
Recent Developments in Gravity

Chania, 20 June 2012

New physics from gravity on
asymptotically AdS spacetimes

Elias Kiritsis

University of Crete APC, Paris

1-

http://conferences.hsrgc.gr/
http://hep.physics.uoc.gr/~kiritsis/
http://hep.physics.uoc.gr
http://www.apc.univ-paris7.fr


Bibliography

Based ongoing work with

T. Alho (Jyvaskyla U.), D. Arean (SISSA), K. Kajantie (Helsinki U.), K.
Tuominen (Jyvaskyla U.), I. Iatrakis (Crete), M. Järvinen (Crete)

and published recent work with

C. Charmousis (Orsay) and B. Gouteraux, (APC) arXiv:1206.1499 [hep-th]

V. Niarchos (Crete) arXiv:1205.6205 [hep-th]

M. Jarvinnen (Crete) arXiv:1112.1261 [hep-ph]

B. Gouteraux (APC) arXiv:1012.3464 [hep-th]

B. S. Kim (Crete) and C. Panagopoulos (Crete) arXiv:1012.3464 [cond-
mat.str-el]

C. Charmousis, B. Gouteraux (Orsay), B. S. Kim and R. Meyer (Crete)
. arXiv:1005.4690 [hep-th]

Effective Holographic Theories, Elias Kiritsis

2

http://arxiv.org/abs/1206.1499
http://arxiv.org/abs/1205.6205
http://arxiv.org/abs/arXiv:1112.1261
http://arxiv.org/abs/arXiv:1107.2116
http://arxiv.org/abs/arXiv:1012.3464
http://arxiv.org/abs/arXiv:1012.3464
http://arxiv.org/abs/1005.4690


ΠPOΛEΓOMENA

• The Purpose of this talk is to present several interesting problems for

gravity in asymptotically AdS spacetimes.

• The motivation is the conjectured AdS/CFT correspondence aka: gauge

theory/string theory (or gravity) duality.

• This duality has had important impact in our understanding of strongly

coupled gauge theories, but also in string theory/quantum gravity.

• There are several problems on the gravity side that are well motivated by

the correspondence , but we do not know the answers of.

• In this talk I will focus more on problems rather than answers.

Effective Holographic Theories, Elias Kiritsis
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The plan of the talk

• Introduction: the AdS/CFT correspondence.

• Asymptocally AdS spacetimes and boundary conditions.

• Singularities and their resolution.

• Classification of the gravitational landscape

• Beyond gravity: the string theory landscape.

• Outlook

Effective Holographic Theories, Elias Kiritsis
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Gauge theories with many colors

• Gauge theories with N-colors (SU(N) gauge group) have a single contin-

uous parameter: the gauge coupling constant gYM .

• When N is large ( N → ∞) there is another way of reorganizing the

theory:
’t Hooft, 1974

N → ∞ , keep λ ≡ g2YMN fixed

• The expansion in powers of 1/N is similar to the topological expansion

of a string theory with

gstring ∼
1

N

• When N → ∞ and λ → 0 we can use perturbation theory to calculate.

• When N → ∞ and λ is large, we are at strong coupling.

Effective Holographic Theories, Elias Kiritsis
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The gauge-theory/gravity duality

• The gauge-theory/gravity duality is a duality that relates a string theory

with a (conformal) gauge theory.

• The prime example is the AdS/CFT correspondence
Maldacena 1997

• It states that N=4 four-dimensional SU(N) gauge theory (gauge fields,

4 fermions, 6 scalars) is equivalent to ten-dimensional IIB string theory on

AdS5 × S5

ds2 =
ℓ2AdS

r2

[
dr2 + dxµdxµ

]
+ ℓ2AdS (dΩ5)

2

This space (AdS5) has infinite volume and a single boundary, at r = 0.
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• The string theory has as parameters,gstring, ℓstring, ℓAdS. They are related
to the gauge theory parameters as

g2YM = 4π gstring , λ = g2YM N =
ℓ4AdS

ℓ4string

• As N → ∞, gstring ∼ λ
N → 0.

• As N → ∞, λ ≫ 1 implies that ℓstring ≪ ℓAdS and
the geometry is very weakly curved. String theory
can be approximated by gravity in that regime and
is weakly coupled.

• As N → ∞, λ ≪ 1 the gauge theory is weakly coupled, but the string
theory is strongly curved.

• The radial coordinate correspond to the RG scale of the dual QFT.
The boundary r → 0 corresponds to the UV, while the ”center” r → ∞
corresponds to the IR.
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• There is one-to-one correspondence between on-shell string states Φ(r, xµ) and gauge-
invariant (single-trace) operators O(xµ) in the sYM theory

• In the string theory we can compute the ”S-matrix” , S(ϕ(xµ)) by studying the response
of the system to boundary conditions Φ(r = 0, xµ) = ϕ(xµ)

• The correspondence states that this is equivalent to the generating function of correlators
of O

⟨e
∫

d4x ϕ(x) O(x)⟩ = e−S(ϕ(x))

Gubser+Klebanov+Polyakov, Witten, 1998

• ”String theory is the dynamics of sources of QFT”

Effective Holographic Theories, Elias Kiritsis

6-



The duality at finite temperature

• The finite temperature ground state of the gauge theory corresponds to
a different solution in the dual string theory: the AdS-Black-hole solution

E. Witten, 1998

ds2 =
ℓ2AdS

r2

[
dr2

f(r)
+ f(r)dt2 + dxidxi

]
+ ℓ2AdS (dΩ5)

2 , f(r) = 1− (πT )4r4

• The horizon is at r = 1
πT

• As the temperature increases, the horizon size increases, reaching the
boundary at T = ∞.

• The gauge theory entropy is equal to the Bekenstein-Hawking entropy of
the black hole.

• The free energy can be obtained from the (appropriately) renormalized
on-shell gravitational action.

Effective Holographic Theories, Elias Kiritsis
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The gravitational theories

• Select a finite number of ”bulk” fields, and their gravitational action.

