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Introduction

• Gravity is the oldest known but least understood force.

• The biggest puzzles today (dark energy and the cosmological constant
problem) have gravity as their weakest link.

• The major clash seems to be between gravity and the quantum theory.
Both issues are summarized in: “What is quantum (gravity+matter)”.

• There are not many candidates on the table:
(a) String theory provides a perturbative theory of quantum gravity valid
well below the Planck scale. It sheds no light so far on the puzzles mentioned

above although it has given positive hints related to microstates of the black holes and an

underlying gauge theory description of gravitational phenomena.

(b) Canonical quantum gravity is not yet at the point it can be called a
theory.

• A proposal by Hǒrava on a field-theoretic quantum theory of gravity by
abandoning full diffeomorphism invariance has been scrutinized in the last
year.

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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The Hǒrava-Lifshitz idea

• By breaking full diffeomorphism invariance a power-counting renormaliz-

able UV theory theory can be constructed. Such a theory contains terms

up to cubic in spatial curvatures.

• The theory seems to contain Einstein gravity in the IR.

• It provides a natural alternative to inflation without the need of important

fine tuning.

• The projectable version of the theory may also provide an alternative to

dark matter.

However:
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• The power counting renormalizability is not enough for a UV complete
description. The RG pattern of classically marginal couplings in the UV is important

and unknown. The IR fixed points of some of the couplings is also crucial for the viability

of the theory as an alternative to standard gravity.

• The breaking of diffeomorphism invariance indicates the presence of an
extra scalar mode in the non-projectable theory. Such a mode can become often

strongly coupled. This can become troublesome for observations or a place where the

semiclassical description breaks down.

• The canonical structure of the non-projectable theory theory is unusual
and very much depends on the semiclassical asymptotics.

• The breaking of Lorentz invariance is communicated to matter. There is
no natural mechanism known for reinstating Lorentz invariance in the IR.
Current limits in δc/c are very stringent especially for Neutrinos.

• There are important puzzles that are raised when one considers black
holes and their relatives: the presence of horizons can be energy and particle
dependent, and the usual thermodynamic picture including the notion of
microstates becomes ambiguous at least and problematic generically.

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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The plan

• Our approach is “realistic”. In non-linear bosonic theories what is most

important is the physics near semiclassical configurations that may be rele-

vant for our universe. There are two basic classes for such solutions: FRW

and static nearly spherically symmetric solutions.

• Review of some aspects of HL cosmology

• Analysis of recent work on static spherically symmetric solutions both for

the standard and modified theory

• Dispersive geodesics

• Outlook and open problems

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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Hǒrava-Lifshitz Gravity

• Start from the ADM decomposition of the metric

ds2 = −N2 dt2 + gij(dx
i +N idt)(dxj +Njdt) , Ni = gijN

j.

• The kinetic terms are given by

SK =
2

κ2

∫
dtd3x

√
gN

(
KijK

ij − λK2
)

in terms of the extrinsic curvature

Kij =
1

2N
(ġij −∇iNj −∇jNi)

• λ is a dimensionless coupling that breaks full diff invariance. General
Relativity has λ = 1

• For renormalizability we would like to impose that z = 3, so that the
spatial metric components are dimensionless

t → b3 t , xi → b xi , [N ] = 0 , [gij] = 0 , [Ni] = 2 , [w] = 0

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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• The ”potential” is

V =
∫

dtd3x
√
gN V (gij)

• For renormalizability it should contain up to six derivatives. The six-
derivative terms are classically-scale invariant. Terms with a lower number
of derivatives are ”relevant”.

∇iRjk∇iRjk , ∇iRjk∇jRik , R�R , Rij�Rij

modify already the propagator while

R3 , RRijR
ij , RijR

i
kR

jk

provide scale invariant interactions.

• The (local) invariance of the theory is

t → h0(t) , xi → hi(t, xj)

• The theory can be written in the Stuckelberg form as a theory with full
diffeomorphism invariance plus a scalar. Fixing the “gauge” ϕ = t gives
back the initial formulation. In this form the breaking of diffeomorphism
and Lorentz invariance can be ascribed to the ”background”.

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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The projectable theory

• There is a different definition leading to the “projectable” theory
Hǒrava

N → N(t)

• In this case N(t) can be gauge-fixed to 1, if non-zero.

• The Hamiltonian constraint is integrated over space: this si gives a global

condition.

• The canonical structure of this theory is different.

