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Abstract We provide a review to holographic models based on Einstein-dilaton
gravity with a potential in five dimensions. Such theories, for a judicious choice
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4.1 Introduction

The experimental efforts at RHIC [1–4] have provided a novel window in the
physics of the strong interactions. The consensus on the existing data is that shortly
after the collision, a ball of quark–gluon plasma (QGP) forms that is at thermal
equilibrium, and subsequently expands until its temperature falls below the QCD
transition (or crossover) where it finally hadronizes. Relativistic hydrodynamics
describes very well the QGP [5], with a shear-viscosity to entropy density ratio
close to that of N ¼ 4 SYM [6, 7]. The QGP is at strong coupling, and it neces-
sitates a treatment beyond perturbative QCD approaches, [8–10]. Moreover,
although the shear viscosity from N ¼ 4 seems to be close to that ‘‘measured’’ by
experiment, lattice data indicate that in the relevant RHIC range 1� T

Tc
� 3 the

QGP seems not to be a fully conformal fluid. Therefore the bulk viscosity may play
a role near the phase transition [11–13]. The lattice techniques have been suc-
cessfully used to study the thermal behavior of QCD, however they are not easily
extended to the computation of hydrodynamic quantities. They can be used how-
ever, together with parametrizations of correlators in order to pin down parameters
[12, 13]. On the other hand, approaches based on holography have the potential to
address directly the real-time strong coupling physics relevant for experiment.

In the bottom-up holographic model of AdS/QCD [14, 15], the bulk viscosity is
zero as conformal invariance is essentially not broken (the stress tensor is trace-
less). In the soft-wall model [16], no reliable calculation can be done for glue
correlators and therefore transport coefficients are ill-defined. Similar remarks hold
for other phenomenologically interesting observables as the drag force and the jet
quenching parameter [17–21].

Top-down holographic models of QCD displaying all relevant features of the
theory have been difficult to obtain. Bottom-up models based on AdS slices [22]
have given some insights mostly in the meson sector [14, 15] but necessarily lack
many important holographic features of QCD. A hybrid approach has been advo-
cated [23–25] combining features of bottom-up and top-down models. An similar
approach was proposed independently in [26]. Such an approach, called Improved
Holographic QCD (or IHQCD for short) is essentially a five-dimensional dilaton-
gravity system with a non-trivial dilaton potential. Flavor can be eventually added
in the form of Nf space-time filling D4� D4 brane pairs, supporting UðNf ÞL �
UðNf ÞR gauge fields and a bi-fundamental scalar [27]. The UV asymptotics of the
potential are fixed by QCD perturbation theory, while the IR asymptotics of the
potential can be fixed by confinement and linear glueball asymptotics. An analysis
of the finite temperature behavior [28, 29] has shown that the phase structure is
exactly what one would expect from YM. A potential with a single free parameter
tuned to match the zero temperature glueball spectrum was able to agree with the
thermodynamic behavior of glue to a good degree [28]. Similar results, but with
somewhat different potentials were also obtained in [26, 30].

In [26, 28, 29] it was shown that Einstein-dilaton gravity with a strictly monotonic
dilaton potential that grows sufficiently fast, generically shares the same phase
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structure and thermodynamics of finite-temperature pure Yang–Mills theory at large
Nc. There is a deconfinement phase transition (dual to a Hawking-Page phase tran-
sition between a black hole and thermal gas background on the gravity side), which is
generically first order. The latent heat scales as N2

c . In the deconfined gluon-plasma
phase, the free energy slowly approaches that of a free gluon gas at high temperature,
and the speed of sound starts from a small value at Tc and approaches the conformal
value c2

s ¼ 1=3 as the temperature increases. The deviation from conformal invari-
ance is strongest at Tc, and is signaled by the presence of a non-trivial gluon con-
densate, which on the gravity side emerges as a deviation of the scalar solution that
behaves asymptotically as r4 close to the UV boundary. In the CP-violating sector,
the topological vacuum density TrF~F has zero expectation value in the deconfined
phase, in agreement with lattice results [31] and large-Nc expectations.

