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The plan of the talk

• Introduction

• The program of Effective Holographic Theories

• The dynamics in the single scalar case

• Generalized Criticality and hyperscaling violations

• Symmetry breaking IR asymptotics and the holographic effective poten-

tial.

• Two scalar operators: a interesting example with both QC and symmetry

breaking.

• Outlook
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Introduction

• Holographic techniques offer a new look into strongly-coupled, semiclas-

sical theories, at finite density.

• The goal is to (a) extend our understanding of known CM mechanisms

at strong coupling (b) Look for novel phenomena.

• Like in QFT, a very useful and efficient tool is that of an effective theory:

Effective Holographic Theory → EHT.

The reason is that it is useful to:

(1) Develop intuition

(2) Do efficient model building

(3) Be useful as an intermediary between theory and data.
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• Unlike QFT we know much less about EHT.

• The first step is to hierarchically treat, the

(a) Field content

(b) IR classification of interactions

• The next step is to assess which EHTs are sensible and which are not.

• Eventually a calculation of observables (thermodynamics and transport

data for example) should be done in EHT.

• Finally, by matching thresholds, any string derived supergravity and trun-

cation ansatz can be matched to a EHT solution.

♠ The exploration of EHT is an important tool because in gravity/string

theory, there is no simple and direct connection between (action+solutions)

and physical observable properties.

Effective Holographic Theories, Elias Kiritsis
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Effective Holographic Theory Program

The strategy advocated in
Charmousis+Gouteraux+Kim+E.K.+Meyer

is:

1. Select the operators expected to be important for the dynamics

2. Write an effective (gravitational) holographic action that captures the

(IR) dynamics by parametrizing the IR asymptotics of interactions .

3. Find the scaling solutions describing extremal saddle points. Built the

T → 0 bh solutions around them

4. Study the physics around each acceptable saddle point.
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This strategy started bearing fruit as it dealt with

• Einstein-Maxwell-Dilaton theories with the most general AdS and Lifshitz
asymptotics.

Charmousis+Gouteraux+Kim+E.K.+Meyer, Gouteraux+E.K.

• Einstein-Maxwell-Dilaton theories with also massive asymptotics and non-
abelian (Bianchi) scaling symmetries.

Iizuka+Kachru+Kundu+Narayan+Sircar+Trivedi

• Einstein-Maxwell theories with CP-couplings and a magnetic field.
Donos+Gauntlett

• Einstein-Maxwell-Dilaton+axion theories with broken rotational symme-
try.

Iizuka+Maeda

• Einstein-Maxwell-Scalar theories in the symmetry broken regime ( to be
described later in this talk).

Gouteraux+E.K.

• Einstein-two-scalar theories (special classes to be described later in this
talk)

Jarvinnen+E.K.
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• The bulk metric gµν ↔ Tµν is always sourced in any theory. In CFTs it
captures all the dynamics of the stress tensor and the solution is AdSp+1.

• In a theory with a conserved U(1) charge, a gauge field is also necessary,
Aµ ↔ Jµ. If only gµν, Aµ are important then we have an AdS-Einstein-
Maxwell theory with saddle point solution=AdS-RN.

• The thermodynamics and CM physics of AdS-RN has been analyzed in
detail in the last few years, revealing rich physical phenomena

Chamblin+Emparan+Johnson+Myers (1999), Hartnoll+Herzog (2008), Bak+Rey

(2009),Cubrovic+Schalm+Zaanen (2009), Faulkner+Liu+McGreevy+Vegh (2009)

1. Emergent AdS2 scaling symmetry in the IR at finite density

2. Interesting fermionic correlators

and also

3. Is unstable (in N=4) to both neutral and charged scalar perturbations
Gubser+Pufu (2008), Hartnoll+Herzog+Horowitz (2008)

4. Has a non-zero (large) entropy at T = 0.

Effective Holographic Theories, Elias Kiritsis
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Einstein-Scalar-U(1) theory

• To go beyond RN, we must include the most important (relevant) scalar

operator in the IR.

• The most general 2d action (after field redefinitions) is

S =
∫

dp+1x
√
g

[
R−

1

2
(∂ϕ)2 + V (ϕ)− Z(ϕ)F2

]

• It involves two arbitrary functions of ϕ.

Consider first the zero density case:

• There are two types of critical points.
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♠ Standard (AdS) critical points: V ′(ϕ∗) = 0 for finite ϕ∗. This is a standard

IR or UV fixed point at zero density (depending whether V ′′(ϕ∗) is positive

or negative).

♠ ”decompactication” asymptotics, ϕ∗ → ±∞. These correspond to geo-

metric “singularities” (sometimes decompactification) in string theory.

These also lead to scale invariant saddle points despite the fact that the

extremal solutions have a nontrivial running for ϕ. To find the leading

physics at extremality it is enough to parametrize

V (ϕ) ∼ e−δϕ , Z(ϕ) ∼ eγϕ , ϕ → ±∞

• γ,δ capture the leading physics except if |δ| =
√

2
p−2.

Effective Holographic Theories, Elias Kiritsis
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Finite Density scaling

The fate of zero density Quantum Critical asymptotics, at finite density is
as follows:

♠ Standard (AdS) critical points: There is a new density dependent “ef-
fective potential” for ϕ

Goldstein+Iizuka+Kachru+Prakash+Trivedi+Westphal

Veff = V (ϕ)−
q2

Z(ϕ)

and generically there is a new fixed point at ϕ∗∗ at a special density q∗.

V ′(ϕ∗∗) = q2∗
Z′(ϕ∗∗)

Z2(ϕ∗∗)
, V (ϕ∗∗) =

2q2∗
Z(ϕ∗∗)

E.K.+Meyer

• If Z′(ϕ∗) = 0 then ϕ∗ = ϕ∗∗. This is the generalization of Reissner-AdS
case with the usual IR AdS2 geometry. In the near IR region, the AdS-RN
bh is a solution.

• Z′(ϕ∗) ̸= 0. There is a new QC point at a special value of the density.
The metric is AdS2 ×Rn.

Effective Holographic Theories, Elias Kiritsis
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Scaling IR asymptotics

• In the IR-AdS region, the IR-extremal metrics are AdSp+1 at zero density
and AdS2 at finite density.

• In the case of runaway ϕ → ±∞ QC points, with V ∼ e−δϕ, Z ∼ eγϕ, the
extremal metrics are general scaling metrics of the form

ds2 =
dr2

r2
+

−dt2 + dxidxi

r2a

at zero density and

ds2 =
dr2

r2
−

dt2

r2a
+

dxidxi

r2b

at finite density.

• Their near-extremal asymptotics (small temperatures) are also simply
constructed.

• In several cases, the extremal metrics are solutions to the full equations.
(as with exponential potentials)

Effective Holographic Theories, Elias Kiritsis
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The hidden scale invariance
Gouteraux+E.K.

• At zero density:

ds2 =
dr2

f
+

(−fdt2 + dx · dx)

r
− 4

(p−1)δ2

, f = 1−
(
r0
r

) 2p
(p−1)δ2

−1
, eδϕ ∼ r2

Changing variables

w = r
1− 2

(p−1)δ

ds2 = e2χ(r)
[

dw2

w2f(w)
+

−f(w)dt2 + dx · dx
w2

]
, e2χ ∼ r2 ∼ eδϕ ∼

1

V (ϕ)

• This is conformal to the AdS-Schwarzschild black hole.

• It is a scaling solution that violates hyperscaling.

• Such solutions can be obtained by dimensional reduction from a higher

dimensional theory without a scalar.
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• When δ2 < 2
p−1 this is the dimensional reduction of an AdSp+1+n solution

on Tn with

δ2 =

√√√√ 1

1+ p−1
n

·
2

p− 1
≤

2

p− 1

Gubser+Nellore, Skenderis+Taylor

• This explains the continuous spectrum and absence of mass gap for

δ2 < 2
p−1.

