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Introduction

• There are several holographic approaches to flavor.

• Most work in the quenched approximation.

• This involves flavor branes that are “light”: they do not backreact on

the geometry of glue in the bulk.

• There has been discussion of flavor dynamics beyond the quenched ap-

proximation, but this effort is yet incomplete.
Kuperstein, Sonnenschein,Klebanov, Maldacena, Cotrone, Bigazzi, Casero, Paredes,

Kiritsis,Nunez,Ramallo,Mas,Arean,Chen,Hashimoto,Matsuura,..... 2006-2010

• At the bottom up level, M. Jarvinnen will present a model for QCD,

where back-reaction is included, and describe the full phase diagram.
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Top-down flavor

• The state of the art in top-down models involves the Sakai-Sugimoto

model: D8+ D̄8 branes in the black-D4 glue geometry.

It exhibits U(Nf)L×U(Nf)R → U(Nf)V chiral symmetry breaking, and very

good and extensive phenomenology both for mesons and baryons.

• Its weak points are that:

(a) Quarks are always massless

(b) The dual of the quark mass operator is not explicit/easily usable in the model

(c) The tower of 0++ scalar mesons is missing

(d) The asymptotic meson trajectories have quadratic masses m2
n → n2.
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Bottom-up flavor

• Bottom up approaches involve the hard-wall model,
Erlich+Katz+Son+Stephanov, Da Rold+Pomarol

and its sequel, the soft-wall model
Karch+Katz+Son+Stephanov

which is rather successful but for the following points that can be improved:

(a) The background glue solution cannot be obtained from any consistent dynamics/action

(b) No consistent thermodynamics can be defined.

(c) The magnetic quarks are confined instead of screened.

(d) Chiral symmetry breaking is input by hand as an IR boundary condition.

(e) The mass of the ρ meson is insensitive to the quark (or pion) mass.

(f) The finite density physics is insensitive to quark masses.

The price for its simplicity is that many features do not correspond to QCD.
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The general setup for flavor

• In the minimal setup the bulk has 5 dimensions.

• To add Nf quarks qIL and antiquarks qĪR we must add space-filling Nf D4

and Nf D̄4 branes.

• The qIL are the “zero modes” of the D3 − D4 strings while qĪR are the

“zero modes” of the D3 − D̄4
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• The low-lying fields on the D4 branes (D4−D4 strings) are U(Nf)L gauge
fields ALµ. They are dual to the left flavor currents

J
µ,IJ
L = q̄ILγ

µqJL ↔ A
µ,IJ
L

• The low-lying fields on the D4 branes (D4−D4 strings) are U(Nf)R gauge
fields ARµ . They are dual to the right flavor currents

J
µ,ĪJ̄
R = q̄ĪRγ

µqJ̄R ↔ A
µ,ĪJ̄
R

• There are also the low-lying fields of the (D4 − D4 strings), essentially
the complex string-theory “tachyon” TIJ̄ transforming as (Nf , N̄f) under
the chiral symmetry U(Nf)L×U(Nf)R. It is dual to the quark mass terms

TIJ̄ ∼ q̄
I
L qJ̄R

• Integrating out the quarks, generates an effective action Sflavor(A
L,R
µ , T ),

so that AL,Rµ , T can be thought as effective qq̄ composites, that is : mesons

• On the string theory side: integrating out D3 −D4 and D3 − D̄4 strings
gives rise to the DBI action for the D4 −D4 branes in the D3 background:

Sflavor(A
L,R
µ , T ) ←→ SDBI(A

L,R
µ , T ) holographically
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• This is the tachyon effective action discussed in flat space by A. Sen

and others. Its implementation in asymptotically AdS space-times is the

appropriate setup for fundamental flavor dynamics
Casero+Kiritsis+Paredes (07)

• In the ”vacuum” only T may have a non-trivial profile: T IJ̄(r). Near an

asymptotically AdS5 boundary (r → 0)

T IJ̄(r) =MIJ̄ r+ · · ·+ ⟨q̄
I
L qJ̄R⟩r

3 + · · ·

• If MIJ̄ = 0 then the theory is invariant under chiral symmetry.

