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Introduction

Any gravitational theory should be holographic, i.e. it should have
a description in terms of a non-gravitational theory in one
dimension less.
There is no holographic construction that works in general to
date; explicit examples depend on the form of asymptotics.
The properties of the dual theory depend also on the
asymptotics.

The best-understood examples originate from string theory via
decoupling limits of branes:
D3, M5 etc. branes→ asymptotically AdS spacetimes→ local QFT
that in the UV becomes conformal.
D2, D4 etc. → asymptotically power-law spacetimes → local QFT
with a generalized conformal structure.
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Holographic inflation

Here I will describe a holographic framework for inflationary
spacetimes that:

1 approach de Sitter spacetime at late times,

ds2 → ds2 = −dt2 + e2tdxidxi, as t →∞

2 approach power-law scaling solutions at late times ,

ds2 → ds2 = −dt2 + t2ndxidxi, (n > 1) as t →∞

These backgrounds have the property that they are in 1-1
correspondence with backgrounds that describe holographic RG
flows, either asymptotically AdS or asymptotically power-law.
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Holographic universe

At the end of this period we arrive at a
FRW spacetime and small
inhomogeneities with super-horizon
correlations. The latter originate from
correlations in the dual QFT.

The end of this period in the beginning
of hot Big Bang cosmology.

The inhomogeneities are the initial
conditions for the subsequent
cosmological evolutions that leads to
structure formation (stars, galaxies).
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Domain-wall cosmology correspondence

The correspondence between inflationary spacetimes and
holographic RG flows is a special case of a more general
Domain-wall/Cosmology correspondence (DW/C) [KS, Townsend
(2006)] and can be understood as analytic continuation.
For holographic RG flows, there is a well-established holographic
dictionary.
One may express the analytic continuation associated with DW/C
in QFT terms: one analytically continues the momenta q and the
rank of the gauge group N:

q → q̄ = −iq, N → N̄ = −iN
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Holographic framework [McFadden, KS (2009)]
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Weakly coupled gravity

To test this framework we analyzed the case where gravity is weakly
coupled, so standard treatments are available.

We worked out the cosmological 2- and 3-point functions of
scalar and tensor perturbations around a general single scalar
inflationary background.
We worked out the 2- and 3-point functions of the stress energy
tensor of the corresponding domain-wall background, using
standard gauge/gravity duality.
We found that the cosmological correlators can be
expressed in terms of the QFT correlation functions at
strong coupling upon analytic continuation.

⇒ Standard inflation is holographic.
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Holographic formulae: preliminaries

The 2-point function of Tij in a flat spacetime has the form

〈Tij(q̄)Tkl(−q̄)〉 = A(q̄)Πijkl + B(q̄)πijπkl,

where Πijkl = 1
2 (πikπlj + πilπkj − πijπkl), πij = δij − q̄iq̄j/q̄2.

We found useful to use a helicity basis.

Tij → T,T(s), s = ±1

where T is the trace of Tij and the transverse traceless part of Tij

is traded for T±.
In cosmology, the physical degrees of freedom are a scalar
mode, ζ, and transverse traceless tensor modes γ̂ij. In a helicity
basis:

(δφ, hij) → ζ, γ̂(s), s = ±1
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Holographic formulae: 2-point functions

The cosmological 2-point functions are given by

〈ζ(q)ζ(−q)〉 =
−1

8Im[B(q̄)]
, 〈γ̂(s)(q)γ̂(s′)(−q)〉 =

−δss′

Im[A(q̄)]
,

The 2-point functions determine the power spectra (measured by
WMAP and other experiments)

∆2
R(q) =

q3

2π2

(
−1

8ImB(−iq)

)
, ∆2

T(q) =
2q3

π2

(
−1

ImA(−iq)

)
,

[McFadden, KS (2009)]
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Holographic formulae: 3-point functions

• 〈ζ(q1)ζ(q2)ζ(q3)〉

= − 1
256

(∏
i

Im[B(q̄i)]
)−1

× Im
[
〈T(q̄1)T(q̄2)T(q̄3)〉+ (semi−local terms)

]
,

• 〈ζ(q1)ζ(q2)γ̂(s3)(q3)〉

= − 1
32

(
Im[B(q̄1)]Im[B(q̄2)]Im[A(q̄3)]

)−1

× Im
[
〈T(q̄1)T(q̄2)T(s3)(q̄3)〉+ (semi−local terms)

]
,

[McFadden, KS (2010), (2011)]