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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Detailed Balance

• Hǒrava postulated an action implementing “detailed balance”

V =
δW (gij)

δij
Gij;kl

δW (gkl)

δkl

• W is an invariant functional in 3d

• Motivation stems from simplicity (reduction of coupling constants, and

special renormalizability properties)

• At the marginal level

W =
1

w2

∫
ω3(Γ) + µ

∫
d3x [R− 2ΛW ]

where

[w] = 0 , [µ] = [−1] , [ΛW ] = −2

• The full action (obeying detailed balance) is :

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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.

S=
∫
dtd3x

√
gN
[
α(KijK

ij−λK2)+βCijC
ij+γEijkRil∇jR

l
k+

+ζRijR
ij+ηR2+ξR+σ

]
,

α=
2

κ2
, β=−

κ2

2w4
, γ=

κ2µ

2w2
, ζ=−

κ2µ2

8

η=
κ2µ2

8(1−3λ)

1−4λ

4
, ξ=

κ2µ2

8(1−3λ)
ΛW , σ=

κ2µ2

8(1−3λ)
(−3Λ2

W ).

[κ] = 0 , [w] = 0 , [λ] = 0 , [µ] = −1 , [ΛW ] = −3

• It was realized early on that the theory with detailed balance is not a
good starting point if matching to observable gravity is the goal

Kiritsis+Kofinas, Nastase, Sotiriou+Visser+Weinfurter

• Dropping detailed balance, all 8 parameters above can be considered
independent.

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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HL Cosmology: generalities

• As c → ∞ in the UV, we expect that there is no horizon problem in the
HL theory.

Kiritsis+Kofinas

• Spatial curvature effects are enhanced, to 1
a6

making the flatness problem
milder.

Kiritsis+Kofinas

• The fact that there are both R2 and R3 terms with the sign of R2 not
seriously constrained allows for bouncing cosmologies.

Calcagni, Kiritsis+Kofinas, Brandenberger, Gao+Wang+Xue+Brandenberger

• The theory contains higher derivatives but in a controlable/bounded fash-
ion. They may be relevant in resolving singularities

• The UV theory is scale invariant: therefore it can generate a scale invari-
ant spectrum of cosmological perturbations without the need for accelera-
tion.

Mukohyama, Kofinas+Kiritsis, Gao+Wang+Brandenberger+Riotto

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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Cosmological backgrounds

• We make a cosmological ansatz

N = 1 , Ni = 0 , gij = a2(t)γij

• The Friedman equations are

3α(3λ− 1)H2 = ρ− σ −
6kξ

a2
−

12k2(ζ +3η)

a4
+

θ k3

a6

ρ̇+3H(ρ+ p) = 0

• The “cosmological” Planck scale is distinct from the gravitational one.

• The k2/a4 although generated by curvature, resembles mirage/dark radia-
tion. It can generate a bouncing cosmology provided there is non-relativistic
matter

Calcagni, Kiritsis+Kofinas

• It was argued that in the contracting phase before the bounce scale-
invariant perturbations can be generated

Brandenberger

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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Scale-Invariant Cosmological Perturbations

• Homogeneous cosmology sees very little of the structure of the classical

theory and in particular the scale-invariant part.

• The perturbations see the full structure of the theory

• Tensor perturbations satisfy
Takahashi+Soda

∂2

∂η2
vA
k⃗
+

[
(kAeff)

2 −
2

η2

]
vA
k⃗

= 0

(kAeff)
2 = c2k2

[
1+

(1− 3λ)

ΛW c2
H2(ckη)2(1 + ρA

2H

w2µc
ckη)2

]
and are polarization dependent if the CP-odd term R∇R appears in the

action.

• The non-trivial polarization may have an observable size depending on

the value of the couplings.

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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• Scalar perturbations are also interesting. We assume a spatially flat
universe and the scalar field in Fourier space: the quadratic action is

S =
∫

d3k
∫

dt a3
[
|Φ̇|2 +

1

a6

(
−ℓ4k6 + y2ℓ

2k4 − y1k
2 −m2

)
|Φ|2

]
,

• ℓ is a length scale characteristic of the UV behavior of the scalar theory, and y1,2 are

dimensionless coefficients. In particular, y1 is the square of the speed of light in the scalar

theory.

• The fluctuations δΦ satisfy

δ̈Φ+ 3H ˙δΦ+
ℓ4k6 − y2ℓ

2k4 + y1k
2 +m2

a6
δΦ = 0.