• If the preferred solution has ⟨q̄IL qJ̄R⟩ ̸= 0, then chiral symmetry is spon-

taneously (and dynamically) broken. As T = 0 is always a solution, chiral

symmetry breaking is a consequence of dynamics.

• If there are no trivial flavor anomalies, with the associated 5d CS terms,

then the flavor branes can have no IR boundary. the only option is tachyon

condensation T ̸= 0 ↔ “chiral-symmetry breaking” (holographic Coleman-

Witten theorem)
Casero+Kiritsis+Paredes (07)
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Sen’s tachyon DBI action

• The flavor action is the (coinciding) D4 − D̄4 action:

S[T,AL, AR] = SDBI + SWZ

SDBI =
∫
drd4x

Nc

λ
Str

[
V (T )

(√
−det

(
gµν +D{µT

†Dν}T + FLµν
)
+

+

√
−det

(
gµν +D{µT

†Dν}T + FRµν
))]

DµT ≡ ∂µT − iTALµ + iARµT , DµT
† ≡ ∂µT † − iALµT †+ iT †ARµ

transforming covariantly under flavor gauge transformations

T → VR T V
†
L , AL → VL(A

L − iV †LdVL)V
†
L , AR → VR(A

R − iV †RdVR)V
†
R

• For the vacuum structure and spectrum Str = Tr.

• The tachyon potential in flat space can be computed from boundary

CFT.
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A simple glue background

Take a simple non-critical confining background:

S =
∫
d6x

√
g(6)

[
e−2ϕ

(
R+4(∂ϕ)2 +

c

α′

)
−

1

2

1

6!
F2
(6)

]
,

Consider the AdS6 soliton, a solution of non-critical string theory

ds26 =
R2

z2

[
dx21,3 + f−1Λ dz2 + fΛ dη

2
]

, fΛ = 1−
z5

z5Λ
, z ∈ [0, zΛ]

F(6) =
Qc

ℓs

√
−g(6) d

6x , eϕ =
1

Qc

√
2c

3

Sonnenschein+Kuperstein (04)

• η is periodic

η ∼ η+ δη , δη =
4π

5
zΛ =

2π

MKK
. , R2 =

30

c
ℓ2s
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The deconfined phase

• We consider the theory at non-zero temperature by compactifying to
Euclidean time tE. When both circles tE and η are compactified, there is a
second solution competing with the thermal gas solution :

ds26 =
R2

z2

[
−fTdt2 + dx23 +

dz2

fT
+ dη2

]
, fT = 1−

z5

z5T

• zT is related to the temperature as:

tE ∼ tE + δtE , δtE =
4π

5
zT =

1

T
.

• There is a deconfining first order phase transition at

Tc =
MKK

2π
=

5

4π zΛ

• For T < Tc, the confining solution is preferred and, conversely the black-
hole solution dominates for T > Tc.

Holographic Chiral Symmetry Breaking, Elias Kiritsis

9



A “warmup” bottom-up model of flavor

• We consider Nf D4 + D̄4 branes at a fixed η, and we will neglect the
coordinate of the branes transverse to the η circle.

