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Highlights

Motivations



Framework

AdS/CFT — QCD & plethora of strongly coupled systems

> SuperCOHdUCtOFS and Superﬂuids [Hartnoll, Herzog, Horowitz '08]
> Strange meta|S [e.g. Faulkner et al. '09]

> QUantUm-Ha” f|UIdS [e.g. Dolan et al. '10]

Holography also applied to hydrodynamics i.e. to a regime of local
thermodynamical equilibrium for the boundary theory

» Conjectured bound 7/s > h/4ankg — saturated in holographic
f|UIC|S (neal’|y—perfect) [Policastro, Son, Starinets '01, Baier et al. '07, Liu et al. '08]

> More SyStematIC deSCFIptlon Of ﬂuld dynam|CS [many authors since '08]



Why vorticity?

Developments in ultra-cold-atom physics: new twists in the physics
of near-perfect neutral fluids fast rotating in normal or superfluid
phase — new challenges in strong-coupling regimes

» Dilute rotating Bose gases in harmonic traps — potentially
fractional-quantum-Hall liquids or topological (anyonic)
Superﬂuids [e.g. Cooper et al. '10, Chu et al. '10, Dalibard et al. '11]
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Figure: Trap, rotation and Landau levels — toward a strongly coupled
FQH phase for small filling factor (v = particles/vortices ~ 1)



» Strongly interacting Fermi gases above BEC behave like
near-perfect fluids with very low #7/s (shacter et a1 ‘00, Thomas et 2 "09]
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Figure: Irrotational elliptic flow in very small 7/s rotating fluid —
rotates faster as it expands due to inertia moment quenching

Foreseeable progress in the measurement of transport coefficients calls
for a better understanding of the strong-coupling dynamics of vortices



Developments in analogue-gravity systems for the description of
sound/light propagation in moving media s reoiew by M. Visser et al. 05

Propagation in D — 1-dim moving media

0

Waves or rays in D-dim “analogue” curved space—times

Sometimes in supersonic/superluminal vortex flows: Vmedium > Vwave

» Horizons & optical or acoustic black holes
> HaWklng radlat|0n [Belgiorno et al. '10, Cacciatori et al. '10]
» Vortices and Aharonov—Bohm effect for neutral atoms [Lconhard:

et al. '00, Barcelo et al. '05]



Figure: White hole's horizon in analogue gravity

Holographic description of the D-dim set up?



Aim

Use AdS/CFT to describe rotating fluids viewed
» either as genuine rotating near-perfect Bose or Fermi gases

» or as analogue-gravity set ups for acoustics/optics in rotating
m@dla [see also Schiifer et al. 09, Das et al. 10]



Here

Starting from a 3 4 1-dim asymptotically AdS background a
2 + 1-dim holographic dual appears as a set of boundary data

» boundary frame

» boundary stress tensor

Within hydrodynamics, data interpreted as a 2 + 1-dim fluid moving
in a background — generically with vorticity

» Kerr AdS
» Taub-NUT AdS

exact bulk solutions that will serve to illustrate various properties



Highlights

Holographic fluids



Holographic duality

Applied beyond the original framework — maximal susy YMin D = 4
— usually in the classical gravity approximation without backreaction

» Bulk with A = —3k?: asymptotically AdS d = D + 1-dim M
» Boundary at r — oco: asymptotic coframe E¥ =0, ..., D—1

ds? ~ d ’ + k%%, EFEY = dr?
Muv W22

+ k*r’g o) dxt'dx’
Holography: determination of (O)y,. 1. as a response to a
boundary source perturbation 5¢ oy (momentum vs. field in
Hamiltonian formalism — related via some regularity condition)



Pure gravity

Holographic data

> Field g+, guv — 8(o);: boundary metric — source

> Momentum Ty, Tyw — To)ut (T(o)w) — response

Palatini formulation and 3 + 1 split iveign, etkou 07, Mansi, Petkou, Tagliabue 8]