• At high energy the dispersion relation is

E2 ≃ ℓ4
k6

a6

• Typically, a fluctuation mode oscillates if E >> H, while it is frozen in
the opposite limit E << H.

• Here:

E2

H2
≃

ℓ4 k6

H2a6
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• If H2a6 is an increasing function of time this will freeze the oscillations

eventually. This is a key feature of standard inflation.

• From the cosmological equations we find that this is satisfied for all

matter with w < 1, including curvature.

H2 a6 ∼
a6

a3(1+w)
∼ a3(1−w)

(in normal cosmology, we have H2a2 ∼ a−(1+3w) instead and w < −1
3).

• At freezout, H2a6 = ℓ4k6 and

k

a
∼

H
1
3

ℓ
2
3

→ Hλphys = H
a

k
∼ (Hℓ)

2
3 ≫ 1

Therefore, they produce super-horizon scales if this happens in the early

(HL) era.

• The solution is

δΦ(t, k⃗) =
1

(2π)3
√
2κ

e
−iκ

∫
dt
a3

+ik⃗·x⃗
, κ ≡

√
ℓ4k6 − y2ℓ

2k4 + y1k
2 +m2.

13-



It is exact in the HL era! It freezes when k3ℓ2

a3
≃ H.

• The power spectrum is

⟨δΦ(t, k⃗)δΦ(t, k⃗′)⟩ =
(2π)3

2κ
δ(k⃗ + k⃗′) ≡ (2π)3δ(k⃗ + k⃗′)

2π2

k3
PδΦ

From where we obtain as kℓ >> 1 a scale invariant spectrum,
Mukohyama, Kiritsis+Kofinas√

PδΦ =
1

2πℓ
• The corrections to this relation come from the relevant corrections

(powers in k) as well as logarithmic UV renormalization

• The scalar will remain frozen until the universe cools, then it becomes
relativistic and may decay to other particles.

• No exit problem exists: a mechanism of transferring the perturbations to
observable matter is needed.

• There is no strong coupling problems at the linearized level near cos-
mological backgrounds. Strong coupling might develop however at the
non-linear level.

Gao+Pang+Brandenberger+Riotto

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis

13-



Spherically symmetric, static, (star) solutions

• To fully study the theory we need to know the backgrounds with high

symmetry. The reason is theefold:

(a) Such solutions are good approximations to realistic situations,

(b) They are the starting point of perturbation theory that captures the

physics of such configurations

(c) Are important for conceptual issues (eg. black holes).

• Such backgrounds are FRW backgrounds and spherically symmetric ones.

• An important set of backgrounds in our neighborhood and else-where

concerns gravitational sources that are (almost) static and (almost) spher-

ically symmetric.

14



• In standard GR, such solutions are described, up to diffeos by a single

function f(r)

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2dΩ2

k

• In the HL theory the most general ansatz

ds2 = −(N̂(r)2 −Nr(r)
2)f(r)dt2 +2Nr(r)drdt+

dr2

f(r)
+ r2dΩ2

k,

involves three functions, f(r), Nr(r), N̂(r).

• As the full set of diffeomorphisms are not symmetries, different coordinate

systems may correspond to different solutions. In particular, zeros of f , are

singularities in HL gravity.

• Such solutions in this static coordinate system correspond to stars, in a

region of the radial coordinate.

14-



• Black holes with regular horizons can be described in other systems of

coordinates, for example Eddington-Finkelstein coordinates:

ds2 = N(r)dv2 − 2B(r)dvdr + r2dΩ2
k

We will first analyze general solutions with zero shift Nr = 0 for the gener-

alized action

S=
∫
dtd3x

√
gN
[
α(KijK

ij−λK2)+βCijC
ij+γEijkRil∇jR

l
k+

+ζRijR
ij+ηR2+ξR+σ

]
,

As the ansatz

ds2 = −N̂(r)2f(r)dt2 +
dr2

f(r)
+ r2dΩ2

k,

is conformally invariant in 3d, the α, β, γ, λ terms do not contribute to the

equations of motion (we set c=1).

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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Equations of motion

(3ζ+8η)r2f ′2+4r(f−k)
[
(ζ+4η)f ′ − ξr

]
−4ξr3f ′+4(ζ+2η)(f−k)2+2σr4 = 0.