• We will take T = τ · 1

V = K e−
µ2

2 τ
2

AMN = gMN +
2πℓ2s
g2V

F
(i)
MN + πℓ2sλ

(
(DMT )

∗(DNT ) + (DNT )
∗(DMT )

)
• Parameters: R, zΛ, ℓs, gV , λ, K, µ and β.

mq = β c1 , τ(z) ∼ c1 z+O(z3)
µ can be eliminated by redefining τ , and we also have

R2µ2

2πℓ2sλ
= 3 ,

(2πℓ2s)
2KR

g4V
=

Nc

12π2
,

(2πℓ2s)
2KR2λ

β2
=

Nc

8π2

• We are left with 2+1 parameters that affect the spectra, decay constants

and vacuum structure: zΛ, mq and k =
4R4g4V

3(2πℓ2s)2
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The chiral vacuum structure

• Set AL = AR = 0 and derive the scalar τ(r) equation:

τ ′′ −
4π z fΛ

3
τ ′3 + (−

3

z
+

f ′Λ
2fΛ

)τ ′+

(
3

z2fΛ
+ π τ ′2

)
τ = 0

• Near the boundary z = 0, the solution can be expanded in terms of two
integration constants as:

τ = c1z+
π

6
c31z

3 log z+ c3z
3 +O(z5)

• c1, c3 are related to the quark mass and condensate.

• At the tip of the cigar, the generic behavior of solutions is

τ ∼ constant1 + constant2
√
z − zΛ

• With special tuned condition there is a one-parameter family of diverging
solutions in the IR depending on a single parameter:

τ =
C

(zΛ − z)
3
20

−
13

6πC
(zΛ − z)

3
20 + . . .
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• This is the correct “regularity condition” in the IR as τ is allowed to

diverge only at the tip. This is implied by the holographic Coleman-Witten

theorem and indicates that the brane-antibrane pair ”fuses” at the IR tip.

• To obtain it we must correlate the condensate c3 to the mass c1.

• There are always two values of c3 for a given c1 that reach the proper

solution in the IR, and have opposite signs.

• One of them is always unstable (negative fluctuation masses2) and is

therefore discarded.
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.

All the graphs are plotted using zΛ = 1, µ2 = π and c1 = 0.05. The tip of the cigar is

at z = zΛ = 1. On the left, the solid black line represents a solution with c3 ≈ 0.3579

for which τ diverges at zΛ. The red dashed line has a too large c3 (c3 = 1) - such that

there is a singularity at z = zs where ∂zτ diverges while τ stays finite. This is unacceptable

since the solution stops at z = zs where the energy density of the flavor branes diverges.

The red dotted line corresponds to c3 = 0.1; this kind of solution is discarded because the

tachyon stays finite everywhere. The plot in the right is done with the same conventions

but with negative values of c3 = −0.1,−0.3893,−1. For c3 ≈ −0.3893 there is a solution

of the differential equation such that τ diverges to −∞. This solution is unstable.
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• Chiral symmetry breaking is manifest.

Holographic Chiral Symmetry Breaking, Elias Kiritsis

11-



Chiral restauration at deconfinement

• In the deconfined phase, the bulk metric is that of a bh, and the tachyon

equation becomes

τ ′′+
µ2z2fT

3
τ ′3

(
−
4

z
+

f ′T
2fT

)
+ (−

3

z
+
f ′T
fT

)τ ′+

(
3

z2fT
+ µ2τ ′2

)
τ = 0

• The branes now are allowed to enter the horizon without recombining.

• To avoid intermediate singularities of the solution the boundary conditions

must be tuned so that tachyon is finite at the horizon.

• Near the horizon the correct solution behaves as a one-parameter family

τ = cT −
3cT
5zT

(zT − z)−
9cT

200zT
(8 + µ2cT

2)(zT − z)2 + . . .
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Plots corresponding to the deconfined phase. We have taken c1 = 0.05. The solid line

displays the physical solution c3 = −0.0143 whereas the dashed lines (c3 = −0.5 and

c3 = 0.5) are unphysical and end with a behavior of the type τ = k1 − k2
√
zs − z.

12-



These plots give the values of c3 and cT determined numerically by demanding the correct

IR behavior of the solution, as a function of c1.
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Jump of the condensate at the phase transition

• From holographic renormalization we obtain

⟨q̄q⟩ =
1

β
(2πα′KR3λ)

−4c3 +

(
mq

β

)3
µ2(1 + α)

 , mq = β c1

• We calculate the jump at the phase transition that is scheme independent

for a fixed quark mass.

