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'he plan of the talk |

e Introduction (Motivation, Tools, Goals, Strategy)
e [ he notion of Effective Holographic Theory

e Holographic Dynamics at zero charge density (Solutions, thermodynam-
ics, spectra and transport)

e Generalized Criticality

e Holographic Dynamics at finite charge density (Solutions, thermodynam-
ics, spectra and transport)

e A QC non-relativistic holographic system with strange metal behaviour.

e Outlook
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NLtroduction

e Holographic techniques offer a new look into strongly-coupled, semiclas-
sical theories, at finite density.

e The goal is to (a) extend our understanding of known CM mechanisms
at strong coupling (b) Look for novel phenomena.

o Like in QFT, a very useful and efficient tool is that of an effective theory:
Effective Holographic Theory — EHT.

The reason is that it is useful to:
(1) Develop intuition
(2) Do efficient model building

(3) Be useful as an intermediary with data.



e Unlike QFT we know much less about EHT.

e [ he first step is to hierarchically treat, the

(a) Field content

(b) IR classification of interactions

e T he next step is to assess which EHTs are sensible and which are not.

e Eventually a calculation of observables (thermodynamics and transport
data for example) should be done in EHT.

Effective Holographic Theories for CM systems, Elias Kiritsis
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ETrective HolographiCc 1 heories |

T he strategy is:

1. Select the operators expected to be important for the dynamics

2. Write an effective (gravitational) holographic action that captures the
(IR) dynamics.

3. Find the saddle points (classical solutions)
4. Study the physics around each acceptable saddle point.

e The bulk metric guy <+ Ty is always sourced in any theory. In CFTs it
captures all the dynamics of the stress tensor and the solution is AdS,, .

e In a theory with a conserved U(1) charge, a gauge field is also necessary,
Ay < Jyu. If only guv, Ay are important then we have an AdS-Einstein-
Maxwell theory with saddle point solution=AdS-RN.



e [ he thermodynamics and CM physics of AdS-RN has been analyzed in

detail in the last few years, revealing rich physical phenomena
Chamblin4+Emparan—+Johnson+Myers (1999), Hartnoll4+Herzog (2008), Bak-+Rey

(2009), Cubrovic+Schalm+Zaanen (2009), Faulkner+Liu+McGreevy+\Vegh (2009)
1. Emergent AdS> scaling symmetry
2. Interesting fermionic correlators
but

3. Is unstable (in N=4) to both neutral and charged scalar perturbations
Gubser+Pufu (2008), Hartnoll4+Herzog+Horowitz (2008)

4. Has a non-zero (large) entropy at T'= 0.
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Einstein-Scalar-U(1) theory I

e To go beyond RN, we must include the most important (relevant) scalar
operator in the IR. This can capture the dynamics of the system.

e [ he most general 2d action is

5= [@HiayG[R-(06)2 + V() - 2(6)F?

involving two arbitrary functions of ¢. Typically the potential is non-trivial.
It may have an UV fixed point (not necessary).

e We assume here it does not have an IR fixed point (maximum of V)
(otherwise back to RN). (by engineering V and Z one can have many layers
of different physics at different energy scales).

e \We will parametrize the IR asymptotics of V, Z using sugra intuition.

V(p) ~e % | Z(p)~e® | ¢ — £oo



e We must have V(¢) — oo in the IR (and the inverse in the UV). For Z
in the IR

(7 — 00 , weak coupling , bulk U(1)'s

. Z — 0 , strong coupling , tachyon condensation

e From now on we set

V=Ae% | Z=¢9

e Solutions depend on (A — A ¢%%0)

» , Q@ , T

o IMPORTANT: this parametrization is not binding except in some "' crossover
cases”’. More later.
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On naked holograpniC singularities |

e If no IR AdS/Lifshitz, all Poincaré invariant solutions end up in a naked
IR singularity.

e In GR naked singularities are proscribed.

e In holographic gravity some may be acceptable. The reason is that they
do not always signal a breakdown of predictability as is the case in GR.
They could be resolved by stringy or KK physics, or they could be shielded
for finite energy configurations.

e Are they resolvable? Does the near-singularity physics depends on the
resolution?

e An important task in EHT is to therefore ascertain when such naked
singularities are acceptable and when are reliable (alias "good")
(A priori these are different things)



& Gubser gave a criterion for good (acceptable) singularities: They should

be limits of solutions with a regular horizon.
Gubser (2000)

e T he second criterion amounts to having a well-defined spectral problem
for fluctuations around the solution: The second order equations describing
all fluctuations are Sturm-Liouville problems (no extra boundary conditions

needed at the singularity).
Gursoy+E.K.+Nitti (2008)

e The singularity is ‘“repulsive” (like the Liouville wall). It has an overlap

with the previous criterion. It involves the calculation of “Wilson loops”
Gursoy—+E.K.+Nitti (2008)

e It is not known whether the list is complete.

