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Motivation for a holographic point of view

• The “Can we do it holographically?” question...

Tuesday, October 4, 2011



Motivation for a holographic point of view

• The “Can we do it holographically?” question...

HOLOGRAPHIC

Tuesday, October 4, 2011



Motivation for a holographic point of view

• The “Can we do it holographically?” question...

HOLOGRAPHIC

•  Is the condensed matter phenomenology complete ?

Tuesday, October 4, 2011



Motivation for a holographic point of view

• The “Can we do it holographically?” question...

HOLOGRAPHIC

•  Is the condensed matter phenomenology complete ?

•  Physics near quantum critical points as suspected by simple models? (Hertz/
Millis). Or should we expect more into the simple picture?

Tuesday, October 4, 2011



Motivation for a holographic point of view

• The “Can we do it holographically?” question...

HOLOGRAPHIC

•  Is the condensed matter phenomenology complete ?

•  Physics near quantum critical points as suspected by simple models? (Hertz/
Millis). Or should we expect more into the simple picture?

•  Is a holographic superconductor “the same” as a BCS superconductor ?
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• Superconductivity in cuprates hides a putative quantum critical point

• Its location and signatures are masked by superconductivity

• Are there predictions that can guide experiments inside the superconductor?

 Phase boundary

 QCP

CDW/SDW
nematic isotropic

T

μ or x

AFM

Physics near quantum critical points
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The problem of the superconducting AC conductivity

• Typically unknown behavior near any quantum critical points. Easy for 
experiments... Expected universal behavior at the superconducting gap scale!

[D. van der Marel et al. 2003]
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• Typical 
theory

•BSCCO
experiment

The problem of the superconducting AC conductivity

• Holographic systems provide a quantum critical point, are there fundamentally 
different expectations in a superconductor?

• Typically unknown behavior near any quantum critical points. Easy for 
experiments... Expected universal behavior at the superconducting gap scale!

[D. van der Marel et al. 2003]
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L = R +
6
L2
− 1

4
FµνFµν − |∂Ψ− iqAΨ|2 −m2|Ψ|2

ds2 = −g(r)dt2 +
dr2

g(r)
+ r2(dx2 + dy2)

g(r) = r2 − 1
r
(r3

+ +
ρ2

4r+
) +

ρ2

4r2

Intuitively,                              and it can lead to instabilities if too negative.

Basic idea: the black hole creates pairs of charged particles, but they cannot 
escape from the AdS, and they settle outside the horizon. 

Limit: For large q, saddle-point solutions become exact (no backreaction)

m2
eff ∼ m2 − q2A2

0

AdS/CFT Dictionary
Gravity (AdS)                         Superconductor (CFT)

Black hole                                 Temperature

Charged scalar field (hair)        Condensate (Cooper pair)

field mass                                  scaling dimension                        

at finite temperature and charge density, for AdS Reissner-Nordstrom black 
holes:

φ φ φ

However: 2 ways of condensing φ: i) through the gravitational environment, 
ii) through the usual way. We typically neglect the first.
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φ φ φ φ

φ
φ

 Oi  has dimension i, and µ has dimension one,

 so Oi / T
i   and T/µ are dimensionless. 

Condensate (hair) as a function of T 

• Field Equations to solve (2+1 CFT, U(1), T) [Hartnoll, Herzog, Horowitz]:

• At the horizon                  ,    must vanish, in order to have finite norm. Then,   
   and     are not independent.

• Asymptotically:                    ,

• For    , either falloff is normalizable, and if one of them is set to zero, we 
have a one-parameter family of solutions. 

•       has dimension i,    has dimension 1,            and          dimensionless.

4

Basics of holographic superconductors
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•  BCS superconductors     Instability of the Fermi surface due to 
attractive interactions; pairs of electrons with opposite spin bind to 
form charged bosons.

• Traditional approach: Landau-Ginsburg Theory for T~Tc, for                 :

• Experimental quantities of interest: length scales 
superconducting coherence length            magnetic penetration depth

• ratio        defines type-I from type-II superconductors. 