Kostas Skenderis Holographic Inflation confronts data



Holographic formulae: 3-point functions

• 〈ζ(q1)γ̂(s2)(q2)γ̂(s3)(q3)〉

= −1
4

(
Im[B(q̄1)]Im[A(q̄2)]Im[A(q̄3)]

)−1

× Im
[
〈T(q̄1)T(s2)(q̄2)T(s3)(q̄3)〉+ (semi−local terms)

]
,

• 〈γ̂(s1)(q1)γ̂(s2)(q2)γ̂(s3)(q3)〉

= −
(∏

i

Im[A(q̄i)]
)−1
× Im

[
2〈T(s1)(q̄1)T(s2)(q̄2)T(s3)(q̄3)〉+ (semi−local terms)

]
.

[McFadden, KS (2011)]
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Remarks

The cosmological 3-point functions are related with
non-gaussianities and the Planck satellite (with data expected to
be released in 2012) and other missions are expected to
constrain them significantly.
The semi-local terms correspond to contributions where two of
the three insertion points in the 3-point function are coincident.
Such terms contribute to the so-called local type non-gaussianity.
The holographic formulae are consistent with the interpretation of
such duality as computing the wavefunction of the universe, as
discussed for de Sitter by [Maldacena (2002)]
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New holographic models

While conventional inflationary models are related with strongly
coupled QFT, new models arise when we consider the QFT at
weak coupling (but still at large N).
In these models, the very early universe is in a non-geometric
phase. This phase should have a description in string theory in
terms of a strongly coupled sigma model. Here we use
holography to describe it.
The end of this period is the beginning of hot big bang
cosmology.
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Dual QFT

To make predictions we need to specify the dual QFT. The two
classes of asymptotic behaviors correspond to two classes of dual
QFT’s.

asymptotically de Sitter → QFT is deformation of a CFT
asymptotically power-law → QFT has generalized conformal
structure

Here we discuss theories of the second type.
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Dual QFT

We require that the theory has the following properties:

1 admits a large N limit
2 all fields are massless
3 it has a dimensionful coupling constant
4 all terms in the Lagrangian have the same scaling dimension,

which should be different from three.

Properties (2)-(4) imply that the theory admits a generalized
conformal structure: the theory would be conformal if the coupling
constant is promoted to a background field that transforms under
conformal transformations [Jevicki et. al. (1998)] [Kanitscheider, Taylor,
KS (2008)].
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Dual QFT

A class of models exhibiting these properties is given by the
following super-renormalizable theory:

S =
1

g2
YM

∫
d3xtr

[1
2

FI
ijF

Iij +
1
2
(DφJ)2 +

1
2
(DχK)2 + ψ̄L /DψL

+ λM1M2M3M4Φ
M1ΦM2ΦM3ΦM4 + µαβML1L2

ΦMψL1
α ψ

L2
β

]
.

ΦM = {φI , χK}, χK : conformal scalars, φI : minimally coupled
scalars, ψL: fermions
To extract predictions we need to compute n-point functions of
the stress energy tensor analytically continue the result and
insert them in the holographic formulae.
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Holographic power spectrum

The relevant correlation function is the 2-point function of the
trace of the stress energy tensor T. The form of this 2-point
function is fixed by generalized conformal structure [Kanitscheider,
KS, Taylor (2008)]. At large N,

〈T(q)T(−q)〉 = q3N2f (g2
eff),

where g2
eff = g2

YMN/q is the effective dimensionless ’t Hooft
coupling and f (g2

eff) is a general function of g2
eff.

The analytic continuation acts as

g2
eff → g2

eff, N2q3 → −iN2q3

and therefore

∆2
R(q) = − q3

4π2

1
Im〈T(q)T(−q)〉

=
1

4π2N2

1
f (g2

eff)

It remains to compute f (g2
eff) ...
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Holographic power spectrum

When g2
eff is small, one finds that the function f (g2

eff) has the form

f (g2
eff) = f0(1− f1g2

eff ln g2
eff + f2g2

eff + O[g4
eff]).

→ f0 is determined at 1-loop in perturbation theory. It has been
computed in [McFadden, KS (2009)].

→ f1 is determined at 2-loop in perturbation theory. It has not been
computed to date.