Â11(ln N̂)′ + B̂11 = 0,

Â11 = r[(3ζ+8η)rf ′+2(ζ+4η)(f−k)−2ξr2] , B̂11 = (3ζ+8η) [r2f ′′−2(f−k)].

• This system can be integrated fully, and has a rich set of solutions that
depend importantly on the couplings.

• In most of the solutions we will find, we have recognizable large distance
asymptotics of the form

f(r) = k−
Λeff

3
r2−

2GM

r
+O(r−4) , N2 = N̂2f = k−

Λeff

3
r2−

2GM̃

r
+O(r−4).

Λeff = −
3

4(ζ+3η)

[
ξ±

√
ξ2−

4σ

3
(ζ+3η)

]
In all cases with such asymptotics M and M̃ are the same.

• In special cases (including detailed balance) the asymptotics are different
(“resonant”).

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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Special cases

• ζ +3η = 0, ζη ̸= 0.

f(r) = k +
σ

6ξ
r2 +

ξ

η
r2y(r) , (

√
1−3y − ϵ) eϵ

√
1−3y =

(
ro

r

)3
, ϵ = ±1

The ϵ = 1 branch has standard asymptotics. The ϵ = −1 branch is non-
standard

N2 ≃ k +
σ

6ξ
r2 +

ξr2

3η

(log(r3
r3o

)
− log log

(
r3

r3o

))2
− 1

−
2GM̃(r)

r
+O(r−4)

2GM̃(r) =
r3o

log2(r3/r3o )

 ξ

3η

(
log

(
r3

r3o

)
−log log

(
r3

r3o

))2
− 1+

σ

6ξ

+ · · ·.

• It behaves as there are log corrections to the cosmological constant and
mass parameter.

• The Detailed-balance case with λ = ∞ is a singular limit in this class, but
the solution in that case is simpler.

16



• 3ζ+8η=0, ζ ·η ̸= 0

f(r) = k +
ξ

4(ζ+3η)
r2 + g(r).

(3ζ+8η)r2g′2 +4(ζ+4η)rgg′ +4(ζ+2η)g2 +
1

2

(
4σ−

3ξ2

ζ+3η

)
r4 = 0

that in this case simplifies to

2(ζ+4η)r(g2)′+4(ζ+2η)g2+
1

2

(
4σ−

3ξ2

ζ+3η

)
r4 = 0 → g2 = r

[
c+

2

3ζ

(
σ+

6ξ2

ζ

)
r3
]
,

and N̂ = 1.
• Special cases of this solution were found before

Lu+Mei+Pope,Kehagias+Sfetsos,Park

• Although this solution has generically standard asymptotics, in the de-
tailed balance case it behaves as

f(r) = k − ΛW r2 +
√
cr ,

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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The generic solutions

• (ζ+3η)(3ζ+8η) ̸= 0

f(r) = k+
ξ

4(ζ+3η)
r2+g(r) , r2g′2+(C−4)rgg′+

1

2
(8−C)g2−Br4 = 0

A =
8ζ(ζ+3η)

(3ζ+8η)2
, B =

1

3ζ+8η

(
3ξ2

2(ζ+3η)
−2σ

)
, C =

16(ζ+3η)

3ζ+8η
,A =

C(6− C)

4

• There are three cases,(B ̸= 0 and A ≥ 0, A < 0) and B = 0.

• When A ≥ 0(
r

ro

)3 ∣∣∣∣
√
1−

A

B

g2

r4
− ϵ

C

2
√
B

g

r2

∣∣∣∣ = exp

2ϵ√A

C
arcsin

( √
A

B

g

r2

) , ϵ = ±1

• There is a similar solution at A < 0, which apart from standard large

distance asymptotics has also a non-standard one

f(r) ≃ k +
1

4(ζ+3η)
ξr2 +

(2
√
|A|)

2
√

|A|
|C|−2

√
|A| r2(√

|A|+ |C|
2

) |C|
|C|−2

√
|A|

(
ro

r

) 3|C|
|C|−2

√
|A| + · · ·

17



N̂(r) ∼
(
ro

r

)−3
|C|+2

√
|A|

|C|−2
√

|A| .

• Such non-standard asymptotics exists in other modified gravity theories

as well.