• Therefore, the theory is quantum critical in the IR, despite the non-trivial

potential.

• The singularity is resolved by the KK-modes (oxydation). The IR scale

becomes the AdS scale in the higher dimensions.

• Different δ can be obtained by extending to real n > 0.

• The crossover value δ2 = 2
p−1 is obtained when n → ∞.
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• Dimensional Reduction of AdSp+1+n solution on Sn

Gouteraux+E.K.

δ2 =
2

p− 1
+

2

n
≥

2

p− 1

and a naturally discrete spectrum and mass gap.

• Violation of the Gubser bound: n ≤ 1. Marginal case: n → ∞.

• The theory is again quantum critical in the IR,

Effective Holographic Theories, Elias Kiritsis
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Scaling and hyperscaling at finite density

• The extremal solutions for all (γ, δ) are simple powers, and therefore

scaling.

• The metric can always be written as
Gouteraux+E.K.

ds2 = eχ dŝ2 , eχ ∼ eδϕ , dŝ2 = −
dt2

w2z
+

dw2 + dxidxi

w2

with

z =
(γ − δ)(γ + (2p− 3)δ) + 2(p− 1)

(γ − δ)(γ + (p− 2)δ)

• They are conformal to Lifshitz or AdS solutions.

xi → λxi , w → λw , t → λz t , ds2 → λθ ds2 , θ =
2(p− 1)δ

γ + (p− 2)δ
.

• θ, the hyperscaling exponent, is set by the scaling of the inverse scalar

potential, and controls the violation of hyperscaling.
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• They can be also written in a different frame as
Huisje+Sachdev+Swingle

ds2 =
dr2

r
4θ−1
θ−2

−
dt2

r
2θ−2z

θ−2

+
dxidxi

r2

with scaling transformations

xi → λ xi , r → λ1−
θ
2 r , t → λz t , ds2 → λθ ds2

• Most of these can be lifted to solutions in higher dimensions with gener-

alized scaling symmetry (Boosted AdS black-holes or black AdS q-branes).

• They represent the most general critical behavior at zero temperature,

generalizing the AdS and Lifshitz geometries.

• Note that at γ + (p − 2)δ = 0 we obtain an AdS2 × R2 geometry at

extremality but with S = 0.

• Like the zero density case, they are dimensional reductions of regular or

Lifshitz higher-dimensional solutions.
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• The higher-dimensional theories are of the following types:

S =
∫

dp+q+1x
√
G [R+2Λ] .

reduced along a torus with a boost.

S =
1

16πGD

∫
dp+q+1x

√
−g

[
R−

1

2(n+2)!
G2
[n+2]

]
.

reduced on a sphere.

S =
1

16πGD

∫
dp+q+1x

√
−g

[
R−

1

2(q +2)!
G2
[q+2] +2Λ

]
,

reduced on a torus.

• The spectra (continuous vs discreet) follow from the curvature of the

internal space.

• The thermodynamic variables have the natural scaling of the higher-

dimensional theory.
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The higher-dimensional picture:

1. Explains the near T=0 scaling behavior.

2. Explains the qualitative difference between EHTs with Cp < 0 and Cp >

0. In the neutral case it explains the crossover value, δc.

3. Provides and alternative view of the Gubser bound.

4. Provides one possible resolution of the zero temperature naked singu-

larity of the original solution.

5. Gives a direct and efficient way to compute the scaling transport coef-

ficients by dimensionally reducing scale invariant hydrodynamics.

Gouteraux+(Smolic)2+Skenderis+Taylor

Effective Holographic Theories, Elias Kiritsis
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(Lifshitz) Scaling in the broken-symmetry phase

• The minimal description of the broken symmetry phase contains the
metric, a gauge field and a complex scalar (DµΨ = ∂µΨ+ iqAµΨ)

S = M2
∫

d4x
√
−g

[
R−

G(|Ψ|)
2

|DΨ|2 + Ṽ (|Ψ|)−
Z̃(|Ψ|)

4
FµνF

µν

]
• In the broken phase, Ψ is non-trivial, Ψ = χ eiθ. Choose the gauge

θ = 0 and change variables χ → ϕ so that the kinetic term of ϕ is properly
normalized

S = M2
∫

d4x
√
−g

[
R−

1

2
(∂ϕ)2 + V (ϕ)−

Z(ϕ)

4
FµνF

µν −
W (ϕ)

2
AµA

µ

]
• Again the interesting IR behavior appears if V,W,Z have extrema, or

decompactification (exponential) behavior.

• It can be shown, that both at finite ϕ, or runaway ϕ with exponential
IR asymptotics for V, Z,W , we obtain generalized Lifshitz scaling in the IR
geometry.
• The Lifshitz exponent z depends non-trivially on the IR asymptotics of
the EHT.

Gouteraux+E.K

Effective Holographic Theories, Elias Kiritsis
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Constant scalar

• ϕ = ϕ∗ is constant and

ds2 = B0
dr2

r2
+

dx2 + dy2

r2
−

dt2

r2z
, At = Q r−z

Q2 =
2(z − 1)

zZ(ϕ∗)
, B0 = 2z

Z(ϕ∗)

W (ϕ∗)

with the Lifshitz exponent z satisfying

z2 +

(
1−

2V (ϕ∗)Z(ϕ∗)

W (ϕ∗)

)
z +4 = 0

and

V ′
∗

V∗
+

2(z − 1)

z2 + z +4

W ′
∗

W∗
+

z(z − 1)

z2 + z +4

Z′
∗

Z∗
= 0

• This has non-trivial real solutions unless

−
3

2
≤

V (ϕ∗)Z(ϕ∗)

W (ϕ∗)
≤

5

2

• When V (ϕ∗)Z(ϕ∗)
W (ϕ∗)

= 3 we obtain z = 1 namely AdS.

Effective Holographic Theories, Elias Kiritsis
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Running scalar

• A decompactification case

V (ϕ) = V0e
−δϕ , Z(ϕ) = Z0 eγϕ , W (ϕ) = W0e

(γ−δ)ϕ

• We also obtain a Lifshitz geometry in the IR with

z =
ϵ(ϵ− 2γ)x+2(ϵ2 − ϵγ − 2)

(ϵ2 +2γ2 − 4ϵγ − 2)x+2ϵ(ϵ− γ)

with

(4−ϵ2+4ϵγ)x2+

(
2− 2ϵ2 +2γ2 + (−4+ ϵ2 − 4ϵγ)

V0Z0

W0

)
x+

(
4+ 2ϵ2

V0Z0

W0

)
= 0

• In the rest of the cases we obtain, Lifshitz geometries or generalized

Lifhitz geometries (with hyperscaling violation).

Effective Holographic Theories, Elias Kiritsis
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Extremal geometries

• The analysis above seems to suggest that in all systems studied so far, the

T → 0 asymptotics involve non-trivial scale invariant holographic theories.

• This conclusion remains the same when charge densities are present.

• The scaling geometries are generalized AdS or Lifshitz geometries with

hyperscaling violations.

• Point Charges generate AdS2, string charges AdS3 etc.

• This is valid both in broken (superfluid) and unbroken phases.

• How general is this???

Effective Holographic Theories, Elias Kiritsis
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The holographic effective potential
Niarchos+E.K

• In QFT a very useful tool is the quantum effective potential: it is the Leg-

endre transform of the source action, and is a function of the expectation

values of fields.

It is a valuable tool in the investigation of dynamical symmetry breaking

and the study of phase transitions.

• The analogous concept in holography is in principle computable, but has

not been used so far (but for a few exceptions).