∆⟨q̄q⟩ ≡ ⟨q̄q⟩conf − ⟨q̄q⟩deconf = −4
1

β
(2πα′KR3λ)∆c3

• This is equivalent to ∆c3
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• We plot it as a function of the quark mass.

The finite jump of the quark condensate and its derivative with respect

to c1 when the confinement-deconfinement transition takes place. The

important features appear when mq ∼ ΛQCD
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• Another interesting quantity is

⟨q̄q⟩R =
mq

T4
c
(⟨q̄q⟩T − ⟨q̄q⟩0) ≈ Nc

mq

T4
c
(0.3β T3

c +0.09mqT
2) , (T > Tc)

that tracks the T-dependence of the condensate.

We have taken β = 1, mq/Tc = 1/40 for the plot.
S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, C. Ratti, K. K. Szabo

[Wuppertal-Budapest Collaboration], [ArXiv:1005.3508][hep-lat].
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Meson spectra

For the vectors

zΛm
(1)
V = 1.45+ 0.718c1 , zΛm

(2)
V = 2.64+ 0.594c1 , zΛm

(3)
V = 3.45+ 0.581c1 ,

zΛm
(4)
V = 4.13+ 0.578c1 , zΛm

(5)
V = 4.72+ 0.577c1 , zΛm

(6)
V = 5.25+ 0.576c1 .

For the axial vectors:

zΛm
(1)
A ≈ 2.05+ 1.46c1 , zΛm

(2)
A ≈ 3.47+ 1.24c1 , zΛm

(3)
A ≈ 4.54+ 1.17c1 ,

zΛm
(4)
A ≈ 5.44+ 1.13c1 , zΛm

(5)
A ≈ 6.23+ 1.11c1 , zΛm

(6)
A ≈ 6.95+ 1.10c1 .

For the pseudoscalars:

zΛm
(1)
P ≈

√
3.53c21 +6.33c1 , zΛm

(2)
P ≈ 2.91+ 1.40c1 , zΛm

(3)
P ≈ 4.07+ 1.27c1 ,

zΛm
(4)
P ≈ 5.04+ 1.21c1 , zΛm

(5)
P ≈ 5.87+ 1.17c1 , zΛm

(6)
P ≈ 6.62+ 1.15c1 .

For the scalars:

zΛm
(1)
S = 2.47+ 0.683c1 , zΛm

(2)
S = 3.73+ 0.488c1 , zΛm

(3)
S = 4.41+ 0.507c1 ,

zΛm
(4)
S = 4.99+ 0.519c1 , zΛm

(5)
S = 5.50+ 0.536c1 , zΛm

(6)
S = 5.98+ 0.543c1 .

• Valid up to c1 ∼ 1. For the axials and pseudo-scalars, we used k = 18
π2 .

• In qualitative agreement with lattice results
Laerman+Schmidt., Del Debbio+Lucini+Patela+Pica, Bali+Bursa
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• The GOR relation is satisfied

−4mq⟨qq̄⟩ = m2
πf

2
π

• The vector two-point function has the appropriate form∫
d4x eiqx⟨Jµ(x)Jν(0)⟩ = (ηµνq

2 − qµqν)ΠV (q2)

ΠV = −
Nc

12π2

[
log

q2

z2Λ
− 1− log 4 + 2γ − 9

z4Λ
q4

+ · · ·
]

• Decay widths can be calculated from the wave-functions

F2
n =

Nc

6π2
R

m2
n

d2ψ(n)
V

dz2

∣∣∣∣
z=0

2
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The decay constant, in units of z−1Λ for the four lowest-lying, the seventh and the twelve-th

vector mode (from bottom to top), as a function of c1. The numerical plot was made by

taking µ2 = π and Nc = 3.
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Mass dependence of fπ