• When B = 0 the solution exists only if A ≤ 0

g(r) = c1 r
2−C

2+ε
√

|A| , N̂(r) = N̂o r
C
2−2ε

√
|A|+2|A|

C , ε = ±1

• This is the case that corresponds to the detailed-balance theory with

ADB = 2
1−3λ

(1−λ)2
, BDB = 0 , CDB =

4

1−λ

and the solution is the one found by Lu, Mei and Pope

g(r) ∼ r(2λ+ε
√
6λ−2 )/(λ−1) , N̂(r) ∼ r−(1+3λ+2ε

√
6λ−2 )/(λ−1),

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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Solutions in the modified HL theory

• Blas, Pujolas and Sibiryakov proposed a modified theory to avoid the

strong-coupling problems. The simplest version of this theory is

S =
∫

dtd3x
√
gN
[
α(KijK

ij−λK2) + βCijC
ij+ ξR+ a1(aia

i)
]

, ai ≡
∂iN

N

and we will look for spherically symmetric solutions with zero shift of the

form

ds2 = −N(r)2dt2 +
dr2

f(r)
+ r2dΩ2

• Defining the dimensionless variable b = 4ξ
a1
, the linearized stability of the

theory constraints 0 < a1
ξ < 2 or b > 2.

Blas+Pujolas+Sibiryakov

• The nonlinear equations can be solved exactly and there are the following

types of solutions:

18



• In the stable range, b > 2 → a < 0, we find an asymptotically flat solution
with positive “mass”. The asymptotic expansion of this solution is

f = 1−
2GM

r
−

(2GM)2

2br2
−

(2GM)3

4br3
+O(r−4)

N2 = 1−
2GM

r
+

2(GM)3

3br3
+O(r−4)

• There is another class of solutions with non-trivial asymptotic behavior

f ∼ rb−2+
√

b(b−2) , N ∼ r
−1

2

√
b

b−2

as r → ∞. For such solutions, the four-dimensional scalar curvature is
singular as r → ∞.

• In the borderline case b = 2, we find solutions with f(r) arbitrary and

rN ′

N
= −1+

ϵ
√
f

, ϵ2 = 1

This is in tune with the degeneracy of the spatial derivative action of the
scalar mode in this case shown by Blas et al.

18-



• In the unstable range, 0 < b < 2, we also find an asymptotically flat

solution with positive “mass”. Its large distance expansion is similar to the

stable case. There are no exotic asymptotics in this case.

• Constraints from PPN parameters constraint −a & 107.
Blas+Pujolas+Sibiryakov

• The solutions to this theory are in one-to-one correspondence to hypersurface-

orthogonal solutions of the Einstein-Ether theory.
Blas+Pujolas+Sibiryakov, Jacobson

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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Adding the cosmological constant

f = 1+
b

a
+

c

ab
r2 + g(r) , r2g′2 +2a(rg′ + g)g + (2b+ cr2)g = 0

a1 = w +2ξ , a =
2w

(w +2ξ)
, b =

4ξ

(w +2ξ)
, c =

4σ

(w +2ξ)
, a+ b = 2

• The equation for the large distance asymptotics can be solved exactly

• The possible asymptotics are :

1. for 0 < |a| < 2
3, the only possible large-distance asymptotics is g ∼ r2

with subleading terms that are powers of r
3|a|−2
|a|−2 .

19



2. for 2
3 < |a| < 2 the only large-distance asymptotics possible is g ∼ r

2+ 1
a−

with

a− =

√
|a|(2− a)− (|a| − 2)

6|a| − 4
≃

1

2|a|
+O(|a|−2)

.

3. finally for |a| > 2 both of the previous two asymptotics are possible. This

is the relevant range physically.

• The regular solutions have an expansion that is given by

f = 2−
2ξ

2ξ − a1
+

(ξ − a1)
2

ξ(3ξ − 2a1)(2ξ − a1)
σr2 +

C

r
a−2
a+2

+ · · · , a = 2− 4
ξ

a1

• The power of the Newtonian tail is now 1+ a1
ξ ≃ 1+O(10−7).

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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Dispersive geodesics

• Particles with non-standard dispersion relations, do not follow the usual

geodesics in the gravitational field.
Capasso+Polychronakos, Suyama, Rama,Kiritsis+Kofinas

• Start from the metric in ADM form

G00 = −N2 +Nig
ijNj , G0i = Ni , Gij = gij , det[G] = det[g]N2

• We also consider scalar matter for simplicity (at quadratic) level.

Snr =
∫

d3xdt
√
gN

[
−

1

N2
(Φ̇−N i∂iΦ)2 −ΦF [�]Φ

]
, � = gij∇i∇j

• We are going to derive now the geodesic equations using the geometric

optics approximation to the full equations of motion.