Effective Holographic Theories for CM systems, Elias Kiritsis
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SOIUTIoONs at zero charge density |

Gursoy—+Kiritsis+Mazzanti+Nitti (2009)

e The only parameter relevant for the solutionsis dé € R in V ~ e 9%, Take
p+1=4.

e O <|0] < 1. T=0 singularity acceptable. Continuous spectrum/no mass
gap. Continuous transition to BH phase at 7' > 0

e 1 < |§| < /3. Discrete spectrum/mass gap. BH is thermodynamically
subdominant and unstable. 1 < |§] < \/g The spin-2 and spin-0 spectral
problem is reliable without resolution.

o 0| > Vv/3. Gubser bound violated, singularity—unacceptable.

The crossover value here is |[§| = 1. For all other § #% 1, corrections like
V = e 00pk 4 o000k 4 give subleading corrections.



e 1 < [§] < /3. In the gapped case, the BH is unstable and thermodynam-
ically irrelevant. The complete story at finite T' depends on the subleading
terms in the potential (aka the UV completion).

e There is a first order phase transition at 7. to a large BH.

T

e=1 T min

<1 " \/

e For more complicated potentials multiple (phase transitions are possible.
Gursoy+Kiritsis+Mazzanti+Nitti (2009), Alanen-+Kajantie4+ Tuorminen (2010)
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e |[0| = 1. This is the “marginal” case. It has a good singularity, a con-
tinuous spectrum and a gap. A lot of the physics of finite temperature
transitions depends on subleading terms in the potential:

_ 2%
A IfV = e¢[1—|—Ce n—l—l—---], then at T' = 1,,;, = 1¢ there is an n-th

order continuous transition.

AIFV =e? [1 +C/pF + - } then at T = T,,,;,, = T there is a generalized

KT phase transition
Gursoy (2010)

A If V= e? ¢, with P < 0 this behaves as in [§] < 1. When P > 0 like
0] > 1.

The spectra depend importantly on P, when P > 0.

IS very much like what we expect in

N[

In particular, we will see that P =
4D large-N Y M.
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ne nidden scale |nvariance

2
452 = 0y CIA Fdode) 1—(_0) o7 e’ = V854 . \
. ) ) p 2
f T 1)5 r 2 (2 — 62

Changing variables

1——2 : (p— 1)6° :
— (p—1)6 ( i
w=r o : (t’x)_)J(pl)cSQQ(t’w)
2 2
2 _ 2X(7") d’UJ —f(w)dt —|— dx . dx 2X N 2 N 5¢ N L
ds e [fwzf(w) -+ 3 , € r e V(8)

e When §2 2% this is the dimensional reduction of an AdS, 114, solution

on T" with
2o | L .2 2
1+2= p-1

Gubser-+Nellore, Skenderis+ Taylor
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e [ his explains the continuous spectrum and absence of mass gap for
§2 <« 2
p—1

e [ herefore, the theory is quantum critical in the IR, despite the non-trivial
potential.

e The singularity is resolved by the KK-modes (oxydation).

e Different 6 can be obtained by extending to real n > 0.

2

o1 is obtained when n — oo.

e The crossover value §2 =

e Dimensional Reduction of AdS, 14, solution on 5™ gives

2 2 2
2= 42 >_Z
p—1 n

E.K.+Gouteraux
and a naturally discrete spectrum and mass gap.

e Violation of the Gubser bound: n < 1. Marginal case: n — oo.

e [ he theory is again quantum critical in the IR,
Effective Holographic Theories for CM systems, Elias Kiritsis
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Charged near-extremal scaling solutions I

(y=8)2 dr?
ds? =r 2 |dz? 4 dy? — f(r)dt2| +
s [ y? — f(r)dt?] )
L L ]
WU r 4

6 wu
e? = b0~ (7-9) , A= 5 \/UAG_(%Q'_ o [TT — Qm] dt
u

wu

wu =372 -6 —29+4>0, u=~°—5+2, v=862-~75-2,2<3

These are near extremal solutions (the charge density is fixed).

The Entropy vanishes at extremality if v # 9.

If v = § the extremal solution is AdS> x RZ.