• Find acceptable regular solutions with appropriate boundary conditions.

They correspond to QFT saddle points, describing semiclassical states.

• The solution with lowest free energy is the ”vacuum” of the QFT.

• Small fluctuations around the ”vacuum solution” describe the spectra of

the QFT and the correlation functions of the dual operators.

• Solutions with regular horizons (black branes) correspond to thermal

ensembles of the QFT.

Effective Holographic Theories, Elias Kiritsis
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The boundary conditions

• Near an AdSd+1 boundary r → 0, a massive scalar ϕ dual to the QFT
scalar operator O, behaves as

ϕ(r, x) ≃ ϕ0(x)r
d−∆ + · · ·+ ϕ1(x)r

∆ + · · · , −m2ℓ2 = ∆(d−∆)

Dirichlet bc

• m2ℓ2 ≥ 0, ∆ > d, irrelevant operators, so ϕ0 = 0. ϕ1(x) corresponds to
the vev ϕ1 ∼ ⟨O⟩.

• 1−d2

4 ≤ m2ℓ2 ≤ 0, d+1
2 ≤ ∆ ≤ d, relevant operators, ϕ0 is the ”source”

(
∫
ddxϕ0(x)O(x)), ϕ1 is the vev.

• −d2

4 ≤ m2ℓ2 ≤ 1−d2

4 , d−1
2 ≤ ∆ ≤ d+1

2 , relevant operators, ϕ0,1 can be
interchanged, as both solutions are normalizable.

• −d2

4 ≥ m2ℓ2 BF bound violated.

• Regularity of the bulk solution reduces the two parameter family to one:
the vev is determined by the source, ϕ1(ϕ0).

9



• There are generalized boundary conditions possible:

• Bulk fields ϕi correspond to ”single trace” operators, e.g. Tr[F2]. Multi-

ple trace operators, like (Tr[F2])2 are implemented by generalized boundary

conditions

δSO =
∫

ddx W (O) , ϕ0 = W ′(ϕ1)

• For W (O) = g1 O → ϕ0 = g1.

• For W (O) = g1 O + g2O
2 → ϕ0 = g1 + g2ϕ1.

All of the above generalize to all bulk fields including the metric.

Effective Holographic Theories, Elias Kiritsis

9-



The bulk actions

• Most of what we understand refers to gravitational solutions in D = d + 1, that are
Poincaŕınvariant in d dimensions. They depend non-trivially on a spacelike coordinate.
They are analogous to the homogeneous and isotropic cosmological solutions.

• Keeping only the metric gµν ∼ Tµν describes the saddle point (AdSd+1) of CFTd.

SE = Md−1

∫
dd+1x

√
g

[
R+

d(d− 1)

ℓ2

]
• Adding the most relevant (=important) scalar operator O ∼ ϕ,

SED = Md−1

∫
dd+1x

√
g

[
R−

1

2
(ϕ)2 + V (ϕ)

]
, V ≥ 0

• V ′(ϕ) = 0 give AdS solutions → CFTs. The general Poincaré invariant solutions are
flows between CFTs, modulo a subtle point when V → ∞.
• Adding a conserved current Jµ ∼ Aµ

SEMD = Md−1

∫
dd+1x

√
g

[
R−

1

2
(ϕ)2 + V (ϕ)−

Z(ϕ)

4
F 2

]
• A non-conserved current (spontaneous symmetry breaking)

SEMD = Md−1

∫
dd+1x

√
g

[
R−

1

2
(ϕ)2 + V (ϕ)−

Z(ϕ)

4
F 2 −

W (ϕ)

2
A2

µ

]

Effective Holographic Theories, Elias Kiritsis
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Phase transitions

• Phase transition/critical behavior in gravitational systems has been ob-

served in the past, but its appearance remained intriguing.

• Holography explains this behavior in asymptotically AdS contexts by map-

ping it to QFT phase transitions.

• The problem is set by fixing the asymptotic behavior by fixing all sources

as well as Temperature and Chemical potentials (boundary values of gauge

fields).

• Then we must find all possible solutions with the same asymptotics

behavior and regular horizon.

• The free energy decides which is dominant. When two free energies cross

we have phase transitions. (all possible transitions, 1,2,3rd........, and BKT

transitions have been observed).

Effective Holographic Theories, Elias Kiritsis
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On naked holographic singularities

• If no IR AdS, all Poincaré invariant solutions end up in a naked IR singu-

larity. This happens with solutions where ϕ runs to large values of V .

• In GR naked singularities are proscribed.

• In holographic gravity some may be acceptable. The reason is that their

appearance may be due to ”coarse graining”. They could be resolved by

stringy or KK physics.

• We know examples where a higher dimensional regular solution, when

dimensionally reduced on a compact manifold to lower dimensions it looks

singular. In this case the lower dimensional singularity is ”resolved” by

adding back the KK modes.

• We also know examples where the singularity is resolved by adding stringy

modes, that blow up a tiny horizon of the size of the string length. They

will typically involve an infinite amount of non-trivial fields (hair).
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• Even singular solutions (black branes) covered with horizons, are ”coarse
grained”. There are concrete arguments based on duality that suggest that
the true pure states must have an infinite amount of hair of stringy states.
Only exact AdS does not have hair.

• Setting the stringy hair to zero, forces the solution to become singular
and develop a horizon (if the entropy is non-trivial and macroscopic). Here
pure states of the QFT correspond to regular solutions. Mixed states have
horizons.

• We know of exact solutions (with lots of symmetry) that realize these
expectations.

Lunin+Mathur (2001)

• The practical problem is that in most cases we do not know the exact
string description that will provide a regular solution.

• An important task is to therefore ascertain when naked singularities are
acceptable because they will be resolved by effects we have neglected.

• A related questions is: if they are resolvable, when can we calculate
reliably without knowing the precise resolution of the naked singularity?
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♠ Gubser gave a criterion for ”good” (acceptable) naked singularities: They
should be limits of solutions with a regular horizon.

Gubser (2000)

♠ It is not known if the Gubser criterion is sufficient. This is an important
open problem.