→ f2 is related with an infrared generated scale qIR ∼ g2
YM

[Jackiw,Templeton (1981)][Appelquist, Pisarski(1981)]. As long as one
probes the theory at scales large compared with the IR scale,
this term is negligible.
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Holographic power spectrum

Redefining variables, f1g2
YMN = gq∗, where q∗ is a reference

scale that is taken to be q∗ = 0.05 Mpc−1 (the WMAP momentum
range is 10−4 . q . 10−1 Mpc−1), we obtain the final formula:

∆2
R(q) = ∆2

R
1

1 + (gq∗/q) ln |q/gq∗|
,

→ ∆2
R = 1/(4π2N2f0). Smallness of the amplitude is related with the

large N limit: matching with observations implies N ∼ 104.
→ When (gq∗/q) � 1 one may rewrite the spectrum in the

power-law form

∆2
R(q) = ∆2

Rqns−1, ns(q)− 1 = gq∗/q

Thus the small deviation from scale invariance appears to be
related with the smallness of the coupling constant of the dual
QFT.
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Holographic power spectrum
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Holographic model vs slow-roll inflation

This is a rather different spectrum than that of generic slow-roll
models. In such models the dependence of ns on q is rather
weak. The "running" αs = dns/d ln q is higher order in slow-roll
than (ns − 1),

αs/(ns − 1) ∼ ε

In contrast, in the holographic model, αs ∼ (ns − 1). In fact, all
dkns(q)/d ln qk are of the same order in the holographic model.
Given that the power-law ΛCDM model, in which ns is a constant,
fits remarkably well the WMAP and other astrophysical data, one
may wonder whether already existing data are sufficient to rule
out this class of holographic models.
We thus undertook the task to make a dedicated data analysis
[Easther, Flauger, McFadden, KS (2011). Related work appeared in
[Dias (2011)].
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Holographic model vs ΛCDM

The power-law ΛCDM model depends on six parameters. Four
describe the composition and expansion of the universe and the
other two are the tilt ns and the amplitude ∆2

R of primordial
curvature perturbations.
The holographic ΛCDM model depends on the same set of
parameters, except that the tilt ns is replaced by the parameter g.
We determined the best-fit values for all parameters for both
models and used Bayesian evidence in order to make a model
comparison.
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Angular power spectrum: ΛCDM vs holographic model
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Parameter estimation

The estimated values for the five common parameters of the two
models are roughly within one standard deviation of each other.
The data favor negative values of g (red spectrum) with central
value g = −1.27× 10−3.

→ This indeed leads to a small effective coupling, except potentially
for the very low wavelength modes. Since g2

eff = (1/f1)(gq∗/q)
one needs to know the value of the 2-loop factor f1 when (gq∗/q)
itself is not very small.

→ A related issue is that the infrared scale qIR may be inside the
WMAP range. In such case the precise value of the parameter f2
is important and the power spectrum is modified:

∆2
R(q) = ∆2

R
1

1 + (gq∗/q) ln |q/βgq∗|

→ If g2
eff is not small for all relevant momenta, one must include

higher order terms in the computation of the 2-point function.
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Information criteria

The holographic model is compatible with current data, but the
overall fit is somewhat better for ΛCDM:

Holographic Model ΛCDM ∆ lnLbest

WMAP7 3735.5 3734.3 1.2
WMAP+BAO+H0 3737.3 3735.7 1.6
WMAP+CMB 3815.0 3812.5 2.5

Table: Best-fit values for − lnL for both the holographic model and
ΛCDM, as well as the difference between them. Positive numbers in the
last column favor ΛCDM.

One often uses the value of the likelihood at the best-fit point as
the criterion for a model selection. However, this is the probability
for obtaining the data given a model with specific parameter
values.
For model comparison we would like to know the probability for a
model given the data.
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Model Comparison

The probability for a model given the data is computed by the
Bayesian evidence E,

E =
∫

dαMP(αM)L(αM)

P(αM) is the probability that a choice of parametes αM is realized
and L(αM) is the probability for the data given these parameters.
A rough guide for model selection is Jeffreys scale:

∆ ln E Strength of evidence
< 1 Inconclusive
> 1 weak evidence
> 2.5 Moderate evidence
> 5 Strong evidence
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ΛCDM vs Holographic model

The computation of the evidence depends on the prior probability
P(αM). The priors ought to reflect the underlying assumptions
and knowledge of the problem before the data came along.
For the holographic model, the prior for g is clear: the power
spectrum was obtained from a perturbative computation
→ g must not be very large.
ΛCDM is an empirical model and the choice of priors for ns is
more subjective. We considered two choices: (i) a nearly optimal
choice for ΛCDM, 0.92 < ns < 1, and (ii) a symmetric choice
around the scale invariant spectrum 0.9 < ns < 1.1.
With choice (i) there is a weak evidence for ΛCDM.
With choice (ii) the evidence in inconclusive.