The charge entropy dominates the (Q = 0 entropy almost everywhere.
When % < 0 the BH is unstable— gapped spectra.
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This graph shows the Gubser bounds on the near extremal solution on the whole of the (v,d) plane for p =3
and p = 4. The blue regions are the allowed regions where the near extremal solutions are black-hole like.
The white regions are solutions of a cosmological type and therefore fail the Gubser bound. The dashed

blue line is the v = § solutions while the solid black line corresponds to the v = 1 solutions.
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.I ;_
Thermal 3
Instability
I- . ._.__=_______._.'_,__,:_..=- ,'
- dpLy
. Stability | 3 /
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On the left: region of local stability of the near extremal black hole. Right: The variety of phase transitions
of the near extremal black hole to the background at zero temperature. In the blue region continuous
transitions occur, in the purple region adjacent to the blue one the transitions are of third-order. The stripes
starting with yellow to the left of the blue and purple regions depicts transitions of fourth-(yellow) up to

tenth-order. Above them all higher-order transitions also occur.

Effective Holographic Theories for CM systems, Elias Kiritsis
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Hidden scaling at Tinite density I

e The extremal solutions for all (v,d) are simple powers, and therefore
scaling.
e [ he metric can always be written as

dt?  dw? 4+ dz'dx’

w2z w2

ds? = eX dg?2 | eX~ed? | d32 =

with
_(v=)(v+(@2p—-3))+2(p—1)
Z =
(v —=38)(v+ (p—2)J)
e Most of these can be lifted to solutions in higher dimensions with gener-
alized scaling symmetry (Boosted AdS black-holes or black Ad%%.’f&?ﬂ?&lx

e [ hey represent the most general critical behavior at zero temperature,
generalizing the AdS and Lifshitz geometries.

e | he dimensional oxydation resolves the IR singularity.

e Note that at v+ (p—2)6 we obtain an AdS, x R? geometry at extremality
but with § = 0.

Effective Holographic Theories for CM systems, Elias Kiritsis
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Mott-like spectra |

15+

10

05 - o5h y
00 - o0k 1
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Left: The region on the (v¢) plane where the IR black holes are unstable and ¢ > 0. Here the extremal
finite density system has a mass gap and a discrete spectrum of charged excitations, when A < 1. This
resembles a Mott insulator and the figure provides the Mott insulator “islands” in the (v,d) plane. Right:The
region where the IR black holes are unstable, and ¢ < 0. In this region the extremal finite density system
has a gapless continuous spectrum at zero temperature. In both figures the horizontal axis parametrizes ~,
whereas the vertical axis 4.

A similar system was analyzed independently by Mc Greevy and Balasubramanian

Effective Holographic Theories for CM systems, Elias Kiritsis
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EXaCt charged solutions |

e T he full set of solutions for v0 = 1 and v = ¢ are known.

e 52 < 3 otherwise the solutions are De-Sitter like (cf Gubser).

e For v6 = 1 there are three distinct classes of dynamics:
2 2 2
0= € [0,1] VU [L1+7] U (14 753)

e At Q = 0 all |[6] > 1 systems were insulators. Now this range is split in
two in v6 = 1.

e v0 = 1 has zero entropy but v = ¢ has finite entropy at extremality .

Effective Holographic Theories for CM systems, Elias Kiritsis
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v — 1 solutions I

e 0S| <1

T

2.0
15+

10+

0.5

OO | | | | | | | | | | | | | | | | | | J ry
0 2 4 6 8 10

e A single branch of BH that dominate at 7" > 0. The transition at T = 01 is between
2nd and 3rd order.

e [ he system is a conductor.
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e [ here are two black holes at a given temperature T' < Thaz-

o At Thax > T > 0 it is the small black hole branch that dominates thermodynamically.
The transition at T'= 071 is continuous of any order. Upon UV completion, at T. ~ Thyux
a transition is expected to an RN-BH.

Effective Holographic Theories for CM systems, Elias Kiritsis
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e The BH solution is unstable and never dominant. This is like the 62 > 1 case at zero
density.

o For 1l —|— 2 <82 < 5+f the system has a mass gap and discrete spectrum in the current
correlator |f A < 1. It is a Mott-like insulator.

e Upon UV completion a RN-like new stable BH solution is expected to appear for T' > Thin.
There will be a first or second order phase transition to a conducting phase at 1. > T,,n

e For % < §2 < 3 The system has a continuous spectrum and is again a conductor

Effective Holographic Theories for CM systems, Elias Kiritsis
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L C systems with Schrondiger symmetry |

e [ he solutions found, can be put in a different coordinate system that

realizes z = 2 Schrondiger symmetry.
Son, Balasubramanian+McGreevy

e Consider the simplest example: AdS-Schwarzschild Black hole in light-
cone coordinates boosted by an arbitrary boost.