• Tc is intrinsically connected to the coherence length scale: Pinning 
potentials with a length scale  , affect Tc according to the ratio 

Basics of regular superconductors (BCS- Landau-
Ginsburg)

FL−G =
1

2m∗ |(∇+ iqA)ψ|2 + α(T − Tc)|ψ|2 +
β

2
|ψ|4 + . . .

ξ ∼ 1
(α(T − Tc)m∗)1/2 λ ∼ (m∗)1/2

q2φ0

ξ/λ

l l/ξ

ψ ≡ �O�φ

φφφ

:
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Properties of holographic superconductors

• A holographic superconductor:

•  is extreme type-II, with infinite penetration depth,

• has a conductivity that does not vanish at small     (                              ), 

• has an interesting ratio that appears large (           ), 

• has infinite dc conductivity in the normal state (translationally invariant)

σ(ω) �= e−∆/T , ω → 0
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Properties of holographic superconductors

• A holographic superconductor:

•  is extreme type-II, with infinite penetration depth,

• has a conductivity that does not vanish at small     (                              ), 

• has an interesting ratio that appears large (           ), 

• has infinite dc conductivity in the normal state (translationally invariant)

σ(ω) �= e−∆/T , ω → 0

Target: understand quantum critical aspects of the 
conductivity profile and make it more realistic
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sition, the cubic terms in Eq. !9" can be neglected. Expand-
ing in UQ / Ū, and transforming Eq. !9" to Fourier space, we
obtain a system of equations connecting !!k" and !!k±Q".
For small Q, !!k±Q"#!!k", and after expanding up to the
second order in Q, we obtain

− gmax!!k" = !"k"2!!k" −
1
2

A2Q2!k
2!!k" . !10"

Here gmax denotes g!r" evaluated at U!r"= Ū+ $UQ$
and A = %UQ / !NfŪ2" !note that there is no explicit
constraint on the value of parameter A since it is a ratio
of two small numbers". The MF transition temperature is
determined by the smallest eigenvalue of the differential
operator on the right-hand side. This eigenvalue corresponds
to the “ground-state energy” of a harmonic oscillator,
"QA /%2. The corresponding transition temperature
Tc

MF=Tmax
MF exp!−"QA /%2", is only slightly less than the tran-

sition temperature, Tmax
MF for a system with a homogeneous

pairing interaction Umax= Ū+ $UQ$. More importantly, it is
easy to see that in the limit of small Q", the order parameter
is exponentially suppressed in the region of smaller pairing
interaction relative to its value at the peak,

!min & !max exp'− A!"Q"−1( , !11"

This, in turn, implies that phase fluctuations, which we dis-
cuss below, can reduce the global phase coherence tempera-
ture significantly below Tc

MF.
The expression of Eq. !11" is only valid at the MF transi-

tion temperature, where ! is infinitesimal. To determine !
below Tc

MF we need to solve the nonlinear Eq. !9". In a
d-dimensional superconductor, with an arbitrary smooth
variation of U!r", the boundary of the “classically forbidden”
region, g!r"#0, is a !d−1"-dimensional surface. Hence,
near the boundary the problem is essentially one-
dimensional, and in the g!r"#0 region we can apply the
standard WKB approximation to solve the linearized Eq. !9".
The prefactor is fixed by matching the WKB solution to the
intermediate asymptotic at the boundary x0, which can be
obtained by solving the full Eq. !9" in a linear potential
g!x"=g!!x0"!x−x0". We then find that in the particular case of
harmonic modulation discussed above, the order parameter
distance d away from the boundary is approximately

!!d" & T%AQ" exp)− A%Q"!d/""3/2* . !12"

This expression is obtained assuming g!!x0"#A2Q, and
therefore valid only for the temperatures sufficiently below
Tc

MF&Tmax
MF . So long as T$Tmin

MF !Tmin
MF is the uniform Tc of a

system with pairing strength Ū− $UQ$", the distance from the
turning point to the minimum point of ! is d&L. Notice that
this expression depends on temperature not only explicitly,
but also through "=v f /T.