• The second question is when is the physics insensitive to the resolution
of the naked singularity?

• A partial answer is to have a well-defined spectral problem for fluctuations
around the solution: The second order equations describing all fluctuations
are Sturm-Liouville problems (no extra boundary conditions needed at the
singularity).

Gursoy+E.K.+Nitti (2008)

• A related condition: The singularity is “repulsive” (like the Liouville wall).
It has an overlap with the previous criterion. It involves the calculation of
“Wilson loops”

Gursoy+E.K.+Nitti (2008)

• It is not known whether the previous list is complete.

Effective Holographic Theories, Elias Kiritsis
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Solutions in Einstein dilaton gravity

.
Gursoy+Kiritsis+Mazzanti+Nitti (2009)

SED = Md−1
∫

dd+1x
√
g

[
R−

1

2
(ϕ)2 + V (ϕ)

]
, V ≥ 0

• Take V to have a single finite (UV) critical point at ϕ = 0, and as ϕ → ∞,

V ≃ eδϕ + · · ·

We take p+1 = 4.

• All ”regular”, Poincaŕınvariant solutions with positive ϕ are asymptotically

AdS near the boundary, and are conformal to AdS (with a possible naked

singularity) in the interior,

ds2 ≃ r
2

δ2−1 (dr2 − dt2 + dxidxi)
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• 0 ≤ |δ| < 1. There is no naked singularity (the space is asymptotically flat

in the interior). There is a continuous spectrum/no mass gap for laplacian.

There are black-brane solutions for any T > 0.

• 1 < |δ| <
√
3. There is a naked singularity in the interior. It satisfies the

Gubser bound. The Laplacian has a discrete spectrum/mass gap. There is

a Tmin > 0 for black branes and there are two branches like in global AdS.

1 < |δ| <
√

5
3. The spin-2 and spin-0 spectral problem is reliable without

resolution.

• |δ| ≥
√
3. Gubser bound violated, singularity→unacceptable.

The crossover value here is |δ| = 1. For all other δ ̸= 1, corrections like

V = e−δϕϕk + e−δ′ϕϕk
′
+ ..... give subleading corrections.
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• 1 < |δ| <
√
3. In this case, the small BH is unstable and thermodynamically

irrelevant. The complete story at finite T depends on the subleading terms
in the potential (aka the UV completion).

• There is a first order phase transition at Tc to a large BH.

Α>1

Α=1

Α<1

T_min

T_min

Λ_min

Λh

T

• For more complicated potentials multiple phase transitions are possible.
Gursoy+Kiritsis+Mazzanti+Nitti (2009), Alanen+Kajantie+Tuominen (2010)
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• |δ| = 1. This is the “marginal” case. It has a good singularity, a con-

tinuous spectrum and a gap. A lot of the physics of finite temperature

transitions depends on subleading terms in the potential:

♠ If V = eϕ
[
1+ C e

− 2ϕ
n−1 + · · ·

]
, then at T = Tmin = Tc there is an n-th

order continuous transition.

♠ If V = eϕ
[
1+ C/ϕk + · · ·

]
, then at T = Tmin = Tc there is a generalized

KT phase transition
Gursoy (2010)

♠ If V = eϕ ϕP , with P < 0 this behaves as in |δ| < 1. When P > 0 like

|δ| > 1.

The spectra depend importantly on P , when P > 0.

In particular, P = 1
2 is very much like what we expect in 4D large-N YM

(m2
n ∼ n).

Effective Holographic Theories, Elias Kiritsis
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Regularity of ”vacuum” solutions in ED theory

• Which one parameter family of the Poincaré invariant solutions is ”regu-

lar”?

• The solutions can be parameterized in terms of a fake superpotential

(d+1=5 here)

V =
64

27
W2 −

4

3
W ′2 , W ≥

3

8

√
3V

Then

ϕ′ =
dW

dϕ
, A′ = W (ϕ)

The crucial parameter resides in the solution to the diff. equation above.

There are three types of solutions for W (ϕ):
Gursoy+E.K.+Mazzanti+Nitti

14



1. Generic Solutions (with a ”bad” IR singularity)

W (ϕ) ∼ e
4
3ϕ , ϕ → ∞

0 10 20 30 40
Λ

10

20

30

40

WHΛL

λ ≡ eϕ
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2. Bouncing Solutions (bad IR singularity)

W (ϕ) ∼ e−
4
3ϕ , ϕ → ∞

0 10 20 30 40
Λ

10

20

30

40

WHΛL

3. One special ”regular” solution.

W (ϕ) ∼ W∞e
δϕ
2 , ϕ → ∞ , W∞ =

√√√√ 27V0

4
(
16− 9δ2

4

)

0 10 20 30 40
Λ

10

20

30
WHΛL

Good+repulsive IR singularity if δ < 8
√
2

3

Effective Holographic Theories, Elias Kiritsis
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Classification of Extremal geometries

• The analysis of several cases seems to suggest that in all systems studied
so far, the T → 0 asymptotics involve non-trivial scale invariant holographic
geometries (singular, flat or AdS).

• This conclusion remains the same when charge densities (gauge fields)
are present.

• The scaling geometries are generalized AdS or Lifshitz geometries with
hyperscaling violations.

Charmousis+Gouteraux+Kiritsis+kim+Meyer (2010), Gouteraux+Kiritsis(2011),

Huisje+Sachdev+Swingle (2011)

ds2 = rθ
[
b0

dr2

r2
−

dt2

r2z
+

dxidxi

r2

]
• This is valid both in broken and unbroken symmetry phases.

• How general is this? Can we obtain a classification of extremal asymp-
totics?

Effective Holographic Theories, Elias Kiritsis
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gravity with two scalars: V-QCD
Jarvinnen+E.K.

• The theory contains a metric and two scalars, a real one, λ and a complex

one T . There is also a U(1) symmetry under which T is charged.

Fixed points of the potential:

UV: (λ = 0, T = 0), ∆λ = 4,∆T = 3, unbroken U(1) symmetry.