2 o 2
2= NI (gaty2 (14 f(r)dtde + (1= F(r))2(da)? 4 da? + dy? 4

r 4b f(r)
e This realizes z = 2 non-relativistic Schrodinger symmetry in 2 spatial
dimensions.

ds

Golberger (08), Barbon+Fuertes(08), Maldacena-Martelli+ Tachikawa (08)

e One can compute the conductivities using the Karch-O'Bannon formalism

applied in this context

Kim+Yamada (10)
The conductivity in the absence of magnetic field (but with light-cone
electric field) reads

— A =2+ V1, = A CR— .
g SRR ®) \/2bE), (Nbcos36)2(2bEy)3
t2A(t) /A1)
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Kim+E.K.+Panagopoulos

When the “drag” term dominates

P~ t\/t2 + /1 4 ¢*
showing a transition from linear too_quadratic behavior.

2
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e T his transition can be achieved by decreasing the light-cone electric field,
Ey. It interpolates between AdS and z=2 Lifshitz scaling.
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e By parametrizing p = a17T + a>T? we obtain
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Hole doping p

a1 ~ \Ep and po = constant.

Lay_.Sr,CuO4 in R. A. Cooper et al., Science 323, 603 (2009).
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ReSISTIVITY at Nnon-zero magnetic Tield I

At finite magnetic field

VFL T2 + 4 FLOF-(1) "
oV = o , o = o9
F-(1) F-(1)
2 By
Fi = \/(82+t4) +t*FB°+t*, B= 2OF,

. . _ Bb
e [ he scaling variable B = Ty

data

seems to be in agreement with experimental

TlyBaxCuOeys in A. W. Tyler et al., Phys. Rev. B 57, R278 (1998).

e [ he inverse Hall angle is defined as the ratio between Ohmic conductivity

and Hall conductivity as
oYY

cCot®y =
H e

18
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FIG. 8. The cotangent of the Hall angle plotted against 7% below 0 5 10 15 20 2 0 35 4H
30 K. The low-temperature data deviate significantly from the
A+ BT® dependence seen at high temperatures (inset), whose ex- Tempefatme (K)

trapolation is shown by the solid line.

The resistivity and cot© i are correlated at low temperatures in TloBayCuOg4-s
Mackenzie et al. Phys. Rev. B 53, 5848 (1996).



T he Hall Conductivity Ry = % is constant in the two different regimes

B=0
(linear and quadratic)
o
RH ~ ~ Eb
08.]2
and decreases with doping.
as 7:‘ : ' .
Tiv v v Y p=0.10 ﬁ a e P=D-12
qu I . el " Jp=o,115 ;:?“1;
3:;4 :’ .y O ) ‘| 7 i 4 f=
o . 5
2t ﬂfx!r/’*::./ N z 0.14
1—m§?1 p=0.15 E
o ::::}:E:::} :}:::1}_:/{:{:_;/ E 0.16
N b e s e Jzote S 017
:‘o:i/‘ =
3 ﬂc"::-;)&/:/v\v - > 0.19
i3 *’KXfi/ % 020
= 0.22
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BizxSro_yLa,CuOgys from F. F. Balakirev et al., NATURE 424 (2003) 912; Phys. Rev. Lett. 102, 017004
(2009).
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e The magnetoresistance

P Pyy(o)

Ap _ Pyy(B) - Pyy(o)
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i FIG. 1. T dependences of the B terms Ap® /p© at 10 T for
c-axis MR (circles) and a-b plane MR (diamonds) in overdoped
RS T T T s TR —— | Tl;Ba>;CuOs. Data for two crystals are shown in each case.

Bottom inset: Zero-field p.(7) and p,,(T) for the crystals

- s T
[]. DE I:I. 1 D []. 15 D. 2 D D. 25 D.SD D.35 shown in the main figure. Top inset: MR field sweep at 35.1 K

for I || ¢, B || ab.

N. E. Hussey et al., Phys. Rev. Lett, 76, 122 (1996).



e \We find that the modified Kohler rule

~ A
K = (cot @H)Q—p ~ temperature independent
P

is valid in regions (linear+quadratic), as demanded by data,
J. M. Harris et al., Phys. Rev. Lett, 75, 1391 (1995).

e \We also find that the Kohler rule

JAN
K = p2=F ~ temperature independent

P
IS approximately valid in the same regions.

This is not supported by the data at high temperatures but is valid at low
temperatures.

Effective Holographic Theories for CM systems, Elias Kiritsis
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Outlook

e \We have used the concept of EHT to study IR asymptotics of a class of
theories involving a scalar, a graviton and a vector.

e [ his is a part of an ordered investigation of EHTs that can be extended
to more fields and more interactions.

e [ he behaviors we find are rich and calculable, giving a wide set of different
transport behaviors.

e Some of these systems have observables that bear a remarkable resem-
blance to what is seen in strange metals.

e A more detailed analysis of this physics and its link to microscopics is in
need.

