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Introduction

• AdS/CFT has provided so far controlled/computable examples of con-

finement, chiral symmetry breaking and hadron spectra of concrete gauge

theories

• Its direct application to QCD is marred by two (related) problems:

♠ Uncontrolable (soft) string dynamics in the UV if we incorporate asymp-

totic freedom

♠ The KK problem in non-critical examples with IR QCD-like physics

• Several semi-realistic models were developed:

(a)The Witten Black-D4/M5 model. Rather easy to compute with: its IR

physics is QCD-like, but is higher-dimensional in UV.
Witten 1998
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(b) The Sakai-Sugimoto Model. Build on the D4-background. Implements

a geometrical version of chiral symmetry breaking. It is rather good for

mesons, and baryons. It lacks several meson modes and explicit quark

masses due to higher-d structure.
Sakai+Sugimoto 2004

• Several phenomenological models have been developed also with a varying

degree of success

(c) AdS/QCD: AdS5 with a IR cutoff.
Polchinski+Strassler 2001

Some qualitatively correct properties. Best as a background for meson

physics
Erlich+Katz+Son+Stephanov 2005, DaRold+Pomarol 2005

(d) Soft wall AdS/QCD. It is reasonably good for mesons but useless (in-

consistent) for glue.
Karch+Katz+Son+Stephanov 2006

A Holographic Approach to QCD, Elias Kiritsis
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Einstein-dilaton models

♠ We would like to provide a (phenomenological) model for glue, that

incorporates the effects of a running coupling constant, and in particular

asymptotic freedom.

• This is not the case in the D4 and other models.

• We need to include to the graviton a scalar (the dilaton) that is dual to

Tr[F2]. We should be in 5 dimensions as this is what we expect for 4d

large-Nc, SU(Nc) YM.

• This scalar should have a potential so that that the coupling will run.

• We are led to a 5d Einstein-dilaton action with a potential

S = M3
∫

d5x
√

g

[
R− 4

3
(∂φ)2 + V (φ)

]
∼ O(N2

c )

Gursoy+Kiritsis 2007, Gursoy+Kiritsis+Nitti 2007, Gursoy+Kiritsis+Mazzanti+Nitti 2008

Gubser+Nellore 2008, De Wolfe+Rosen 2009

We can consider roughly two classes of UV asymptotics for the potential:
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♠ φ is dual to a standard relevant operator with ∆ < 4 so that for φ → 0

V (φ) =
12

`2
+

∆(∆− 4)

2`2
φ2 +O(φ4)

The potential has an AdS extremum at φ = 0.
The bulk solutions are standard asymptotically AdS solutions.

Gubser+Nellore 2008, De Wolfe+Rosen 2009

♠ λ ∼ eφ is the ’t Hooft coupling. As λ → 0, (φ → −∞)

V (φ) =
12

`2

[
1 + v1λ + v2λ2 +O(λ3)

]

The solutions are asymptotically logarithmically AdS.
Gursoy+Kiritsis 2007, Gursoy+Kiritsis+Nitti 2007, Gursoy+Kiritsis+Mazzanti+Nitti 2008

They are very different from standard cases because of unusual b.c.

The potential has no AdS extremum here. This generates the logarithmic running for λ

in the UV

λ ∼ − 1

log(Λr)
as r → 0

• The two approaches differ radically in the UV but can be similar in the IR if the potentials

are similar.

A Holographic Approach to QCD, Elias Kiritsis
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A map to the string theory?

• We expect gµν ↔ Tµν, φ → Tr[F2]

• There is one more dimension 4 operator in YM dual to a (RR) axion:

a ↔ Tr[F ∧ F ]

• It can be incorporated in the effective action at the phenomenological

level as

∆S =
∫

d5x
√

g Z(λ)(∂a)2 ∼ O(1)

It can implement dynamics relevant for the θ-angle as well as the Parity-odd glueballs.

• It is subleading compared to gµν, φ.

• If we assume that the geometry in the UV approaches AdS5, then it can

be shown that the geometry is ”stringy” (` ∼ `s). From this, the usual YM

perturbation theory follows in powers of 1/ log(λr).
Gursoy+Kiritsis 2007, Kiritsis 2009

A Holographic Approach to QCD, Elias Kiritsis
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A map to the string theory? Part II

• Near the boundary (UV) the theory involves higher-derivatives. It can be

truncated as far as the running coupling is concerned

• The RR C4 is non-propagating in 5-dimensions.

Its higher-derivative corrections can be integrated out to yield a dilaton

potential.

• In the IR the theory flows to strong coupling and it is plausible that a

two-derivative approach is justified.

• An Einstein-dilaton gravity+potential can capture some of the UV prop-

erties of the theory, and if V (φ) is chosen appropriately, the IR properties

as well.

A Holographic Approach to QCD, Elias Kiritsis
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The UV region

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
+ V (λ)

]

with a monotonic potential with UV asymptotics (no minima).

lim
λ→0

V (λ) =
12

`2


1 +

∞∑

n=1

cnλn


 =

12

`2

(
1 + c1λ + c2λ2 + · · ·

)

• The Poincaré invariant ansatz is

ds2 = b(r)2(dr2 + dxµdxµ) , λ → λ(r)

• The small λ asymptotics generate the UV expansion around AdS5:

1

λ
= −b0 log(rΛ)− b1

b0
log [−b0 log(rΛ)] + · · ·

b ≡ eA =
`

r

[
1 +

2

9log(rΛ)
+ · · ·

]

A Holographic Approach to QCD, Elias Kiritsis
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The β function

• We choose as (holographic) energy E = eA (Einstein frame)

• We introduce the “superpotential” W as
(
3

4

)3
V (λ) = W2 −

(
3

4

)2 (
∂W

∂ logλ

)2

• There is a 1-1 correspondence between the holographic “YM” β-function,
β(λ) and W :

dλ

d logE
= β(λ) = −9

4
λ2 d logW (λ)

dλ
= −b0λ2 + b1λ3 + · · ·

provided a “good” solution for W is chosen.

• The usual anomalous Ward-identity can be derived holographically (in
flat 4-space)

Tµ
µ =

β(λ)

4λ2
Tr[F2]

A Holographic Approach to QCD, Elias Kiritsis
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The IR asymptotics

• The solutions in the IR either asymptote to AdS5 (extremum of V) or

have a singularity.

• We demand that the singularity is ”good” (à la Gubser) and “repulsive”.

• We also demand confinement, a mass gap and a discrete spectrum.

♠ Parametrize

V (λ) ∼ λQ (logλ)P as λ →∞

• There is confinement, discrete spectrum and a mass gap for Q ≥ 4
3

• The IR singularity is “good” if Q < 8
3

• There are linear trajectories when Q = 4/3 and P = 1/2.

A Holographic Approach to QCD, Elias Kiritsis
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Finite temperature

The theory at finite temperature can be described by:

(1) The “thermal vacuum solution”. This is the zero-temperature solution

we described so far with time periodically identified with period β.

(2) “black-hole” solutions

ds2 = b(r)2
[

dr2

f(r)
− f(r)dt2 + dxidxi

]
, λ = λ(r)

♠ The boundary conditions are UNUSUAL: The dilaton (canonical scalar)

is diverging at the boundary.

A Holographic Approach to QCD, Elias Kiritsis
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General phase structure

• For a general monotonic potential (with no minimum) the following are

true :

i. There exists a phase transition at finite T = Tc, if and only if the zero-T

theory confines.

ii.This transition is first order for all of the confining geometries, with a

single exception (linear dilaton in the IR, continuous spectrum with a gap)

iv. All of the non-confining geometries at zero T are always in the black

hole phase at finite T. They exhibit a second order phase transition at

T = 0+.

A Holographic Approach to QCD, Elias Kiritsis
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Finite-T Confining Theories

• There is a minimal temperature Tmin for the existence of Black-hole

solutions

• When T < Tmin only the “thermal vacuum solution” exists: it describes

the confined phase at small temperatures.

• For T > Tmin there are two black-hole solutions with the same temper-

ature but different horizon positions. One is a “large” BH, the other is

“small”.

