liquids, which have ⌫kF > 1/2; as we shall see, all our Fermi

surfaces are non-Fermi liquids, with one interesting special case approaching the marginal Fermi

liquid at ⌫kF ! 1/2.

6 Fermi surfaces in 2+1-charge black holes

To obtain the locations kF of Fermi surfaces as a function of µR ⌘ µ
1

/µ
2

for the various fermions,

we numerically solve the decoupled second-order Dirac equation (97) at ! = 0, beginning at the

horizon where we impose the positive sign exponent in (114) as a boundary condition, and searching

for values of kF that cause the source term to vanish as (127). We arbitrarily solve for the spinor

component ↵ = 1; the other component ↵ = 2 has identical results with k ! �k. We plot the

values of kF /µ2

vs. µR for the Dirac equations with Fermi surfaces in the following figures, as well

as ⌫kF , z and �/! for each case.

A few general points before we consider each fermion in turn:

• The fermions with asymptotic mass m ! 3

2L , which sit in the 4 of SO(6) and are dual to the

operators Tr F
+

�, possess no Fermi surfaces.
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...but Fermi Surfaces:
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In Gravity Theories
Bottom up finite density physics
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...but Fermi Surfaces:
In Gravity Theories

Bottom up finite density physics

?
=

CFT

µ

O 

(i�µrµ + �µAµ � + . . .) = 0q m
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...but Fermi Surfaces:

The top down alternative

IIB SUGRA 
in D=10

N=8 gauged 
SUGRA in 

D=5

In Gravity Theories

LB [e,Ai,'j ]
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...but Fermi Surfaces:

What about the fermions?

In Gravity Theories

Find a background, study spin-1/2 fluctuations...

�
i�µrµ + qj�

µAj
µ �m(') + ipj(')Fj

µ⌫�
µ⌫
�
 = 0

Important: fermion properties are no longer 
arbitrary
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Fermi Surface Embeddings

Which Background?
In Gravity Theories

Try the “2+1 Q” BHs N=4 SYM at (2x) finite density, T

ds2 = e

2A(r)
�
�h(r) dt2 + d~x2

�
� e

2B(r)

h(r)
dr2

a = �1(r)dt A = �2(r)dt

' = �(r)

The functions A, h, B, Φ1, Φ2, and φ are cumbersome but 
explicitly known
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Fermi Surface Embeddings
In Gravity Theories

Workflow

Fix 
Background

Tuesday, October 2, 12



Fermi Surface Embeddings
In Gravity Theories

Workflow

Fix 
Background

Solve Dirac 
EQ at ω=0

 r!1 ⇠ A(k)
p
r +B(k)r�3/2

where

�SCFT =

Z
d4xA(x)O (x)
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Fermi Surface Embeddings
In Gravity Theories

Workflow

Fix 
Background

Solve Dirac 
EQ at ω=0

Tune k to look 
for a kF

 r!1 ⇠ A(k)
p
r +B(k)r�3/2

where

�SCFT =

Z
d4xA(x)O (x)

so

GR(! = 0, k) ⇠ B(k)

A(k)

A(kF ) = 0
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Fermi Surface Embeddings
In Gravity Theories

Finite frequency fluctuations

GR =
Z

! � vF (k � kF ) + ⌃(!, k)

In the extremal 2+1 system, controlled by IR AdS2:

In these embeddings, self energy dominates...

!⇤ ⇠ (k � kF )
z where z ⌘ 1

2⌫kF

⌃(!, k) ⇠ ei�kF !2⌫kF
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Fermi Surface Embeddings

Figure 2: The values of kF /µ2

for case 1, Tr �
1

Z
2

and Tr �
1

Z
3

.
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Figure 3: The values of ⌫kF , z and �/! for case 1, Tr �
1

Z
2

and Tr �
1

Z
3

.

These modes have (q
1

, q
2

) = (1
2

, 2), (p
1

, p
2

) = (1
4

, 0) and (m
1

,m
2

) = (1
2

,�1

4

); kF is given in figure 2

and ⌫kF , z and �/! in figure 3.