20



• To pass to point-like trajectories, we replace i∂t → p0, i∂i → pi, and
neglect metric derivatives to obtain the equivalent Hamiltonian (“zero en-
ergy”) constraint

H = −
(p0 −N ipi)

2

N2
+ F [ζ] = 0 , ζ = gijpipj

This is implemented with a Lagrange multiplier e, to obtain the world-line
action as

Swl =
∫ 1

0
dτ

[
p0ṫ+ piẋ

i +
e

2
H

]
where τ is the affine time of the path and dot stands for ∂τ . e is a

one-dimensional einbein.

• The action can be brought to the form

Swl =
1

2

∫ 1

0
dτ

[
N2

e
ṫ2 + e(F (ζ)− 2ζF ′(ζ))

]
where ζ should be thought as a function of the metric, ẋi, and the einbein
as given from

ζ(F ′(ζ))2 =
gij(ẋ

i +N iṫ)(ẋj +Nj ṫ)

e2
≡

ξ

e2

20-



• This action reduces to the standard relativistic action for F (ζ) = ζ +m2.

Swl =
1

2

∫ 1

0
dτ

[
N2ṫ2 − gij(ẋ

i +N iṫ)(ẋj +Nj ṫ)

e
+ em2

]

• We now consider a particle with a non-standard dispersion relation
F (ζ) = ζn (corresponds to a dispersion relation (p0)2 − (p⃗2)n = 0) a radial
geodesic and a spherical symmetric metric to obtain

S =
1

2

∫ 1

0
dτ

N2ṫ2

e
+ (1− 2n)e−

1
2n−1

(
ṙ

2n
√
f

) 2n
2n−1



e =
(
2N

E

)2n−1
n ṙ

2n
√
f

, ṫ =
2

E

(
2N

E

)−1
n ṙ

2n
√
f

dr

dt
= nE

√
f

(
2N

E

)1
n
∼ f

1
2 (N2)

1
2n
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• At weak gravitational fields GN → 1
2

(
1+ 1

n

)
GN < GN and the effective

gravitational interaction is weaker.

• For any n > 1 the geodesic is regular at the zeros of f,N .

• This is in accordance with the intuitive notion.

• If at r∗ f has an a-th order zero and N2 a b-th order zero, then the

geodesic is singular if

a+
b

n
≥ 2.

• Extremal horizons are visible in HL gravity.
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Outlook and Open problems

• What is the RG flow of marginal couplings? Is there asymptotic freedom

in the UV? Is λ = 1 an IR fixed point?

• Is the theory really renormalizable?

• Does the extra scalar degree of freedom creates further problems for the

theory

• Why Lorentz invariance in the matter sector is such a good symmetry.

• What is the physics and thermodynamics of BH in such gravity theories

and how the associated puzzles are resolved?

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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.

Thank you.
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Equations of motion

The equation obtained by varying N is

−α
(
KijK

ij − λK2
)
+βCijC

ij+γEijkRil∇jR
l
k+ζRijR

ij+ηR2+ξR+σ = JN ,

with

JN = −Lmatter −N
δLmatter

δN

The equation obtained by varying Ni is

2α(∇jK
ji − λ∇iK) +N

δLmatter

δNi
= 0.

The equation obtained varying gij is

23



1

2

[
(EmkℓQmi);kjℓ+(EmkℓQn

m);kingjℓ−(EmkℓQmi)
;n

;kn gjℓ−(EmkℓQmi);kRjℓ

−(EmkℓQmiR
n
k);ngjℓ+(EmkℓQn

mRki);ngjℓ+
1

2
(EmkℓRn

pkℓQ
p
m);ngij−QkℓC

kℓgij+

EmkℓQmiRjℓ;k

]
+ �[N(2ηR+ξ)]gij+N(2ηR+ξ)Rij+2N(ζRikR

k
j−βCikC

k
j )

−[N(2ηR+ξ)];ij+�[N(ζRij+
γ

2
Cij)]− 2[N(ζRik+

γ

2
Cik)]

;k
;j +[N(ζRkℓ+

γ

2
Ckℓ)];kℓgij

−
N

2
(βCkℓC

kℓ+γRkℓC
kℓ+ζRkℓR

kℓ+ηR2+ξR+σ)gij+2αN(KikK
k
j −λKKij)