• I will outline the formalism in a model class of theories: EMD

S = M
p−1
P

∫
dp+1x

√
g

[
R−

1

2
(∂ϕ)2 + V (ϕ)− Z(ϕ)F2

]
+boundary terms

ds2 = e2A(u)
(
−f(u)dt2 + dxidxi

)
+

du2

f(u)
, A = At(u)dt , ϕ = ϕ(u)

• We will
15



(a) Find the classical solution with temperature T , charge density ρ, and

scalar source ϕ = ϕ0 = constant in (t, xi).

(b) Evaluate the on-shell action,Son−shell(ϕ0).

(c) Legendre transform in ϕ0 to obtain the effective potential Veff(ϕc;T, ρ,M)

as a function of the classical field ϕc =
∂Son−shell(ϕ0)

∂ϕ0
and the RG scale

M = eA0, at which all field variables are defined.

• The key step here is to introduce the “superpotential” W (ϕ) that will be

related both to the effective potential and the holographic β-function.
Gursoy+E.K.+Nitti

dϕ

du
=

dW (ϕ)

dϕ
,

dA

du
= −

W (ϕ)

2(p− 1)
⇒

⇒
dϕ

dA
=

dϕ

d logM
= −2(p− 1) ∂ϕ logW = β(ϕ)

• Note that the ϕ equation is solvabe with a single initial condition: ϕ(A0) ≡
ϕ0. The vev is hidden in the determination of W .
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• The equations of motion for the unknown functions: W (ϕ), A(ϕ), f(ϕ)

become

R′

R
=

W

W ′ , R ≡ e−2(p−1)A (1a)

W ′(W ′f ′)′ −
pWW ′

2(p− 1)
f ′ =

ρ2R
Z

(1b)

(
pW2

2(p− 1)
−W ′2

)
f −WW ′f ′ = 2V −

ρ2R
Z

(1c)

The second order equation can be integrated to a first order one:

f ′ =
e−dA

W ′

[
D + ρ2

∫ ϕ

ϕ0

dχ

e(d−2)A(χ)Z(χ)W ′(χ)

]

D = −4πe(d−1)A0 T S − ρ2
∫ ϕh

ϕ0

dϕ̃

e(d−2)AZW ′

15-



• The three constants of integration amount to T, ⟨ϕ⟩ and the RG scale
M = eA0.

• ⟨ϕ⟩ is tuned to the value that makes the bulk solution “regular”.

• We now calculate the Free Energy (on-shell action):

F = Son−shell = M
p−1
P βVp−1 epA0

(
−W + ḟ

)
u=u0

and from the equations we obtain Z(ϕ0, T, ρ, A0).

Z =
F

M
p−1
P βVp−1

= −epA0W (ϕ0)− 4πe(p−1)A0 T S + ρ2
∫ ϕ0

ϕh

dϕ̃

e(p−2)AZW ′

• Z is the single-trace effective action for the source ϕ0. The full effective
action contains possible multitrace deformations:

Ztotal = Z + Zmulti−trace , Zmulti−trace =
∞∑

n=2

gn

Nn−2
ϕn0

• The Legendre transform of Z with respect to ϕ0 is the effective potential,
Veff(ϕc; T, ρ,A0).
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• The effective potential, is evaluated at an RG scale M = eA0.

• ϕc depends implicitly on A0 as determined by the bulk flow equations.

• RG invariance (T = ρ = 0):

d

dA0
Z = 0

• In the scaling region around an IR or UV fixed point, Veff can be obtained
by a perturbative calculation. It is in general non-polynomial in ϕc and
provides a generalization of the LG ansatz.
• From scaling:

ϕr ≡ e−(p−∆)A0ϕ0 , T̂ ≡ e−A0T , ρ̂ ≡ e(2−p)A0ρ

Z = ϕ
p

p−∆
r ζ(ϕ

1
p−∆
r , T̂ , ρ̂) , lim

A0→∞
ζ = constant

• Transition temperatures can be calculated directly via perturbation the-
ory if they occur in the scaling region.

Effective Holographic Theories, Elias Kiritsis
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The effective action

• We can go beyond the effective potential, to the first terms in the effective

action

Ssource =
∫

d4x
√
g

[
U(ϕ)R−

1

2
Z(ϕ)(∂ϕ)2 + V (ϕ) + · · ·

]
• V was calculated already

• U can be calculated by turning on constant spacial curvature

U(ϕ0) = −
∫ ϕ0

∞

dϕ

W ′e
−1

4

∫ ϕ
ϕ0

W
W ′dϕ

at zero temperature and density.

• Calculating Z(ϕ) is more complicated.

• Such effective actions are very useful both in condensed matter (gen-

eralizations of the LG framework) and cosmology (inflaton as a strongly

coupled bound state)

Effective Holographic Theories, Elias Kiritsis
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EHT with two scalar fields

• This is the next case that provides a new dimension in the possible

phenomena that may happen.

S =
∫

dp+1x
√
g

[
R−

1

2
G ∂ϕ∂ϕ̄+ V (ϕ, ϕ̄)

]
, G = ∂ϕ∂ϕ̄K(ϕ, ϕ̄)

• The presence and mixing of the two scalar operators opens the possibility

that the new phenomena can appear dynamically.

• With a single scalar, to obtain such phenomena we must change param-

eters of the bulk Lagrangian (like masses or charges).

• Now these changes can happen during RG flows.

• A new element appears here: the (Zamolodchikov) metric in field space,

controlled by the (pseudo) Kahler potential K.

Effective Holographic Theories, Elias Kiritsis
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A startup example: V-QCD
Jarvinnen+E.K.

• The theory contains a metric and two scalars, a real one, λ and a complex
one T . There is also a U(1) symmetry under which T is charged.

S = Sglue + Sflavour , Sglue =
∫

d5x
√
g

[
R−

1

2

(∂λ)2

λ2
+ Vg(λ)

]

Sflavour = −x
∫

d5x Vf(λ, T )
√
−det(gab + h(λ)∂aT∂bT )

Fixed points of the potential:

UV: (λ = 0, T = 0), ∆λ = 4,∆T = 3, unbroken U(1) symmetry.

IR: (λ = λ∗, T = 0) (non-trivial CFT), unbroken U(1) symmetry or

(λ = ∞, T = ∞), broken U(1) symmetry and a different (free) CFT of the
Goldstone boson.

Effective Holographic Theories, Elias Kiritsis
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Condensate dimension at the IR fixed point

• By expanding the DBI action we obtain the IR tachyon mass at the IR

fixed point λ = λ∗ which gives the chiral condensate dimension:

−m2
IRℓ

2
IR = ∆IR(4−∆IR)

• Must reach the Breitenlohner-

Freedman (BF) bound (horizontal

line) at some xc.

• xc marks the conformal phase tran-

sition

4.0 4.5 5.0 5.5
x

3.5

4.0

4.5

-mIR
2 {IR

2

Effective Holographic Theories, Elias Kiritsis
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The symmetry breaking regime

T0

m

T0

m

• In the symmetry breaking region there is an infinite number of saddle

points.

• Their Free energies are ordered

F0 < F1 < F2 < · · · < F T=0

Effective Holographic Theories, Elias Kiritsis
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BKT scaling

• In the symmetry region we have BKT scaling for all symmetry breaking

scales

σ ∼
1

r3UV

exp

(
−

2K
√
xc − x

)
.
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• This suggests that the presence of double trace deformations can alter

the ground state of the system and make the second Effimov vacuum be

the ground state.