IR: (λ = λ∗, T = 0) (non-trivial CFT), unbroken U(1) symmetry or

(λ = ∞, T = ∞), broken U(1) symmetry and a different (free) CFT of the

Goldstone boson. (YM with massless pions)

Effective Holographic Theories, Elias Kiritsis
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Condensate dimension at the IR fixed point

• By expanding the DBI action we obtain the IR tachyon mass at the IR

fixed point λ = λ∗ which gives the chiral condensate dimension:

−m2
IRℓ

2
IR = ∆IR(4−∆IR)

• Must reach the Breitenlohner-

Freedman (BF) bound (horizontal

line) at some xc.

• xc marks the conformal phase tran-

sition

4.0 4.5 5.0 5.5
x

3.5

4.0

4.5

-mIR
2 {IR

2
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The symmetry breaking regime

T0

m

T0

m

• In the symmetry breaking region there is an infinite number of saddle

points.

• Their Free energies are ordered

F0 < F1 < F2 < · · · < F T=0

Effective Holographic Theories, Elias Kiritsis

18



BKT scaling

• In the symmetry region we have BKT scaling for all symmetry breaking

scales

σ ∼
1

r3UV

exp

(
−

2K
√
xc − x

)
.
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• This suggests that the presence of double trace deformations can alter

the ground state of the system and make the second Effimov vacuum be

the ground state.

Effective Holographic Theories, Elias Kiritsis
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Finite temperature

THΛh, Τ = 0L

TIΛh, Τh0IΛh, mq = 0MM

ΛhΛ*Λend

1 10 100 1000 10
4

10
5

0.0

0.5

1.0

1.5

2.0

The temperature as a function of λh for solutions for Pot II at xf = 3W0 = 12/11, for

zero mass
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Λh

TIΛh, ΤhoIΛh, mq = 10-5M

0.667
2

3
logH5 ΛhL

1�2

1

Π
e1�Hb0 ΛhLHb0 ΛhL

b1�b0
2

1 10 100 1000 10
4

10
5

0.0

0.5

1.0

1.5

2.0

The temperature as a function of λh for solutions for Pot II at xf = 3W0 = 12/11, and

very small mass . The asymptotic limits are also shown for mq = 10−5, in the range of the

figure the UV limit is not yet accurate.
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Ts(ΛhL

Tb(ΛhL

ThT
Tend

0.01 0.1 1 10 100 1000
Λh

1

1000

106

109

1012

1015

T

L

1 10 100 1000

0.03

0.05

0.1

Examples of the Tend, Th and Tcrossover transitions in potential II with Stefan-Boltzmann

-normalization of LUV and with xf = 3. Here: The temperature T (λh) . The curving

of Ts(λh) at λh ∼ 0.2, T ∼ 2 is related to the crossover transition. The inset shows the

minimum of Tb(λh), which causes pb to be positive between Th and Tend.
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Tend

Th

0.020 0.025 0.030 0.035

T

L

-5

5

10

15
p�T4

p/T 4 in a close-up around the region of the Th and Tend -transitions.
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20 �
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Tcrossover

Tend

Th

0.1 10 1000 105 107

T

L

10

20

30

40

50
p�T4

An overview of the pressure in the same case, also showing the interaction measure,

which’s peak determines the position of Tcrossover.
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Tb(ΛhL

Ts(ΛhL

Ts

Th

0.1 10 1000 105
Λh

1.00
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0.20

0.30

0.15

0.70

T

L

An example of the Ts transition in potential I with W0 = 24/11 and with xf = 3. The

local maximum and minimum which generate the first order Ts -transition.
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TendTh
Ts

0.2 0.3 0.4 0.5 0.6

T
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-0.03
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An example of the Ts transition in potential I with W0 = 24/11 and with xf = 3. p(T )/T 4

in the region around which the first order Ts transition takes place, extending to smaller

T in order to show the relation to the Th and Tend transitions.
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Ts(ΛhL

Tb(ΛhL

T12

Tend

Th
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An example of the T12 transition in potential I with W0 = 12/11 and with xf = 3.5. The

overall structure of T (λh), with an inset showing the maximum and minimum in more

detail.
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TendT12

Th

0.02 0.04 0.06 0.08 0.10 0.12

T

L
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1

2
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5
p�T4

0.0925 0.0939
-0.02
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0.00

0.01

0.02

An example of the T12 transition in potential I with W0 = 12/11 and with xf = 3.5. A

close-up of p(T )/T 4 in the region where the T12 -transition happens, with an inset showing

further detail.
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An example of a configuration where all but the crossover and hadronisation transitions Tcrossover, Th,

are in the thermodynamically unstable region, in the initial stages of the approach to the IHQCD limit. The

potential is II with W0 = 12/11 and with xf = 0.4 Left:The temperature T (λh). Note that everything to the

right of the Th transition is in the unstable phase.
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Th

Tend

Ts

0.52 0.54 0.56 0.58 0.60

T

L

-0.2

-0.1

0.1

0.2
p�T4

An example of a configuration where all but the crossover and hadronisation transitions

Tcrossover, Th, are in the thermodynamically unstable region, in the initial stages of the

approach to the IHQCD limit. p(T )/T 4 in the region where the Th transition and the

unstable Tend and Ts -transitions happen.

Effective Holographic Theories, Elias Kiritsis
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The phase diagram for potential II2.