• Therefore for T > Tmin three competing solutions exist. The large BH

has the lowest free energy for T > Tc > Tmin. It describes the deconfined

“Glasma” phase.

A Holographic Approach to QCD, Elias Kiritsis
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Temperature versus horizon position
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We plot the relation T (rh) for various potentials parameterized by a. a = 1
is the critical value below which there is only one branch of black-hole
solutions.
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Fit and comparison

IhQCD lattice Nc = 3 lattice Nc →∞ Parameter

[p/(N2
c T 4)]T=2Tc 1.2 1.2 - V 1 = 14

Lh/(N2
c T 4

c ) 0.31 0.28 (Karsch) 0.31 (Teper+Lucini) V 3 = 170

[p/(N2
c T 4)]T→+∞ π2/45 π2/45 π2/45 Mp` = [45π2]−1/3

m0++/
√

σ 3.37 3.56 (Chen ) 3.37 (Teper+Lucini) `s/` = 0.92

m0−+/m0++ 1.49 1.49 (Chen ) - ca = 0.26

χ (191MeV )4 (191MeV )4 (DelDebbio) - Z0 = 133

Tc/m0++ 0.167 - 0.177(7)

m0∗++/m0++ 1.61 1.56(11) 1.90(17)

m2++/m0++ 1.36 1.40(4) 1.46(11)

m0∗−+/m0++ 2.10 2.12(10) -

A Holographic Approach to QCD, Elias Kiritsis
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Thermodynamic variables
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Equation of state
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The trace from the lattice at different N

Marco Panero 2009 (unpublished)

A Holographic Approach to QCD, Elias Kiritsis
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The speed of sound
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Spatial string tension

G. Boyd et al. 1996

• The blue line is the spatial string tension as calculated in Improved hQCD,
with no additional fits.

Nitti (unpublished) 2009

• The red line is a semi-phenomenological fit using

T√
σs

= 0.51
[
log

πT

Tc
+

51

121
log

(
2 log

πT

Tc

)]2
3

Alanen+Kajantie+Suur-Uski, 2009

A Holographic Approach to QCD, Elias Kiritsis
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Viscosity

• Viscosity (shear and bulk) is related to dissipation and entropy production

∂s

∂t
=

η

T

[
∂ivj + ∂jvi −

2

3
δij∂ · v

]2
+

ζ

T
(∂ · v)2

Tµν = (E + p)uµuν + pgµν+ZµαZνβ
[
η

(
∇αuβ +∇βuα)− 2

3
gαβ∇γuγ

)
+ ζgαβ∇γuγ

]

Zµν = gµν + uµuν

• Hydrodynamics is valid as an effective description when relevant length

scales À mean-free-path:

Maxwell : η ∼ ρ v ` ∼ density × velocity ×mean− free− path

• Conformal invariance imposes that ζ = 0.

20



• Viscosity can be calculated from a Kubo-like formula (fluctuation-dissipation)

η

(
δikδjl + δilδjk −

2

3
δijδkl

)
+ ζδijδkl = − lim

ω→0

Im GR
ij;kl(ω)

ω

GR
ij;kl(ω) = −i

∫
d3x

∫
dt eiωtθ(t) 〈0|[Tij(~x, t), Tkl(~0,0)]|0〉

• In all theories with gravity duals at two-derivative level

η

s
=

1

4π

Policastro+Starinets+Son 2001, Kovtun+Son+Starinets 2003, Buchel+Liu 2003

• Subleading corrections can have either sign
Kats+Petrov 2007, Brigante+Liu+Myers+Shenker+Yaida 2008, Buchel+Myers+Sinha 2008

• In Einstein-dilaton gravity shear viscosity is equal to the universal value.

A Holographic Approach to QCD, Elias Kiritsis
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Shear Viscosity bounds from lattice

H. Meyer 2007

4π
η

s
=





1.68(42), T = 1.65 Tc,

1.28(70), T = 1.24 Tc.

A Holographic Approach to QCD, Elias Kiritsis
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shear viscosity data
• V2 is the elliptic flow coefficient

Luzum+Romatchke 2008

A Holographic Approach to QCD, Elias Kiritsis
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Elliptic Flow

1

pT

dN

dpTdφ
=

1

pT

dN

dpT
[1 + v2(pT ) cos 2φ + · · · ]

A Holographic Approach to QCD, Elias Kiritsis
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The bulk viscosity: theory

• This is harder to calculate.

• Using a parametrization ds2 = e2A(fdt2 + d~x2 + dr2

f ) in a special gauge
φ = r the relevant metric perturbation decouples

Gubser+Nellore+Pufu+Rocha 2008, Gubser+Pufu+Rocha,2008

h′′11 = −
(
− 1

3A′
−A′ − f ′

f

)
h′11 +

(
−ω2

f2
+

f ′

6fA′
− f ′

f
A′

)
h11

with

h11(0) = 1 , h11(rh) ' C eiωt
∣∣∣∣ log

λ

λh

∣∣∣∣
− iω

4πT

The correlator is given by the conserved number of h-quanta

Im GR(ω) = −4M3G(ω) , G(ω) =
e3Af

4A′2
|Im[h∗11h′11]|

ζ

s
=

C2

4π

(
V ′(λh)

V (λh)

)2

A Holographic Approach to QCD, Elias Kiritsis
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The sum rule method

• Define the (subtracted) spectral density and relate its moment to the
Euclidean density

ρ(ω) = −1

π
Im GR(ω) , G ≡ lim

ω→0
GE(ω) = 2

∫ ∞
0

ρ(u)

u
du

Karsch+Kharzeev+Tuchin, 2008, Romatschke+Son 2009

• Using Ward identities we obtain the sum rule

G =
(
T

∂

∂T
− 4

)
(E − 3P + 〈Θ〉0) +

(
T

∂

∂T
− 2

)
(m〈q̄q〉T + 〈ΘF 〉0)

with

〈ΘF 〉0 = m〈q̄q〉 ' −m2
π f2

π −m2
K f2

K

• Assume a density

ρ(ω)

ω
=

9ζ

π

ω0
2

ω2 + ω0
2

A Holographic Approach to QCD, Elias Kiritsis
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Karsch+Kharzeev+Tuchin, 2008

• A dramatic rise near the phase transition but the scale cannot be fixed.

A Holographic Approach to QCD, Elias Kiritsis
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The bulk viscosity in lattice and IhQCD

• The lattice has large systematics
H. Meyer 2007
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Gursoy+Kiritsis+Michalogiorgakis+Nitti, 2009

• Calculations with other potentials
Gubser+Pufu+Rocha 2008, Cherman+Nellore 2009

A Holographic Approach to QCD, Elias Kiritsis

27

http://arxiv.org/abs/0710.3717�
http://arxiv.org/abs/0906.1890�
http://arxiv.org/abs/0806.0407�
http://arxiv.org/abs/0905.2969�


The Buchel bound

ζ

η
≥ 2

(
1

3
− c2

s

)

Buchel 2007
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Elliptic Flow vs bulk viscosity

U Heinz+H.Song 2008

A Holographic Approach to QCD, Elias Kiritsis
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The bulk viscosity in the small black hole
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Gursoy+Kiritsis+Michalogiorgakis+Nitti, 2009

• At the turning point the behavior, CV →∞ and ζ behaves similar to that
observed in the N=2∗ theory

Buchel+Pagnutti, 2008

• The small black-hole bulk viscosity ratio asymptotes to a constant as
T →∞.

A Holographic Approach to QCD, Elias Kiritsis
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High-T asymptotics of transport coefficients

• In CFTs perturbed with a relevant operator the speed of sound is bounded

above as

c2s =
1

3
−

(4−∆)(4− 2∆)Γ
[
∆
4

]4
tan(π∆/4)

18π Γ
[
∆
2 − 1

]2 (π`T )2(∆−4) +O
(
T3(∆−4)

)

Cherman+Cohen+Nellore 2009, Hohler+Stephanov, 2009

• The same is true (c2s ' 1
3 −O

(
1

log2 T

)
) in the logarithmic case ∆ = 4.