Effective Holographic Theories, Elias Kiritsis
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Finite temperature

THΛh, Τ = 0L

TIΛh, Τh0IΛh, mq = 0MM
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The temperature as a function of λh for solutions for Pot II at xf = 3W0 = 12/11, for

zero mass
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Λh

TIΛh, ΤhoIΛh, mq = 10-5M
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The temperature as a function of λh for solutions for Pot II at xf = 3W0 = 12/11, and

very small mass . The asymptotic limits are also shown for mq = 10−5, in the range of the

figure the UV limit is not yet accurate.
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Examples of the Tend, Th and Tcrossover transitions in potential II with Stefan-Boltzmann

-normalization of LUV and with xf = 3. Here: The temperature T (λh) . The curving

of Ts(λh) at λh ∼ 0.2, T ∼ 2 is related to the crossover transition. The inset shows the

minimum of Tb(λh), which causes pb to be positive between Th and Tend.
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p/T 4 in a close-up around the region of the Th and Tend -transitions.
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An overview of the pressure in the same case, also showing the interaction measure,

which’s peak determines the position of Tcrossover.
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An example of the Ts transition in potential I with W0 = 24/11 and with xf = 3. The

local maximum and minimum which generate the first order Ts -transition.
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An example of the Ts transition in potential I with W0 = 24/11 and with xf = 3. p(T )/T 4

in the region around which the first order Ts transition takes place, extending to smaller

T in order to show the relation to the Th and Tend transitions.
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An example of the T12 transition in potential I with W0 = 12/11 and with xf = 3.5. The

overall structure of T (λh), with an inset showing the maximum and minimum in more

detail.
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An example of the T12 transition in potential I with W0 = 12/11 and with xf = 3.5. A

close-up of p(T )/T 4 in the region where the T12 -transition happens, with an inset showing

further detail.
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An example of a configuration where all but the crossover and hadronisation transitions Tcrossover, Th,

are in the thermodynamically unstable region, in the initial stages of the approach to the IHQCD limit. The

potential is II with W0 = 12/11 and with xf = 0.4 Left:The temperature T (λh). Note that everything to the

right of the Th transition is in the unstable phase.
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An example of a configuration where all but the crossover and hadronisation transitions

Tcrossover, Th, are in the thermodynamically unstable region, in the initial stages of the

approach to the IHQCD limit. p(T )/T 4 in the region where the Th transition and the

unstable Tend and Ts -transitions happen.
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The phase diagram for potential II2.
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The chirally symmetric crossover transition Tcrossover is everywhere the highest temperature stable tran-

sition, except between xf ∼ 1 to xf ∼ 2.7, where the interaction measure does not have a maximum and the

crossover does not therefore exist.
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Th > Tend

Tend > Th
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Above xf = 3.19, the next transition is the second order Tend, which goes from the chirally symmetric

high-T phase to the chirally broken low-T phase. This is very quickly followed by the Th transition to the

thermal gas solution. Below xf = 3.19 the Th transition happens first, and therefore Tend is in the unstable

branch of the solution.

23-



Tcrossover

Ts

Th

Tend

0.1 0.2 0.3 0.4 0.5 0.6 0.7
x f0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

T

L

There is further structure at small xf . a close-up of the small-xf region. At xf ∼ 0.4, the first order Ts
transition appears in the unstable branch just slightly below Th. This transition nonetheless develops into

the YM -transition at the xf → 0 -limit. Tend crosses above the Th transition, but it is also in the unstable

branch. A close-up of the xf ∼ 3.2 -region, where the Tend -transition crosses into the unstable branch.
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Outlook

• We have used the concept of EHT to study IR asymptotics of a class of

theories involving a scalar, a graviton and a vector.

• This is a part of an EHT program that is currently extended to more

general situations: symmetry breaking, CP-odd interactions, more scalars

and U(1)’s etc can be extended to more fields and more interactions.

• The behaviors we find are rich and calculable, giving a wide set of phase

diagrams and transport behavior.

• Some of these systems have observables that bear a remarkable resem-

blance to what is seen in strange metals.

• A more detailed analysis of this physics and its link to microscopics is in

need.

Effective Holographic Theories, Elias Kiritsis
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On naked holographic singularities

• If no IR AdS/Lifshitz, all Poincaré invariant solutions end up in a naked

IR singularity.

• In GR naked singularities are proscribed.

• In holographic gravity some may be acceptable. The reason is that they

do not always signal a breakdown of predictability as is the case in GR.

They could be resolved by stringy or KK physics, or they could be shielded

for finite energy configurations.

• Are they resolvable? Does the near-singularity physics depends on the

resolution?

• An important task in EHT is to therefore ascertain when such naked

singularities are acceptable and when are reliable (alias ”good”)

(A priori these are different things)
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♠ Gubser gave a criterion for good (acceptable) singularities: They should

be limits of solutions with a regular horizon.
Gubser (2000)

• The second criterion amounts to having a well-defined spectral problem

for fluctuations around the solution: The second order equations describing

all fluctuations are Sturm-Liouville problems (no extra boundary conditions

needed at the singularity).
Gursoy+E.K.+Nitti (2008)

• The singularity is “repulsive” (like the Liouville wall). It has an overlap

with the previous criterion. It involves the calculation of “Wilson loops”
Gursoy+E.K.+Nitti (2008)

• It is not known whether the list is complete.

Effective Holographic Theories, Elias Kiritsis
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Solutions at zero charge density

.
Gursoy+Kiritsis+Mazzanti+Nitti (2009)

• The only parameter relevant for the solutions is δ ∈ R in V ∼ e−δϕ. Take

p+1 = 4.

• 0 ≤ |δ| < 1. T=0 singularity acceptable. Continuous spectrum/no mass

gap. Continuous transition to BH phase at T > 0

• 1 < |δ| <
√
3. Discrete spectrum/mass gap. BH is thermodynamically

subdominant and unstable. 1 < |δ| <
√

5
3. The spin-2 and spin-0 spectral

problem is reliable without resolution.

• |δ| ≥
√
3. Gubser bound violated, singularity→unacceptable.

The crossover value here is |δ| = 1. For all other δ ̸= 1, corrections like

V = e−δϕϕk + e−δ′ϕϕk
′
+ ..... give subleading corrections.
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• 1 < |δ| <
√
3. In the gapped case, the BH is unstable and thermodynam-

ically irrelevant. The complete story at finite T depends on the subleading
terms in the potential (aka the UV completion).

• There is a first order phase transition at Tc to a large BH.

Α>1

Α=1

Α<1

T_min

T_min

Λ_min

Λh

T

• For more complicated potentials multiple phase transitions are possible.
Gursoy+Kiritsis+Mazzanti+Nitti (2009), Alanen+Kajantie+Tuominen (2010)
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• |δ| = 1. This is the “marginal” case. It has a good singularity, a con-

tinuous spectrum and a gap. A lot of the physics of finite temperature

transitions depends on subleading terms in the potential:

♠ If V = eϕ
[
1+ C e

− 2ϕ
n−1 + · · ·

]
, then at T = Tmin = Tc there is an n-th

order continuous transition.

♠ If V = eϕ
[
1+ C/ϕk + · · ·

]
, then at T = Tmin = Tc there is a generalized

KT phase transition
Gursoy (2010)

♠ If V = eϕ ϕP , with P < 0 this behaves as in |δ| < 1. When P > 0 like

|δ| > 1.

The spectra depend importantly on P , when P > 0.

In particular, we will see that P = 1
2 is very much like what we expect in

4D large-N YM.