C
o
n
fo
rm
a
l
w
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o
w

Th > Tend
Tend > Th

Tcrossover

Tcrossover

0 1 2 3 4
x f0.01

0.1

1

10

100

1000

T

L

The chirally symmetric crossover transition Tcrossover is everywhere the highest temperature stable tran-

sition, except between xf ∼ 1 to xf ∼ 2.7, where the interaction measure does not have a maximum and the

crossover does not therefore exist.
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Th > Tend

Tend > Th

3.0 3.1 3.2 3.3 3.4 3.5
x f0.010

0.100

0.050

0.020

0.030

0.015
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T

L

Above xf = 3.19, the next transition is the second order Tend, which goes from the chirally symmetric

high-T phase to the chirally broken low-T phase. This is very quickly followed by the Th transition to the

thermal gas solution. Below xf = 3.19 the Th transition happens first, and therefore Tend is in the unstable

branch of the solution.
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Tcrossover

Ts

Th

Tend
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There is further structure at small xf . a close-up of the small-xf region. At xf ∼ 0.4, the first order Ts
transition appears in the unstable branch just slightly below Th. This transition nonetheless develops into

the YM -transition at the xf → 0 -limit. Tend crosses above the Th transition, but it is also in the unstable

branch. A close-up of the xf ∼ 3.2 -region, where the Tend -transition crosses into the unstable branch.
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PDEs

• So far the problems addressed involved ODEs.

• There are very interesting problems that involve PDEs. They seem to
be a bit more complex from similar problems in asymptotically flat spaces.
Some of them are:

• The dynamics of domain or phase walls.

• The collision of energy blobs at high energy. It is dual to the analogue
of heavy ion collisions. Some results have been obtained in simplified cases
using Penrose’s trapped surface analysis.

Kovchegov+Taliotis, Shuryak+Lin, Gubser+Yarom, Kiritsis+Taliotis

• The effect of spatially inhomogeneous boundary conditions on the solu-
tions.

• The instability of translationally invariant solutions in the presence of
CP-odd couplings.

ETC....

Effective Holographic Theories, Elias Kiritsis
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Outlook

• The holographic duality provides a new set of problems, and a new per-

spective for gravity.

• Most of these problems can be phrased also in the language of QFT.

• Some of them are known whereas others are new.

• Most of them are unsolved.

• Their solution is expected to provide non-trivial insights both for strongly

coupled QFT and gravitational physics.

Effective Holographic Theories, Elias Kiritsis
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THANK YOU

Effective Holographic Theories, Elias Kiritsis
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The holographic effective potential
Niarchos+E.K

• In QFT a very useful tool is the quantum effective potential: it is the Leg-

endre transform of the source action, and is a function of the expectation

values of fields.

It is a valuable tool in the investigation of dynamical symmetry breaking

and the study of phase transitions.

• The analogous concept in holography is in principle computable, but has

not been used so far (but for a few exceptions).

• I will outline the formalism in a model class of theories: EMD

S = M
p−1
P

∫
dp+1x

√
g

[
R−

1

2
(∂ϕ)2 + V (ϕ)− Z(ϕ)F2

]
+boundary terms

ds2 = e2A(u)
(
−f(u)dt2 + dxidxi

)
+

du2

f(u)
, A = At(u)dt , ϕ = ϕ(u)

• We will
25



(a) Find the classical solution with temperature T , charge density ρ, and

scalar source ϕ = ϕ0 = constant in (t, xi).

(b) Evaluate the on-shell action,Son−shell(ϕ0).

(c) Legendre transform in ϕ0 to obtain the effective potential Veff(ϕc;T, ρ,M)

as a function of the classical field ϕc =
∂Son−shell(ϕ0)

∂ϕ0
and the RG scale

M = eA0, at which all field variables are defined.

• The key step here is to introduce the “superpotential” W (ϕ) that will be

related both to the effective potential and the holographic β-function.
Gursoy+E.K.+Nitti

dϕ

du
=

dW (ϕ)

dϕ
,

dA

du
= −

W (ϕ)

2(p− 1)
⇒

⇒
dϕ

dA
=

dϕ

d logM
= −2(p− 1) ∂ϕ logW = β(ϕ)

• Note that the ϕ equation is solvabe with a single initial condition: ϕ(A0) ≡
ϕ0. The vev is hidden in the determination of W .
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• The equations of motion for the unknown functions: W (ϕ), A(ϕ), f(ϕ)

become

R′

R
=

W

W ′ , R ≡ e−2(p−1)A (1a)

W ′(W ′f ′)′ −
pWW ′

2(p− 1)
f ′ =

ρ2R
Z

(1b)

(
pW2

2(p− 1)
−W ′2

)
f −WW ′f ′ = 2V −

ρ2R
Z

(1c)

The second order equation can be integrated to a first order one:

f ′ =
e−dA

W ′

[
D + ρ2

∫ ϕ

ϕ0

dχ

e(d−2)A(χ)Z(χ)W ′(χ)

]

D = −4πe(d−1)A0 T S − ρ2
∫ ϕh

ϕ0

dϕ̃

e(d−2)AZW ′
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• The three constants of integration amount to T, ⟨ϕ⟩ and the RG scale
M = eA0.

• ⟨ϕ⟩ is tuned to the value that makes the bulk solution “regular”.

• We now calculate the Free Energy (on-shell action):

F = Son−shell = M
p−1
P βVp−1 epA0

(
−W + ḟ

)
u=u0

and from the equations we obtain Z(ϕ0, T, ρ, A0).

Z =
F

M
p−1
P βVp−1

= −epA0W (ϕ0)− 4πe(p−1)A0 T S + ρ2
∫ ϕ0

ϕh

dϕ̃

e(p−2)AZW ′

• Z is the single-trace effective action for the source ϕ0. The full effective
action contains possible multitrace deformations:

Ztotal = Z + Zmulti−trace , Zmulti−trace =
∞∑

n=2

gn

Nn−2
ϕn0

• The Legendre transform of Z with respect to ϕ0 is the effective potential,
Veff(ϕc; T, ρ,A0).
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• The effective potential, is evaluated at an RG scale M = eA0.

• ϕc depends implicitly on A0 as determined by the bulk flow equations.

• RG invariance (T = ρ = 0):

d

dA0
Z = 0

• In the scaling region around an IR or UV fixed point, Veff can be obtained
by a perturbative calculation. It is in general non-polynomial in ϕc and
provides a generalization of the LG ansatz.
• From scaling:

ϕr ≡ e−(p−∆)A0ϕ0 , T̂ ≡ e−A0T , ρ̂ ≡ e(2−p)A0ρ

Z = ϕ
p

p−∆
r ζ(ϕ

1
p−∆
r , T̂ , ρ̂) , lim

A0→∞
ζ = constant

• Transition temperatures can be calculated directly via perturbation the-
ory if they occur in the scaling region.