Effective Holographic Theories for CM systems, Elias Kiritsis
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THANK YOU

Effective Holographic Theories for CM systems, Elias Kiritsis
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A typical phase diagram \|

strange metal

:’E‘g-
e
—_
s _ 2
T 848 Fermi liquid
- &
E
0 0.1 0.2 0.3

hole doping

Phase diagram of hole-doped cuprates.In other systems the pseudogap region is much
smaller, the superconducting region can shrink to almost nothing etc.

Effective Holographic Theories for CM systems, Elias Kiritsis
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Linear ResSISTIVITY |

- Nd-LSCO
a0l
: B
B0 S
g =
- |
s0f
20/
' % ' 50 | 100 ' 150
s T(K)
: R. Daou et. al., Nature Physics 5, 31 (2009)
& R. A. Cooper, et. al., Science 323, 603(2009)
Nicolas Doiron-Leyraud, et. al., arXiv:0905 0964

5. H. Nagib et. al., Physica C 387, 365 (2003)

& Suppress superconducting dome with Zn substitution or large magnetic field
¢ Linear temperature dependence of resistivity around the critical point
Elias Kiritsis

22
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Linear Heat Capacity |

LEN S

-y

1.0

8 ky  (uni celly !
=
Y

qu&[l]l

0.2 -
(R ~
0 _
T{K)
[Loram et. al. PRL 71, 11, 1993]
Effective Holographic Theories for CM systems, Elias Kiritsis
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AC conductivity

Wavenumber {crmr1)
100 1,000

10

low)! (k! cm-)

o lo(w)l = C w085

van der Marel4+Molegraaf+Zaanen+Nussinov+Carbone+{Damascelli+Eisaki+ Greven-+Kes-+Li, Nature 425

(2003) 271

Effective Holographic Theories for CM systems, Elias Kiritsis
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cConductivity |

e It is main characteristic transport coefficient in a finite density system.
J(w, k) = o (w, k) Ej(w,k)
e Can be calculated from a Kubo formula

L GY(w, k) g o
— R\ 1)
e Various limits are of experimental importance
k—0 — o (w,T) — AC conductivity
w—0 and k—0 — o (T) —  DC conductivity

e Thelimits w— 0 and £ — 0 do not commute. Romatchke--Son (2009)

e \We can use the drag calculation to calculate the DC conductivity for
massive carriers

1
_ E ko(rn)
p=—7 gux(rp) € f
v
RETURN
Effective Holographic Theories for CM systems, Elias Kiritsis

25



AC Conductivity: derivation

To compute the frequency depended current correlator we perturb we start with a general
diagonal metric ansatz

. D(r)B
ds®> = —D(r)dt* + B(r)dr® + C(r)(dwidz") = V(”(?
'z (¢)C(r)"
In the backreacted case we must turn on perturbations
A; = ai(r)ei(‘”t) o gu(r,t) = zi(r)e™!
From the r,z; Einstein equation we obtain
C/

z — Ezz = —ZA; a;

while from the gauge field equations

s | D, /B !
o | ZC7 [ =a | + 705 | Zw? a; = g zp — g2:z
B D C C

Substituting we obtain

2 /D
Oy ZCPT\/BCL —I—ZC' \/sz—ﬂ a; =0
B D Z(Cpr-1

We can map to a Schrdodinger problem

d B W _
==, a=— , Z=2C%
dr D N
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d>W >
gz TV =Wt Ve =

ZCr-1 T 4

Near an AdS boundary the potential asymptotes to

2D 1/8.Z\% 1_0.Z
Gta(7) +

—1 -3 2 2\ 2(p—2)
Vi~ (p—1)(p )+q (_)
422 Zy \b
When p = 3 the leading behavior is given by
k

V] p=3 = —EA(QA —1) 2P 2 ...

The frequency dependent conductivity is given by

1—R i Z

14+ R 2w Zlboundary

Roberts+Horowitz (2009), Goldstein+Kachru-+Prakash+ Trivedi (2009)

o(w) =

At extremality, near the singularity at » = rg, D = cp(r — r9)?, B = cp/(r — r9)? and

2 1 2
v —= 1 CRB
V ~ 24_|_... : VQ__:q—p_l
z 4 ZoCy
Calculation of the reflection coefficient then gives
o ~ w21/—1
Goldstein+Kachru-+Prakash+ Trivedi (2009)
Effective Holographic Theories for CM systems, Elias Kiritsis
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Briet summary Ot results |

e \We will describe the IR asymptotics of strongly coupled systems at finite density driven
by a leading relevant operator.