Gursoy+Kiritsis+Mazzanti+Nitti,2008

• In general for single relevant perturbations, if ξi ∈
(

ζ
s, v2

s ,2πTD, σ
πT , Ξ

2π2T2

)

as T →∞

ξi(T ) = ξCFT
i + Ci(∆) T−2(4−∆) +O

(
T3(∆−4)

)

Cherman+Nellore 2009

A Holographic Approach to QCD, Elias Kiritsis
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Heavy quarks and the drag force

From Gubser’s talk at Strings 2008

• We must find a solution to the string equations with

x1 = vt + ξ(r) , x2,3 = 0 , σ1 = t , σ2 = r
Herzog+Karch+kovtun+Kozcac+Yaffe, Gubser

Casaldelrrey-Solana+Teaney, Liu+Rajagopal+Wiedeman

For a black-hole metric (in string frame)

ds2 = b(r)2
[

dr2

f(r)
− f(r)dt2 + d~x · d~x

]

32
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the solution profile is

ξ′(r) =
C

f(r)

√√√√ f(r)− v2

b4(r)f(r)− C2
, C = vb(rs)

2 , f(rs) = v2

• The induced metric on the world-sheet is a 2d black-hole with horizon at
the turning point r = rs (t = τ + ζ(r)).

ds2 = b2(r)


−(f(r)− v2)dτ2 +

1

(f(r)− b4(rs)
b4(r)

v2)
dr2




• We can calculate the drag force:

Fdrag = Pξ = −b2(rs)
√

f(rs)

2π`2s
• In N = 4 sYM it is given by

Fdrag = −π

2

√
λ T2 v√

1− v2
= −1

τ

p

M
, τ =

2M

π
√

λ T2

• For non-conformal theories it is a more complicated function of momen-
tum and temperature.

A Holographic Approach to QCD, Elias Kiritsis
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The drag force in IhQCD

2 3 4 5
T�Tc

0.1

0.2

0.3

0.4

0.5

F�Fc

v=9�10

v=7�10

v=4�10

v=1�10

Gursoy+Kiritsis+Michalogiorgakis+Nitti, 2009

• Fconf calculated with λ = 5.5

33

http://arxiv.org/abs/0906.1890�


.

0.2 0.4 0.6 0.8 1.0
v

0.1

0.2

0.3

0.4

0.5

0.6

F�Fc

T�Tc=3.68

T�Tc=1.99

T�Tc=1.48

T�Tc=1.01

Gursoy+Kiritsis+Michalogiorgakis+Nitti, 2009

A Holographic Approach to QCD, Elias Kiritsis

33-

http://arxiv.org/abs/0906.1890�


The thermal mass
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• The mass is defined via a straight string hanging in the bulk

• It is qualitatively in agreement with lattice calculation of the position of the quarkonium
resonance shift at finite temperature.

Datta+Karsch+Petreczky+Wetzorke 2004

A Holographic Approach to QCD, Elias Kiritsis
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The diffusion time
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Gursoy+Kiritsis+Michalogiorgakis+Nitti, 2009

dp

dt
= − p

τ(p)
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Gursoy+Kiritsis+Michalogiorgakis+Nitti, 2009

In (rough) agreement with:

Akamatsu+Hatsuda+Hirano, 2008

35-

http://arxiv.org/abs/0906.1890�
http://arxiv.org/abs/0809.1499�


• In agreement with Rapp et al. (talk at Quark Matter 2009) with a

different method of calculation.

A Holographic Approach to QCD, Elias Kiritsis
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Langevin diffusion of heavy quarks

• In a thermal medium we would expect the analogue of Brownian motion

for heavy quarks.

• Fluctuations were first studied around the trailing string solution and

diffusion coefficients were calculated.
Cassalderey-Solana+Teaney, 2006 Gubser 2006

• A full Langevin-like treatment was derived recently for non-relativistic

quarks
Son+Teaney 2009 DeBoer+Hubeny+Rangamani+Shigenori, 2009

• This describes a Langevin process of the form

d~p

dt
= ~F + ~ξ , ~F = −η ~p , 〈ξi(t)ξj(t′)〉 = κδijδ(t− t′)

~F is the drag force, η = 1
τ .

• The fully relativistic case was also described recently
Giecold+Iancu+Mueller, 2009
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We consider fluctuations around the dragging string solution in the thermal

background

ds2 = b2(r)(
dr2

f(r)
−f(r)dt2+d~x2) , X1 = vt+ξ(r)+δX1 , X2,3 = δX2,3

The Nambu-Goto action is expanded as

S = S0 + S1 + S2 + · · · , S1 =
∫

dτdr Pα ∂αδX1 (1)

with

S2 =
1

2π`2s

∫
dτdr


Gαβ

2
∂αδX1∂βδX1 +

3∑

i=2

G̃αβ

2
∂αδXi∂βδXi


 (2)

with

Gαβ =
b2(r)Z(r)2

2
gαβ , G̃αβ =

b(r)2

2
gαβ , Z(r) =

√√√√1 + f(r)ξ′(r)2 − v2

f(r)

• The fluctuations δXi satisfy.

∂αGαβ∂β δX1 = 0 , ∂αG̃αβ∂β δX2,3 = 0
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• The metric in which they are evaluated is of the bh type, but with a

different Hawking temperature, TH. In the CFT case we have TH =
√

1− v2 T

• We double the fields, δX → δXL,R and we can define retarded and ad-

vanced correlators using the Schwinger-Keldysh formalism as implemented

in AdS/CFT
Herzog+Son 2002, Gubser 2006, Skenderis+VanRees 2009
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Sboundary =
∫

dτR

[
−P rδX0

R +
1

2
δX0

RGrα∂αδX0
R

]
− (L ↔ R)

= −
∫

dω

2π
δX0

a (−ω)GR(ω)δX0
r (ω) +

i

2

∫
dω

2π
δX0

a (−ω)Gsym(ω)δX0
a (ω)

with

δXr =
1

2
(δXL + δXR) , δXa = (δXL − δXR)

and

Gsym(ω) =
1 + e

ω
TH

1− e
ω

TH

GR(ω)

• We may derive a Langevin equation by starting with

Z =
∫

[DδX0
L,R][DδXL,R] ei(SR−SL) =

∫
[DδX0

a,r] eiSboundary

and introduce a dummy variable ξ to linearize the quadratic term of the

a-fields

36-



Z =
∫

[DδX0
a,r][Dξ] e−

1
2

∫
dtdt′ξ(t)G−1

sym(t,t′)ξ(t′)×

× exp
[
−i

∫
dtdt′ δX0

a

[
GR(t, t′)δX0

r (t′) + δ(t− t′)(P r − ξ(t′))
]]

Integration over δX0
a,r gives the Langevin system

∫
dt′ GR(t, t′)δX0

r (t′) + P r − ξ(t) = 0 , 〈ξ(t)ξ(t′)〉 = Gsym(t, t′)

Giecold+Iancu+Mueller, 2009

• For |t− t′| large we can replace the retarded propagator with a (second)

time derivative and the symmetric one by a δ-function to finally obtain in

the conformal case

dpi
⊥

dt
= −η pi

⊥ + ξi
⊥ , 〈ξi

⊥(t)ξj
⊥(t′)〉 = κ⊥δijδ(t− t′) , κ⊥ =

π
√

λT3

(1− v2)
1
4

dp‖
dt

= −η p‖ + ξ‖ , 〈ξ‖(t)ξ‖(t′)〉 = κ‖δ(t− t′) , κ‖ =
π
√

λT3

(1− v2)
5
4
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• In the non-relativistic limit the world-sheet horizon and the spacetime

horizon coincide. In this case there is a Maxwell equilibrium distribution

and the Einstein relation (κ = 2ETη) holds.
Cassalderey-Solana+Teaney, 2006 Gubser 2006

Son+Teaney 2009 DeBoer+Hubeny+Rangamani+Shigenori, 2009

• The diffusion is asymmetric in the relativistic case. There is no ther-

mal equilibrium distribution. This resolves previous puzzles of symmetric

relativistic Langevin diffusion.

• The failure of the Einstein relation was also seen in the heavy-ion data.
Wolchin 1999

• The (conformal) relativistic Langevin equation with symmetric diffusion

was applied to data analysis at RHIC, but the Einstein relation was kept.
Akamatsu+Hatsuda+Hirano, 2008

In view of the above a re-analysis seems necessary.