Effective Holographic Theories, Elias Kiritsis
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The effective action

• We can go beyond the effective potential, to the first terms in the effective

action

Ssource =
∫

d4x
√
g

[
U(ϕ)R−

1

2
Z(ϕ)(∂ϕ)2 + V (ϕ) + · · ·

]
• V was calculated already

• U can be calculated by turning on constant spacial curvature

U(ϕ0) = −
∫ ϕ0

∞

dϕ

W ′e
−1

4

∫ ϕ
ϕ0

W
W ′dϕ

at zero temperature and density.

• Calculating Z(ϕ) is more complicated.

• Such effective actions are very useful both in condensed matter (gen-

eralizations of the LG framework) and cosmology (inflaton as a strongly

coupled bound state)

Effective Holographic Theories, Elias Kiritsis
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Effective Holographic Theory Program

The strategy advocated in
Charmousis+Gouteraux+Kim+E.K.+Meyer

is:

1. Select the operators expected to be important for the dynamics

2. Write an effective (gravitational) holographic action that captures the

(IR) dynamics by parametrizing the IR asymptotics of interactions .

3. Find the scaling solutions describing extremal saddle points. Built the

T → 0 bh solutions around them

4. Study the physics around each acceptable saddle point.

27



This strategy started bearing fruit as it dealt with

• Einstein-Maxwell-Dilaton theories with the most general AdS and Lifshitz
asymptotics.

Charmousis+Gouteraux+Kim+E.K.+Meyer, Gouteraux+E.K.

• Einstein-Maxwell-Dilaton theories with also massive asymptotics and non-
abelian (Bianchi) scaling symmetries.

Iizuka+Kachru+Kundu+Narayan+Sircar+Trivedi

• Einstein-Maxwell theories with CP-couplings and a magnetic field.
Donos+Gauntlett

• Einstein-Maxwell-Dilaton+axion theories with broken rotational symme-
try.

Iizuka+Maeda

• Einstein-Maxwell-Scalar theories in the symmetry broken regime ( to be
described later in this talk).

Gouteraux+E.K.

• Einstein-two-scalar theories (special classes to be described later in this
talk)

Jarvinnen+E.K.
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• The bulk metric gµν ↔ Tµν is always sourced in any theory. In CFTs it
captures all the dynamics of the stress tensor and the solution is AdSp+1.

• In a theory with a conserved U(1) charge, a gauge field is also necessary,
Aµ ↔ Jµ. If only gµν, Aµ are important then we have an AdS-Einstein-
Maxwell theory with saddle point solution=AdS-RN.

• The thermodynamics and CM physics of AdS-RN has been analyzed in
detail in the last few years, revealing rich physical phenomena

Chamblin+Emparan+Johnson+Myers (1999), Hartnoll+Herzog (2008), Bak+Rey

(2009),Cubrovic+Schalm+Zaanen (2009), Faulkner+Liu+McGreevy+Vegh (2009)

1. Emergent AdS2 scaling symmetry in the IR at finite density

2. Interesting fermionic correlators

and also

3. Is unstable (in N=4) to both neutral and charged scalar perturbations
Gubser+Pufu (2008), Hartnoll+Herzog+Horowitz (2008)

4. Has a non-zero (large) entropy at T = 0.

Effective Holographic Theories, Elias Kiritsis
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Einstein-Scalar-U(1) theory

• To go beyond RN, we must include the most important (relevant) scalar

operator in the IR.

• The most general 2d action (after field redefinitions) is

S =
∫

dp+1x
√
g

[
R−

1

2
(∂ϕ)2 + V (ϕ)− Z(ϕ)F2

]

• It involves two arbitrary functions of ϕ.

Consider first the zero density case:

• There are two types of critical points.

28



♠ Standard (AdS) critical points: V ′(ϕ∗) = 0 for finite ϕ∗. This is a standard

IR or UV fixed point at zero density (depending whether V ′′(ϕ∗) is positive

or negative).

♠ ”decompactication” asymptotics, ϕ∗ → ±∞. These correspond to geo-

metric “singularities” (sometimes decompactification) in string theory.

These also lead to scale invariant saddle points despite the fact that the

extremal solutions have a nontrivial running for ϕ. To find the leading

physics at extremality it is enough to parametrize

V (ϕ) ∼ e−δϕ , Z(ϕ) ∼ eγϕ , ϕ → ±∞

• γ,δ capture the leading physics except if |δ| =
√

2
p−2.

Effective Holographic Theories, Elias Kiritsis
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Finite Density scaling

The fate of zero density Quantum Critical asymptotics, at finite density is
as follows:

♠ Standard (AdS) critical points: There is a new density dependent “ef-
fective potential” for ϕ

Goldstein+Iizuka+Kachru+Prakash+Trivedi+Westphal

Veff = V (ϕ)−
q2

Z(ϕ)

and generically there is a new fixed point at ϕ∗∗ at a special density q∗.

V ′(ϕ∗∗) = q2∗
Z′(ϕ∗∗)

Z2(ϕ∗∗)
, V (ϕ∗∗) =

2q2∗
Z(ϕ∗∗)

E.K.+Meyer

• If Z′(ϕ∗) = 0 then ϕ∗ = ϕ∗∗. This is the generalization of Reissner-AdS
case with the usual IR AdS2 geometry. In the near IR region, the AdS-RN
bh is a solution.

• Z′(ϕ∗) ̸= 0. There is a new QC point at a special value of the density.
The metric is AdS2 ×Rn.

Effective Holographic Theories, Elias Kiritsis
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Scaling IR asymptotics

• In the IR-AdS region, the IR-extremal metrics are AdSp+1 at zero density
and AdS2 at finite density.