e [0 do this we will have to parametrize the gravitational EHT and it will depend on two
real constants (v,9).

e For zero charge density we will scan the IR landscape and characterize theories by the
nature of their spectra and their low temperature thermodynamics. Both 1st order and
continuous transitions exist.

e At finite charge density we will find all near-extremal solutions and calculate the low-
temperature conductivity, in order to characterize the dynamics. We will also analyze two
families of exact solutions.

e We will find that some regions in the (v,6) plane will be excluded as unphysical.

e In another large region the has continuous spectra, we will find the most general quantum
critical behavior, generalizing AdS> and Lifshitz backgrounds.

e For all (v,d) except when v = § the entropy vanishes at extremality.
e [ here is a codimension-one space, where the IR resistivity is linear in the temperature

e \When the scalar operator is not the dilaton, then in 241 dimensions, the IR resistivity
has the same scaling as the entropy (and heat capacity).

e We will find the first holographic examples of Mott insulators at finite density.

e Generically the charge-induced entropy dominates the one without charge carriers.

Effective Holographic Theories for CM systems, Elias Kiritsis
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| e charged spectra, at zero density and

CONAUCTIVITY

e \We can also analyze the spectrum of current fluctuations that now de-
pends on 7.

[ ) % > % or % < —%: When the UV dimension of the scalar A < 1 then the
potential diverges both in the UV and the IR and the spectrum is discrete

and gapped. This resembles to an insulator. Otherwise it is a conductor.

[ ) —% < % < % The spectral problem is unacceptable and therefore the
spin-1 spectrum unreliable.

e [ he AC Conductivity at zero charge density:

When |§| < 1 the effective potential is

_c  (v64+1-582)6 _
Veff_z_Q , c= (1-57) , o~wW' , n=+4c+1-1

28



e It becomes n = —% iff

6% —1 2(6% — 1)
or =
36 36
e The DC conductivity can calculated (using Karch-O'Bannon) to be

’y:

2k5+2 4[1+(y+k)9]
o = e kPo(kT) 621 \/(Jt>2 + 2Ok bo (o) 152

2kd+2
%’yé T 1-62
Plight ™~ Tos=—1 | Pdrag ™ <Jt>
e In the first case we can attain linear resistivity when
62 —1
7 = Yinear = -
linear 25
Effective Holographic Theories for CM systems, Elias Kiritsis
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| he extremal AC conductivity |

0w |GGy +50) - 12

p=3 o~w",

—1.

(6—=7)(v+35)—4

Y —

S

5 4
Contour plot of the scaling exponent n in the (v,6) upper half plane for p = 3 (left figure 0 < § < \/g)
and p = 4 (right figure, 0 < § < \/g). Left figure: Contours correspond to n = 1.52,...,8.36, starting with
n = 1.52 in the upper right corner and increasing in steps of 0.76. The black solid line v = § is n = 2,

and brighter colors correspond to larger n. Right figure: Contours correspond to n = 2.2,...,12.1, starting

with n = 2.2 in the lower right corner and increasing in steps of 1.1. The black solid line v = § is again at
29



n = 2. In the yellow regions the computation of n cannot be trusted, since an explicit AdS completion of
the space-time is needed to render the thermodynamics well-defined. The scaling exponent diverges to +oo

along the dashed black line in both cases.

Effective Holographic Theories for CM systems, Elias Kiritsis
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| he near-extremal DC conductIvIty |

e For massive charge carriers

4k(6 — ) +2(6 — )2

Y R 1 Qs Sy g o

e [ he exponent becomes unity for two values of ~

ve = 36+ 2k +2\/1 4 (6 + k)2.

e For a non-dilatonic scalar, k = 0 and the temperature dependence of the
entropy and the resistivity are the same. Therefore, the entropy also scales
linearly with T.

e For the Lifshitz solutions, we must take § = 0 and v = — (27%41)' In this
case we obtain that
2+ ky/4(z — 1)
mp = .
Vs

e When k = 0 this is in agreement with Hartnoll4+Polchinski+Silverstein+Tong

Effective Holographic Theories for CM systems, Elias Kiritsis
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Drag calculation of DC conductivity |

Gubser (2005), Karch+O’'Bannon (2007)

Snag = Tf/d2§\/§ + /dTAuiiﬁ“, GaB = GuvOax"Opx” ,

In a direction with translation invariance we have the following world-sheet Poincaré
conserved currents

mt =70+ A = Tr/§57 90" + AmT
The bulk and boundary equations are
0ol =0 , T4\/35° gu0sz” + qFui” = 0.