02: orthonormal coframe ds? = 1,020 (17 : + — ++)
» Vierbein: 6" = N% or = NHdr + O u=20,12
» Connection: w™ = g"*dr + KF M’ = —elP (Qp% + Bp)
» Gauge choice: N =1and V¥ =g = @, =0 — on, K¥, B,



Holography: Hamiltonian evolution from data on the boundary —

captured in Fefferman—Graham expansion for large r regerman, Graham 51
éy(rlx) = krEH(X)—Fl/krF[Z}(X)+1/k2r2FH(X)+“‘
Kt(r,x) = —k?r E*(x)+ 1/rF['l;] (x) +2/kPFH(x) + - -
Bi(r,x) = BI(x)+1/k2Bly(x) + -

Independent 2 4 1 boundary data: vector-valued 1-forms EV and FV

» E": boundary orthonormal coframe — allows to determine
2 v o__ = 1 H H
dsbry. — g(O)}tvdX‘udX = W;tvEl EV, BH, 8[2], F[Z]’ C
» FH: stress-tensor current one-form — allows to construct the
boundary stress tensor (x = 3k/8rG)

T =xFle, = THEY ® ey



Highlights

AdS Kerr & Taub-NUT backgrounds



AdS Kerr: the solid rotation

The bulk data

ds? = (07)2 — (6%)2 + (6)2 + (6%)?

72 ~ a <} 2
= ¥ — V(7. 8) [dt — Zsin? 8 dg]

. 2
e do? - S0 [ade — 212 dg]
V(7,0) = B/p> with
A = (P+2°) (1+ k%) —2MF
0> =P +a%cos?t
Ay =1—k?a?cos?® ¥
E =1-k%2°



The boundary metric — following FG expansion

d5t2>ry. - WVVEVEV - g(O);u/dXde"
. 2 . 2
< e mtag) o (s () )

-2
» Et :dt—%gdq) and e; = 0
» V;,0: = 0: observers at rest are inertial

» note: conformal to Einstein universe in a rotating frame

(requires (8, ¢) — (¢, ¢))



The boundary stress tensor K FF ey s atso Catdarets, Divs, Kienm 03]

Mk
T = TWE'E' = 25 (2(E)2 + (E°)2 + (E9)%)
perfect-fluid-like (T = (e + p)u ® u+ pyuEF ® EY)

» traceless: conformal fluid with ¢ = 2p = 2xMk/3

» velocity one-form: v = —E' = —dt+ b

» velocity field u = e; = d:: comoving & inertial

Fluid without expansion and shear but with vorticity

acos¥sind

1 1
w = 5du=db= ——d® Adg = k®acos 8E° N E?



Reminder .-«

Vector field u with u,u" = —1 and space~time variation V ,u,

1
V‘L(UV == *Uyal/ + O_HU + ﬁ@hyy + wi/“/

v

huy = uyu, + gy projector/metric on the orthogonal space

v

ay = u’Vyuy: acceleration — transverse

v

Oyt symmetric traceless part — shear

v

© = V,ut: trace — expansion

v

wyy: antisymmetric part — vorticity

1 1
w = Ewwdx” ANdx¥ = E(du—i— uAa)



Notes

The fluid may be perfect or not

Tuise = — (270" + {h""O) e, ® €,

Tuisc = 0 if the congruence is shear- and expansion-less

A shear- and expansion-less isolated fluid is geodesic if icuareii et 031
Vue=0
Vp+uVep =0

fulfilled here with ¢, p csts.

Only g (o) give access to 17 and § via (6T o))



How does vorticity i.e. rotation get manifest?