• In the case of runaway ϕ → ±∞ QC points, with V ∼ e−δϕ, Z ∼ eγϕ, the
extremal metrics are general scaling metrics of the form

ds2 =
dr2

r2
+

−dt2 + dxidxi

r2a

at zero density and

ds2 =
dr2

r2
−

dt2

r2a
+

dxidxi

r2b

at finite density.

• Their near-extremal asymptotics (small temperatures) are also simply
constructed.

• In several cases, the extremal metrics are solutions to the full equations.
(as with exponential potentials)

Effective Holographic Theories, Elias Kiritsis
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The hidden scale invariance
Gouteraux+E.K.

• At zero density:

ds2 =
dr2

f
+

(−fdt2 + dx · dx)

r
− 4

(p−1)δ2

, f = 1−
(
r0
r

) 2p
(p−1)δ2

−1
, eδϕ ∼ r2

Changing variables

w = r
1− 2

(p−1)δ

ds2 = e2χ(r)
[

dw2

w2f(w)
+

−f(w)dt2 + dx · dx
w2

]
, e2χ ∼ r2 ∼ eδϕ ∼

1

V (ϕ)

• This is conformal to the AdS-Schwarzschild black hole.

• It is a scaling solution that violates hyperscaling.

• Such solutions can be obtained by dimensional reduction from a higher

dimensional theory without a scalar.

31



• When δ2 < 2
p−1 this is the dimensional reduction of an AdSp+1+n solution

on Tn with

δ2 =

√√√√ 1

1+ p−1
n

·
2

p− 1
≤

2

p− 1

Gubser+Nellore, Skenderis+Taylor

• This explains the continuous spectrum and absence of mass gap for

δ2 < 2
p−1.

• Therefore, the theory is quantum critical in the IR, despite the non-trivial

potential.

• The singularity is resolved by the KK-modes (oxydation). The IR scale

becomes the AdS scale in the higher dimensions.

• Different δ can be obtained by extending to real n > 0.

• The crossover value δ2 = 2
p−1 is obtained when n → ∞.

31-



• Dimensional Reduction of AdSp+1+n solution on Sn

Gouteraux+E.K.

δ2 =
2

p− 1
+

2

n
≥

2

p− 1

and a naturally discrete spectrum and mass gap.

• Violation of the Gubser bound: n ≤ 1. Marginal case: n → ∞.

• The theory is again quantum critical in the IR,

Effective Holographic Theories, Elias Kiritsis
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Scaling and hyperscaling at finite density

• The extremal solutions for all (γ, δ) are simple powers, and therefore

scaling.

• The metric can always be written as
Gouteraux+E.K.

ds2 = eχ dŝ2 , eχ ∼ eδϕ , dŝ2 = −
dt2

w2z
+

dw2 + dxidxi

w2

with

z =
(γ − δ)(γ + (2p− 3)δ) + 2(p− 1)

(γ − δ)(γ + (p− 2)δ)

• They are conformal to Lifshitz or AdS solutions.

xi → λxi , w → λw , t → λz t , ds2 → λθ ds2 , θ =
2(p− 1)δ

γ + (p− 2)δ
.

• θ, the hyperscaling exponent, is set by the scaling of the inverse scalar

potential, and controls the violation of hyperscaling.
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• They can be also written in a different frame as
Huisje+Sachdev+Swingle

ds2 =
dr2

r
4θ−1
θ−2

−
dt2

r
2θ−2z

θ−2

+
dxidxi

r2

with scaling transformations

xi → λ xi , r → λ1−
θ
2 r , t → λz t , ds2 → λθ ds2

• Most of these can be lifted to solutions in higher dimensions with gener-

alized scaling symmetry (Boosted AdS black-holes or black AdS q-branes).

• They represent the most general critical behavior at zero temperature,

generalizing the AdS and Lifshitz geometries.

• Note that at γ + (p − 2)δ = 0 we obtain an AdS2 × R2 geometry at

extremality but with S = 0.

• Like the zero density case, they are dimensional reductions of regular or

Lifshitz higher-dimensional solutions.
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• The higher-dimensional theories are of the following types:

S =
∫

dp+q+1x
√
G [R+2Λ] .

reduced along a torus with a boost.

S =
1

16πGD

∫
dp+q+1x

√
−g

[
R−

1

2(n+2)!
G2
[n+2]

]
.

reduced on a sphere.

S =
1

16πGD

∫
dp+q+1x

√
−g

[
R−

1

2(q +2)!
G2
[q+2] +2Λ

]
,

reduced on a torus.

• The spectra (continuous vs discreet) follow from the curvature of the

internal space.

• The thermodynamic variables have the natural scaling of the higher-

dimensional theory.
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The higher-dimensional picture:

1. Explains the near T=0 scaling behavior.

2. Explains the qualitative difference between EHTs with Cp < 0 and Cp >

0. In the neutral case it explains the crossover value, δc.

3. Provides and alternative view of the Gubser bound.

4. Provides one possible resolution of the zero temperature naked singu-

larity of the original solution.

5. Gives a direct and efficient way to compute the scaling transport coef-

ficients by dimensionally reducing scale invariant hydrodynamics.

Gouteraux+(Smolic)2+Skenderis+Taylor

Effective Holographic Theories, Elias Kiritsis
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(Lifshitz) Scaling in the broken-symmetry phase

• The minimal description of the broken symmetry phase contains the
metric, a gauge field and a complex scalar (DµΨ = ∂µΨ+ iqAµΨ)

S = M2
∫

d4x
√
−g

[
R−

G(|Ψ|)
2

|DΨ|2 + Ṽ (|Ψ|)−
Z̃(|Ψ|)

4
FµνF

µν

]
• In the broken phase, Ψ is non-trivial, Ψ = χ eiθ. Choose the gauge

θ = 0 and change variables χ → ϕ so that the kinetic term of ϕ is properly
normalized

S = M2
∫

d4x
√
−g

[
R−

1

2
(∂ϕ)2 + V (ϕ)−

Z(ϕ)

4
FµνF

µν −
W (ϕ)

2
AµA

µ

]
• Again the interesting IR behavior appears if V,W,Z have extrema, or

decompactification (exponential) behavior.