A Holographic Approach to QCD, Elias Kiritsis
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Further directions

• Evaluation of the Langevin correlator in IhQCD and use as input for

langevin MonteCarlo (both CFT and non-conformal)

• Second order transport coefficients (matter of principle)

• Implementation of a more realistic structure for the quarks in QGP: this

will involve a more realistic holographic theory of flavor (SS?)

• Holographic calculation of two-point correlators of the stress tensor in the

non-conformal (IhQCD) case. Application to lattice extraction techniques

via sum rules (that may include fermions)

• Similar non-conformal calculations may be relevant for the study of trans-

port coefficients of 3D theories with potential applications in condensed

matter.

A Holographic Approach to QCD, Elias Kiritsis

37



Collaborators

My Collaborators

• Umut Gursoy (Utrecht)

• Liuba Mazzanti (Ecole Polytechnique)

• George Michalogiorgakis (Ecole Polytechnique)

• Fransesco Nitti (APC, Paris)

A Holographic Approach to QCD, Elias Kiritsis

38



.

Thank you for your Patience

39



Bibliography
• U. Gursoy, E. Kiritsis, G. Michalogiorgakis and F. Nitti,
“ Thermal Transport and Drag Force in Improved Holographic QCD”
[ArXiv:0906.1890][hep-ph],.

• U. Gursoy, E. Kiritsis, L. Mazzanti and F. Nitti,
“Improved Holographic Yang-Mills at Finite Temperature: Comparison with Data.”
[ArXiv:0903.2859][hep-th],.

• E. Kiritsis,
“ Dissecting the string theory dual of QCD.,”
[ArXiv:0901.1772][hep-th],.

• U. Gursoy, E. Kiritsis, L. Mazzanti and F. Nitti,
“Thermodynamics of 5D Dilaton-gravity.,”
JHEP 0905 (2009) 033; [ArXiv:0812.0792][hep-th],.

• U. Gursoy, E. Kiritsis, L. Mazzanti and F. Nitti,
“Deconfinement and Gluon-Plasma Dynamics in Improved Holographic QCD,”
Phys. Rev. Lett. 101, 181601 (2008) [ArXiv:0804.0899][hep-th],.

• U. Gursoy and E. Kiritsis,
“Exploring improved holographic theories for QCD: Part I,”
JHEP 0802 (2008) 032[ArXiv:0707.1324][hep-th].

• U. Gursoy, E. Kiritsis and F. Nitti,
“Exploring improved holographic theories for QCD: Part II,”
JHEP 0802 (2008) 019[ArXiv:0707.1349][hep-th].

• Elias Kiritsis and F. Nitti
On massless 4D gravitons from asymptotically AdS(5) space-times.
Nucl.Phys.B772 (2007) 67-102;[arXiv:hep-th/0611344]

• R. Casero, E. Kiritsis and A. Paredes,
“Chiral symmetry breaking as open string tachyon condensation,”
Nucl. Phys. B 787 (2007) 98;[arXiv:hep-th/0702155].

A Holographic Approach to QCD, Elias Kiritsis

40

http://arxiv.org/abs/0906.1890�
http://arxiv.org/abs/0903.2859�
http://arxiv.org/abs/0901.1772�
http://arxiv.org/abs/0812.0792�
http://arxiv.org/abs/0804.0899�
http://arxiv.org/abs/0707.1324�
http://arxiv.org/abs/0707.1349�
http://arxiv.org/abs/hep-th/0611344�
http://arxiv.org/abs/hep-th/0702155�


AdS/QCD

♠ A basic phenomenological approach: use a slice of AdS5, with a UV cutoff, and an IR
cutoff. Polchinski+Strassler

♠ It successfully exhibits confinement (trivially via IR cutoff), and power-like behavior in
hard scattering amplitudes

♠ It may be equipped with a bifundamental scalar, T , and U(Nf)L × U(Nf)R, gauge fields
to describe mesons. Erlich+Katz+Son+Stepanov, DaRold+Pomarol

Chiral symmetry is broken by hand, via IR boundary conditions. The low-lying meson

spectrum looks ”reasonable”.

41



♠ Shortcomings:

• The glueball spectrum does not fit very well the lattice calculations. It

has the wrong asymptotic behavior m2
n ∼ n2 at large n.

• Magnetic quarks are confined instead of screened.

• Chiral symmetry breaking is input by hand.

• The meson spectrum has also the wrong UV asymptotics m2
n ∼ n2.

• at finite temperature there is a deconfining transition but the equation

of state is trivial (conformal) (e-2p) and the speed of sound is c2s = 1
3.

A Holographic Approach to QCD, Elias Kiritsis

41-



The “soft wall”

♠ The asymptotic spectrum can be fixed by introducing a non-dynamical

dilaton profile Φ ∼ r2 (soft wall)
Karch+Katz+Son+Stephanov

• It is not a solution of equations of motion: the metric is still AdS: Neither
gµν nor Φ solves the equations of motion.

A Holographic Approach to QCD, Elias Kiritsis
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A string theory for QCD:basic expectations

• Pure SU(Nc) d=4 YM at large Nc is expected to be dual to a string

theory in 5 dimensions only. Essentially a single adjoint field → a single

extra dimension.

• The theory becomes asymptotically free and conformal at high energy →
we expect the classical saddle point solution to asymptote to AdS5.

♠ Operators with lowest dimension (or better: lowest bulk masses) are

expected to be the only important non-trivial bulk fields in the large-Nc

saddle-point

• Scalar YM operators with ∆UV > 4 → m2 > 0 fields near the AdS5

boundary → vanish fast in the UV regime and do not affect correlators of

low-dimension operators.

43



.

• Their dimension may grow large in the IR so they are also irrelevant

there. The large ’t Hooft coupling is expected to suppress the effects of

such operators.

• This is suggested by the success of low-energy SVZ sum rules as compared

to data.

• What are all gauge invariant YM operators of dimension 4 or less?

• They are given by Tr[FµνFρσ].

Decomposing into U(4) reps:

( ⊗ )symmetric = ⊕ (3)

We must remove traces to construct the irreducible representations of

O(4):

= ⊕ ⊕ • , = •
43-



The two singlets are the scalar (dilaton) and pseudoscalar (axion)

φ ↔ Tr[F2] , a ↔ Tr[F ∧ F ]

The traceless symmetric tensor

→ Tµν = Tr

[
F2

µν −
1

4
gµνF2

]

is the conserved stress tensor dual to a massless graviton in 5d reflecting

the translational symmetry of YM.

→ T4
µν;ρσ = Tr[FµνFρσ−1

2
(gµρF

2
νσ−gνρF

2
µσ−gµσF2

νρ+gνσF2
µρ)+

1

6
(gµρgνσ−gνρgµσ)F

2]

It has 10 independent d.o.f, it is not conserved and it should correspond

to a similar massive tensor in 5d. We do not expect it to play an non-trivial

role in the large-Nc, YM vacuum also for reasons of Lorentz invariance.

♠ Therefore we will consider

Tµν ↔ gµν, tr[F2] ↔ φ, tr[F ∧ F ] ↔ a

A Holographic Approach to QCD, Elias Kiritsis
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bosonic string or superstring? I

• The string theory must have no on-shell fermionic states at all because

there are no gauge invariant fermionic operators in pure YM. (even with

quarks modulo baryons).

• There is a direct argument that the axion, dual to the instanton density

F ∧ F must be a RR field (as in N = 4).

• Therefore the string theory must be a 5d-superstring theory resembling

the II-0 class.

♠ Another RR field we expect to have is the RR 4-form, as it is necessary

to “seed” the D3 branes responsible for the gauge group.

• It is non-propagating in 5D

• We will see later however that it is responsible for the non-trivial IR

structure of the gauge theory vacuum.

A Holographic Approach to QCD, Elias Kiritsis
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Bosonic string or superstring? II

• Consider the axion a dual to Tr[F ∧ F ]. We can show that it must come

from a RR sector.