The analysis performed in [29] was completely general and did not rely on any
specific form of the dilaton potential VðkÞ. A detailed analysis of an explicit model
in [32] shows that the thermodynamics matches quantitatively the thermodynamics
of pure Yang–Mills theory. The (dimensionless) free energy, entropy density, latent
heat and speed of sound, obtained on the gravity side by numerical integration of the
5D field equations, can be compared with the corresponding quantities, calculated
on the lattice for pure Yang–Mills at finite-T , resulting in excellent agreement, for
the temperature range that is accessible by lattice techniques. The same model also
shows a good agreement with the lattice calculation of glueball mass ratios at zero
temperature, and the value of the deconfining critical temperature (in units of the
lowest glueball mass) is also in good agreement with the lattice results.

In short, the model we present gives a good phenomenological holographic
description of most static properties1 (spectrum and equilibrium thermodynamics)
of large-Nc pure Yang–Mills, as computed on the lattice, for energies up to several
times Tc. Thus it constitutes a good starting point for the computation of dynamical
observables in a realistic holographic dual to QCD (as opposed to e.g. N ¼ 4
SYM), such as transport coefficients and other hydrodynamic properties that are
not easily accessible by lattice techniques, at energies and temperatures relevant
for relativistic heavy-ion collision experiments. We will report on such a calcu-
lation in the near future.

The vacuum solution in this model is described in terms of two basic bulk
fields, the metric and the dilaton. These are not the only bulk fields however, as the
bulk theory is expected to have an a priori infinite number of fields, dual to all
possible YM operators. In particular we know from the string theory side that there
are a few other low mass fields, namely the RR axion (dual to the QCD h-angle)
the NSNS and RR two forms B2 and C2 as well as other higher-level fields. With
the exception of the RR axion, such fields are dual to higher-dimension and/or
higher-spin operators of YM. Again, with the exception of the RR axion, they are
not expected to play an important role into the structure of the vacuum and this is

1 There are very few observables also that are not in agreement with YM. They are discussed in
detail in [25].
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why we neglect them when we solve the equations of motion. However, they are
going to generate several new towers of glueball states beyond those that we
discuss in this paper (namely the 0þþ glueballs associated to dilaton fluctuations,
2þþ glueballs associated to graviton fluctuations and 0�þ glueballs associated to
RR axion fluctuations). Such fields can be included in the effective action and the
associated glueball spectra calculated. Since we do not know the detailed structure
of the associated string theory, their effective action will depend on more semi-
phenomenological functions like ZðkÞ in (4.45). These functions can again be
determined in a way similar to ZðkÞ. In particular including the B2 and C2 field will
provide 1þ� glueballs among others. Fields with spin greater than 2 are necessarily
stringy in origin. We will not deal further with extra fields, like B2 and C2 and
other as they are not particularly relevant for the purposes of this model, namely
the study of finite temperature physics in the deconfined case. We will only
consider the axion, as its physics is related to the CP-odd sector of YM with an
obvious phenomenological importance.

It is well documented that string theory duals of YM must have strong cur-
vatures in the UV regime. This has been explained in detail in [25] where it was
also argued, that although the asymptotic AdS boundary geometry is due to the
curvature non-linearities of the associated string theory, the inwards geometry is
perturbative around AdS, with logarithmic corrections, generating the YM per-
turbation theory. The present model is constructed so that it takes the asymptotic
AdS geometry for granted, by introducing the associated vacuum energy by hand,
and simulates the perturbative YM expansion by an appropriate dilaton potential.
In the IR, we do not expect strong curvatures in the string frame, and indeed the
preferred backgrounds have this property. In this sense the model contains in itself
the relevant expected effects that should arise from strong curvatures in all
regimes. These issues have been explained in [23, 24] and in more detail in [25].

A different and interesting direction is the use of such models to study the
expansion of the plasma and the associated dynamics. Such a context is similar to
what happens on cosmology, especially the one related to the Randall–Sundrum
setup. Indeed in this case the expansion can be found by following the geodesic
motion of probe branes in the relevant background [33–36]. This generalizes to
more complicated backgrounds [36] like the ones studied here.