Boundary geometries are stationary of Randers form [randers a1)
2 _ 2 dxdxd
ds® = — (dt — b)” + ajdx'dx

and the fluid is at rest: u = 9;

> V;,0¢ = 0: the fluid is inertial and carries vorticity w = %db

> V,,0; = wjjad (9 + byd;): frame and fluid dragging

Other privileged frames exist where the observers experience
differently the rotation of the fluid — e.g. Zermelo dual frame



AdS Taub-NUT: the nut charge

The bulk dﬂtﬂ [Taub '51, Newman, Tamburino, Unti '63]

ds?2 = (9r)2 _ (91’)2 + (91‘})2 + (9(/))2

= \%;) — V(F) [dt — 2ncos 9 dg]* + p2 [d9? + sin? l9dq)]2

N

V(?) = A/p2 with
A = (P o) (14 K2 (P 4+ 3m2)) + 4k2n2F — 2M7
2 =P

No rotation parameter a but nut charge n — one of the most peculiar
solutions to Einstein’s Eqs. (e 31



Parenthesis: Kerr vs. Taub—NUT (Lorentzian time)

Taub-NUT: rich geometry — foliation over squashed 3-spheres with
SU(2) x U(1) isometry (homogeneous and axisymmetric)

» horizon at r = ry # n: 2-dim fixed locus of —2nd; — bolt
(Killing becoming light-like)
» extra fixed point of d, —4nd; on the horizon at ¢ = 7

nut at r = ry, @ = 7t from which departs a Misner string
(coordinate singularity if t 2 t 4 87Tn) (visner ‘s3]

Kerr: stationary (rotating) black hole

» horizon at r = ry: fixed locus of d; + Qyd, — bolt

» pair of nut-anti-nut at r = ry, % = 0, 7 (fixed points of d)
connected by a Misner string [Argurio, Dehouck '09]



Pictorially: nuts and Misner strings

Figure: Kerr vs. Taub—-NUT

How is Taub—NUT related to rotation?



Back to Taub—NUT

Following FG — boundary metric and stress tensor

dSgry. = UFWEHEV - g(O);deHdXV

= — (dt —2n(cos O — 1)d@)* + L (d6? + sin? 9d¢?)

kMk
T = TWE'E' = 2= (2(E9% + (E%)? + (E7)?)
Fluid interpretation: perfect-like stress tensor

» conformal with ¢ = 2p = 2xMk/3
» velocity field u = e; = d;: comoving & inertial

Same fluid: no expansion, no shear but vorticity



The vorticity on the boundary of AdS Taub—-NUT

b= —2n(1—cos®)dg
db= —nsin®d® Adp = —nk?E? A E?

N[

w =

» Dirac-monopole-like vortex (“hedgehog” or homogeneous)
» created by the nut charge (equivalently by the Misner string)

1
- w
471 Js2

Kerr produces a dipole without nut charge: [ w = 0 - solid rotation
Taub-NUT is well designed to describe “monopolar” vortices



Remark

Rotation in flat space (spherical coordinates)
Data: v @ =1/2V x ¥

» Solid rotation (¢ = 2):

» V=00, and ||[V| = Qrsind
0= Qcos 89, — Qsindy, — 09, (parallel to Oz)
» Dirac-monopole vortex (¢ = 1):

>

>

V—Ocl cost9

1 9
599 and [[V|| = a s
52 8, (hedgehog)
» Ordinary vortex (¢ = 0):

>

Vw—

V= 599 and ||V[| =
w0 =

r2 rsm19
0 (|rrotat|ona|) — up to a d-function contribution



More general vortices on the boundary

b=2(—1)a (1 — Py(cos¥))dg
w = (—1)'a P(cos¥) sin¥d® A dg

» for odd ¢ there is indeed a vortex around the track of the
Misner string at the south pole with a nut-like charge

</
n=—|w=u«
47T

» for even ¢ the Misner string does not reach the poles and the
total charge vanishes — e.g. Kerr as a dipole with & = a/3z

Bulk realization for ¢ > 3: generalization of Weyl multipoles ey 1]
(¢ = 0is Schwarzschild with dt — dt 4 dg)



AdS Taub—-NUT: more on the boundary and CTCs

Homogenous boundary space—time: Lorentzian squashed 3-sphere

ds3, = (012 + (0)7) —4n? ()
= 2 (d0? +sin® 9dg?) — (dt — 2n(cos§ — 1)dg)?