−
αN

2
(KkℓK

kℓ−λK2)gij+
α
√
g
gikgjℓ

∂

∂t
[
√
g(Kkℓ−λKgkℓ)] + α[(Kik−λKgik)Nj]

;k

+α[(Kjk−λKgjk)Ni]
;k−α[(Kij−λKgij)Nk]

;k + (i ↔ j) = −2N
δLmatter

δgij
, (1)

where

Qij ≡ N(γRij+2βCij).
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The Lifshitz scaling symmetry

• Scale invariance is another central principle, that although typically broken
in nature, it is powerful enough to organize whole regions of parameters in
fundamental theories. (All perturbative theories we use are in this class.)

t → b t , xi → b xi

• Lorentz invariance implies an isotropic scaling. Poincaré invariance and
locality together with scale invariance implies conformal invariance.

• In low energy+condensed matter systems, non-relativistic dynamics emerges
naturally.

• Sometimes dynamical criticality emerges and scale invariance is non-
relativistic

t → bz t , xi → b xi

z is a dynamical critical exponent.

• A typical example of such a scaling appears in the Lifshitz critical theory

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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The Lifshitz (free) field theory

SL =
∫

dtd2x

[
1

2
Φ̇2 − γ(�Φ)2

]
, � =

2∑
i=1

∂i∂i

with z = 2:

[t] = 2 , [xi] = 1 , [Φ] = 0 , [γ] = 0

• It appears as a tri-critical point in a theory, with normal, BCS and striped
phases by tuning

Sg =
∫

dtd2x

[
1

2
Φ̇2 − α Φ�Φ− γ (�Φ)2 + · · ·

]
by tuning α → 0

• Although this is a 3d theory, its has 2d properties: in particular any
polynomial in Φ is classically marginal and the propagator is logarithmically
divergent in the IR

∂

∂|∆x⃗|
⟨Φ(t1, x⃗1)Φ(t2, x⃗2)⟩ =

1− e−
|∆x⃗|2
4∆t

|∆x⃗|
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• The Lifshitz theory with z > 1 has at least one obvious relevant operator,
namely (∂Φ)2 which drives the theory to a Lorentz invariant theory in the
IR,

Sfull =
∫

dtd2x

[
1

2
Φ̇2 +m2 Φ�Φ− γ (�Φ)2 + · · ·

]
→
∫

dtd2x

[
1

2
Φ̇2 +

m2

2
Φ�Φ

]
with m = c.

• Lorentz invariance is not always guaranteed in the IR. For several Lifshitz
scalars the individual speed of light could be different.

• In theories with dynamical critical exponent z > 1 the lower critical di-
mension is raised. 3+1 dimensional gravity can become marginal if z = 3

Hǒrava

• So far holographic flows have been found where a z > 1 theory holo-
graphically flows to a z = 1 theory.

Kachru+Liu+Mullingan

• Very recently an opposite holographic flow was found in the D3-D7 system
from z = 1 to z > 1.

Azeyanagi+Li+Takayanagi

• It seems that always z ≥ 1

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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Higher derivative Gravity

• The use of higher derivative couplings to improve gravity’s UV behavior
is not new.

• It is known that R+R2 gravity is asymptotically free with propagator

1

k2 − (k2)2

M2
p

=
1

k2
−

1

k2 −M2
p

Tomboulis

• It has however ghosts

• The idea is to combine:

1. broken Lorentz invariance to avoid ghosts (by including higher spatial
derivatives but no time derivatives)

2. anisotropic scaling to make the theory scale invariant in the UV.
Hǒrava

Hořava-Lifshitz Gravity and Cosmology, Elias Kiritsis
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The Cotton tensor

• There is a special scale invariant term that is also conformal CijC
ij with

Cij the Cotton-tensor

Cij =
ϵikl
√
g
∇k

(
Rj

l −
1

4
Rδjl

)
• In 3d it is the unique tensor that satisfies

Cij = Cji , Ci
i = 0 , ∇i Cij = 0 ,

and is conformal

gij → e2ϕ(x) gij , Cij → e5ϕ(x) Cij

• It is the analogue of the Weyl tensor in 3d.