Once we have a holographic model we trust, we should calculate observables ,
like transport coefficients that are hard to calculate on the lattice. A first class of
transport coefficients are viscosity coefficients.2 A general fluid is characterized by
two viscosity coefficients, the shear g and the bulk viscosity f. The shear viscosity
in strongly coupled theories described by gravity duals was shown to be universal
[6, 7]. In particular, the ratio g=s, with s the entropy density, is equal to 1

4p. This is
correlated to the universality of low-energy scattering of gravitons from black

2 These are the leading transport coefficients in the derivative expansion. There are subleading
coefficients that have been calculated recently forN ¼ 4 SYM [37, 38]. However, at the present
level of accuracy, they cannot affect substantially the comparison to experimental data [5].
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holes. It is also known that deviations from this value can only be generated by
higher curvature terms that contain the Riemann tensor (as opposed to the Ricci
tensor of the scalar curvature). In QCD, as the theory is strongly coupled in the
temperature range Tc� T � 3Tc, we would expect that g=s ’ 1

4p. Recent lattice
calculations [39] agree with this expectations although potential systematic errors
in lattice calculations of transport coefficients can be large.

Conformal invariance forces the bulk viscosity to vanish. Therefore the N ¼ 4
SYM plasma, being a conformal fluid, has vanishing bulk viscosity. QCD on the
other hand is not a conformal theory. The classical theory is however conformally
invariant and asymptotic freedom implies that conformal invariance is a good
approximation in the UV. This would suggest that the bulk viscosity to entropy
ratio is negligible at large temperatures. However it is not expected to be so in the
IR: as mentioned earlier lattice data indicate that in the relevant RHIC range
1� T

Tc
� 3 the QGP seems not to be a fully conformal fluid. Therefore the bulk

viscosity may play a role near the phase transition.
So far there have been two approaches that have calculated the bulk viscosity in

YM/QCD [12, 40–43] and have both indicated that the bulk viscosity rises near the
phase transition as naive expectation would suggest. The first used the method of sum
rules in conjunction with input from Lattice thermodynamics [40–43]. It suggested a
dramatic rise of the bulk viscosity near Tc although the absolute normalization of the
result is uncertain. The reason is that this method relies on an ansatz for the density
associated with stress-tensor two point functions that are otherwise unknown.

The second method [12] relies on a direct computation of the density at low
frequency of the appropriate stress-tensor two-point function. As this computation
is necessarily Euclidean, an analytic continuation is necessary. The values at a
finite number of discrete Matsubara frequencies are not enough to analytically
continue. An ansatz for the continuous density is also used here, which presents
again a potentially large systematic uncertainty.

Calculations in IHQCD support a rise of the bulk viscosity near Tc, but the values
are much smaller than previously expected. Studies of how this affects hydrody-
namics at RHIC [44] suggest that this implies a fall in radial and elliptic flow.

Another class of interesting experimental observables is associated with quarks,
and comes under the label of ‘‘jet quenching’’. Central to this is the expectation that
an energetic quark will loose energy very fast in the quark–gluon plasma because of
strong coupling. This has as a side effect that back-to back jets are suppressed.
Moreover if a pair of energetic quarks is generated near the plasma boundary then
one will exit fast the plasma and register as an energetic jet, while the other will
thermalize and its identity will disappear. This has been clearly observed at RHIC
and used to study the energy loss of quarks in the quark–gluon plasma.

Heavy quarks are of extra importance, as their mass masks some low-energy
strong interaction effects, and can be therefore cleaner probes of plasma energy
loss. There are important electron observables at RHIC [45] that can probe heavy-
quark energy loss in the strongly coupled quark–gluon plasma. Such observables
are also expected to play an important role in LHC [46].
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A perturbative QCD approach to calculate the energy loss of a heavy quark in
the plasma has been pursued by calculating radiative energy loss [47–49]. How-
ever its application to the RHIC plasma has recently raised problems, based on
comparison with data. A phenomenological coefficient used in such cases is known
as the jet quenching coefficient q̂, and is defined as the rate of change of the
average value of transverse momentum square of a probe. Current fits [45, 50]
indicate that a value of order 10 GeV2=fm or more is needed to describe the data
while perturbative approaches are trustworthy at much lower values.