> Godel-like space (sourced by dust distribution) (cisssification in

Raychaudhuri et al. '80, Rebougas et al. '83]
» Stationary foliation in 2-spheres with a time fiber

» CTCs of angular opening < 20q (gy¢ (%) = 0) — no closed
time-like geodesics

» Special point: south pole of the 2-sphere — track of the Misner
string — can be moved anywhere by homogeneity

Any observer is the center of a circular horizon of azimuthal radius
1t — O beyond which he cannot send any ray



Highlights

Alternative interpretations



Randers forms and Zermelo metrics iz . w1

The boundary geometries describing vorticity are stationary metrics
of the Randers form

ds? = — (dt — b)? + a;dx'dx/
Properties: magnetic paradigm and CTCs

» The projection of geodesics onto the base space with metric
d(? = a;;dx'dx/ provides trajectories for a non-relativistic
charged particle in a magnetic field F = db

» CTCs can appear for b> > 1 (b> = a’b;b;)

> Kerr: none
» Taub-NUT: 3 CTCs — horizon around the vortex



Equivalently recast as Zermelo metrics (a, b) < (h, W)

1

2 _
ds = 2w

(—c2dt® + hy (dx" — W'dt) (dx/ — W/dt))

» Originally: navigation on hjdx'dx’ in a drift current W'9;
» Here: analogue-gravity geometries originating from bulk
solutions of Einstein’s equations via holography

» Zermelo metrics are acoustic: null geodesics describe sound
propagation in (non-)relativistic fluids moving on geometries
h,’jdX’dXJ Wlth Velocity fleld W = Wla, [see e.g. Visser '97]

» CTCs capture physical effects: sound propagation in
supersonic-flow regions (W? > c?) — horizons

Similar approaches exist for light propagation in moving media or
sound propagation in (non-)relativistic (conformal) fluids



Highlights

Outlook



Class of bulk solutions describing conformal fluids in 2 + 1 dim with
vorticity — backgrounds still to be unravelled for £ > 3 and most
importantly perturbations to be understood [« sk 0s]

» Spectrum of bulk excitations — anyons on the boundary — like
in exotic BEC phases (under experimental investigation)

» Transport coefficients like shear viscosity (nearly-perfect fluids)

> Investigation of the analogue-gravity interpretation



More ambitious: recast the superfluid phase transition and the
appearance of vortices

Combine Kerr and nut charge in AdS Kerr Taub—-NUT
thermodynamics (M — temperature, {a, n} — rotation)

» add a U(1) and a scalar field
» analyse the phase diagramme, identify the order parameter

» study the potential transition as nut—anti-nut dissociation



Formation of a vortex: nut-anti-nut dissociation

high T

low T

Figure: high-T vs. low-T stable phase



Highlights

Holography in a nutshell



Holography

Applied beyond the original framework — maximal susy YM in D = 4
— usually in the classical gravity approximation without backreaction

» Bulk: “asymptotically AdS" d-dim M (d = D + 1)

dr?

2
ds® = 12,2

+ k*r?H(kr) (—dt* + dx?)

» Boundary at r — co: ds® & f{; + kzrzg(o)w(x)dx”dxv

» Dynamical field ¢ with action / [¢] and boundary value ¢q)(x)



The basic relation
Zouik[P] = (Lbry. FT.

gives access to the data of the boundary theory

' dPx, /=g 6Py O = Zuy 5
<expl/a/\/l * 0 4)(0) >bry. F.T. bl + (P(O)]

> O (0): boundary perturbation — source
» O: observable functional of ¢y — response

> ¢0) < O: conjugate variables



Semi-classically around a classical solution ¢,

Zouik[§] = exp — g [¢.]
ol

Hamiltonian interpretation of (O)

> T = % = | = [dr [dPx [nd,¢ — H(7,¢,0,9)]

» on-shell variation

5/’4;* = /2)/\/[ dDX (o) (547(0) $<O> = 7o)



What is holography? How do we get 7tqy = 77(q) {(p(o)] ?