In large-Nc YM, the proper scaling of couplings is obtained from

LY M = Nc Tr

[
1

λ
F2 +

θ

Nc
F ∧ F

]
, ζ ≡ θ

Nc
∼ O(1)

It can be shown
Witten

EY M(θ) ' C0 N2
c + C1θ2 + C2

θ4

N2
c

+ · · ·

In the string theory action

S ∼
∫

e−2φ [R + · · · ] + (∂a)2 + e2φ(∂a)4 + · · · , eφ ∼ g2
Y M , λ ∼ Nce

φ

∼
∫

N2
c

λ2 [R + · · · ] + (∂a)2 +
λ2

N2
c
(∂a)4 + · · · , a = θ[1 + · · · ]

RETURN

A Holographic Approach to QCD, Elias Kiritsis
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The minimal effective string theory spectrum

• NS-NS → gµν ↔ Tµν , Bµν ↔ Tr[F ]3 , φ ↔ Tr[F2]

• RR → Spinor5×Spinor5=F0 + F1 + F2 + (F3 + F4 + F5)

♠ F0 ↔ F5 → C4, background flux → no propagating degrees of freedom.

♠ F1 ↔ F4 → C3 ↔ C0: C0 is the axion, C3 its 5d dual that couples to
domain walls separating oblique confinement vacua.

♠ F2 ↔ F3 → C1 ↔ C2: They are associated with baryon number (as we
will see later when we add flavor). C2 mixes with B2 because of the C4
flux, and is massive.

• In an ISO(3,1) invariant vacuum solution, only gµν, φ, C0 = a can be
non-trivial.

ds2 = e2A(r)(dr2 + dx2
4) , a(r), φ(r)

A Holographic Approach to QCD, Elias Kiritsis
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The relevant “defects”

• Bµν → Fundamental string (F1). This is the QCD (glue) string: funda-

mental tension `2s ∼ O(1)

• Its dual B̃µ → NS0: Tension is O(N2
c ). It is an effective magnetic baryon

vertex binding Nc magnetic quarks.

• C5 → D4: Space filling flavor branes. They must be introduced in pairs:

D4 + D̄4 for charge neutrality/tadpole cancelation → gauge anomaly

cancelation in QCD.

• C4 → D3 branes generating the gauge symmetry.

47
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• C3 → D2 branes : domain walls separating different oblique confinement

vacua (where θk+1 = θk + 2π). Its tension is O(Nc)

• C2 → D1 branes: These are the magnetic strings:

(strings attached to magnetic quarks) with tension O(Nc)

• C1 → D0 branes. These are the baryon vertices: they bind Nc quarks,

and their tension is O(Nc).

Its instantonic source is the (solitonic) baryon in the string theory.

• C0 → D−1 branes: These are the Yang-Mills instantons.

A Holographic Approach to QCD, Elias Kiritsis
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The effective action, I

• as Nc →∞, only string tree-level is dominant.

• Relevant field for the vacuum solution: gµν, a, φ, F5.

• The vev of F5 ∼ Nc ε5. It appears always in the combination e2φF2
5 ∼ λ2,

with λ ∼ Nc eφ All higher derivative corrections (e2φF2
5 )n are O(1).

A non-trivial potential for the dilaton will be generated already at string

tree-level.

• This is not the case for all other RR fields: in particular for the axion as

a ∼ O(1)

(∂a)2 ∼ O(1) , e2φ(∂a)4 =
λ2

N2
c
(∂a)4 ∼ O

(
N−2

c

)

Therefore to leading order O(N2
c ) we can neglect the axion.

A Holographic Approach to QCD, Elias Kiritsis
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The UV regime

• In the far UV, the space should asymptote to AdS5.

• The ’t Hooft coupling should behave as (r → 0)

λ ∼ 1

log(rΛ)
+ · · · → 0 , r ∼ 1

E

The effective action to leading order in Nc is

Seff ∼
∫

d5x
√

g e−2φ Z( `2sR , `2s(∂φ)2 , e2φ`2sF2
5 )

Solving the equation of motion of F5 amounts to replacing

e2φ `2s F2
5 ∼ e2φN2

c ≡ λ2

Seff ∼ N2
c

∫
d5x

√
g

1

λ2
H( `2sR , `2s(∂λ)2 , λ2 )

49



• As r → 0

Curvature → finite , ¤φ ∼ (∂φ)2 ∼ (∂λ)2

λ2
∼ λ2 ∼ 1

log2(rΛ)
→ 0

• For λ → 0 the potential in the Einstein frame starts as V (λ) ∼ λ
4
3 and

cannot support the asymptotic AdS5 solution.

• Therefore asymptotic AdS5 must arise from curvature corrections:

Seff '
∫

d5x
1

λ2
H

(
`2s R,0,0

)

• Setting λ = 0 at leading order we can generically get an AdS5 solution

coming from balancing the higher curvature corrections.

INTERESTING QUESTION: Is there a good toy example of string vacuum (CFT)

which is not Ricci flat, and is supported only by a metric?

49-



• There is a ”good” (but hard to derive the coefficients) perturbative
expansion around this asymptotic AdS5 solution by perturbing inwards :

eA =
`

r
[1 + δA(r)] , λ =

1

b0 log(rΛ)
+ · · ·

• This turns out to be a regular expansion of the solution in powers of

Pn(log log(rΛ))

(log(rΛ))−n

• Effectively this can be rearranged as a “perturbative” expansion in λ(r).
In the case of running coupling, the radial coordinate can be substituted by
λ(r).

• Using λ as a radial coordinate the solution for the metric can be written

E ≡ eA =
`

r(λ)

[
1 + c1λ + c2λ2 + · · ·

]
= ` (e−

b0
λ )

[
1 + c′1λ + c′2λ2 + · · ·

]
, λ → 0

49-



.

Conclusion 1: The asymptotic AdS5 is stringy, but the rest of the ge-

ometry is ”perturbative around the asymptotics”. We cannot however do

computations even if we know the structure.

Conclusion 2: It has been a mystery how can one get free field theory at the

boundary. This is automatic here since all non-trivial connected correlators

are proportional to positive powers of λ that vanishes in the UV.

A Holographic Approach to QCD, Elias Kiritsis
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The IR regime

• Here the situation is more obscure. The constraints/input will be: con-
finement, discreteness of the spectrum and mass gap.

• We do expect that λ →∞ (or becomes large) at the IR bottom.

• Intuition from N=4 and other 10d strongly coupled theories suggests that
in this regime there should be an (approximate) two-derivative description
of the physics.

• The simplest solution with this property is the linear dilaton solution with

λ ∼ eQr , V (λ) ∼ δc = 10−D → constant , R = 0

• This property persists with potentials V (λ) ∼ (logλ)P . Moreover all such
cases have confinement, a mass gap and a discrete spectrum (except the
P=0 case).

• At the IR bottom (in the string frame) the scale factor vanishes, and 5D
space becomes (asymptotically) flat.

A Holographic Approach to QCD, Elias Kiritsis
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Comments on confining backgrounds

• For all confining backgrounds with r0 = ∞, although the space-time is

singular in the Einstein frame, the string frame geometry is asymptotically

flat for large r. Therefore only λ grows indefinitely.

• String world-sheets do not probe the strong coupling region, at least

classically. The string stays away from the strong coupling region.

• Therefore: singular confining backgrounds have generically the property

that the singularity is repulsive, i.e. only highly excited states can probe it. This

will also be reflected in the analysis of the particle spectrum (to be presented later)

• The confining backgrounds must also screen magnetic color charges.

This can be checked by calculating ’t Hooft loops using D1 probes:

♠ All confining backgrounds with r0 = ∞ and most at finite r0 screen properly

♠ In particular “hard-wall” AdS/QCD confines also the magnetic quarks.

A Holographic Approach to QCD, Elias Kiritsis
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Organizing the vacuum solutions

A useful variable is the phase variable

X ≡ Φ′

3A′
=

β(λ)

3λ
, eΦ ≡ λ

and a superpotential

W2 −
(
3

4

)2 (
∂W

∂Φ

)2
=

(
3

4

)3
V (Φ).

with

A′ = −4

9
W , Φ′ = dW

dΦ

X = −3

4

d logW

d logλ
, β(λ) = −9

4
λ

d logW

d logλ

♠ The equations have three integration constants: (two for Φ and one for A) One

corresponds to the “gluon condensate” in the UV. It must be set to zero otherwise the IR

behavior is unacceptable. The other is Λ. The third one is a gauge artifact (corresponds

to overall translation in the radial coordinate).