We now consider a space-time metric in a generic coordinate system and a bulk gauge
field

ds? = —gu(r)dt? + g (r)dr? 4+ gea(r)dzids® , Ap = —Et+h(r) , Adr)
We choose a static gauge with ¢ = r and =t and make the ansatz
=X =t +£(r),

which is motivated by the expectation that the motion of the string will make it have a
profile that is dragging on one side as it lowers inside the bulk space.
The boundary equation for u =1t and u = x are equivalent and become

gO'T

V=g

Tf gtt—|—E’U=O — T, =F.
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Solving we obtain

/ grr \/gtt — g:cx'UQ —

= T .

itz \/T]‘»‘Qgttga:w - 7—.‘-:%

To ensure we have a real solution, there must be a turning point at r = r;

> git(7s)
v = )
Q:I:a:(TS)
Finally as v is constant we obtain

T = _Tf\/gtt(TS)gxx(TS)

dp

Tf\/gtt(TS)gfL’x(TS) =-F | a = —7, + qF,
and the steady state solution is 7, = E. For small velocities we obtain
Jtm Jt
To o~ —Trgea(rn) v+ 00w , J*=J v Tz

B ngxm(rh) B ngwx("“h)
and we obtain the DC conductivity and related resistivity as

Jt ng:mc (Th) ngfx (rh) ek(b(n)
o~ : ~ = :
TG (1) P Jt Jl
In the case that k=0
T
L)Q = constant.
S(T)r

Effective Holographic Theories for CM systems,
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Vacuum solutions in the Einstein-Dilaton theory |

V() ~ VO)\QQ Coa=e? =
e [ he solutions can be parameterized in terms of a fake superpotential
64 4 3
V=_—W2—-XW-? | W>>V3V
27 3 3

The crucial parameter resides in the solution to the diff. equation above.

There are three types of solutions for W(\):
Gursoy+E.K.+Mazzanti+Nitti

1. Generic Solutions (bad IR singularity)

4
W) ~A3 , \— oo

400
30|
20|

10+
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W) ~Wood? . A= oo | Woo:\/

2. Bouncing Solutions (bad IR singularity)

4
W) ~A"3 , X— oo

10+

3. The ‘“special” solution.

27V

oy 4(16 —9Q2)

20+

10+

A
0 10 20 30 40

Good—+repulsive IR singularity if QQ < —4\3/5



o For @ > % all solutions are of the bouncing type (therefore bad).
e T here is another special asymptotics in the potential namely Q = %
Below @ =% the spectrum changes to continuous without mass gap.

In that region a finer parametrization of asymptotics is necessary

4 P
V() ~ Vg A3 (Iog \)

e For P > 0 there is a mass gap, discrete spectrum and confinement of
charges. There is also a first order deconfining phase transition at finite
temperature.

e For P < 0, the spectrum is continuous, without mas gap, and there is a
transition at T=0 (as in N=4 sYM).

e At P = 0 we have the linear dilaton vacuum. The theory has a mass gap
but continuous spectrum. The order of the deconfining transition depends
on the subleading terms of the potential and can be of any order larger

than two.
Gurdogan—+Gursoy—+E.K.
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Ah
F
Big black holes Small black Holes
/| '
(min
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Classitication Of zero temperature solutions |

For any positive+monotonic potential V(\), A = e? with the asymptotics :
VI =Vo4+ViIA+Vad2+ ... Vp >0, A—0

V() = Ve A2Q(log M) P, Vi > 0, A — 00
the zero-temperature superpotential equation has three types of solutions, that we name
the Generic, the Special, and the Bouncing types:

e A continuous one-parameter family that has a fixed power-law expansion near A = O,
and reaches the asymptotic large-\ region where it grows as

W ~ Cy \*/3 A—>oco , C,>0

These solutions lead to backgrounds with “bad” (i.e. non-screened) singularities at finite
70,

b(r) ~ (ro —r)'/3, A(r) ~ (ro —r)~1/?
We call this solution generic.

WQ)
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e A unique solution, which also reaches the large-\ region, but slower:

W) ~ WadQ(log \)F/2, Wi = 2 Voo
4(16 — 9Q2)

This leads to a repulsive singularity, provided Q < 2v/2/3 [?]. We call this the special
solution.

W(Q)
30~

20+

A

0 10 20 30 40

e A second continuous one-parameter family where W (\) does not reach the asymptotic
region. These solutions have two branches that both reach A = 0 (one in the UV, the

other in the IR) and merge at a point A, where W(\,) = 1/27V(\.)/64. The IR branch is
again a “bad” singularity at a finite value ro, where W ~ A=%4/3, and

b(r) ~ (ro —r)*/3, M) ~ (rg — r)Y/2,
We call this solution bouncing.
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WQ)

a0}

30+

20+

10+

A

0 10 20 30 40

The special solution marks the boundary between the generic solutions, that reach the
asymptotic large-\ region as A\*/3 and the bouncing ones, that don't reach it.