The pion decay constant and its derivative as a function of c1 - the quark

mass. The different lines correspond to different values of k. From bottom

to top (on the right plot, from bottom to top in the vertical axis) k =
12
π2
, 24
π2
, 36
π2

. The pion decay constant comes in units of z−1Λ .
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Linear Regge Trajectories
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Results corresponding to the forty lightest vector states with c1 = 0.05 and c1 = 1.5. On

the right, the horizontal line signals the asymptotic value 6 of the Regge trajectory, the

lower line corresponds to c1 = 0.05 and the upper line to c1 = 1.5. Masses are given in

units of z−1Λ . m2
n+1 −m2

n = 6
z2Λ

+O(1/n).
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Fit to data

We fit the three parameters to the “confirmed” isospin 1 mesons

z−1Λ = 549 MeV , c1lzΛ = 0.0094 , k =
18

π2

minimizing

ϵrms =

1

n

∑
i

(
δOi
Oi

)21
2

where n is the number of the observables minus the number of the fitted
parameters, n = 9− 3. The rms error then is ϵrms = 14.5%

• For masses

JCP Meson Measured (MeV) Model (MeV) 100|δO|/O
1−− ρ(770) 775 800 3.2%

ρ(1450) 1465 1449 1.1%

1++ a1(1260) 1230 1135 7.8%

0−+ π0 135.0 134.2 0.5%

π(1300) 1300 1603 23.2%

0++ a0(1450) 1474 1360 7.7%
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• For decay constants

JCP Meson Measured (MeV) Model (MeV) 100|δO|/O
1−− ρ(770) 216 190 12%

1++ a1(1260) 216 228.5 5.8%

0−+ π0 127 101.3 20.2%

• Masses of ”less confirmed mesons”

JPC Meson Measured (MeV) Model (MeV)

1−− ρ(2270) 2270 2649

1++ a1(1930) 1930 2166

a1(2096) 2096 2591

a1(2270) 2270 2965

a1(2340) 2340 3303

0−+ π(2070) 2070 2406

π(2360) 2360 2798

0++ a0(2020) 2025 1883

• The RMS error here is 23%. Axial vector mesons are consistently over-
estimated.
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“ss̄” states

They can be “estimated” using

m(“η”) =
√
2m2

K −m
2
π , m(“ϕ(1020)”) = 2m(K∗(892))−m(ρ(770)) , · · ·

Allton+Gimenez+Giusti+Rapuano

JPC Meson “Measured” (MeV) Model (MeV)

1−− “ϕ(1020)” 1009 857

“ϕ(1680)” 1363 1432

1++ “f1(1420)” 1440 1188

0−+ “η” 691 740

“η(1475)” 1620 1608

0++ “f0(1710)” 1386 1365

The ”mass” of the s-quark is c1,s = 0.350. The rms error for this set of
observables (n = 6− 1) is εrms = 11%.

• 2ms
mu+md

≃ c1,s
c1,l
≃ 26

• Tdeconf = 5
4πzΛ

≃ 215MeV .

Holographic Chiral Symmetry Breaking, Elias Kiritsis
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Steps forward

Advantages of this simple AdS/QCD-like model

• Compared to the SS model it contains all trajectories corresponding to

1−−,1++,0−+,0++ and can accommodate a mass of the quarks. The

asymptotic masses of mesons are m2
n ∼ n, as they should.

• Compared to the soft-wall AdS/QCD model:

(a) The background glue solution is a consistent solution with proper thermodynamics.

(b) The magnetic quarks are confined instead of screened.

(c) Chiral symmetry breaking is dynamical.

(d) The mass of the ρ meson depends on the quark (or pion) mass.

(e) The finite density physics is sensitive to quark masses.

Holographic Chiral Symmetry Breaking, Elias Kiritsis
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Open problems

• Derive the finite density physics.

• Investigate the baryon states and spectra.

• Explore different actions, and in particular investigate the difference of

axial and vector asymptotic slopes.