Several attempts were made to compute quark energy loss in the holographic
context, relevant for N ¼ 4 SYM.3 In some of them [18, 52] the jet-quenching
coefficient q̂ was calculated via its relationship to a light-like Wilson loop.
Holography was then used to calculate the appropriate Wilson loop. The q̂

obtained scales as
ffiffiffi

k
p

and as the third power of the temperature,

q̂conformal ¼
C 3

4

� �

C 5
4

� �

ffiffiffiffiffi

2k
p

p
3
2T3: ð4:1Þ

A different approach chooses to compute the drag force acting a string whose
UV end-point (representing an infinitely heavy quark) is forced to move with
constant velocity v [17, 19–21] in the context of N ¼ 4 SYM plasma. The result
for the drag force is

Fconformal ¼
p
2

ffiffiffi

k
p

T2 v
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ð4:2Þ

and is calculated by first studying the equilibrium configuration of the appropriate
string world-sheet string and then calculating the momentum flowing down the
string. This can be the starting point of a Langevin evolution system, as the process
of energy loss has a stochastic character, as was first pointed out in [53] and more
recently pursued in [54–60].

Such a system involves a classical force, that in this case is the drag force, and a
stochastic noise that is taken to be Gaussian and which is characterized by a
diffusion coefficient. There are two ingredients here that are novel. The first is that
the Langevin evolution must be relativistic, as the quarks can be very energetic.
Such relativistic systems have been described in the mathematical physics litera-
ture [61, 62] and have been used in phenomenological analyses of heavy-ion
data [50]. They are known however to have peculiar behavior, since demanding an
equilibrium relativistic Boltzmann distribution, provides an Einstein relation that
is pathological at large temperatures. Second, the transverse and longitudinal
diffusion coefficients are not the same [57]. A first derivation of such Langevin
dynamics from holography was given in [57]. This has been extended in [60]
where the thermal-like noise was associated and interpreted in terms of the world-
sheet horizon that develops on the probe string.

3 Most are reviewed in [51].

84 U. Gursoy et al.



Most of the transport properties mentioned above have been successfully
computed in N ¼ 4 SYM and a lot of debate is still waged as to how they can be
applied to QCD in the appropriate temperature range [19, 20, 63–65]. A holo-
graphic description of QCD has been elusive, and the best we have so far have
been simple bottom up models.

In the simplest bottom-up holographic model known as AdS/QCD [14, 15], the
bulk viscosity is zero as conformal invariance is essentially not broken (the stress
tensor is traceless), and the drag force and jet quenching essentially retain their
conformal values.

In the soft-wall model [16], no reliable calculation can be done for glue cor-
relators and therefore transport coefficients are ill-defined, as bulk equations of
motion are not respected. Similar remarks hold for other phenomenologically
interesting observables as the drag force and the jet quenching parameter.

The shear viscosity of IHQCD is the same as that of N ¼ 4 SYM, as the model
is a two derivative model. Although this is not a good approximation in the UV of
QCD, it is expected to be a good approximation in the energy range Tc� T � 5Tc.
The bulk viscosity in IHQCD rises near the phase transition but ultimately stays
slightly below the shear viscosity. There is a general holographic argument that
any (large-N) gauge theory that confines color at zero temperature should have an
increase in the bulk viscosity-to-entropy density ratio close to Tc.

The drag force on heavy quarks, and the associated diffusion times, can be
calculated and found to be momentum depended as anticipated from asymptotic
freedom. Numerical values of diffusion times are in the region dictated by phe-
nomenological analysis of heavy-ion data. The medium-induced corrections to the
quark mass (needed for the diffusion time calculation) can be calculated, and they
result in a mildly decreasing effective quark mass as a function of temperature.
This is consistent with lattice results. Finally, the jet-quenching parameter can be
calculated and found to be comparable at Tc to the one obtained by extrapolation
from N ¼ 4 SYM. Its temperature dependence is however different and again
reflects the effects of asymptotic freedom.

