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The holographic setup

• Holography is providing a gravitational/string theory language for large-N
strongly coupled theories.

• There are very few theories that we can control well. Many more that
we can control partly.

• Our intuition and ”model building” is currently developing.

• An important goal is the analogue of developing “effective holographic
theories” (EHT). Unlike the low-energy expansion, they rely on a ”gap” in
the range of anomalous dimensions.

• Although not always justified, they can be a good “phenomenological
laboratory” for strong coupling phenomena admitting a semiclassical de-
scription. (two complementary intuitions coming from level-truncation in
tachyon condensation studies and ... QCD sum rules).

• As in EFT, the rules of EHTs are slow to be uncovered.

• Condensed matter physicists: patience please!
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Einstein-Dilaton-U(1) theory

gµν → Tµν Stress-energy tensor

Aµ → Jµ conserved current.

φ Most important scalar operator that “drives” the interactions.

A familiar example from HEP is QCD

φ → Tr[F2] and Jµ is the baryon number current.

In many cases this separation of dynamics is pertinent: ”glue”+charge.

A generic large-wavelength action (up to two derivatives) is

S =
∫

dp+1x

[
R− 1

2
(∂φ)2 + V (φ)− Z(φ)

4
F2

]
(1)
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Einstein-Dilaton theory

• The theory with no charge degrees of freedom has been studied exten-

sively lately, as it seem to be very close to the dynamics of large-N YM.

Choosing p = 4, and choosing a monotonic potential with

V (φ = −∞) =
12

`2
, V (φ →∞) ∼ e

√
3
8Qφ

the theory has confinement∗ of “color”, a mass gap, discrete spectrum

and a “good” (repulsive) IR singularity if

4

3
< Q <

4
√

2

3
For larger values the singularity is “bad”. For smaller values the spectrum

is continuous.
Gursoy+E.K.+Mazzanti+Nitti

• “confinement” is correlated with the existence of a first order “deconfin-

ing” phase transition to a black-hole phase.
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Small black hole branch has T → ∞ as rh → 0, where it becomes a naked

(but “good” singularity)

5-



A singularity is “good” when

• The second order equations describing all fluctuations are Sturm-Liouville

problems (no extra boundary conditions needed at the singularity).

• The singularity is “repulsive” (like the Liouville wall)
Gursoy+E.K.+Nitti

• The singularity can smoothly be cloaked by a horizon.
Gubser
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“Doping”

When Fµν 6= 0 new dynamics is in order

• Generically the charge can self-interact strongly

• It can have non-trivial back-reaction on the graviton and scalar.

S =
∫

dp+1x

[
R− 4

3
(∂φ)2 + V (φ)− Z(φ)

√
det(gµν + Fµν)

]
, Z(φ) =

1

g(φ)2

• The “probe limit”: charge carriers feel a strong force from “glue”, but

their influence on the glue vacuum is small.

V (φ) >>
1

g2(φ)

√√√√1 +

(
Q g2(φ)

S̃(φ)

)2

Hartnoll+Polchinski+Silverstein+Tong

• Otherwise the charge back-reaction on the glue is important.
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• The “Maxwell” limit: charge self-interactions are unimportant

Q g2(φ) ¿ S̃(φ)

• In this case you expand the DBI action to consider

S =
∫

dp+1x

[
R− 4

3
(∂φ)2 + V (φ)− 1

g2(φ)
+

1

4g2(φ)
F2

]

• There are several situations that g2(φ) →∞: This is generic in a class of

problems involving brane-antibrane annihilation
Sen

• This is what is expected to happen during chiral symmetry breaking in

QCD.
Sakai+Sugimoto, Casero+E.K.+Paredes
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Einstein-Maxwell-Liouville gravity

S =
∫

dp+1x

[
R− 4

3
(∂φ)2 + V (φ)− Z(φ)

4
F2

]

V = V0 ebφ , Z(φ) = eaφ

• We are interested in finding general solutions, describing backreacting
dopped systems (neglecting charge “self-interactions”).

• The simplest solutions to start from are “scaling” solutions.

• They are trustworthy in places that V becomes large.

• They provide “universality classes” of IR behavior at or near extremality.

• They can be completed to asymptotically AdS solutions in UV regime
when V → 0. (Caveat: depending on the AdS completion, new semiclassical
solutions may be introduced)
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Generic scaling solutions

• We work in the domain wall frame

ds2 = e2A(−egdt2 + dxidxi) + e−gdr2 , A = At(r) dt

• There is a “Noether” charge
Gubser+Rocha

Q = e3Ag′eg − eAZAtA
′
t = e3Ag′eg − qAt ,

∂Q
∂r

= 0

and Q = 0 at extremality.