Effective Holographic Theories, Elias Kiritsis
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Charged near-extremal scaling solutions

ds2 = r
(γ−δ)2

2
[
dx2 +dy2 − f(r)dt2

]
+

dr2

f(r)

f(r) =
16 (−Λ)

wu2
e−δϕ0 r1−

3
4(γ−δ)2+wu

4

(
1−

2m

r
wu
4

)
,

eϕ = eϕ0r−(γ−δ) , A =
8

wu

√
vΛ

u
e−

(γ+δ)
2 ϕ0

[
r
wu
4 − 2m

]
dt

wu = 3γ2 − δ2 − 2γδ +4 > 0 , u = γ2 − γδ +2 , v = δ2 − γδ − 2 , δ2 ≤ 3

• These are near extremal solutions (the charge density is fixed).

• The Entropy vanishes at extremality if γ ̸= δ.

• If γ = δ the extremal solution is AdS2 ×R2.

• The charge entropy dominates the Q = 0 entropy almost everywhere.

• When dS
dT

< 0 the BH is unstable→ gapped spectra.
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This graph shows the Gubser bounds on the near extremal solution on the whole of the (γ, δ) plane for p = 3

and p = 4. The blue regions are the allowed regions where the near extremal solutions are black-hole like.

The white regions are solutions of a cosmological type and therefore fail the Gubser bound. The dashed

blue line is the γ = δ solutions while the solid black line corresponds to the γδ = 1 solutions.
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On the left: region of local stability of the near extremal black hole. Right: The variety of phase transitions

of the near extremal black hole to the background at zero temperature. In the blue region continuous

transitions occur, in the purple region adjacent to the blue one the transitions are of third-order. The stripes

starting with yellow to the left of the blue and purple regions depicts transitions of fourth-(yellow) up to

tenth-order. Above them all higher-order transitions also occur.
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Mott-like spectra

-4 -2 0 2 4

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-4 -2 0 2 4

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Left: The region on the (γδ) plane where the IR black holes are unstable and c > 0. Here the extremal

finite density system has a mass gap and a discrete spectrum of charged excitations, when ∆ < 1. This

resembles a Mott insulator and the figure provides the Mott insulator “islands” in the (γ, δ) plane. Right:The

region where the IR black holes are unstable, and c < 0. In this region the extremal finite density system

has a gapless continuous spectrum at zero temperature. In both figures the horizontal axis parametrizes γ,

whereas the vertical axis δ.

A similar system was analyzed independently by Mc Greevy and Balasubramanian

Effective Holographic Theories, Elias Kiritsis
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Exact charged solutions

• The full set of solutions for γδ = 1 and γ = δ are known.

• δ2 < 3 otherwise the solutions are De-Sitter like (cf Gubser).

• For γδ = 1 there are three distinct classes of dynamics:

δ2 ∈ [0,1] ∪ [1,1+ 2√
3
] ∪ [1 + 2√

3
,3)

• At Q = 0 all |δ| > 1 systems were insulators. Now this range is split in

two in γδ = 1.

• γδ = 1 has zero entropy but γ = δ has finite entropy at extremality .

Effective Holographic Theories, Elias Kiritsis
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γδ = 1 solutions

• 0 ≤ |δ| < 1

0 2 4 6 8 10
r+0.0

0.5

1.0

1.5

2.0
T

∆
2
=1

∆
2
=0.7

• A single branch of BH that dominate at T > 0. The transition at T = 0+ is between
2nd and 3rd order.

• The system is a conductor.
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• δ2 ∈ [1,1+ 2√
3
]

0 2 4 6 8 10
r+0.0

0.2

0.4

0.6

0.8

1.0
T

∆
2
=1+

2

3

∆
2
=2.1

∆
2
=1.4

• There are two black holes at a given temperature T < Tmax.

• At Tmax > T > 0 it is the small black hole branch that dominates thermodynamically.

The transition at T = 0+ is continuous of any order. Upon UV completion, at Tc ∼ Tmax

a transition is expected to an RN-BH.

Effective Holographic Theories, Elias Kiritsis
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.• δ2 ∈ [1 + 2√
3
,3]

0 10 20 30 40 50
r+0

1

2

3

4

5
T

∆
2
=2.8

∆
2
=2.5

• The BH solution is unstable and never dominant. This is like the δ2 > 1 case at zero
density.

• For 1+ 2√
3
≤ δ2 ≤ 5+

√
33

4
the system has a mass gap and discrete spectrum in the current

correlator if ∆ < 1. It is a Mott-like insulator.

• Upon UV completion a RN-like new stable BH solution is expected to appear for T > Tmin.
There will be a first or second order phase transition to a conducting phase at Tc > Tmin.

• For 5+
√
33

4
≤ δ2 < 3 The system has a continuous spectrum and is again a conductor.

Effective Holographic Theories, Elias Kiritsis
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A typical phase diagram

Phase diagram of hole-doped cuprates.In other systems the pseudogap region is much

smaller, the superconducting region can shrink to almost nothing etc.

Effective Holographic Theories, Elias Kiritsis
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Linear Resistivity

Effective Holographic Theories, Elias Kiritsis
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Linear Heat Capacity

Effective Holographic Theories, Elias Kiritsis
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AC conductivity

van der Marel+Molegraaf+Zaanen+Nussinov+Carbone+Damascelli+Eisaki+Greven+Kes+Li, Nature 425

(2003) 271

Effective Holographic Theories, Elias Kiritsis
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Conductivity

• It is main characteristic transport coefficient in a finite density system.

J i(ω, k⃗) = σij(ω, k⃗) Ej(ω, k⃗)

• Can be calculated from a Kubo formula

σij(ω, k⃗) =
G
ij
R(ω, k⃗)

iω
, G

ij
R ≡ ⟨J i Jj⟩

• Various limits are of experimental importance

k⃗ → 0 → σij(ω, T ) → AC conductivity

ω → 0 and k⃗ → 0 → σij(T ) → DC conductivity

• The limits ω → 0 and k⃗ → 0 do not commute.
Romatchke+Son (2009)

• We can use the drag calculation to calculate the DC conductivity for
massive carriers

ρ =
Tf

Jt
gExx(rh) ekϕ(rh)

RETURN

Effective Holographic Theories, Elias Kiritsis

37



AC Conductivity: derivation

To compute the frequency depended current correlator we perturb we start with a general
diagonal metric ansatz

ds2 = −D(r)dt2 +B(r)dr2 + C(r)(dxidx
i) , A′

t = q

√
D(r)B(r)

Z(ϕ)C(r)
p−1

2

In the backreacted case we must turn on perturbations

Ai = ai(r)e
i(ωt) , gti(r, t) = zi(r)e

iωt

From the r, xi Einstein equation we obtain

z′i −
C ′

C
zi = −ZA′

t ai

while from the gauge field equations

∂r

(
ZC

p−3

2

√
D

B
a′i

)
+ ZC

p−3

2

√
B

D
ω2 ai =

q

C

(
z′i −

C ′

C
zi

)
Substituting we obtain

∂r

(
ZC

p−3

2

√
D

B
a′i

)
+ ZC

p−3

2

(√
B

D
ω2 −

q2
√
DB

ZCp−1

)
ai = 0

We can map to a Schrödinger problem

dz

dr
=

√
B

D
, ai =

Ψ√
Z̄

, Z̄ = ZC
p−3

3
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−
d2Ψ

dz2
+ VeffΨ = ω2Ψ , Veff =

q2D

ZCp−1
+

1

4

(
∂zZ̄

Z̄

)2

+
1

2
∂z

∂zZ̄

Z̄

Near an AdS boundary the potential asymptotes to

Veff ≃
(p− 1)(p− 3)

4z2
+

q2

Zb

(z
ℓ

)2(p−2)
+ · · ·

When p = 3 the leading behavior is given by

V⊥,p=3 = −
k

2
∆(2∆− 1) r2∆−2 + · · ·

The frequency dependent conductivity is given by

σ(ω) =
1−R
1+R

−
i

2ω

Ż

Z

∣∣∣
boundary

Roberts+Horowitz (2009), Goldstein+Kachru+Prakash+Trivedi (2009)

At extremality, near the singularity at r = r0, D = cD(r − r0)2, B = cB/(r − r0)2 and

V ≃
ν2 − 1

4

z2
+ · · · , ν2 −

1

4
=

q2cB

Z0C
p−1
0

Calculation of the reflection coefficient then gives

σ ∼ ω2ν−1

Goldstein+Kachru+Prakash+Trivedi (2009)

Effective Holographic Theories, Elias Kiritsis
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Brief summary of results

• We will describe the IR asymptotics of strongly coupled systems at finite density driven
by a leading relevant operator.