• Investigate the non-abelian case involving both light and heavy quarks

with mixing.

• Consider the IHQCD glue backgrounds and study the associated meson

physics.

• Proceed beyond the quenched approximation for flavor.

Holographic Chiral Symmetry Breaking, Elias Kiritsis
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Introduction

• Chiral symmetry breaking is a central effect for the nuclear interaction

• The Large-N limit of QCD promised a new approximation scheme at
strong coupling.

• In 1997 Maldacena conjectured a precise correspondence for a more sym-
metric cousin of YM.

There were surprises in this duality and new intuition that developed.

• The conjecture was tested in many contexts but still remains a conjecture.
Few doubt it validity.

• This AdS/CFT correspondence has led to important new insights on the
problems of the strong force.

• New experimental arenas are available to test strong couplings physics in
the deconfined phase (at RHIC and LHC).
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The glue

• There are several models to describe the dynamics of glue and important
properties, like confinement, and the associated phase transition at finite
temperature.

• There are top-down models, like the Witten D4 model, Klebanov-Strassler
and Chamsedinne-Volkov-Maldacena-Nunez solutions that emerge from well
controlled situations in string theory.

• There are also bottom up models like AdS/QCD, that are phenomeno-
logical but sometimes they can address more realistic cases.

• The state of the art for Glue (bottom-up) is Improved Holographic QCD

S =M3
∫
d5x
√
g

[
R−

4

3
(∂ϕ)2 + V (ϕ)

]
, λ ≡ eϕ

V (λ) =
12

ℓ2

[
1+ c1λ+ c2λ

2 + · · ·
]

, λ→ 0 , V → λ
4
3
√
logλ , λ→∞

• It agrees well with pure YM, both a zero and finite temperature.
Gursoy+Kiritsis+Mazzanti+Nitti, 2007-2009
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YM Entropy

From M. Panero, arXiv:0907.3719
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YM Equation of state (interaction measure)

From M. Panero, arXiv:0907.3719
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The tachyon WZ action

• The WZ action is given by
Kennedy+Wilkins, Kraus+Larsen, Takayanagi+Terashima+Uesugi

Alishahiha+Ita+Oz

SWZ = T4

∫
M5

C ∧ Str exp
[
i2πα′F

]
• M5 is the world-volume of the D4 -D4 branes that coincides with the full

space-time.

• C is a formal sum of the RR potentials C =
∑
n(−i)

5−n
2 Cn,

• F is the curvature of a superconnection A:

iA =

 iAL T †

T iAR

 , iF =

 iFL − T †T DT †

DT iFR − TT †


F = dA− iA ∧A , dF − iA ∧ F + iF ∧A = 0

26



• Under (flavor) gauge transformation it transforms homogeneously

F →

 VL 0

0 VR

 F
 V

†
L 0

0 V
†
R



• Expanding:

SWZ = T4

∫
C5 ∧ Z0 + C3 ∧ Z2 + C1 ∧ Z4 + C−1 ∧ Z6

where Z2n are appropriate forms coming from the expansion of the expo-

nential of the superconnection.

• Z0 = 0, signaling the global cancelation of 4-brane charge, which is

equivalent to the cancelation of the gauge anomaly in QCD.

Z2 = dΩ1 , Ω1 = iSTr(V (T †T ))Tr(AL −AR)− log det(T )d(StrV (T †T ))

Casero+Kiritsis+Paredes (07)

• This term provides the Stuckelberg mixing between Tr[ALµ −ARµ ] and the

QCD axion that is dual to C3. Dualizing the full action we obtain:
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SCP−odd =
M3

2N2
c

∫
d5x
√
gZ(λ) (∂a+ iΩ1)

2

=
M3

2N2
c

∫
d5x
√
gZ(λ)

∂µa+ ζ∂µV (τ)−
√
Nf

2
V (τ)AAµ

2

ζ = ℑ log detT , AL −AR ≡
1

2Nf
AAII + (AaL −A

a
R)λ

a

• This term is invariant under the U(1)A transformations, reflecting the

QCD U(1)A anomaly.