• It can be shown, that both at finite ϕ, or runaway ϕ with exponential
IR asymptotics for V, Z,W , we obtain generalized Lifshitz scaling in the IR
geometry.
• The Lifshitz exponent z depends non-trivially on the IR asymptotics of
the EHT.

Gouteraux+E.K

Effective Holographic Theories, Elias Kiritsis
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Constant scalar

• ϕ = ϕ∗ is constant and

ds2 = B0
dr2

r2
+

dx2 + dy2

r2
−

dt2

r2z
, At = Q r−z

Q2 =
2(z − 1)

zZ(ϕ∗)
, B0 = 2z

Z(ϕ∗)

W (ϕ∗)

with the Lifshitz exponent z satisfying

z2 +

(
1−

2V (ϕ∗)Z(ϕ∗)

W (ϕ∗)

)
z +4 = 0

and

V ′
∗

V∗
+

2(z − 1)

z2 + z +4

W ′
∗

W∗
+

z(z − 1)

z2 + z +4

Z′
∗

Z∗
= 0

• This has non-trivial real solutions unless

−
3

2
≤

V (ϕ∗)Z(ϕ∗)

W (ϕ∗)
≤

5

2

• When V (ϕ∗)Z(ϕ∗)
W (ϕ∗)

= 3 we obtain z = 1 namely AdS.

Effective Holographic Theories, Elias Kiritsis
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Running scalar

• A decompactification case

V (ϕ) = V0e
−δϕ , Z(ϕ) = Z0 eγϕ , W (ϕ) = W0e

(γ−δ)ϕ

• We also obtain a Lifshitz geometry in the IR with

z =
ϵ(ϵ− 2γ)x+2(ϵ2 − ϵγ − 2)

(ϵ2 +2γ2 − 4ϵγ − 2)x+2ϵ(ϵ− γ)

with

(4−ϵ2+4ϵγ)x2+

(
2− 2ϵ2 +2γ2 + (−4+ ϵ2 − 4ϵγ)

V0Z0

W0

)
x+

(
4+ 2ϵ2

V0Z0

W0

)
= 0

• In the rest of the cases we obtain, Lifshitz geometries or generalized

Lifhitz geometries (with hyperscaling violation).

Effective Holographic Theories, Elias Kiritsis
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BKT scaling, II

We can derive

∆IR(4−∆IR) = −m2
IRℓ

2
IR = G(λ∗, x) ,

where

G(λ, x) ≡
24a(λ)

h(λ)(Vg(λ)− xVf0(λ))
.

and by matching behaviors

σ ∼
1

r3UV

exp

(
−

2K√
λ∗ − λc

)
∼

1

r3UV

exp

(
−

2K̂
√
xc − x

)
.

xc and λc are defined by G(λ∗(xc), xc) = 4 and G(λc, x) = 4, respectively, so

that λ∗ = λc at x = xc. we obtain

K =
π√

∂
∂λG(λc, x)

; K̂ =
π√

− d
dxG(λ∗(x), x)

∣∣∣
x=xc

.
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Effective potential and phase transitions

Iqbal+Liu+Mezei+Si, Jensen, Faulkner+Horowitz+Roberts

• In the scaling region we obtain

Veff(α) = −Cα
d

∆−−(2d−1)
(
4πT

d

)d
−
(2d− 1)∆−(d− 2∆−)

4d

(
4πT

d

)d−2∆−
α2+. . .

• In the presence of a double-trace deformation on the field theory side

δL ∼ g O2

the effective potential at zero temperature becomes

Veff(α)
∣∣∣
T=0

≃ gα2 − Cα
d

∆−

• a stable symmetry-breaking vacuum exists with vev

α ≃
(
2g∆−
dC

) ∆−
d−2∆−

• Adding temperature in the presence of the double-trace deformation we
obtain the effective potential

Veff(α) ≃ −Cα
d

∆− − ET d + geffα
2 + . . .
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where geff is the temperature-shifted effective double-trace coupling

geff = g +GT d−2∆−

• The normal vacuum becomes unstable when geff < 0. The critical tem-
perature Tc that separates the stable from the unstable regime is obtained
:

geff = 0 ⇔ Tc ≃
(
−

g

G

) 1
d−2∆−

• At finite density:

gc(ρ) =
2d− 1

d
ρ2C1A

d−2
∆−
1 (ρ)

(
C2A

2
1(ρ) +

d− 2

∆−
A2(ρ)

)
• A1,2, C1,2 can be determined analytically

E.K.+Niarchos

• In the vicinity of the quantum critical point we observe the following
scaling of the vev

⟨O⟩ ∼ (gc − g)
∆−

d−2∆−

RETURN

Effective Holographic Theories, Elias Kiritsis
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Horizon values of τ, λ
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Detailed plan of the presentation

• Title page 0 minutes

• Bibliography 1 minutes

• Prolegomena 2 minutes

• Plan 3 minutes

• Gauge Theories with many colors 4 minutes

• gauge/gravity duality 9 minutes

• The duality at finite temperature 10 minutes

• The gravitational theories 11 minutes

• The boundary conditions 15 minutes

• The bulk actions 17 minutes

• Phase transitions 18 minutes

• Holographic naked singularities 22 minutes

• Solutions in Einstein-Dilaton gravity 28 minutes

• Regularity of ”vacuum” solutions in ED theory 32 minutes
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• Classification of Extremal Geometries 33 minutes

• A startup example: V-QCD 35 minutes

• Condensate dimension at the IR fixed point 36 minutes

• The symmetry-breaking regime 37 minutes

• BKT scaling 39 minutes

• Finite temperature 46 minutes

• The phase diagram for potential II2. 48 minutes

• PDEs 49 minutes

• Outlook 50 minutes
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• The holographic effective potential. 60 minutes

• The effective action 62 minutes

• BKT scaling, II 64 minutes

• Effective Potential and phase transitions 66 minutes

• Horizon values of λ, τ 68 minutes
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