• To do this we will have to parametrize the gravitational EHT and it will depend on two
real constants (γ, δ).

• For zero charge density we will scan the IR landscape and characterize theories by the
nature of their spectra and their low temperature thermodynamics. Both 1st order and
continuous transitions exist.

• At finite charge density we will find all near-extremal solutions and calculate the low-
temperature conductivity, in order to characterize the dynamics. We will also analyze two
families of exact solutions.

• We will find that some regions in the (γ, δ) plane will be excluded as unphysical.

• In another large region the has continuous spectra, we will find the most general quantum
critical behavior, generalizing AdS2 and Lifshitz backgrounds.

• For all (γ, δ) except when γ = δ the entropy vanishes at extremality.

• There is a codimension-one space, where the IR resistivity is linear in the temperature

• When the scalar operator is not the dilaton, then in 2+1 dimensions, the IR resistivity
has the same scaling as the entropy (and heat capacity).

• We will find the first holographic examples of Mott insulators at finite density.

• Generically the charge-induced entropy dominates the one without charge carriers.

Effective Holographic Theories, Elias Kiritsis
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The charged spectra, at zero density and

conductivity

• We can also analyze the spectrum of current fluctuations that now de-
pends on γ.

♠ γ
δ > 3

2 or γ
δ < −1

2 : When the UV dimension of the scalar ∆ < 1 then the
potential diverges both in the UV and the IR and the spectrum is discrete
and gapped. This resembles to an insulator. Otherwise it is a conductor.

♠ −1
2 < γ

δ < 3
2. The spectral problem is unacceptable and therefore the

spin-1 spectrum unreliable.

• The AC Conductivity at zero charge density:

When |δ| < 1 the effective potential is

Veff ≃
c

z2
, c =

(γδ +1− δ2)γδ

(1− δ2)2
, σ ∼ ωn , n =

√
4c+1− 1
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• It becomes n = −2
3 iff

γ =
δ2 − 1

3δ
or γ =

2(δ2 − 1)

3δ

• The DC conductivity can calculated (using Karch-O’Bannon) to be

σ = e−kϕ0(κT )
2kδ+2
δ2−1

√
⟨Jt⟩2 + e2(γ+k)ϕ0(κT )

4[1+(γ+k)δ]
1−δ2 ,

ρlight ∼ T
2γδ
δ2−1 , ρdrag ∼

T
2kδ+2
1−δ2

⟨Jt⟩
• In the first case we can attain linear resistivity when

γ = γlinear ≡
δ2 − 1

2δ
.

Effective Holographic Theories, Elias Kiritsis
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The extremal AC conductivity

p = 3 σ ∼ ωn , n =

∣∣∣∣∣(δ − γ)(3γ +5δ)− 12

(δ − γ)(γ +3δ)− 4

∣∣∣∣∣− 1 .

Contour plot of the scaling exponent n in the (γ, δ) upper half plane for p = 3 (left figure 0 ≤ δ ≤
√

5
3
)

and p = 4 (right figure, 0 ≤ δ ≤
√

4
3
). Left figure: Contours correspond to n = 1.52, . . . ,8.36, starting with

n = 1.52 in the upper right corner and increasing in steps of 0.76. The black solid line γ = δ is n = 2,

and brighter colors correspond to larger n. Right figure: Contours correspond to n = 2.2, . . . ,12.1, starting

with n = 2.2 in the lower right corner and increasing in steps of 1.1. The black solid line γ = δ is again at
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n = 2. In the yellow regions the computation of n cannot be trusted, since an explicit AdS completion of

the space-time is needed to render the thermodynamics well-defined. The scaling exponent diverges to +∞

along the dashed black line in both cases.

Effective Holographic Theories, Elias Kiritsis
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The near-extremal DC conductivity

• For massive charge carriers

ρ ∼ Tm ,
4k(δ − γ) + 2(δ − γ)2

4(1− δ(δ − γ)) + (δ − γ)2

• The exponent becomes unity for two values of γ

γ± = 3δ +2k ± 2
√
1+ (δ + k)2 .

• For a non-dilatonic scalar, k = 0 and the temperature dependence of the
entropy and the resistivity are the same. Therefore, the entropy also scales
linearly with T.

• For the Lifshitz solutions, we must take δ = 0 and γ = −
√

4
(z−1). In this

case we obtain that

mp =
2+ k

√
4(z − 1)

z
,

• When k = 0 this is in agreement with Hartnoll+Polchinski+Silverstein+Tong

Effective Holographic Theories, Elias Kiritsis
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Drag calculation of DC conductivity

.
Gubser (2005), Karch+O’Bannon (2007)

SNG = Tf

∫
d2ξ
√

ĝ +

∫
dτAµẋ

µ , ĝαβ = gµν∂αx
µ∂βx

ν ,

In a direction with translation invariance we have the following world-sheet Poincaré
conserved currents

πα
µ = π̄α

µ +Aµη
ατ = Tf

√
ĝĝβαgνµ∂βx

ν +Aµη
ατ ,

The bulk and boundary equations are

∂απ̄
α
µ = 0 , Tf

√
ĝĝσβgµν∂βx

ν + qFµνẋ
ν = 0 .

We now consider a space-time metric in a generic coordinate system and a bulk gauge
field

ds2 = −gtt(r)dt
2 + grr(r)dr

2 + gxx(r)dx
idxi , Ax1 = −Et+ h(r) , At(r)

We choose a static gauge with σ = r and τ = t and make the ansatz

x1 = X = vt+ ξ(r) ,

which is motivated by the expectation that the motion of the string will make it have a
profile that is dragging on one side as it lowers inside the bulk space.
The boundary equation for µ = t and µ = x are equivalent and become

Tf
ĝστ√
−ĝ

gtt + Ev = 0 → π̄x = E .
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Solving we obtain

ξ′ =

√
grr

gttgxx

√
gtt − gxxv2√

T 2
f gttgxx − π̄2

x

π̄x .

To ensure we have a real solution, there must be a turning point at r = rs

v2 =
gtt(rs)

gxx(rs)
, π̄x = −Tf

√
gtt(rs)gxx(rs)

Finally as v is constant we obtain

Tf

√
gtt(rs)gxx(rs) = −E ,

dp

dt
= −π̄x + qE ,

and the steady state solution is π̄x = E. For small velocities we obtain

π̄x ≃ −Tfgxx(rh) v +O(v2) , Jx = J t v ≃
J tπ̄x

Tfgxx(rh)
≃

J t

Tfgxx(rh)
E ,

and we obtain the DC conductivity and related resistivity as

σ ≃
J t

Tfgxx(rh)
, ρ ≃

Tfgxx(rh)

J t
=

Tfg
E
xx(rh)e

kϕ(rh)

J t
.

In the case that k = 0
ρ(T )

S(T )
2

p−1

= constant .
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Vacuum solutions in the Einstein-Dilaton theory

V (λ) ∼ V0λ
2Q , λ ≡ eϕ → ∞

• The solutions can be parameterized in terms of a fake superpotential

V =
64

27
W2 −

4

3
λ2 W ′2 , W ≥

3

8

√
3V

The crucial parameter resides in the solution to the diff. equation above.