4.2 The 5D Model

The holographic dual of large Nc Yang Mills theory, proposed in [23, 24], is based
on a five-dimensional Einstein-dilaton model, with the action4:

S5 ¼ �M3
pN2

c

Z

d5x
ffiffiffi

g
p

R� 4
3
ðoUÞ2 þ VðUÞ

� �

þ 2M3
pN2

c

Z

oM

d4x
ffiffiffi

h
p

K: ð4:3Þ

4 Similar models of Einstein-dilaton gravity were proposed independently in [26] to describe the
finite temperature physics of large Nc YM. They differ in the UV as the dilaton corresponds to a
relevant operator instead of the marginal case we study here. The gauge coupling eU also
asymptotes to a constant instead of zero in such models.
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Here, Mp is the five-dimensional Planck scale and Nc is the number of colors. The
last term is the Gibbons–Hawking term, with K being the extrinsic curvature of the
boundary. The effective five-dimensional Newton constant is G5 ¼ 1=ð16pM3

pN2
c Þ,

and it is small in the large-Nc limit.
Of the 5D coordinates fxi; rgi¼0...3; xi are identified with the 4D space-time

coordinates, whereas the radial coordinate r roughly corresponds to the 4D RG
scale. We identify k � eU with the running ’t Hooft coupling kt � Ncg2

YM , up to an
a priori unknown multiplicative factor,5 k ¼ jkt.

The dynamics is encoded in the dilaton potential,6 VðkÞ. The small-k and large-
k asymptotics of VðkÞ determine the solution in the UV and the IR of the geometry
respectively. For a detailed but concise description of the UV and IR properties of
the solutions the reader is referred to Sect. 2 of [29]. Here we will only mention the
most relevant information:

1. For small k; VðkÞ is required to have a power-law expansion of the form:

VðkÞ� 12
‘2
ð1þ v0kþ v1k

2 þ � � �Þ; k! 0: ð4:4Þ

The value at k ¼ 0 is constrained to be finite and positive, and sets the UV AdS
scale ‘. The coefficients of the other terms in the expansion fix the b-function
coefficients for the running coupling kðEÞ. If we identify the energy scale with
the metric scale factor in the Einstein frame, as in [23, 24], we obtain:

bðkÞ � dk
d log E

¼ �b0k
2 � b1k

3 þ � � �

b0 ¼
9
8

v0; b1 ¼
9
4

v1 �
207
256

v2
0:

ð4:5Þ

2. For large k, confinement and the absence of bad singularities7 require:

VðkÞ� k2Qðlog kÞP k!1; 2=3\Q\2
ffiffiffi

2
p

=3; P arbitrary
Q ¼ 2=3; P� 0

�

: ð4:6Þ

In particular, the values Q ¼ 2=3;P ¼ 1=2 reproduce an asymptotically-linear
glueball spectrum, m2

n� n, besides confinement. We will restrict ourselves to
this case in what follows.

5 This relation is well motivated in the UV, although it may be modified at strong coupling (see
Sect. 4.3. The quantities we will calculate do not depend on the explicit relation between k and kt.
6 With a slight abuse of notation we will denote VðkÞ the function VðUÞ expressed as a function
of k � eU.
7 We call ‘‘bad singularities’’ those that do not have a well defined spectral problem for the
fluctuations without imposing extra boundary conditions.
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In the large Nc limit, the canonical ensemble partition function of the model just
described, can be approximated by a sum over saddle points, each given by a
classical solution of the Einstein-dilaton field equations:

ZðbÞ ’ e�S1ðbÞ þ e�S2ðbÞ þ � � � ð4:7Þ

where Si are the euclidean actions evaluated on each classical solution with a fixed
temperature T ¼ 1=b, i.e. with euclidean time compactified on a circle of length b.
There are two possible types of Euclidean solutions which preserve three-
dimensional rotational invariance. In conformal coordinates these are:

1. Thermal gas solution,

ds2 ¼ b2
oðrÞ dr2 þ dt2 þ dxmdxm

� 	

; U ¼ UoðrÞ; ð4:8Þ

with r 2 ð0;1Þ for the values of P and Q we are using;
2. Black-hole solutions,

ds2 ¼ bðrÞ2 dr2

f ðrÞ þ f ðrÞdt2 þ dxmdxm

� �

; U ¼ UðrÞ; ð4:9Þ

with r 2 ð0; rhÞ, such that f ð0Þ ¼ 1, and f ðrhÞ ¼ 0.