A Holographic Approach to QCD, Elias Kiritsis
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The IR regime

For any asymptotically AdS5 solution (eA ∼ `
r):

• The scale factor eA(r) is monotonically decreasing
Girardelo+Petrini+Porrati+Zaffaroni

Freedman+Gubser+Pilch+Warner

• Moreover, there are only three possible, mutually exclusive IR asymp-

totics:

♠ there is another asymptotic AdS5 region, at r →∞, where expA(r) ∼ `′/r,

and `′ ≤ ` (equality holds if and only if the space is exactly AdS5 everywhere);

♠ there is a curvature singularity at some finite value of the radial coordi-

nate, r = r0;

♠ there is a curvature singularity at r →∞, where the scale factor vanishes

and the space-time shrinks to zero size.

A Holographic Approach to QCD, Elias Kiritsis

53



Wilson-Loops and confinement

• Calculation of the static quark potential using the vev of the Wilson loop
calculated via an F-string worldsheet.

Rey+Yee, Maldacena

T E(L) = Sminimal(X)

We calculate

L = 2
∫ r0

0
dr

1√
e4AS(r)−4AS(r0) − 1

.

It diverges when eAs has a minimum (at r = r∗). Then

E(L) ∼ Tf e2AS(r∗) L

• Confinement → As(r∗) is finite. This is a more general condition that
considered before as AS is not monotonic in general.

• Effective string tension

Tstring = Tf e2AS(r∗)

A Holographic Approach to QCD, Elias Kiritsis
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General criterion for confinement

• the geometric version:
A geometry that shrinks to zero size in the IR is dual to a confining 4D
theory if and only if the Einstein metric in conformal coordinates vanishes
as (or faster than) e−Cr as r →∞, for some C > 0.

• It is understood here that a metric vanishing at finite r = r0 also satisfies
the above condition.

♠ the superpotential

A 5D background is dual to a confining theory if the superpotential grows
as (or faster than)

W ∼ (logλ)P/2λ2/3 as λ →∞ , P ≥ 0

♠ the β-function A 5D background is dual to a confining theory if and only
if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system) Linear trajectories correspond to K = − 3
16
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Classification of confining superpotentials

Classification of confining superpotentials W (λ) as λ →∞ in IR:

W (λ) ∼ (logλ)
P
2 λQ , λ ∼ E−

9
4Q

(
log

1

E

) P
2Q

, E → 0.

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at finite r = r0.

eA(r) ∼
{

(r0 − r)
4

9Q2−4 Q > 2
3

exp
[
− C

(r0−r)1/(P−1)

]
Q = 2

3

• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞ The scale factor
eA vanishes there as

eA(r) ∼ exp[−Cr1/(1−P )].

• Q = 2/3, P = 1 leads to confinement but the singularity may be at a finite or infinite
value of r depending on subleading asymptotics of the superpotential.

♠ If Q < 2
√

2/3, no ad hoc boundary conditions are needed to determine the glueball spec-
trum → One-to-one correspondence with the β-function This is unlike standard AdS/QCD
and other approaches.

• when Q > 2
√

2/3, the spectrum is not well defined without extra boundary conditions in
the IR because both solutions to the mass eigenvalue equation are IR normalizable.

A Holographic Approach to QCD, Elias Kiritsis
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Confining β-functions

A 5D background is dual to a confining theory if and only if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system). Linear trajectories correspond to K =

− 3
16

• We can determine the geometry if we specify K:

• K = −∞: the scale factor goes to zero at some finite r0, not faster than a power-law.

• −∞ < K < −3/8: the scale factor goes to zero at some finite r0 faster than any power-
law.

• −3/8 < K < 0: the scale factor goes to zero as r →∞ faster than e−Cr1+ε

for some ε > 0.

• K = 0: the scale factor goes to zero as r →∞ as e−Cr (or faster), but slower than e−Cr1+ε

for any ε > 0.

The borderline case, K = −3/8, is certainly confining (by continuity), but whether or not

the singularity is at finite r depends on the subleading terms.

A Holographic Approach to QCD, Elias Kiritsis
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Particle Spectra: generalities

• Linearized equation:

ξ̈ + 2Ḃξ̇ + ¤4ξ = 0 , ξ(r, x) = ξ(r)ξ(4)(x), ¤ξ(4)(x) = m2ξ(4)(x)

• Can be mapped to Schrodinger problem

− d2

dr2
ψ + V (r)ψ = m2ψ , V (r) =

d2B

dr2
+

(
dB

dr

)2
, ξ(r) = e−B(r)ψ(r)

• Mass gap and discrete spectrum visible from the asymptotics of the

potential.

• Large n asymptotics of masses obtained from WKB

nπ =
∫ r2

r1

√
m2 − V (r) dr

• Spectrum depends only on initial condition for λ (∼ ΛQCD) and an overall

energy scale (eA) that must be fixed.

A Holographic Approach to QCD, Elias Kiritsis
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• scalar glueballs

B(r) =
3

2
A(r) +

1

2
log

β(λ)2

9λ2

• tensor glueballs

B(r) =
3

2
A(r)

• pseudo-scalar glueballs

B(r) =
3

2
A(r) +

1

2
logZ(λ)

• Universality of asymptotics

m2
n→∞(0++)

m2
n→∞(2++)

→ 1 ,
m2

n→∞(0+−)

m2
n→∞(0++)

=
1

4
(d− 2)2

predicts d = 4 via

m2

2πσa
= 2n + J + c,

A Holographic Approach to QCD, Elias Kiritsis
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Adding flavor

• To add Nf quarks qI
L and antiquarks qĪ

R we must add (in 5d) space-filling
Nf D4 and Nf D̄4 branes.
(tadpole cancellation=gauge anomaly cancellation)

• The qI
L should be the “zero modes” of the D3 −D4 strings while qĪ

R are
the “zero modes” of the D3 − D̄4

• The low-lying fields on the D4 branes (D4−D4 strings) are U(Nf)L gauge
fields AL

µ. The low-lying fields on the D̄4 branes (D̄4 − D̄4 strings) are
U(Nf)R gauge fields AR

µ . They are dual to the J
µ
L and JR

µ

δSA ∼ q̄I
L γµ (AL

µ)
IJ

qJ
L + q̄Ī

R γµ (AR
µ )

ĪJ̄
qJ̄
R = Tr[Jµ

L AL
µ + J

µ
R AR

µ ]

• There are also the low lying fields of the (D4 − D̄4 strings), essentially
the string-theory “tachyon” TIJ̄ transforming as (Nf , N̄f) under the chiral
symmetry U(Nf)L × U(Nf)R. It is dual to the quark mass terms

δST ∼ q̄I
L TIJ̄ qJ̄

R + complex congugate
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• The interactions on the flavor branes are weak, so that A
L,R
µ , T are as

sources for the quarks.

• Integrating out the quarks, generates an effective action Sflavor(A
L,R
µ , T ),

so that A
L,R
µ , T can be thought as effective qq̄ composites, that is : mesons

• On the string theory side: integrating out D3 −D4 and D3 − D̄4 strings

gives rise to the DBI action for the D4 − D̄4 branes in the D3 background:

Sflavor(A
L,R
µ , T ) ←→ SDBI(A

L,R
µ , T ) holographically

• In the ”vacuum” only T can have a non-trivial profile: T IJ̄(r). Near the

AdS5 boundary (r → 0)

T IJ̄(r) = MIJ̄ r + · · ·+ 〈q̄I
L qJ̄

R〉r3 + · · ·

Casero+Kiritsis+Paredes
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• A typical solution is T vanishing in the UV and T → ∞ in the IR. At the point r = r∗
where T = ∞, the D4 and D̄4 branes “fuse”. The true vacuum is a brane that enters folds
on itself and goes back to the boundary. A non-zero T breaks chiral symmetry.