There are three types of solutions for W (λ):
Gursoy+E.K.+Mazzanti+Nitti

1. Generic Solutions (bad IR singularity)

W (λ) ∼ λ
4
3 , λ → ∞
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2. Bouncing Solutions (bad IR singularity)

W (λ) ∼ λ−
4
3 , λ → ∞
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3. The “special” solution.

W (λ) ∼ W∞λQ , λ → ∞ , W∞ =

√
27V0

4(16− 9Q2)
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Good+repulsive IR singularity if Q < 4
√
2

3
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• For Q > 4
3 all solutions are of the bouncing type (therefore bad).

• There is another special asymptotics in the potential namely Q = 2
3.

Below Q = 2
3 the spectrum changes to continuous without mass gap.

In that region a finer parametrization of asymptotics is necessary

V (λ) ∼ V0 λ
4
3 (logλ)P

• For P > 0 there is a mass gap, discrete spectrum and confinement of

charges. There is also a first order deconfining phase transition at finite

temperature.

• For P < 0, the spectrum is continuous, without mas gap, and there is a

transition at T=0 (as in N=4 sYM).

• At P = 0 we have the linear dilaton vacuum. The theory has a mass gap

but continuous spectrum. The order of the deconfining transition depends

on the subleading terms of the potential and can be of any order larger

than two.
Gurdogan+Gursoy+E.K.
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Classification of zero temperature solutions

For any positive+monotonic potential V (λ), λ ≡ eϕ with the asymptotics :

V (λ) = V0 + V1λ+ V2λ
2 + . . . V0 > 0, λ → 0

V (λ) = V∞λ2Q(logλ)P , V∞ > 0, λ → ∞
the zero-temperature superpotential equation has three types of solutions, that we name
the Generic, the Special, and the Bouncing types:

• A continuous one-parameter family that has a fixed power-law expansion near λ = 0,
and reaches the asymptotic large-λ region where it grows as

W ≃ Cb λ4/3 λ → ∞ , Cb > 0

These solutions lead to backgrounds with “bad” (i.e. non-screened) singularities at finite
r0,

b(r) ∼ (r0 − r)1/3, λ(r) ∼ (r0 − r)−1/2

We call this solution generic.
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• A unique solution, which also reaches the large-λ region, but slower:

W (λ) ∼ W∞λQ(logλ)P/2, W∞ =

√
27V∞

4(16− 9Q2)

This leads to a repulsive singularity, provided Q < 2
√
2/3 [?]. We call this the special

solution.
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• A second continuous one-parameter family where W (λ) does not reach the asymptotic
region. These solutions have two branches that both reach λ = 0 (one in the UV, the
other in the IR) and merge at a point λ∗ where W (λ∗) =

√
27V (λ∗)/64. The IR branch is

again a “bad” singularity at a finite value r0, where W ∼ λ−4/3, and

b(r) ∼ (r0 − r)1/3, λ(r) ∼ (r0 − r)1/2.

We call this solution bouncing.

45-
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The special solution marks the boundary between the generic solutions, that reach the
asymptotic large-λ region as λ4/3 and the bouncing ones, that don’t reach it.

If Q > 4/3, only bouncing solutions exist.

In all types of solutions the UV corresponds to the region λ → 0 on the W+ branch.
There the behavior of W+ is universal: a power series in λ with fixed coefficients, plus a
subleading non-analytic piece which depends on an arbitrary integration constant Cw:

W =
∞∑
i=1

Wiλ
i + Cwλ

16/9e
−16W0

9W1

1

λ [1 +O(λ)]

All the power series coefficients Wi are completely determined by the coefficients in the
small λ expansion of V (λ), the first few being:

W0 =

√
27V0

8
, W1 =

V1

16

√
27

V 0
, W2 =

√
27(64V0V2 − 7V 12)

1024V 3/2
0

RETURN
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The γδ = 1 solutions

ds2 = −
V (r)dt2[

1−
(
r−
r

)3−δ2
] 4(1−δ2)

(3−δ2)(1+δ2)

+ eδϕ
dr2

V (r)
+ r2

[
1−

(r−
r

)3−δ2
] 2(δ2−1)2

(3−δ2)(1+δ2) (
dx2 +dy2

)
,

V (r) =
(r
ℓ

)2
− 2

mℓ−δ2

r1−δ2
+

(1+ δ2)q2ℓ2−2δ2

4δ2(3− δ2)2r4−2δ2
, (r±)

3−δ2

= ℓ2−δ2

m±

√
m2 −

(1 + δ2)q2

4δ2(3− δ2)2


eϕ =

(r
ℓ

)2δ [
1−

(r−
r

)3−δ2
] 4δ(δ2−1)

(3−δ2)(1+δ2)

, A =

(
Φ−

qℓ2−δ2

(3− δ2)r3−δ2

)
dt , Φ =

qℓ2−δ2

(3− δ2)r3−δ2

+

where the parameters m and q are integration constants linked to the gravitational mass
and the electric charge. There is an overall scale ℓ

ℓ2 =
δ2 − 3

Λ
.

RETURN
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The γ = δ solutions

ds2 = −V (r)dt2 + eδϕ
dr2

V (r)
+ r2

(
dx2 +dy2

)

V (r) =
(
r

ℓ

)2
− 2mℓ−δ2rδ

2−1 +
q2

4(1 + δ2)r2

eϕ =
(
r

ℓ

)2δ
, A =

Φ−
ℓδ

2
q

(1 + δ2)r1+δ2

dt , Φ =
qℓδ

2

(1 + δ2)r1+δ2

+

• There is a “BPS condition” for the existence of a horizon

m ≥
2q

3−δ2
2

1+ δ2

• U(r) has two roots 0 < r− < r+. The two coincide at the extremality

limit, (1 + δ2)m = 2q
3−δ2
2 .
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• There are two distinct regimes:

0 ≤ δ2 ≤ 1 1 ≤ δ2 ≤ 3

• 0 ≤ δ2 ≤ 1

0 2 4 6 8 10
r+0

2

4

6

8

10
T

∆
2
=1

∆
2
=0.5

• Temperature as a function of horizon position
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• 0 ≤ δ2 ≤ 1

2 4 6 8 10
r+

-5
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∆
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• Difference of free energies vs horizon position

• The BH always dominates
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• 1 ≤ δ2 ≤ 3
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• Temperature vs horizon position
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• 1 ≤ δ2 ≤ 3

2 4 6 8 10
r+
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2
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∆
2
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• Difference of free energies as a function of horizon position and temper-

ature.

• The BH dominates at low temperatures up to the phase transition
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• The maximum temperature as a function of δ2.
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Conductivity of the γδ = 1 solutions

In the first two regimes 0 ≤ δ2 ≤ 1+ 2√
3
the AC conductivity is

σ(ω) ≃ ωn , n =
(3− δ2)(5δ2 +1)

|3δ4 − 6δ2 − 1|
− 1 .

0.5 1.0 1.5 2.0 2.5 3.0
∆

2

2
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n

• The exponent is always larger than 5/3 in the region, 0 ≤ δ2 < 1 + 2√
3

and diverges at δ2 = 1+ 2√
3
.