Searching for scaling solutions

Frt =
q

Z(φ)e(p−3)A(r)
, eA = r

4cp2

3(p−1) , eΦ = eΦ0 rcp

f = eg = f0 rc2+cf

[
1−

(
r0
r

)cf
]

, cf = 2− c2 − bcp
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• The generic solutions have

c
(1)
2 = 1− 4p c2p

3(p− 1)
, c

(2)
2 = 0

c
(1)
p = −3

8
(a + b) , c

(2)
p = 0

eΦ0 =

[
± q2

2V0(c2 + cf)

(
2 + cp

(
b +

8

3
cp

))] 1
a+b

, f0 =
2V0ebΦ0

cf

[
2 + cp

(
b + 8

3cp

)] .

• There is a relation between the scalar and gauge charge

• The “special” scaling solutions

cp = −3

8
(a + b) , c2 = 2 + bcp , cf = 1− c2 −

4p c2p

3(p− 1)

eΦ0 =


± q2

2V0


1 +

8

3

c2p

c2







1
a+b

, f0 =
2V0ebΦ0

cf

(
c2 + 8

3c2p
)

r0
cf

.

Special cases found by Mann, Gubser+Rocha, possibly others. Goldstein
et al. found solutions with V = constant
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• “Physicality” conditions

• At r →∞, eA →∞, so we have a boundary.

• Scalar curvature invariants should be regular at the UV boundary(maybe

optional and remain to be investigated)

• V (φ) → 0 at the boundary (so the solutions can be completed to as. AdS solutions)

• Stability CV > 0, Cq > 0

• S at extremality vanishes.

All of the above select some ranges of the parameters.

The relevant thermodynamic functions are simple scaling functions

F , E, T, µ ∼ T a qb

• No phase diagram can be drawn as we do not know the full set of solutions
with the same asymptotics. (but we can find them numerically with some effort)
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Charged solutions with γδ = 1

V (φ) = V0 e−δφ , Z(φ) = eγφ , γδ = 1

The equations can be solved exactly and the general solution by found.

δ2 ≤ 3
Charmousis+Goutereaux+Soda

ds2 = − e
φ−φ0

δ

r3−δ2
U(r)dt2 +

2(3− δ2)eδφr1−δ2

V0

dr2

U(r)
+ r2

[
1−

(
r−

r

)3−δ2
] 2(δ2−1)2

(3−δ2)(1+δ2) (
dx2 + dy2

)

eφ = eφ0r2δ

[
1−

(
r−

r

)3−δ2
] 4δ(δ2−1)

(3−δ2)(1+δ2)

, A =


µ−

√
4δ2

1 + δ2

q e−
φ0
2δ

r3−δ2


 dt

U(r) = r3−δ2−2m+q2rδ2−3 ,
(
r±

)3−δ2

= m±
√

m2 − q2 , µ =
2|δ|e−φ0

2δ√
1 + δ2

q

r3−δ2

+

= µ0
q

r3−δ2

+

• Regular bh solution 0 < r− < r+, becomes extremal at m = q

• “Equation of state”

T =

(
Q

µ
e−

φ0
δ

)1−δ2

3−δ2
(
1− µ

µ0

) −3δ4+6δ2+1
(3−δ2)(1+δ2)
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• At q=0, we have a (singular) extremal solution (S=0) and a regular

BH. The extremal solution is ”good” according to Gubser, but we must

investigate the T=0 spectrum.

• At q=0, there is a second order phase transition at T = 0 from the

extremal to the BH solution.

• At q 6= 0, we have the extremal solution (S=0) as well as 1 or two regular

BH solutions (liquid state). The extremal solution is regular for 1 > δ2 and

singular (good à la Gubser) otherwise.

• The solutions can be corrected to asymptotically AdS in the UV as

V (φ) → 0. The DBI action can also linearized everywhere except arbitrarily

near the boundary , and near the singularity of the extremal solutions for

δ2 > 1.

• Near the singularity the DBI action can be treated as a probe, and this

completes the phase diagram.
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• Three distinct classes of dynamics: δ2 ∈ [0,1] ∪ [1,1+ 2√
3
] ∪ [1+ 2√

3
,3)

0 2 4 6 8 10
r+0.0

0.5

1.0

1.5

2.0
T

∆
2
=1

∆
2
=0.7

2 4 6 8 10
r+

-7

-6

-5

-4

-3

-2

-1

0

W -W0

∆
2
=1

∆
2
=0.95

∆
2
=0.7

BH always dominates

9-



0 2 4 6 8 10
r+0.0

0.2

0.4

0.6

0.8

1.0
T

∆
2
=1+

2

3

∆
2
=2.1

∆
2
=1.4

2 4 6 8 10
r+

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

W -W0

∆
2
=1+

2

3

∆
2
=1.8

∆
2
=1.1

There is a non-trivial phase transition from “small BH” → extremal-thermal-solution.
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• The range 1 + 2√
3

we believe is unphysical.