• A GOR relation is satisfied (for an asymptotic AdS5 space)

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• We can derive formulae for the anomalous divergences of flavor currents, when they
are coupled to an external source.

• When mq = 0, the meson spectrum contains N2
f massless pseudoscalars, the U(Nf)A

Goldstone bosons.

• The WZ part of the flavor brane action gives the Adler-Bell-Jackiw U(1)A axial anomaly

and an associated Stuckelberg mechanism gives an O
(

Nf

Nc

)
mass to the would-be Goldstone

boson η′, in accordance with the Veneziano-Witten formula.

• Fluctuations around the T solution for T, AL,R
µ give the spectra (and interactions) of

various meson trajectories.

• Studying the spectrum of highly excited mesons, we find the expected property of linear

confinement: m2
n ∼ n.

• The detailed spectrum of mesons remains to be worked out

A Holographic Approach to QCD, Elias Kiritsis
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Quarks (Nf ¿ Nc) and mesons

• Flavor is introduced by Nf D4 + D̄4 branes pairs inside the bulk back-

ground. Their back-reaction on the bulk geometry is suppressed by Nf/Nc.

• The important world-volume fields are

Tij ↔ q̄i
a
1 + γ5

2
qj
a , Aij

µ
L,R ↔ q̄i

a
1± γ5

2
γµqj

a

Generating the U(Nf)L × U(Nf)R chiral symmetry.

• The UV mass matrix mij corresponds to the source term of the Tachyon

field. It breaks the chiral (gauge) symmetry. The normalizable mode cor-

responds to the vev 〈q̄i
a
1+γ5

2 q
j
a〉.

• We show that the expectation value of the tachyon is non-zero and T ∼ 1,

breaking chiral symmetry SU(Nf)L × SU(Nf)R → SU(Nf)V . The anomaly

plays an important role in this (holographic Coleman-Witten)

A Holographic Approach to QCD, Elias Kiritsis
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• The fact that the tachyon diverges in the IR (fusing D with D̄) constraints the UV

asymptotics and determines the quark condensate 〈q̄q〉 in terms of mq. A GOR relation is

satisfied (for an asymptotic AdS5 space)

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• We can derive formulae for the anomalous divergences of flavor currents, when they are
coupled to an external source.

• When mq = 0, the meson spectrum contains N2
f massless pseudoscalars, the U(Nf)A

Goldstone bosons.

• The WZ part of the flavor brane action gives the Adler-Bell-Jackiw U(1)A axial anomaly

and an associated Stuckelberg mechanism gives an O
(

Nf

Nc

)
mass to the would-be Goldstone

boson η′, in accordance with the Veneziano-Witten formula.

• Studying the spectrum of highly excited mesons, we find the expected property of linear

confinement: m2
n ∼ n.

• The detailed spectrum of mesons remains to be worked out

A Holographic Approach to QCD, Elias Kiritsis
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Tachyon dynamics

• In the vacuum the gauge fields vanish and T ∼ 1. Only DBI survives

S[τ ] = TD4

∫
drd4x

e4As(r)

λ
V (τ)

√
e2As(r) + τ̇(r)2 , V (τ) = e−

µ2

2 τ2

• We obtain the nonlinear field equation:

τ̈ +

(
3ȦS −

λ̇

λ

)
τ̇ + e2ASµ2τ + e−2AS

[
4ȦS −

λ̇

λ

]
τ̇3 + µ2τ τ̇2 = 0.

• In the UV we expect

τ = mq r + σ r3 + · · · , µ2`2 = 3

• We expect that the tachyon must diverge before or at r = r0. We find
that indeed it does at the singularity. For the r0 = ∞ backgrounds

τ ∼ exp
[
2

a

R

`2
r

]
as r →∞
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• Generically the solutions have spurious singularities: τ(r∗) stays finite but

its derivatives diverges as:

τ ∼ τ∗ + γ
√

r∗ − r.

The condition that they are absent determines σ as a function of mq.

• The easiest spectrum to analyze is that of vector mesons. We find

(r0 = ∞)

Λglueballs =
1

R
, Λmesons =

3

`

(
α`2

2R2

)(α−1)/2

∝ 1

R

(
`

R

)α−2
.

This suggests that α = 2. preferred also from the glue sector.

A Holographic Approach to QCD, Elias Kiritsis
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The axion background

• The axion solution can be interpreted as a ”running” θ-angle

• This is in accordance with the absence of UV divergences and Seiberg-
Witten type solutions.

• The axion action is down by 1/N2
c

Saxion = −M3
p

2

∫
d5x

√
g Z(λ) (∂a)2

lim
λ→0

Z(λ) = Z0

[
1 + c1λ + c2λ2 + · · ·

]
, lim

λ→∞
Z(λ) = caλ4 + · · ·

• The equation of motion is

ä +

(
3Ȧ +

Ż(λ)

Z(λ)

)
ȧ = 0 → ȧ =

C e−3A

Z(λ)

• The full solution is

a(r) = θUV + 2πk + C
∫ r

0
dr

e−3A

Z(λ)
, C = 〈Tr[F ∧ F ]〉
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• a(r) is a running effective θ-angle. Its running is non-perturbative,

a(r) ∼ r4 ∼ e
− 4

b0λ

• The vacuum energy is

E(θUV ) = − M3

2N2
c

∫
d5x

√
g Z(λ) (∂a)2 = − M3

2N2
c

Ca(r)
∣∣∣∣
r=r0

r=0

• Consistency requires to impose that a(r0) = 0. This determines C and

E(θUV ) =
M3

2
Mink

(θUV + 2πk)2
∫ r0
0

dr
e3AZ(λ)

a(r)

θUV + 2πk
=

∫ r0
r

dr
e3AZ(λ)∫ r0

0
dr

e3AZ(λ)

• The topological susceptibility is given by

E(θ) =
1

2
χ θ2 +O(θ4) , χ =

M3
p∫ r0

0
dr

e3AZ(λ)
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We take: Z(λ) = Z0(1 + caλ4)
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An assessment of IR asymptotics

• We define the superpotential W as

V (λ) =
4

3
λ2

(
dW

dλ

)2
+

64

27
W2

• We parameterize the UV (λ → 0) and IR asymptotics (λ →∞) as

V (λ) =
12

`2
[1 +O(λ)] , V (λ) ∼ V∞λQ(logλ)P

• All confining solutions have an IR singularity.

There are three types of solution for W :

• The ”Good type” (single solution)

W (λ) ∼ (logλ)
P
2 λ

Q
2

It leads to a ”good” IR singularity, confinement, a mass gap, discrete

spectrum of glueballs and screening of magnetic charges if

8

3
> Q >

4

3
or Q =

4

3
and P > 0

.
65



• The asymptotic spectrum of glueballs is linear if Q = 4
3 and P = 1

2.

• The Bad type. This is a one parameter family of solutions with

W (λ) ∼ λ
4
3

It has a bad IR singularity.

♠ The Ugly type. This is a one parameter family of solutions. In such
solutions there are two branches but they never reach the IR λ → ∞.
Instead λ goes back to zero

0 10 20 30 40
Λ

10

20

30

40

WHΛL
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Selecting the IR asymptotics

The Q = 4/3, 0 ≤ P < 1 solutions have a singularity at r = ∞. They
are compatible with

• Confinement (it happens non-trivially: a minimum in the string frame scale factor )

• Mass gap+discrete spectrum (except P=0)

• good singularity

• R → 0 justifying the original assumption. More precisely: the string frame metric

becomes flat at the IR .

♠ It is interesting that the lower endpoint: P=0 corresponds to linear
dilaton and flat space (string frame). It is confining with a mass gap but
continuous spectrum.

• For linear asymptotic trajectories for fluctuations (glueballs) we must
choose P = 1/2

V (λ) =∼ λ
4
3
√

logλ + subleading as λ →∞

A Holographic Approach to QCD, Elias Kiritsis
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Concrete potential

• The superpotential chosen is

W = (3 + 2b0λ)2/3
[
18 +

(
2b20 + 3b1

)
log(1 + λ2)

]4/3
,

with corresponding potential

β(λ) = − 3b0λ2

3 + 2b0λ
− 6(2b20 + 3b21)λ

3

(1 + λ2)
(
18 +

(
2b20 + 3b21

)
log(1 + λ2)

)

which is everywhere regular and has the correct UV and IR asymptotics.