If @ > 4/3, only bouncing solutions exist.

In all types of solutions the UV corresponds to the region A — 0 on the W, branch.
There the behavior of W, is universal: a power series in A with fixed coefficients, plus a
subleading non-analytic piece which depends on an arbitrary integration constant C,:

W= 3 WX + C,A% 5 (14 O(V)]
=1
All the power series coefficients W; are completely determined by the coefficients in the
small A expansion of V()\), the first few being:

V2TVo Vi |27 V27(64VoVo — 7V 12)
WO pr— ) Wl == — —, W2 p—
8 16V VO 1024V
RETURN
Effective Holographic Theories for CM systems, Elias Kiritsis
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[he v0 = 1 solutions I

2(62-1)2

V (r)dt? dr? _\ 3-8 GDa+D
d82 - = (r) 4(1-62) + €6¢ 4 + 7"2 [1 — (r_) ] (dCCQ + dy2> )
[1 B (,«__)3—52} T V(r) r
7\ 2 ml—% (14 52)q2€2_252 34 5 g2 5 (14 6%)q?
V(r) = (Z) -2 15 + 462(3 _ 02)2 425 (r+) =/ m £ 4/ m* — 262(3 — 62)?

45(62-1)

25 _\ 3-98?| G=2+62) 62—52 62—52
R (T _ B q o q
<= (ﬁ) [1 ( ) ] A= (CD — 52 352) e, &= _ §2),.3-92
r (3 )T (3-9 )7“-|-

where the parameters m and g are integration constants linked to the gravitational mass
and the electric charge. There is an overall scale ¢

o023
==

RETURN
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| he v = 0 solutions I

dr?

2 _ _ 2 1 09
ds V(r)dtc 4+ e Vi)

+ r? (dx2 + dy2)

2

_ (T 2_ —62 62-1 q
Ve = (3) —2me Ta@+ o

2 2
e? = <5>25 L A= - £y dt , &= at”
¢ (1 4 62)p1+40° (1+ 52)r3|-_+52

e [ hereis a "BPS condition” for the existence of a horizon
5 3—252
m > q
— 1462

e U(r) has two roots 0 < »— < rT. The two coincide at the extremality

o 5 3-62
limit, (1 +6<)m =2q¢ 2 .
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e [ here are two distinct regimes:
0<6°<1 1<62<3
e 0<52<1

10 -

e Iemperature as a function of horizon position
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5%2=0.5

5%=1

e Difference of free energies vs horizon position

e [ he BH always dominates
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T — §%2=15
0.8 -
0.6 -
0.4+
0.2 -
//—\\\\
! \\\\
L / \\\\\~___
OO ! V\ | | i e _‘—_——__———_‘___——‘——_‘_—‘ r+
0 2 4 6 8 10

e [emperature vs horizon position
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wWo— WWo

—_— 52215

- - 5°=25

—  §%=29

e Difference of free energies as a function of horizon position and temper-
ature.

® [ he BH dominates at low temperatures up to the phase transition
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2.0

15 \ — Tmax

10~

05+ ~

10 15 2.0 25 3.0

e T he maximum temperature as a function of 52.

Effective Holographic Theories for CM systems, Elias Kiritsis

35-



Conductivity of the vo0 = 1 solutions \

In the first two regimes 0 < 52 <1 + 73 the AC conductivity is

(3-06°)(56°+1)
1364 — 652 — 1

o(w) ~w", n =

e [ he exponent is always Iarger than 5/3 in the region, 0 < 62 <1+ %

and diverges at 62 = 1 + 2 =

e [ he system behaves as a conductor.
36



e The system is again conducting for z(5+ v/33) < §2 < 3.



The DC resistivity is plotted below

0

\
\ !
I ‘\ . — 6=0.5, g=1/5000
0201 | 6=1.3,q=0.02 |
: \ Lo— - =152, g=0.25|
0.15 \ '
i \
i \
5 \
0.10 - \
- \
I \
. \\
0055 N N
------------ \'""""‘"'\""'\'TT_T‘NT-“—————-T_ T
0.1 0.2 0.3 04
The leading behavior at low temperature is
Tf q 25(5(31;5626)2";(;;‘:52)k) (KT) 2(52_1)(522_11_2]65)
pleading ~n — (—) 14664 —36
Jt\¢
T exponent
4r
—k=0
3; k=1
2k
X
. 2 2
° — < 4l
It is one at ¢ 1—|—\@ 1
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