• In 1 < δ2 < 1 + 2√
3

we have the inverse situation from the Hawking-Page

transition:

♠ There is a Tmax

♠ The small BH dominates at 0 < T < Tc < Tmax

♠ The transition seems to be second order.

A calculation of the AC conductivity at extremality gives

σ ∼ ωk , k =
√

1 + 8(3− δ2)− 1 , 0 ≤ k ≤ 4
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Charged solutions with γ = δ

ds2 = −U(r)dt2 +
(3− δ2)2

V0
eδφ dr2

U(r)
+ r2

(
dx2 + dy2

)
,

eφ = eφ0r2δ , A =
(
Φ−

√
|1− δ2| q

r1+δ2
e−

δ
2φ0

)
dt ,

U(r) =
3− δ2

2
r2 − 2mrδ2−1 +

q2(1− δ4)

4r2
.

• Two regimes

0 ≤ δ2 ≤ 1 1 ≤ δ2 ≤ 3
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Strong charge interaction limit

• This is opposite of the weak coupling limit that gives the Maxwell theory.

• In this case the gauge field, and therefore the charge density is indepen-
dent of q because of the properties of the DBI action.

• Therefore there is a maximum charge density attainable. This is UNLIKE
the linear Maxwell theory

• There is a generic AdS2 × T2 BH solution for any γ, δ.

• Another simple solution exists for γ = ±1.

eA = r
1
4 , eΦ = r∓

3
4 , f =

2V0

5
(u

5
4 − u

5
4
0) , At =

4

5
(u

5
4 − u

5
4
0)

Q =
4

5
, µ = −4

5

(
8πT

V0

)5
2

, S =
1

4G

(
8πT

V0

)3
2

This is consisted with the strong coupling approximation in the IR, for
δ ≤ 1 or δ ≥ −1.
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Outlook

• We analyzed charge coupled to energy and a scalar operator, with non-

trivial back-reaction.

• We have found many scaling solutions. The ones that pass the physical

tests will represent universality classes.

• For some cases we found all relevant charged solutions and found a non-

trivial and unusual phase structure.

• Further analysis is needed in order to elucidate the viability and nature of

these solutions.

• Apply more general techniques to find other classes of solutions.

• Attempt matching to CM systems.
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Classification of zero temperature solutions

For any positive+monotonic potential V (λ), λ ≡ eφ with the asymptotics :

V (λ) = V0 + V1λ + V2λ
2 + . . . V0 > 0, λ → 0

V (λ) = V∞λ2Q(logλ)P , V∞ > 0, λ →∞
the zero-temperature superpotential equation has three types of solutions, that we name
the Generic, the Special, and the Bouncing types:

• A continuous one-parameter family that has a fixed power-law expansion near λ = 0,
and reaches the asymptotic large-λ region where it grows as

W ' Cb λ4/3 λ →∞ , Cb > 0

These solutions lead to backgrounds with “bad” (i.e. non-screened) singularities at finite
r0,

b(r) ∼ (r0 − r)1/3, λ(r) ∼ (r0 − r)−1/2

We call this solution generic.
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• A unique solution, which also reaches the large-λ region, but slower:

W (λ) ∼ W∞λQ(logλ)P/2, W∞ =

√
27V∞

4(16− 9Q2)

This leads to a repulsive singularity, provided Q < 2
√

2/3 [?]. We call this the special
solution.
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• A second continuous one-parameter family where W (λ) does not reach the asymptotic
region. These solutions have two branches that both reach λ = 0 (one in the UV, the
other in the IR) and merge at a point λ∗ where W (λ∗) =

√
27V (λ∗)/64. The IR branch is

again a “bad” singularity at a finite value r0, where W ∼ λ−4/3, and

b(r) ∼ (r0 − r)1/3, λ(r) ∼ (r0 − r)1/2.

We call this solution bouncing.

14-



0 10 20 30 40
Λ

10

20

30

40

WHΛL

The special solution marks the boundary between the generic solutions, that reach the
asymptotic large-λ region as λ4/3 and the bouncing ones, that don’t reach it.

If Q > 4/3, only bouncing solutions exist.

In all types of solutions the UV corresponds to the region λ → 0 on the W+ branch.
There the behavior of W+ is universal: a power series in λ with fixed coefficients, plus a
subleading non-analytic piece which depends on an arbitrary integration constant Cw:

W =
∞∑

i=1

Wiλ
i + Cwλ16/9e

−16W0
9W1

1

λ [1 + O(λ)]

All the power series coefficients Wi are completely determined by the coefficients in the
small λ expansion of V (λ), the first few being:

W0 =

√
27V0

8
, W1 =

V1

16

√
27

V 0
, W2 =

√
27(64V0V2 − 7V 12)

1024V
3/2
0

RETURN
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• Classification of zero temperature solutions 34 minutes
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