• b0 is a free parameter and b1/b20 is taken from the QCD β-function

A Holographic Approach to QCD, Elias Kiritsis
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The fit to glueball lattice data

JPC Ref I (MeV) Our model (MeV) Mismatch Nc →∞ Mismatch

0++ 1475 (4%) 1475 0 1475 0

2++ 2150 (5%) 2055 4% 2153 (10%) 5%

0−+ 2250 (4%) 2243 0

0++∗ 2755 (4%) 2753 0 2814 (12%) 2%

2++∗ 2880 (5%) 2991 4%

0−+∗ 3370 (4%) 3288 2%

0++∗∗ 3370 (4%) 3561 5%

0++∗∗∗ 3990 (5%) 4253 6%

Comparison between the glueball spectra in Ref. I and in our model. The

states we use as input in our fit are marked in red. The parenthesis in the

lattice data indicate the percent accuracy.

A Holographic Approach to QCD, Elias Kiritsis
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The glueball wavefunctions

r@m0D 20 r@LD 40 60

r
�����
l

Ψ@rD

Normalized wave-function profiles for the ground states of the 0++ (solid

line) ,0−+ (dashed line), and 2++ (dotted line) towers, as a function of

the radial conformal coordinate. The vertical lines represent the position

corresponding to E = m0++ and E = Λp.
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Comparison of scalar and tensor potential

5 10 15 20
r

0.5

1

1.5

2

V@rD

Effective Schrödinger potentials for scalar (solid line) and tensor (dashed

line) glueballs. The units are chosen such that ` = 0.5.
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The lattice glueball data

Available lattice data for the scalar and the tensor glueballs. Ref. I =H. B. Meyer, [arXiv:hep-lat/0508002].

and Ref. II = C. J. Morningstar and M. J. Peardon, [arXiv:hep-lat/9901004] + Y. Chen et al., [arXiv:hep-

lat/0510074]. The first error corresponds to the statistical error from the the continuum extrapolation. The

second error in Ref.I is due to the uncertainty in the string tension
√

σ. (Note that this does not affect

the mass ratios). The second error in the Ref. II is the estimated uncertainty from the anisotropy. In the

last column we present the available large Nc estimates according to B. Lucini and M. Teper, [arXiv:hep-

lat/0103027]. The parenthesis in this column shows the total possible error followed by the estimations in

the same reference.

A Holographic Approach to QCD, Elias Kiritsis
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α-dependence of scalar spectrum
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The 0++ spectra for varying values of α that are shown at the right end

of the plot. The symbol * denotes the AdS/QCD result.
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The free energy

• The free energy is calculated from the action as a boundary term for
both the black-holes and the thermal vacuum solution. They are all UV
divergent but their differences are finite.

F
M3

p V3
= 12G(T )− T S(T )

• G is the temperature-depended gluon condensate 〈Tr[F2]〉T −〈Tr[F2]〉T=0
defined as

lim
r→0

λT (r)− λT=0(r) = G(T ) r4 + · · ·

• It is G the breaks conformal invariance essentially and leads to a non-trivial
deconfining transition (as S > 0 always)

• The axion solution must be constant above the phase transition (black-
hole). Therefore 〈F ∧ F 〉 vanishes.

A Holographic Approach to QCD, Elias Kiritsis
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Free energy versus horizon position

Α>1

Α£1

r_minr_c
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-0.4

-0.3

-0.2

-0.1

0.1

F

We plot the relation F(rh) for various potentials parameterized by a. a = 1

is the critical value below which there is no first order phase transition .
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The transition in the free energy
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Linearity of the glueball spectrum
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(a) (b)

(a) Linear pattern in the spectrum for the first 40 0++ glueball states. M2

is shown units of 0.015`−2.

(b) The first 8 0++ (squares) and the 2++ (triangles) glueballs. These

spectra are obtained in the background I with b0 = 4.2, λ0 = 0.05.
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Comparison with lattice data (Meyer)
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Comparison of glueball spectra from our model with b0 = 4.2, λ0 = 0.05

(boxes), with the lattice QCD data from Ref. I (crosses) and the AdS/QCD

computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The

masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. I.
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The specific heat
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Parameters

• We have 3 initial conditions in the system of graviton-dilaton equations:

♠ One is fixed by picking the branch that corresponds asymptotically to

λ ∼ 1
log(rΛ)

♠ The other fixes Λ → ΛQCD.

♠ The third is a gauge artifact as it corresponds to a choice of the origin

of the radial coordinate.

• We parameterize the potential as

V (λ) =
12

`2

{
1 + V0λ + V1λ4/3

[
log

(
1 + V2λ4/3 + V3λ2

)]1/2
}

,

• We fix the one and two loop β-function coefficients:

V0 =
8

9
b0 , V2 = b40

(
23 + 36b1/b20

81V 2
1

)2

,
b1

b20
=

51

121
.

and remain with two leftover arbitrary (phenomenological) coefficients.
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• We also have the Planck scale Mp

Asking for correct T →∞ thermodynamics (free gas) fixes

(Mp`)
3 =

1

45π2
, Mphysical = MpN

2
3
c =

(
8

45π2`3

)1
3 ' 4.6 GeV

• The fundamental string scale. It can be fixed by comparing with lattice

string tension

σ =
b2(r∗)λ4/3(r∗)

2π`2s
,

`/`s ∼ O(1).

• ` is not a parameter but a unit of length.
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The sum rule method (details)

ζ =
1

9
lim
ω→0

1

ω

∫ ∞

0
dt

∫
d3x eiωt〈[Tii(~x, t), Tjj(~0,0)]〉

We use

〈[
∫

d3xT00(~x,0), O]〉equ = 〈[H, O]〉equ = i〈∂O

∂t
〉equ = 0

and rewrite

ζ =
1

9
lim
ω→0

1

ω

∫ ∞

0
dt

∫
d3x eiωt〈[Θ(~x, t),Θ(~0,0)]〉 , Θ = Tµ

µ

ζ = lim
ω→0

1

9ω

∫
dt

∫
d3x eiωt iGR(x) = lim

ω→0

1

9ω
iGR(ω) = − lim

ω→0

1

9ω
Im GR(ω)

We now use

Θ = mq̄q +
β(g)

2g
Tr[F 2] = ΘF + ΘG

We also use

〈[Θ, O]〉 =

(
T

∂

∂T
− d

)
〈O〉

RETURN
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The transport coefficients

ζ
s → Bulk viscosity.

v2
s → Speed of sound

2πTD → Diffusion coefficient

σ
πT → DC conductivity

Ξ
2π2T2 → Charge susceptibility

RETURN
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Diffusion times in different schemes

TQGP , MeV τcharm (fm/c) τcharm (fm/c) τcharm (fm/c )

(direct) (energy) (entropy)

220 - 3.96 3.64

250 5.67 3.14 2.96

280 4.27 2.56 2.47

310 3.45 2.12 2.08

340 2.88 1.80 1.78

370 2.45 1.54 1.53

400 2.11 1.33 1.34

The diffusion times for the charm quark are shown for different temperatures, in the

three different schemes. Diffusion times have been evaluated with a quark initial

momentum fixed at p ≈ 10 GeV .

Gursoy+Kiritsis+Michalogiorgakis+Nitti, 2009
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.

TQGP (MeV ) τbottom (fm/c) τbottom (fm/c) τbottom (fm/c)

(direct) (energy) (entropy)

220 - 8.90 8.36

250 11.39 7.46 7.12

280 10.11 6.32 6.14

310 8.62 5.40 5.32

340 7.50 4.70 4.65

370 6.63 4.10 4.09

400 5.78 3.61 3.63

Diffusion times for the bottom quark are shown for different temperatures, in the three

different schemes. Diffusion times have been evaluated with a quark initial momentum

fixed at p ≈ 10 GeV .
Gursoy+Kiritsis+Michalogiorgakis+Nitti, 2009
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