The oscillatory region has the shape of a wavy band, as k̃
osc

/µ
2

approaches a constant value in

either limit, while k
shift

approaches zero at µR ! 0 but a finite value at µR ! 1. This fermion is

one of two with the largest total charge q
5

= 5/2, and has two Fermi surfaces for larger values of

µR; these track the oscillatory region boundary very closely. At the 3-charge point these fermions

reduce to the results of [49]. The Fermi surfaces disappear into the oscillatory region at around

µR ⇡ 0.47.

The values of ⌫k are small throughout the range, resulting in a scaling exponent z for the

excitations that never gets smaller than z & 5, and which (as it must) grows without bound as

the Fermi momenta approach the oscillatory region. The ratio �/! of excitation width also stays

small, being bounded above by �/! ⇡ 1/10 and going to zero as µR ! 1; thus in this limit the

would-be quasiparticle excitations become more and more stable.

In the full three-dimensional k-space, these two Fermi surface singularities are completed into

nested spheres. The excitation spectrum near both surfaces is the same; since the two kF solutions
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The oscillatory region has the shape of a wavy band, as k̃
osc

/µ
2

approaches a constant value in

either limit, while k
shift

approaches zero at µR ! 0 but a finite value at µR ! 1. This fermion is

one of two with the largest total charge q
5

= 5/2, and has two Fermi surfaces for larger values of

µR; these track the oscillatory region boundary very closely. At the 3-charge point these fermions

reduce to the results of [49]. The Fermi surfaces disappear into the oscillatory region at around

µR ⇡ 0.47.

The values of ⌫k are small throughout the range, resulting in a scaling exponent z for the

excitations that never gets smaller than z & 5, and which (as it must) grows without bound as

the Fermi momenta approach the oscillatory region. The ratio �/! of excitation width also stays

small, being bounded above by �/! ⇡ 1/10 and going to zero as µR ! 1; thus in this limit the

would-be quasiparticle excitations become more and more stable.

In the full three-dimensional k-space, these two Fermi surface singularities are completed into

nested spheres. The excitation spectrum near both surfaces is the same; since the two kF solutions
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Lessons from the 2+1 Charge Zoo

• Fermion modes dual to Tr Fλ 
have no Fermi surface

• Fermion modes dual to Tr λΖ 
may have 0 or 1 or 2 Fermi 
surfaces, depending on their 
charge

• These systems are almost all 
non-Fermi liquids, but there exists 
one case resembling a MFL
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Fermi Surface Embeddings
The extremal 2-Charge Solution

Background

h(r) = 1� Q4

(r2 +Q2)2 �(r) =

r
2

3

log

✓
1 +

Q2

r2

◆

B(r) = � log

r

L
� 2

3

log

✓
1 +

Q2

r2

◆
A(r) = log

r

L
+

1

3

log

✓
1 +

Q2

r2

◆

�(r) =
Q

2L

✓
1� Q2

r2 +Q2

◆ This is important!
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Fermi Surface Embeddings

Fermi surfaces exist
The extremal 2-Charge Solution

So do novel features at finite ω...
Near the horizon, bulk fermions are “gapped”:

 r!0 ⇠ e�
1
2r

q
Q2

2 �!2

for ω < ω* bulk modes damped, expect qp’s

for ω > ω* bulk modes oscillatory, expect field theory dissipation
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Fermi Surface Embeddings

Low Energy Excitations

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

-0.10 -0.05 0.00 0.05 0.10

-0.10

-0.05

0.00

0.05

0.10

w

k¶

More like a Fermi liquid?

The extremal 2-Charge Solution
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Fermi Surface Embeddings

Low Energy Excitations
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Fermi Surface Embeddings

Low Energy Excitations
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Up and Coming

Need to understand instabilities better
In the 2+1-Q BHs

In the 2-Q BH
Where are the quasi-normal modes??

Can a resolution of the singularity in 
terms of a higher dimension theory 
teach us anything important?

Lots more to do...
Tuesday, October 2, 12