ζ → ζ + ϵ , AAµ → AAµ −

√√√√ 2

Nf
∂µϵ , a→ a−NfϵV (τ)

• This is responsible for the mixing between the QCD axion and the η′ → we have two

scalars a, ζ and an (axial) vector, AAµ . Then an appropriate linear combination of the two

scalars will become the 0−+ glueball field while the other will be the η′. The transverse

(5d) vector will provide the tower of U(1)A vector mesons.

• The term C1 × Z4 ∼ V (τ) C1 [FL ∧ FL+ FR ∧ FR] + · · · couples the flavor

instanton density to the baryon vertex.
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• Using Z6 = dΩ5 we may rewrite the last term as∫
F0 ∧Ω5 , F0 = dC−1

F0 ∼ Nc is nothing else but the dual of the five-form field strength. This term then

provides the correct Chern-Simons form that reproduces the flavor anomalies of QCD. It

contains the tachyon non-trivially.
Casero+Kiritsis+Paredes (07)

• The five form Ω5 is rather complicated and depends non-trivial on the
tachyon

Ω5 =
tr

6
exp

[
−τ2

]{
−iAL ∧ FL ∧ FL +

1

2
AL ∧AL ∧AL ∧ FL + i

AL ∧AL ∧AL ∧AL ∧AL
10

+

+iAR ∧ FR ∧ FR −
1

2
AR ∧AR ∧AR ∧ FR − i

AR ∧AR ∧AR ∧AR ∧AR
10

+ τ2
[
iAL ∧ FR ∧ FR−

−iAR∧FL∧FL+
i

2
(AL−AR)∧(FL∧FR+FR∧FL)+

1

2
AL∧AL∧AL∧FL−

1

2
AR∧AR∧AR∧FR+

+
i

10
AL ∧AL ∧AL ∧AL ∧AL −

i

10
AR ∧AR ∧AR ∧AR ∧AR

]
+ iτ3 dτ∧

∧
[
(AL∧AR−AR∧AL)∧(FL+FR)+iAL∧AL∧AL∧AR−

i

2
AL∧AR∧AL∧AR+iAL∧AR∧AR∧AR

]
+

+
i

20
τ4(AL −AR) ∧ (AL −AR) ∧ (AL −AR) ∧ (AL −AR) ∧ (AL −AR)

}
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Discrete symmetries

• Parity (P):

P = P1 · P2 , P1 : AL ↔ AR , P2 : xi → −xi

• The DBI+WZ action is invariant under parity. In particular

P : D4 ↔ D̄4

• Charge conjugation is also a symmetry

C : AL → −AtR , AR → −AtL , T → T t , T † →
(
T †
)t

Holographic Chiral Symmetry Breaking, Elias Kiritsis
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Meson melting

The Schrödinger potentials associated to the vector excitation in the deconfined phase,

at zero momentum, for different values of c1 ∼ mq/T . Here c1 = 0.01,1,2,3,4.

28



Here c1 = 1, we compare the potentials in the confined phase for the same

values of c1.
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Here c1 = 2 and we make a comparison with the potentials in the confined

phase for the same values of c1.

Holographic Chiral Symmetry Breaking, Elias Kiritsis
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The gauge-theory/string-theory(gravity) duality

• The gauge-theory/gravity duality is a duality that relates a string theory

with a (conformal) gauge theory.

• The prime example is the AdS/CFT correspondence
Maldacena 1997

• It states that N=4 four-dimensional SU(N) gauge theory (gauge fields,

4 fermions, 6 scalars) is equivalent to ten-dimensional IIB string theory on

AdS5 × S5

ds2 =
ℓ2AdS
r2

[
dr2 + dxµdxµ

]
+ ℓ2AdS (dΩ5)

2

• This space (AdS5) is non-compact and has a single boundary, at r = 0.