Phase fluctuation effects (still with Q"%1". A conse-
quence of the large spatial variations in the mean-field !!r"
is that fluctuation effects are severe where !!r" is small. Of
these, the most important are the thermal fluctuations in
the phase of the order parameter, i.e., such that

!!r"= $!MF!r"$ei& where !MF!r" is the solution of Eq. !9",
and &!r" is a slowly varying function of r. The free
energy cost of such phase fluctuations is
F&=+drJ!r"!"&"2, with the local superfluid stiffness
J!r"=Nf"

2$!MF!r"$2. In general, the phase-ordering tempera-
ture estimated using this as the effective Hamiltonian is re-
duced from the mean-field transition temperature )i.e., the
temperature at which J!r" vanishes*, but by an amount that
depends on dimensionality, and on the spatial arrangement of
the regions of suppressed stiffness.

For concreteness, we consider the case of a two-
dimensional !2D" superconductor. At finite temperature, no
true long-range order is possible.13 However, at T'TKT,
binding of topological excitations into vortex-antivortex
pairs leads to a state with quasi-long-range order, which has
a nonzero superfluid stiffness.14 While for homogeneous
BCS superconductors in 2D, the difference between MF and
the Kosterlitz-Thouless !KT" transition temperatures is tiny,
!Tc

MF−TKT" /Tc
MF&Tc

MF/TF !where TF is the Fermi tempera-
ture", for inhomogeneous superconductors, the suppression
of TKT, is generally much larger. For a smooth random dis-
tribution of J!r", an estimate of TKT can be made based on
the effective superfluid density,

TKT & %J!r")1/J!r"*−1 # %JminJmax. !13"

This expression has a particularly transparent meaning for
the unidiretional “stripedlike” variation of U!r" that we
treated explicitly when solving the mean-field equations
above. There, Jmax corresponds to the stiffness along the
stripes and Jmin perpendicular to the stripes. The correspond-
ing anisotropic XY model directly leads to the result Eq. !13".
In this case, we find

FIG. 1. Critical temperature for the inhomogeneous negative U
Hubbard model with coupling U!x"= Ū+UQ cos!Qx". The thick line
denotes the mean-field result, where Tc,a= !2( /)"*D exp)−1/NfŪ*
and Tc,h= !2( /)"*D exp)−1/Nf!Ū+ $UQ$"*. The dashed line shows
the critical temperature once phase fluctuations of the order param-
eter are included. For Q"%1, the superconductivity is first estab-
lished locally in regions where U!x" is large, but macroscopic phase
coherence is achieved at a lower temperature, bounded from below
by Tc,l= !2( /)"*D exp)−1/Nf!Ū− $UQ$"*.

ENHANCEMENT OF SUPERCONDUCTIVITY BY LOCAL… PHYSICAL REVIEW B 72, 060502!R" !2005"
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• Let’s assume a pinning potential for the charge density:

• BCS result: Tc increases for any non-zero    (fixed  ) and increases as
           (fixed  ) [Martin, Podolsky, Kivelson]

•  Holographic superconductors’ result?

•  Re-define    on the AdS boundary, making     inhomogeneous. 
Additional relevant scales in the problem    and   . 

• Now, x-derivatives become important...  

6

Inhomogeneous holographic pinning potentials 

µ = µ0 + δ cos(2πx/l)

δ l
l→∞ δ

µ A0

δ l

∼ 1/l

heuristic phase-fluctuation
result

mean-field
result
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Possible numerical techniques 

• Equations to be solved in the inhomogeneous case:

• Ways to solve them:

• Numerically, either by solving the equations in real-space (2D grid with non-
trivial boundary conditions) or by expanding the solution in Fourier modes and 
solving explicitly an equation hierarchy (both methods efficient at Q     0)

• variational approach
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- Beginning from a random profile, 
solve for                    and A

Comparison of Numerical Methods

Momentum based                                           Real-Space based

- Finite-difference Gauss-Seidel:- Fourier decomposition:

- Solve a hierarchy of ODEs:

- Efficient at large Q
- until self-consistency is achieved

- in principle, exact approach

- A is analytically solved in an 
approximately exact manner.
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Comparison of Numerical Methods

• agreement of the possible Tc’s
 for different modulations 

•  agreement with homogeneous 
result at small δ

• Limiting behavior for δ=1 -- 
Tc = 0 for Qcoherence -- estimate for T=0 
coherence length of the parent superconductor
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Profiles of inhomogeneous solutions

A field    field    φ

• derivatives of the scalar field at z=0 give the static expectation 
of the condensate �O�
• derivatives of the A-field at z=0 give the charge density of the 
condensate
• Modulations of the condensate follow the imposed chemical 
potential --- nodeless solution

[Q=4, δ=0.4, μ=7]

• µC when average in x of condensate is non-zero.
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• Transition with zero average charge density, for a modulation:

• Transition for fixed modulation, changing      : 

7

Inhomogeneous holographic pinning potentials 
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• Transition with zero average charge density, for a modulation:

• Transition for fixed modulation, changing      : 
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Inhomogeneous holographic pinning potentials 
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• Transition with zero average charge density, for a modulation:

• Transition for fixed modulation, changing      : 
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Inhomogeneous holographic pinning potentials 
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Conductivity profile

• easiest component to calculate             : 

• Solve the equation for Ay on the background of the other 
solutions:  

Q=4
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Possibility for a holographic LO-like / PDW phase

• Consider the class of solutions for the condensate with antiperiodic 
boundary conditions:
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• Comparison:
Real-space nodes 

mean
Larkin - Ovchinikov 

or 
Pair Density Wave

states

- + - +
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Why holographic PDW states ? 

• relevant to the physics of the cuprates

• LBCO around 1/8 doping and 
suggestions for PDW states [Tranquada, 
Fradkin, Kivelson]

• CCOC, BSCCO are suggested to have strong d   s order which recently was 
shown to display PDW states at moderate magnetic fields [Galanakis,SP 2010] and 
[Liu,Zhou arxiv: 1106.0115, 2011]

±

• expected quantum critical points to such 
states as magnetic field changes
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Which phase is stable at low temperatures?

• Antiperiodic solutions have similar dependence of Tc on Q and δ.

•The fate of the low temperature phase of the inhomogeneous 
superconductor is decided by the free energy:

periodic .vs. anti-periodic

1 2 3 4 5
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0.04
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0.06

T
c

equally 
stable?

Ω
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Free energy competition

• Competition between the periodic and antiperiodic solutions as Q     0
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Free energy competition

• Competition between the periodic and antiperiodic solutions as Q     0

• However, the antiperiodic solution never wins in this model!
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Way of stabilizing a PDW ground state
• Generic Ginzburg - Landau free energy for a superconductor in a magnetic 
field [Buzdin, Kashkachi 1996]:

• Finite-q solutions crucially dependent on the δ-term - everything else being 
details:

• Solve for the free energy:
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Analogs of Holographic PDW states

• Consider a RN black hole with an external magnetic field in AdS: 

• Temperature has a dependence on the magnetic field:

• Charged, massive scalar shows typical BCS-like vortex solutions:

• PDW states need additional potential terms which should be Lorentz 
invariant:
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Analogs of Holographic PDW states

• Consider a RN black hole with an external magnetic field in AdS: 

• Temperature has a dependence on the magnetic field:

• Charged, massive scalar shows typical BCS-like vortex solutions:

• PDW states need additional potential terms which should be Lorentz 
invariant:

non-zero Tc for 
extended solutions 

at  finite B 
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Conclusions/Future Directions

•  Non-trivial consistency of BCS with holographic superconductivity, 

•  Construction of more realistic holographic superconducting ground-states 

•  Future: 

•    Understanding of quantum critical properties of holographic PDWs

•    Quantum critical fermions in CDW environments

-   R. Flauger, E. Pajer and SP, Phys. Rev. D, 83, 064009  (2011)

-   SP and G. Siopsis (to be submitted)
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