• It can be obtained by the variation of the 3d gravitational CS action

S =
∫

ω3(Γ) , ω3(Γ) = Tr[Γ ∧ dΓ+
2

3
Γ ∧ Γ ∧ Γ]

• Adding it to the gravitational potential provides a source of CP violation
in gravity, that may have measurable consequences

Takahashi+Soda
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Generalized Lifshitz QFTs (vectors)

• For (abelian) vectors, [A0] = −2 , [Ai] = 0

Snr = −
1

4g2

∫
d3xdt

√
gN

[
−

2

N2
gij(F0i −NkFki)(F0j −N lFlj)−

−
M2

N2
(A0 −N iAi)(A0 −NjAj) +G[Ai]

]
,

F0i = ∂tAi − ∂iA0 , Fij = ∂iAj − ∂jAi

Define the magnetic field

Bi =
1

2

ϵi
jk

√
g
Fjk , Fij =

ϵij
k

√
g
Bk , ∇iBi = 0.

G = a0 + a1ζ1 + a2ζ
2
1 + a3ζ

3
1 + a4ζ2 + a5ζ1ζ2 + a6ζ3 + a7ζ4,

ζ1 = BiB
i , ζ2 = ∇iBj∇iBj , ζ3 = ∇iBj∇iBk∇jBk , ζ4 = ∇i∇jBk∇i∇jBk,

• ai are arbitrary functions of AiA
i.

• The ”stress-tensor” is no-longer traceless → w ̸= 1
3.
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Generalized Lifshitz QFTs (scalar matter)

• For scalars( [Φ] = 0)

Snr =
∫

d3xdt
√
gN

[
1

N2
(Φ̇−N i∂iΦ)2 + F [ξ1, ξ2, · · · ,Φ]

]
, ξn = Φ�nΦ

where the (renormalizable) potential F is (modulo spatial derivatives of
the lapse)

F [ξn,Φ] = F0(Φ) + F1(Φ) ξ1 + F11(Φ)ξ21 + F111(Φ)ξ31+

+F2(Φ)ξ2 + F21(Φ)ξ2ξ1 + F3(Φ)ξ3.

and dispersion relation

E2

F1(0)
=

1

4

F ′′
0(0)

F1(0)
+ (k⃗2)−

F2(0)

F1(0)
(k⃗2)2 +

F3(0)

F1(0)
(k⃗2)3

• Like in gravity the speed of light is infinite in the UV (E2 ∼ k6).

• In the IR it is c2 = F1(0). It is not a priori equal to that of gravity.
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The IR action

• In the IR the most relevant terms are

S=
∫
dtd3x

√
gN
[
α(KijK

ij−λK2) +ξR+σ
]
,

• In order for this to reproduce Einstein gravity this must have λ ≃ 1 in

the IR to a good degree of accuracy.

• Defining x0 = ct, choosing λ = 1 and

c =

√
ξ

α
, 16πGN =

1
√
αξ

, ΛE = −
σ

2ξ
, , [c] = −2 , [x0] = 1

the action is that of Einstein

SE =
1

16πGN

∫
d4x

√
g̃
[
KijK

ij −K2 +R− 2ΛE

]
=

1

16πGN

∫
d4x

√
g̃
[
R̃− 2ΛE

]
.

• Diff invariance is restored in the IR.

• However, the low energy asymptotics can be misleading as they ignore

the presence of non-trivial backgrounds.
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Propagating degrees of freedom

• The UV (free) fixed point is obtain by taking α, β → 0.

• We expand in small perturbations

gij ≃ δij + hij , N ≃ 1+ n , Ni ≃ ni

• n drops out at quadratic level and we fix the gauge

ni = 0 , Hij ≡ hij − λδijh , ∂iHij = 0

• Separating the trace and traceless part

Hij = Ĥij +
1

2

(
δij −

∂i∂j

∂2

)
H , SKin ∼

∫
dtd3x

[
( ˙̂Hij)

2 +
1− λ

2(1− 3λ)
(Ḣ)2

]

• The potential coming from the Cotton tensor is

V ∼
∫

dtd3x Ĥij�3Ĥij
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• Ĥij is a massless spin-two graviton. It has a dispersion relation of the

form

E2

c2
=

(k⃗2)3

M4
±

(k⃗2)2

m2
+ k⃗2

• H is an extra degree of freedom. Near flat space it has a potential

containing (k⃗2)2 and (k⃗2) terms but no (k⃗2)3 term.

• It is at the heart of the strong coupling problems of the theory
Charmousis+Niz+Padilla+Saffin, Blas+Pujolas+Sibiryakov

• It has been recently argued that the addition of terms involving spatial

derivatives of the lapse, N , may alleviate the string coupling problems.
Blas+Pujolas+Sibiryakov
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