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Motivation for a holographic point of view

HOLOGRAPHIC
INTRODUCTION TO
SUPERCONDUCTIVITY

SECOND EDITION

* The “Can we do it holographically?” question...

MICHAEL TINKHAM

* |s the condensed matter phenomenology complete ?

e Physics near quantum critical points as suspected by simple models? (Hertz/
Millis). Or should we expect more into the simple picture?

 |s a holographic superconductor “the same” as a BCS superconductor ?
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Physics near quantum critical points

e Superconductivity in cuprates hides a putative quantum critical point
e Its location and signatures are masked by superconductivity

* Are there predictions that can guide experiments inside the superconductor?

Phase boundary

L Isotropic
QCP L or X
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The problem of the superconducting AC conductivity

(a), (b), i
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[D. van der Marel et al. 2003]
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 Typically unknown behavior near any quantum critical points. Easy for
experiments... Expected universal behavior at the superconducting gap scale!
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The problem of the superconducting AC conductivity
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[D. van der Marel et al. 2003]
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 Typically unknown behavior near any quantum critical points. Easy for
experiments... Expected universal behavior at the superconducting gap scale!

e Holographic systems provide a quantum critical point, are there fundamentally
different expectations in a superconductor?
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AdS/CFT Dictionary

Gravity (AdS) Superconductor (CFT)
Black hole Temperature
Charged scalar field (hair) Condensate (Cooper pair)
field mass scaling dimension
6 I .., .
L=R+ o5 — 7 F"F, —[0¢—igAd] —m? ¢
at finite temperature and charge density, for AdS Reissner-Nordstrom black
holes: dr2
2 _ 2 [ W 2/ 7 2 2
ds® = —g(r)dt® + o) + r=(dz* 4 dy~)
ENCEE P R
g(r)=r r(r++47“_|_)+4?“2

Intuitively, m2q ~ m* — ¢ A: and it can lead to instabilities if too negative.

However: 2 ways of condensing ¢: i) through the gravitational environment,
il) through the usual way. We typically neglect the first.

Limit: For large q, saddle-point solutions become exact (no backreaction)
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Basics of holographic superconductors

* Field Equations to solve (2+1 CFT, U(1 ), T) [Hartnoll, Herzog, Horowitz].
. f/ 2 m2
¢+ ( )¢ _l_ £2 h f =0

2 2
A//+_AI_TA:O
* At the horizon f(rg) = 0, Amust vanish, in order to have finite norm. Then,
¢ and ¢'are not mdependent

| (1) (2)
« Asymptotically: A = p — g , O = ¢ | ¢

r r2

 For gb either falloff is normalizable, and if one of them is set to zero, we
have a one-parameter family of solutions. (0;) = \@¢(i)

- (; has dimension i, {4 has dimension 1, O; /T and T'/ 1, dimensionless.

10 N

6

<0,> 6 V<0,>
4 T, |
2 |
0 \ ( \
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0

~
~

Tuesday, October 4, 2011



Basics of reqular superconductors (BCS- Landau-
Ginsburg)

« BCS superconductors: Instability of the Fermi surface due to
attractive interactions; pairs of electrons with opposite spin bind to
form charged bosons.

- Traditional approach: Landau-Ginsburg Theory for T~Tc, for ¢ = (O) :

Fr_g = (V+iqA)gb\2+a(T—Tc)\gb\2+§!¢\4+...

2m* ‘

» Experimental quantities of interest: length scales

superconducting coherence length magnetic penetration depth
1 *\1/2
£~ — \ o )
(a(T — T,)m*)Y/ 20

» ratio £/ defines type-| from type-Il superconductors.

 Tc is intrinsically connected to the coherence length scale: Pinning
potentials with a length scale [, affect Tc according to the ratio //¢
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Properties of holographic superconductors

* A holographic superconductor:

1.0}

08}

0.0t

Re(o") 0.6:» .
04H

02}

A A A A

-------------------------

—
S W] PERY G WSSO RS TAA. wareeeweTe |

* |s extreme type-Ill, with infinite penetration depth,

» has a conductivity that does not vanish at small @ (o(w) # e 2/T, w — 0),

@y

e has an interesting ratio that appears large ( =2 ~ 8 ),

1.

 has infinite dc conductivity in the normal state (translationally invariant)
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Properties of holographic superconductors

1.0}

0.8}

* A holographic superconductor:

0.0t

Re(o) *5 i
04}

02}

lllllllllllllllllllllllllllll
4

B
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

* |s extreme type-Ill, with infinite penetration depth,

» has a conductivity that does not vanish at small @ (o(w) # e 2/T, w — 0),

* has an interesting ratio that appears large ( % ~8),

C

 has infinite dc conductivity in the normal state (translationally invariant)

Target: understand quantum critical aspects of the
conductivity profile and make it more realistic
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Inhomogeneous holographic pinning potentials

1= o + o cos(2mx /1)

Let's assume a pinning potential for the charge density:

« BCS result: Tc increases for any non-zero § (fixed!) and increases as

| — oc (fixed§) (vartin, Podolsky, Kivelson] L eanfiold
heuristic phase-fluctuation Te,h result
result T

Tea

Tcl

* Holographic superconductors’ result?

1/ 0~ 1/

* Re-define 1 on the AdS boundary, making Aginhomogeneous.
Additional relevant scales in the problem ¢ and [ .

* Now, x-derivatives become important...
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Possible numerical techniques

e Equations to be solved in the inhomogeneous case:

ap T A 0 A-2TA = 0
- 2 I 2 g
5 tomt (D7) oot (7t p)e = o

* \Ways to solve them:

* Numerically, either by solving the equations in real-space (2D grid with non-
trivial boundary conditions) or by expanding the solution in Fourier modes and
solving explicitly an equation hierarchy (both methods efficient at Q = 0)

e variational approach
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Comparison of Numerical Methods

Momentum based ‘ Real-Space based

- Fourier decomposition:

o0

Y(z,2) = Y ¥n(2) cos(nQz)

n=0

- Solve a hierarchy of ODEs:

— 0" + (zh(z) — AJ) ¥ — A2A, ¥ — 240A,Aq; + h(2)Q*QY =0

- Ais analytically solved in an
approximately exact manner.

- Efficient at large Q

(& +

- Finite-difference Gauss-Seidel:

ID(CLH Z) — ‘Ij(xna Z’n)

- Beginning from a random protile,
solve for ¥ = zR/+/2 and A

F-)Rio + (h‘f? — $i-)R_o + =ethe=)

2h:_ hf,

Az ¢
(2= P+ &+ #)

.:(A.+.0 + A_.()) + é(AO-% -+ Ao_)

(R + & +73)

- until self-consistency is achieved

- In principle, exact approach
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Comparison of Numerical Methods

0.06
* agreement of the possible Tc’s 0.05 |
for different modulations 6od
<2 0.03 |
0.02
0.01 ¢
1 2 3
Q
. 0.06:s _________________________________________________________________
» agreement with homogeneous WS
U.OST \
result at small 0 : \
0.04> \
, \
i~'[ i 0.03: \
[ 502 \
O.OZE o \
e Limiting behavior for 5=1 -- o
o . .
Tc = 0 for Qeonerence -- €Stimate for T=0 .t . = . & , .
coherence length of the parent superconductor &
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Profiles of inhomogeneous solutions

A field

(U

100

120

0 20 40 60 80 100 120
X

 derivatives of the scalar field at z=0 give the static expectation

of the condensate (O)

* derivatives of the A-field at z=0 give the charge density of the

condensate

* Modulations of the condensate follow the imposed chemical

potential --- nodeless solution

@ field
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e uc when average in x of condensate is non-zero.

[Q=4, 5=0.4, u=7]
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Inhomogeneous holographic pinning potentials

 Transition with zero average charge density, for a modulation:

006 —————F === —F - === F--
— e I ) B
Caeiieen
~ 0.05 .. -
< - .
[\l E I~ _
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o | i ]
=, ) :
s T < o003 -
o [ ~ - . _
A2 002 -
o I
v - ]
1= 001 —
‘ | I —
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o/T [
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Inhomogeneous holographic pinning potentials

 Transition with zero average charge density, for a modulation:

006 —————F === —F - === F-- )
B — ‘ U TEEEETEEE R ° | TC Increases
~ 005 _ -
3 L i . | as | — o
[\l
~a 0.04 -
o |- B B
— o
= 3 2 o003 =
Q\\/ - ~ ,.-' _
A2 002 -
o I
e B B
1= 001 —
| B B
20 40 60 80 100 120 Oy 1‘0 2‘0 3‘0 0
o/T [
» Transition for fixed modulation, changing g
35
- — B B
~ — — 3 7
o
A L a =~ T ]
3‘6 S 25k .
o | - 8
= 6=0.5 vl ]
S 4 6=1.0 _ x o -
= §=2.5 = | B
= | 0=5.0 g
Cgm t‘/ 15— 4 —
v 2 e i
| 1-eo—e e ._._._._. —
o— 1 v 1 0 11y ‘ — ‘2 4“ : ‘6 é ‘07
0.6 0.7 0.8 0.9 1 1.1 1

2

T/(0.118<p>")

Tuesday, October 4, 2011



Inhomogeneous holographic pinning potentials

 Transition with zero average charge density, for a modulation:
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Conductivity profile

Ay(z,2) = AD(z) + zA] () + ... .