More data is required to decide between the two models.
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WMAP and Planck data WMAP Cosmological Parameter Plotter

Solid line:

α = −(ns−1)
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Non-Gaussianity

Non-Gaussianity implies non-zero higher-point correlation functions.
The lowest order is the 3-point function, or bispectrum, of curvature
perturbations ζ:

〈ζ(q1)ζ(q2)ζ(q3)〉 = (2π)3δ(
∑

qi)B(qi)

Non-Gaussianity is important as it potentially provides a very
strong test of inflationary models. The amplitude of the
bispectrum is parametrised by fNL:

B(qi) = fNL × (shape function)

Different inflationary models give different predictions for fNL and
shape function.
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The shape of non-Gaussianity

Local form [Verde etal(2000)] ; Komatsu & Spergel (2001)]

Blocal(q1, q2, q3) = f local
NL

6A2

5q3
1q3

2q3
3

3∑
i=1

q3
i , A = 2π2∆2

S(q)

→ WMAP7: f local
NL = 32± 21(68%CL)

→ Single scalar slow-roll inflation: f local
NL ∼ O(ε, η) ∼ 0.01

Equilateral form [Creminelli etal, astro-ph/0509029]]

Bequil(q1, q2, q3) = f equil
NL

18A2

5q3
1q3

2q3
3

(
−2q1q2q3 −

3∑
i=1

q3
i + (q1q2

2 + 5 perm)

)

→ WMAP7: f equil
NL = 26± 140(68%CL)

The Planck data (expected next year) should be sensitive to just

fNL ∼ 5.
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Holographic Non-Gaussianity [McFadden, KS, (2010)]

Direct computation gives

〈T(q̄1)T(q̄2)T(q̄3)〉+
∑

i

〈T(q̄i)T(−q̄i)〉

− 2
(
〈T(q̄1)Υ(q̄2, q̄3)〉+ cyclic perms

)
= 2CBN̄2(2q̄1q̄2q̄3 +

∑
i

q̄3
i − (q̄1q̄2

2 + 5 perms)
)

Using the holographic formula one finds

B(q1, q2, q3) = Bequil
NL (q1, q2, q3)

with
f equil
NL = 5/36

This is independent of all details of theory.
This value is larger than the fNL for slow-roll inflation, but probably
still too small to be detected by Planck.
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Tensor non-Gaussianities [Bzowski, McFadden, KS] (to appear)

What about non-Gaussianities involving tensors?

Perhaps not observable ... but ...
there are interesting theoretically ...
How does the holographic prediction compare with that of
slow-roll inflation?
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Tensor non-Gaussianities from 3-point functions

To compute them we need to compute the general 3-point function

〈Tij(q1)Tkl(q2)Tmn(q3)〉

The leading order computation amounts to a free field
computation.
Even this, however, is challenging ...
... one needs to evaluate integrals of the form ...∫

[dq]
qaqc(q− q1)b(q− q1)e(q + q2)d(q + q2)f

q2(q− q1)2(q + q2)2

... which (somewhat to our surprise) were not available in the
literature.
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Computation of 〈Tij(q1)Tkl(q2)Tmn(q3)〉

We developed 3 different ways to evaluate all relevant integrals:

Helicity projection into scalar integrals.
Tensor integrals via Davidychev recursion.
Tensor integrals via Feynman parametrization.

Using these results we computed 〈Tij(q1)Tkl(q2)Tmn(q3)〉.
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Ward identities

Fermions and conformal scalars are CFTs so their correlators
should satisfy conformal Ward identities.
Minimal scalars and Maxwell fields are dual to each other in
d = 3.
Correlation functions of Tij for the minimal scalars can be
obtained from CFT correlators of the conformal scalar:

Tmin
ij = Tconf

ij − 1
8
(
gij∂2 − ∂i∂j)φ2

It follows that all correlation functions can be built from conformal
correlators, even though not all constituents are CFTs!
Verification of the Ward identities provides a very non-trivial
check of our direct computation.
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Holographic predictions

〈〈γ̂(+)(q1)γ̂(+)(q2)γ̂(+)(q3)〉〉 =
1024√

2N4N 2
(A)

λ2a2
123

c5
123

×

×
[
(a3

123 − a123b123 − c123)−
(

1− 4
Nψ
N(A)

)64c3
123

a6
123

]
,

〈〈γ̂(+)(q1)γ̂(+)(q2)γ̂(−)(q3)〉〉 =
1024√

2N4N 2
(A)

λ2

a2
123c5

123
×

×
[
(q3 − a12)4(a3

123 − a123b123 − c123)
]
,

〈〈ζ(q1)ζ(q2)γ̂(s)(q3)〉〉 = · · ·
〈〈ζ(q1)γ̂(s1)(q2)γ̂(s2)(q3)〉〉 = · · ·

where

N(A) = NA +Nφ +Nχ + 2Nψ, N(B) = NA +Nφ.

a123 = q1 + q2 + q3, b123 = q1q2 + q2q3 + q3q1, c123 = q1q2q3, etc.