29
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• The string theory has as parameters,gstring, ℓstring, ℓAdS. They are related

to the gauge theory parameters as

g2YM = 4π gstring , λ = g2YM N =
ℓ4AdS
ℓ4string

• As N →∞, gstring ∼ λ
N → 0.

• As N → ∞, λ ≫ 1 implies that ℓstring ≪ ℓAdS and the geometry is very

weakly curved. String theory can be approximated by gravity in that regime

and is weakly coupled.

• As N → ∞, λ ≪ 1 the gauge theory is weakly coupled, but the string

theory is strongly curved.
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• There is one-to-one correspondence between on-shell string states Φ(r, xµ) and gauge-
invariant (single-trace) operators O(xµ) in the sYM theory

• In the string theory we can compute the ”S-matrix” , S(ϕ(xµ)) by studying the response
of the system to boundary conditions Φ(r = 0, xµ) = ϕ(xµ)

• The correspondence states that this is equivalent to the generating function of c-

correlators of O

⟨e
∫
d4x ϕ(x) O(x)⟩ = e−S(ϕ(x))

Gubser+Klebanov+Polyakov, Witten, 1998

Holographic Chiral Symmetry Breaking, Elias Kiritsis
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Holographic Renormalization

• The tachyon action to be renormalized is

L = −2K e−
1
2µ

2τ2g
1
2
ttg

3
2
xx

√
gzz +2πα′λ(∂zτ)2

• The quark condensate is defined as:

⟨q̄ q⟩ = −
δSren

δmq
= −

δτ

δm

δSreg

δτ

δSreg =
∫ zΛ
ϵ

(
δτ
∂L
∂τ

+ δτ ′
∂L
∂τ ′

)
dz =

∫ zΛ
ϵ

d

dz

(
δτ
∂L
∂τ ′

)
and therefore

δSreg

δτ
= −

∂L
∂τ ′

∣∣∣∣
z=ϵ
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• We obtain
δSreg

δc1
= KR5µ2

(
2c1
3ϵ2

+
2

3
c31µ

2 log ϵ+2c3 −
1

3
c31µ

2 +
2

3
c1∂c1c3 +O(ϵ)

)

• The subtracted action is

Ssub = Sreg+Sct , Sct = −KR
∫
d4x
√
−γ

(
−
1

2
+
µ2

3
τ2 +

µ4

18
τ4 log ϵ+

µ4

12
α τ4

)

• The constant α captures the scheme dependence of the condensate and
reflects an analogous scheme dependence in field theory.

• The renormalized action is

Sren = lim
ϵ→0

Ssub

• With mq = β c1, we finally obtain

⟨q̄q⟩ =
1

β
(2πα′KR3λ)

−4c3 +

(
mq

β

)3
µ2(1 + α)


RETURN
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The Garousi action

• Garousi proposed an effective action for the brane-antibrane system which

has a subtle difference with respect to Sen’s one.

S = −STr
∫
d4xdz e−T̂

2
√
−det(gMN + F̂MN +DM T̂DN T̂ )

where hatted symbols are 2x2 matrices:

T̂ =

 0 T

T ∗ 0

 , F̂MN =

F (L)
MN 0

0 F
(R)
MN

 , DM T̂ =

 0 DMT

(DMT )
∗ 0

 .

• The equations for the vectors are not modified with respect to the main

text.

• The equations for the axials are different. They still obey a Regge law

m2
n ∝ n for large excitation number n but with different slope compared to

the main text.

• This slope is still larger than the one for vectors.

Holographic Chiral Symmetry Breaking, Elias Kiritsis
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Detailed plan of the presentation

• Title page 1 minutes

• Collaborators 2 minutes

• Introduction 3 minutes

• Top-down flavor 5 minutes

• Bottom-up flavor 7 minutes
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• The tachyon DBI action 17 minutes
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