* easiest component to calculate oy (w, z): Fe A§1)($)
oy(w,z) = 7 = i)
Y why’ ()
* Solve the equation for Ay on the background of the other
solutions: "
Q=4
Lof pisE=asmeasae
» 2t
08} o g
E 0.6
& 0.4}
02}~
0,0:»: R e ioia e B AN B S e S v =
0 2 4 6 b 10 12
w
vy 4LO,
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Conductivity profile

* easiest component to calculate oy (w, z):

oy(w,z) = = =

Ay(z,2) = ASJ) (z) + zAz(,l)(m) S AR

% AP (z)

—1
Ey CUAS)) (x)

* Solve the equation for Ay on the background of the other

solutions:

h
ho, (h0.Ay) + hoz Ay + (w2 = 2I¢|2;—) Ay =

Q=t 502 p=50%8

15

o
:0::"':"’1"@-
e
i _._o-;'_-&;_ﬁ-;;ar. -2
el S b
. - e - .
- T i i iy e g i e e g -
e ™ ™ - - :‘:":‘:“:';.:‘t‘ — -
— - . = - - - o o~
,,,,, e e
e e T e e e L e e e e e T e e P S ™ ™
P T S R T T R R — e e, L, .
- e -'*—~ —'*J*‘*-O-#"'*v-“*-"*ﬁ ~ -~ - - -~ - e
i e i i T i o i o T o i e e i T T
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i e o e~ e e e o e -
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e e T - 1
P2 T o -o—“—.‘—\-.:».bag‘_&‘-‘"q..,; e ).
‘*‘ ‘*’ ‘0’ . a > -
e e
e D g o
e o - Re
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S, S -
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Conductivity profile

* easiest component to calculate oy (w, z):

oy(w,z) = = =

Ay(z,2) = ASJ) () + zA!(})(:z:) - A

% AP (z)

—

Ey wAg,O) (x)

* Solve the equation for Ay on the background of the other

solutions:

hd, (hd,Ay) + hO2 A, + (w2 —~

Q=t 502 p=50%8

15

it
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e e e e
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Possibility for a holographic LO-/ike / PDW phase

e Consider the class of solutions for the condensate with antiperiodic

boundary conditions:
¢(z+2m/Q) = —é(z)

=2 0=0.6 u=8.93
Q K Q=2 6=0.6 u=8.93

)

1 Real-space nodes I
» Comparison; mean
Larkin - Ovchinikov
or
Pair Density Wave
states
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Why holographic PDW states 7

La, Ba,CuO,

7():. Ll T L4 I T B g I T L4 ]’ T L Rl .

* relevant to the physics of the cuprates ; LTO - Ty c}

* LBCO around 1/8 doping and

suggestions for PDW states [Tranquada,
Fradkin, Kivelson]

Temperature (K)
T

hole doping (x)

« CCOC, BSCCO are suggested to have strong d+s order which recently was

shown to display PDW states at moderate magnetic fields [Galanakis,sP 2010] and
[Liu,Zhou arxiv: 1106.0115, 2011] : A

» expected quantum critical points to such
states as magnetic field changes
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Which phase is stable at low temperatures?

e Antiperiodic solutions have similar dependence of Tcon Q and d.

0.06 periodic .vs. anti-periodic

0.05

equally —m
stable? 0.04 |
£ 003 |

0.02 |

0.01 |

*The fate of the low temperature phase of the inhomogeneous
superconductor is decided by the free energy:

) =/ d3cclAA'+/d4:z:A—2¢2
5 2=0 2 h22
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Free energy competition

e Competition between the periodic and antiperiodic solutions as Q— 0

normal state

eriodic
3 2 anti-periodic
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Free energy competition

e Competition between the periodic and antiperiodic solutions as Q— 0

Nnormal state

eriodic
4 2 anti-periodic

 However, the antiperiodic solution never wins in this model!
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Way of stabilizing a PDW ground state

* Generic Ginzburg - Landau free energy for a superconductor in a magnetic
field [Buzdin, Kashkachi 1996]:

F=alf+8l0vf +7[v|* + 6 |0%|” + u|v|* |8y
+n [(F)2(09)% + ¢v*(0v™)?] +v|y|°

» Solve for the free energy:
Y(x) = 1o €47
Fexp = (@ + Bq° + 8q*) - [tpo|” + (v + (1 — 21)¢?) - [0

 Finite-q solutions crucially dependent on the o-term - everything else being

details: ’
o __ B P
LS 20’ 40
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Analogs of Holographic PDW states

e Consider a RN black hole with an external magnetic field in AdS:

R+6/L* 1 .
S=/d4x\/—g[ 167r/G - ZFABFAB] Ai=A,=A, =0, A, =Bz
: 1 ¥ . dz? ; : B2\ 22 B
ds®* = — | =h(2)dt* + — +dz* +dy°| , h(z)=1-|(1 2| g —f
s Z | (2) +h(z)+x+y] 1(2) (+ " 23+4z

* Temperature has a dependence on the magnetic field:

™ _W(z) _ 3 1 Bz,
47 472 12

* Charged, massive scalar shows typical BCS-like vortex solutions:
5= [ d'ay=g[IDagf* - m*lol"

 PDW states need additional potential terms which should be Lorentz

invariant: . , _ - o
§' = - / d’zv/—gV(¢)  V = B|D2¢|* + |yD3¢|*
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Analogs of Holographic PDW states

e Consider a RN black hole with an external magnetic field in AdS:

R+6/L* 1 .
S=/d4x\/—g[ 167r/G - ZFABFAB] Ai=A,=A, =0, A, =Bz
: 1 ¥ . dz? ; : B2\ 22 B
ds®* = — | =h(2)dt* + — +dz* +dy°| , h(z)=1-|(1 2| g —f
s Z | (2) +h(z)+x+y] 1(2) (+ " 23+4z

* Temperature has a dependence on the magnetic field:

™ _W(z) _ 3 1 Bz,
47 472 12

* Charged, massive scalar shows typical BCS-like vortex solutions:
5= [ d'ay=g[IDagf* - m*lol"

 PDW states need additional potential terms which should be Lorentz

invariant: . , _ - .
5= [da/ ) VDDl

Tuesday, October 4, 2011



Analogs of Holographic PDW states

e Consider a RN black hole with an external magnetic field in AdS:

R+6/L* 1 .
S=/d4x\/—g[ 167ré’ - ZFABFAB] Ai=A,=A, =0, A, =Bz
. 1 [ ne S ; . B2\ 22 B
ds* = — | =h(2)dt* + — + dz* + dy° f =1—-11 2 ) = + —2*
s Z | (2) +h(z)+ T° + y] ,  h(2) ( + " 23+4z

* Temperature has a dependence on the magnetic field:

™ _W(z) _ 3 1 Bz,
47 472 12

* Charged, massive scalar shows typical BCS-like vortex solutions:
5= [ d'ay=g[IDagf* - m*lol"

 PDW states need additional potential terms which should be Lorentz

invariant: . , . - .
= - [ o=@ V=D

V = 91|F‘wDB¢|2 T |92F.4BDA(FBCDC'¢"))|2 |
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Analogs of Holographic PDW states

e Consider a RN black hole with an external magnetic field in AdS:

2
S=/d4x\/—_g[R+6/L 1

__F FIiB = ay — Av — —
167G 4 AB ] A=A, =A,=0, Ay=DBx

2

: I F . d : .
ds® = o) —h(2)dt* + Wi) + dz* + dyzl , h(z)=1- (1 +

Beexiee Bt .
l‘ + _Z
4 zg 4

* Temperature has a dependence on the magnetic field:

T _h’(zu) = 3 - Bzzﬁ
47 4720 12

* Charged, massive scalar shows typical BCS-like vortex solutions:
5= [ d'ay=g[IDagf* - m*lol"

 PDW states need additional potential terms which should be Lorentz

invariant: . , . - .
= - [ e/ @ V=D

non-zero I¢c for
extended solutions V = ¢1|FABDgo|? + |go Fap DA (FBC Do) |?
at finite B
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Conclusions/Future Directions

e Non-trivial consistency of BCS with holographic superconductivity,

e Construction of more realistic holographic superconducting ground-states

e Future:
 Understanding of quantum critical properties of holographic PDWs

e Quantum critical fermions in CDW environments

- R. Flauger, E. Pajer and SP, Phys. Rev. D, 83, 064009 (2011)
- SP and G. Siopsis (to be submitted)
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