λ2 = (q1 + q2 + q3)(−q1 + q2 + q3)(q1 − q2 + q3)(q1 + q2 − q3)
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Slow-roll vs Holography

〈〈γ̂(+)(q1)γ̂(+)(q2)γ̂(+)(q3)〉〉 =
κ4H4

∗

64
√

2
λ2a2

123

c5
123

(a3
123 − a123b123 − c123)

〈〈γ̂(+)(q1)γ̂(+)(q2)γ̂(−)(q3)〉〉 =
κ4H4

∗

64
√

2
λ2

a2
123c5

123
×

×
[
(q3 − a12)4(a3

123 − a123b123 − c123)
]

These correlators exactly match the holographic ones if

2Nψ = Nφ +NA +Nχ,
1

256
N2N(A) =

1
κ2H2

∗
.

The blue condition is different than in [Maldacena, Pimentel].
The remaining slow-roll correlators are different from the
holographic ones, but surprisingly not too different.
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Shape functions for tensors

To quantify the similarity/difference we generalize the notion of a
shape to 3-point functions involving tensors.
Define the dimensionless combinations:

A(ζζ) = q3〈〈ζ(q)ζ(−q)〉〉, A(γ̂γ̂) = q3〈〈γ̂(+)(q)γ̂(+)(−q)〉〉

and
A(ζζγ̂(+)) = q2

1q2
2q2

3 〈〈ζ(q1)ζ(q2)γ̂(+)(q3)〉〉, etc.

Then the shape functions are defined by:

A(ζζγ̂(s3)) = A(ζζ)A(γ̂γ̂)S(ζζγ̂(s3)),

A(ζγ̂(s2)γ̂(s3)) = A2(γ̂γ̂)S(ζγ̂(s2)γ̂(s3)),

A(γ̂(s1)γ̂(s2)γ̂(s)) = A2(γ̂γ̂)S(γ̂(s1)γ̂(s2)γ̂(s)),
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Slow-roll vs Holography

S(ζζγ̂(+)) = SSR(ζζγ̂(+))− 1
4
√

2
λ2

a123c123
,

S(ζγ̂(+)γ̂(+)) = SSR(ζγ̂(+)γ̂(+))− 1
16a123c123

(q2
1 − a2

23)
2
(

1 +
4c123

a3
123

)
,

S(ζγ̂(+)γ̂(−)) = SSR(ζγ̂(+)γ̂(−))− 1
16a123c123

(q2
1 − a2

23 + 4b23)2,

S(γ̂(+)γ̂(+)γ̂(+)) = SSR(γ̂(+)γ̂(+)γ̂(+))− λ2
√

2 a4
123

(
1− 4Nψ

N(A)

)
,

S(γ̂(+)γ̂(+)γ̂(−)) = SSR(γ̂(+)γ̂(+)γ̂(−)).
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Why the results are so similar?

This is clear for the 3-point function of only tensors:

Slow-roll: These correlators do not depend on the slow-roll
parameter: isometries of de Sitter imply they are essentially
determined by conformal invariance.
Holographic model: The correlators are determined by the
3-point function of the transverse traceless part of Tij.

It is less clear why the other correlators are so similar.

A holographic model based on free QFTs leads to the exact
Harrison-Zel’dovich scale invariant spectrum. Our results for the
bispectrum are the exact results for such model. In a sense
slow-roll is close to Harrison-Zel’dovich ...
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Conclusions

Standard inflation is holographic: standard observables such as
power spectra and non-Gaussianities can be expressed in terms
of (analytic continuation of) correlation functions of a dual QFT.
There are new holographic models based on perturbative QFT
that describe a universe that started in a non-geometric strongly
coupled phase.
A class of such models based on a super-renormalizable QFT
was custom-fit to data and shown to provide a competitive model
to ΛCDM.
Data from the Planck satellite should permit a definitive test of
this holographic scenario.
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