IM — {boundary r— oo

horizon ry

> $(0)(x) and 71(g)(x) are independent data set at large r

r—A

(P(r) - rA*d47(0) (x) + mn’(o) (X) + ...

(non-normalizable and normalizable modes)

» become related if a regularity condition is imposed at ry

(0) = 70 [4’(0)]



In summary

Holography: computation of (O)y,. f1. as a response to a boundary
source perturbation 5¢ g

v

Dynamical field ¢ with action / [¢] and boundary value ¢q)(x)

v

Momentum 7(r, x) with boundary value 77()(x)

On-shell variation

5/|¢* = /a_/\/l dDX 7'[(0) (547(0)

v

v

Holography: regularity on ny = 710y = 77(0) {gb(o)} —

(O) = 70 {4’(0)]



Examples

Electromagnetic field in d = 4, D = 3
» Field A, A, — Aloyu: boundary electromagnetic field — source

» Momentum &, — &), (0), (i) — response

» Bulk gauge invariance — continuity equation

Gravitationind = D + 1
> Field gir, g — (o) boundary metric — source
> Momentum T,y — Ty, (T(o)u) — response

» Bulk diffeomeorphism invariance — conservation equation



Gravityind = 4

Palﬂtlnlfm’mulatlon and 3 + 1 Spllt [Leigh, Petkou ‘07, Mansi, Petkou, Tagliabue "08]
1 A

en=—5—=[ € R — 07705 ) A OO
EH 327G . ™ abcd ( 6

02 an orthonormal frame ds? = 17,,070° (17 : + — ++)
» Vierbein: 68" = N% oF = NHdr + O u=20,12

ds? — N2/f22 - w (NFdr + 87 (NVdr + 67)

» Connection: w™ = g"*dr+ K# wh’ = —ehf (Qp% + Bp)
(note: A = —3k?)



Aim: Hamiltonian evolution from data on the boundary r — oo
Question: what are the field and momentum variables?

» Gauge choice: N =1 and N =g = @, =0

d2

2
ds =122

+ ’7yv9 v

» Fields and momenta: 6*, K, B, one-forms



What are the independent boundary data? Answer in asymptotically
AdS: Fefferman—Graham expansion for large r regerman, Graham 51

04 (r,x) = krE”(x)Jr%Fle}(x)+ﬁF”(x)+~-
Kt(r,x) = —k2rEV(x)+;F[g](X)+%F”(X)wL"'
Bt (r,x) = BM(x)+ ﬁB[};] (x)+---

Independent 2 + 1 boundary data: E* and F*

Upon canonical transformations (i.e. boundary terms or holographic

renormalization)

5IEH ‘onfshell — / THEA 52;{
oM

> X, = 2eupE" A EP: field — source

» TH = xF": momentum — response



Application: Schwartzschild AdS
The bulk data
ds? = —— —

V(F)dt? + 7 (d9* + sin® 9 dg?)

» V(r) =1+ k?F —2M/;

| 4 Qr — d?/ /V(;) — dr/kr

The Fefferman—Graham expansion

Gt \% dt_ (kr+4kr 3kr2 +O(r%))dt
07 rdﬂ—( e +3k2r2+o(r3))dl9
69 = Fsinddep = ( o+ 3k2r2 +0(5))sindde




The boundary data

> coframe: Et =dt E? =9 E? = w

> stress current: Ft = —2Mkdr £ = Mdy Fo = Msinddg

The boundary metric

dsgry_ = nwEFE" = g(o)wdx”dxv
= —dt? + % (d8? +sin* 9 dg?)