• The system behaves as a conductor.
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• The system is again conducting for 1
4(5 +

√
33) < δ2 < 3.
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.
The DC resistivity is plotted below

∆=1.52, q=0.25 l

∆=1.3, q=0.02 l

∆=0.5, q=l�5000
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Ρ

The leading behavior at low temperature is

ρleading ∼
Tf

J t

(q
ℓ

)2δ(δ(3−δ2)+(1+δ2)k)

1+6δ2−3δ4

(ℓT )
2(δ2−1)(δ2−1+2kδ)

1+6δ2−3δ4

• It is one at δ2 = 1+ 2√
5
.

k=1

k=0

0.2 0.4 0.6 0.8 1.0 1.2 1.4
∆
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T exponent
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QC systems with Schröndiger symmetry

• The solutions found, can be put in a different coordinate system that

realizes z = 2 Schröndiger symmetry.
Son, Balasubramanian+McGreevy

• Consider the simplest example: AdS-Schwarzschild Black hole in light-
cone coordinates boosted by an arbitrary boost.

ds2 =
ℓ2

r2

[
(1− f(r))

4b2
(dx+)2 − (1 + f(r))dx+dx− + (1− f(r))b2(dx−)2 + dx2 + dy2 +

dr2

f(r)

]
• This realizes z = 2 non-relativistic Schrödinger symmetry in 2 spatial

dimensions.
Golberger (08), Barbon+Fuertes(08), Maldacena+Martelli+Tachikawa (08)

• One can compute the conductivities using the Karch-O’Bannon formalism

applied in this context
Kim+Yamada (10)

The conductivity in the absence of magnetic field (but with light-cone
electric field) reads

ρ =
ρ0√

J2

t2A(t)
+ t3√

A(t)

, A(t) = t2 +
√

1+ t4 , t =
πℓTb√
2bẼb

, J2 =
64

√
2⟨J+⟩2

(Ñ b cos3 θ)2(2bẼb)3
.
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Kim+E.K.+Panagopoulos

When the “drag” term dominates

ρ ∼ t

√
t2 +

√
1+ t4

showing a transition from linear to quadratic behavior.

La2−xSrxCuO4 in R. A. Cooper et al., Science 323, 603 (2009).

• This transition can be achieved by decreasing the light-cone electric field,
Eb. It interpolates between AdS and z=2 Lifshitz scaling.
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.

• By parametrizing ρ = a1T + a2T
2 we obtain α1 ∼

√
Eb and ρ2 = constant.

La2−xSrxCuO4 in R. A. Cooper et al., Science 323, 603 (2009).
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Resistivity at non-zero magnetic field

At finite magnetic field

σyy = σ0

√
F+(t)J2 + t4

√
F+(t)F−(t)

F−(t)
, σyz = σ̄0

B
F−(t)

F± =

√(
B2 + t4

)2
+ t4 ∓ B2 + t4 , B =

B̃b

2bẼb

• The scaling variable B = B̃b
2bẼb

seems to be in agreement with experimental

data
T l2Ba2CuO6+δ in A. W. Tyler et al., Phys. Rev. B 57, R278 (1998).

• The inverse Hall angle is defined as the ratio between Ohmic conductivity

and Hall conductivity as

cotΘH =
σyy

σyz

50
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The resistivity and cotΘH are correlated at low temperatures in T l2Ba2CuO6+δ
Mackenzie et al. Phys. Rev. B 53, 5848 (1996).
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The Hall Conductivity RH =
ρyz
B

∣∣∣∣
B=0

is constant in the two different regimes

(linear and quadratic)

RH ≃
σ̄0

σ20J
2
∼ Eb

and decreases with doping.

Bi2Sr2−xLaxCuO6+δ from F. F. Balakirev et al., NATURE 424 (2003) 912; Phys. Rev. Lett. 102, 017004

(2009).
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• The magnetoresistance

∆ρ

ρ
=

ρyy(B)− ρyy(0)

ρyy(0)

N. E. Hussey et al., Phys. Rev. Lett, 76, 122 (1996).
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• We find that the modified Köhler rule

K̃ = (cotΘH)2
∆ρ

ρ
≃ temperature independent

is valid in regions (linear+quadratic), as demanded by data,
J. M. Harris et al., Phys. Rev. Lett, 75, 1391 (1995).

• We also find that the Köhler rule

K = ρ2
∆ρ

ρ
≃ temperature independent

is approximately valid in the same regions.

This is not supported by the data at high temperatures but is valid at low

temperatures.
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The β functions

The second order equations for the system of two scalars plus metric can

be written as first order equations for the β-functions
Gursoy+Kiritsis+Nitti

dλ

dA
= β(λ, T ) ,

dT

dA
= γ(λ, T )

The equations of motion boil down to two partial non-linear differential

equations for β, γ.

Such equations have also branches as for DBI and non-linear scalar actions

the relation of e−AA′ with the potentials is a polynomial equation of degree

higher than two.

51



The red lines are added on the top row at β = 0 in order to show the location of the

fixed point.
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The β-functions for vanishing quark mass for various values of x. The red solid, blue

dashed, and magenta dotted curves are the β-functions corresponding to the full

numerical solution (dλ/dA) along the RG flow, the potential Veff = Vg − xVf0, and the

potential Vg, respectively.
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The free energy

The free energy difference be-

tween the ChS and ChSB mq = 0

solutions

Chiral symmetry breaking solution

favored whenever it exists (x < xc)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

10-6

10-4

0.01

1
ÈDEÈ�LUV

4

• The Efimov minima have free energies ∆En with

∆E0 > ∆E1 > ∆E2 > · · ·
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BKT scaling, II

We can derive

∆IR(4−∆IR) = −m2
IRℓ

2
IR = G(λ∗, x) ,

where

G(λ, x) ≡
24a(λ)

h(λ)(Vg(λ)− xVf0(λ))
.

and by matching behaviors

σ ∼
1

r3UV

exp

(
−

2K√
λ∗ − λc

)
∼

1

r3UV

exp

(
−

2K̂
√
xc − x

)
.

xc and λc are defined by G(λ∗(xc), xc) = 4 and G(λc, x) = 4, respectively, so

that λ∗ = λc at x = xc. we obtain

K =
π√

∂
∂λG(λc, x)

; K̂ =
π√

− d
dxG(λ∗(x), x)

∣∣∣
x=xc

.
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The tachyon logT (left) and the coupling λ (right) as functions of log r for

an extreme walking background with x = 3.992. The thin lines on the left

hand plot are the approximations used to derive the BKT scaling.
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Effective potential and phase transitions

Iqbal+Liu+Mezei+Si, Jensen, Faulkner+Horowitz+Roberts

• In the scaling region we obtain

Veff(α) = −Cα
d

∆−−(2d−1)
(
4πT

d

)d
−
(2d− 1)∆−(d− 2∆−)

4d

(
4πT

d

)d−2∆−
α2+. . .

• In the presence of a double-trace deformation on the field theory side

δL ∼ g O2

the effective potential at zero temperature becomes

Veff(α)
∣∣∣
T=0

≃ gα2 − Cα
d

∆−

• a stable symmetry-breaking vacuum exists with vev

α ≃
(
2g∆−
dC

) ∆−
d−2∆−

• Adding temperature in the presence of the double-trace deformation we
obtain the effective potential

Veff(α) ≃ −Cα
d

∆− − ET d + geffα
2 + . . .
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where geff is the temperature-shifted effective double-trace coupling

geff = g +GT d−2∆−

• The normal vacuum becomes unstable when geff < 0. The critical tem-
perature Tc that separates the stable from the unstable regime is obtained
:

geff = 0 ⇔ Tc ≃
(
−

g

G

) 1
d−2∆−

• At finite density:

gc(ρ) =
2d− 1

d
ρ2C1A

d−2
∆−
1 (ρ)

(
C2A

2
1(ρ) +

d− 2

∆−
A2(ρ)

)
• A1,2, C1,2 can be determined analytically

E.K.+Niarchos

• In the vicinity of the quantum critical point we observe the following
scaling of the vev

⟨O⟩ ∼ (gc − g)
∆−

d−2∆−

RETURN
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Horizon values of τ, λ

Λh
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