» Einstein universe
> e = af

> Ve er = 0: observers at rest are inertial



The boundary stress tensor kFle,

, Mk
T = TWE'E' = 25 (2(E)? + (E%)2 + (E9)%)

» traceless: conformal fluid with ¢ = 2p = 2xMk/3
» velocity field u = e; = d¢: comoving & inertial
» velocity one-form: v = —E' = —dt

Static fluid without expansion, shear or vorticity



More general examples

We can exhibit backgrounds with stationary boundaries and fluids

T=(e+puu+pye, e

» ¢ = 2p: conformal
» Vyu = 0: inertial

> u = e at rest (comoving)



Highlights

More on AdS Taub—-NUT



AdS Taub-NUT: the nut charge

Remu’ldé’}’ the bulk dﬂltﬂ [Taub '51, Newman, Tamburino, Unti "'63]
dr?
d52 = T, V(?
V(F)

) [dt — 2ncos d dg]? + p [d¢? + sin? ﬁdgo]z
V(?) = A/p? with

A = (P =) (1+ K (P +32)) + 42n2F — 2M7
02 =P+



The Fefferman—Graham expansion with r s.t. dr/kr = d7/ /V(F)

» boundary coframe and frame

— 9 __ do __sindd
Et—dt—b E? =40 fpp_snide

_ _ _ 2kn(l1—cos?) k
er = O e9 = kdy ey = —"—g5 0t + 539%

b= —2n(1—cos?)dg
» boundary stress current

Mk Mk

Ft=_-""F" F=_""F% F?=_""FE¢
3 3



For comparison: AdS Kerr

The Fefferman—Graham expansion of 0%, 0%, 09

» boundary orthonormal coframe and frame

t__ 9 _ _do _ /Aysindde
e = at ey = k\/ Aﬁ 819 e(P = f/s% at+ sin&:/A—ﬂa(p
b asizzﬁdgo

[
—

» boundary stress current

pro_2Mepe po Mo gy Mk
3 3 3



The boundary metric and stress tensor

dslfry. = W}WEVEV = g(o)“VdXHdXV

= — (dt +2n(1 — cos #)dg)? + & (d9? + sin® 8dg?)

Mk
T = TWE'E' = 25 (2(E)? + (E°)2 + (E9)%)
Fluid interpretation: perfect-like stress tensor

» conformal fluid with ¢ = 2p = 2xMk/3

» velocity field u = e; = d;: comoving & inertial

Fluid without expansion and shear but with vorticity

w = %db = —nsinddd Adp = —k*nE® N E?



AdS Taub—-NUT: more on the boundary

Homogenous boundary space—time: Lorentzian squashed 3-sphere

A5y, = 15 (012 + (¢2) — 4 (%))

> Godel-like space (sourced by dust distribution) [cisssification in

Raychaudhuri et al. '80, Rebougas et al. '83]
» Stationary foliation in 2-spheres with a time fiber

» CTCs of angular opening < 28 (gypy (%) = 0) — no closed
time-like geodesics

» Special point: south pole of the 2-sphere — track of the Misner
string



Around the poles: Som—Raychaudhuri and cosmic spinning string

» North pole: Som—Raychaudhuri space — sourced by rigidly
I’Otatlng Charged dust [Som, Raychaudhuri '68]

ds® = — (dt + QQQd(p)2 + 0%d¢? + do?

Q= k?nand ¢ = 9/k

> South p0|e: Spinning CosmIC String [vortex in analogue gravity]
ds? = — (dt + Adg)® + 0*d¢? + do?

A=4n— Q0% and ¢ = 7-9/k

Around the poles of Kerr: Som—Raychaudhuri with Q) = —k?a



KET’T 0S. T&lub—NUT //T’Otatl’OTl” [Dowker ‘74, Bonnor 75, Hunter 98]

» Kerr: rigid rotation with angular momentum and velocity
> horizon at r = ry: fixed locus of d¢ + Qyd, — bolt
» pair of nut-anti-nut at r = r, % = 0, 7t (fixed points of a¢)
connected by a Misner string [Argurio, Dehouck '09]
asymptotically Qo = —ak?

» Taub—NUT: “non-rigid rotation” with angular momentum
distribution along the Misner string (vanishing integral) —
asymptotically:

» north pole: angular velocity Qoo = nk?
» south pole: no angular velocity



Highlights

Sailing in a drift current



The Zermelo problem

What is the minimal-time trajectory of a non-relativistic ship sailing
on a space with positive-definite metric dt®> = h;dx'dx/ and velocity
U'=dxd/aes.t. U2 =1?

» time functional is

T:'/dt\/h,-jU"UJ'

> minimization is realized with geodesics of dt?



What happens in the presence of a lateral drifting flow W = W'9;
(“wind” or “tide”)? (zermeio 311

> velocity: U’ = dx'/de = VI + W'
» U: vector tangent to the trajecto?/
> V: “propelling” velocity with ||V||< =1
> no longer aligned with the trajectory

> instantaneous navigation road — velocity of the ship with
respect to a local frame dragged by the drifting flow

» norm: U2 =1+W2+4+2V-W



» time functional is
= [dt v, ((wu 2 wu
= 1—W2 1-W2 1-W2

—Jﬂt<¢(”+ Yy v~ Wy”)

with A =1 — W?
» minimization is realized with null geodesics of the Zermelo
metric

ds? = (—dt2 + hjj (dxi — Widt) (dxj — Wjdt))

L
)



Highlights

Randers vs. Zermelo pictures and analogue gravity



Note: the time functional is of Randers type with Finsler Lagrangian

T:/Htﬂﬂxm
with
F(x',U") = \/a;UiUi + b;U'
and

hj  WiW; b__mm

AT A2 Y
the data of the Randers form

a,J—




Equivalently Randers stationary forms are recast as Zermelo metrics

1

ds® = 5 (—dt? + hy (dx" — W'dt) (dx/ — W/dt))
with
hij = A(aj — bibj)
A =1 —“b,-bja"j
Wi o= _a’/Abj

Null geodesics in Zermelo metric are minimal-time curves for sailing
in the base space of metric dt?> = hj;dx'dx/ under the influence of a
drifting “wind” W = W'0; izenmeio 511



Analogue gravity picture

Zermelo metrics are ACOUSEIC [sce e, Visser 97, Chupline, Mazur 04]

ds? = £ (—c2dt? + hy (dx’ — Wdt) (dx/ — Widt))

S

Null geodesics describe sound propagation in non-relativistic fluids
moving on geometries hjdx'dx/ with velocity fields W = W'9;

» inviscid, isolated, barotropic (dh = dp/o)

> local mass density ¢ and pressure p

> local sound velocity ¢ = 1/\/a/op



Alternatively the whole boundary set up could be a gravitational
analogue of sound propagating in moving fluids or light in moving
dielectrics — acoustic/optical black holes

As such our examples fall in a larger class of backgrounds studied in
analogue systems (ciwons o 0s1 — here equipped with a stress tensor

Randers & Zermelo backgrounds address the problems of
» motion of charged particles in magnetic fields
» sailing in the presence of a drift force
» sound propagation in moving media

and are dual to each other



Where are we?

Exploratory tour of some properties of conformal holographic fluids
moving in non-trivial gravitational backgrounds

> inertial
> carrying vorticity
Vorticity appears in various fashions

» Kerr — solid rotation on the boundary: dipole

» Taub—NUT — vortex on the boundary: monopole

More general multipoles?



Bonus

Alternative analogue interpretation of the boundary backgrounds:
propagation of sound/light in moving media (Randers & Zermelo)

» provides holographic AdS/analogue-gravity correspondence

> evades the CTCs caveats within supersonic/superluminal flows

Bulk for general Randers geometries?
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