In both cases Euclidean time is periodic with period bo and b respectively for
the thermal gas and black-hole solution, and three-space is taken to be a torus with
volume V3o and V3 respectively, so that the black-hole mass and entropy are
finite.8

The black holes are dual to a deconfined phase, since the string tension vanishes
at the horizon, and the Polyakov loop has non-vanishing expectation value [66, 67].
On the other hand, the thermal gas background is confining.

The thermodynamics of the deconfined phase is dual to the 5D black-hole
thermodynamics. The free energy, defined as

F ¼ E � TS; ð4:10Þ

is identified with the black-hole on-shell action; as usual, the energy E and entropy
S are identified with the black-hole mass, and one fourth of the horizon area in
Planck units, respectively.

The thermal gas and black-hole solutions with the same temperature differ at
Oðr4Þ:

bðrÞ ¼ boðrÞ 1þ G r4

‘3
þ � � �

� �

; f ðrÞ ¼ 1� C

4
r4

‘3
þ � � � r ! 0; ð4:11Þ

8 The periods and three-space volumes of the thermal gas solution are related to the black-hole
solution values by requiring that the geometry of the two solutions are the same on the (regulated)
boundary. See [29] for details.
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where G and C are constants with units of energy. As shown in [29] they are
related to the enthalpy TS and the gluon condensate hTrF2i :

C ¼ TS

M3
pN2

c V3
; G ¼ 22

3ð4pÞ2
hTrF2iT � hTrF2io

240M3
pN2

c

: ð4:12Þ

Although they appear as coefficients in the UV expansion, C and G are deter-
mined by regularity at the black-hole horizon. For T and S the relation is the
usual one,

T ¼ �
_f ðrhÞ
4p

; S ¼ Area
4G5

¼ 4p ðM3
pN2

c V3Þ b3ðrhÞ: ð4:13Þ

For G the relation with the horizon quantities is more complicated and cannot be
put in a simple analytic form. However, as discussed in [29], for each temperature
there exist only specific values of G (each corresponding to a different black hole)
such that the horizon is regular.

At any given temperature there can be one or more solutions: the thermal gas is
always present, and there can be different black holes with the same temperature.
The solution that dominates the partition function at a certain T is the one with
smallest free energy. The free energy difference between the black hole and
thermal gas was calculated in [29] to be:

F
M3

pN2
c V3
¼ FBH �F th

M3
pN2

c V3
¼ 15G � C

4
: ð4:14Þ

For a dilaton potential corresponding to a confining theory, like the one we will
assume, the phase structure is the following [29]:

1. There exists a minimum temperature Tmin below which the only solution is the
thermal gas.

2. Two branches of black holes (‘‘large’’ and ‘‘small’’) appear for T � Tmin, but the
ensemble is still dominated by the confined phase up to a temperature Tc [ Tmin

3. At T ¼ Tc there is a first order phase transition to the large black-hole phase.
The system remains in the black-hole (deconfined) phase for all T [ Tc.

In principle there could be more than two black-hole branches, but this will not
happen with the specific potential we will use.

4.3 Scheme Dependence

There are several sources of scheme dependence in any attempt to solve a QFT.
Different parametrizations of the coupling constant (here k) give different
descriptions. However, physical statements must be invariant under such a change.
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In our case, reparametrizations of the coupling constant are equivalent to radial
diffeomorphisms as we could use k as the radial coordinate.

In the holographic context, scheme dependence related to coupling redefini-
tions translates into field redefinitions for the bulk fields. As the bulk theory is
on-shell, all on-shell observables (that are evaluated at the single boundary of
space-time) are independent of the field redefinitions showing that scheme-
independence is expected. Invariance under radial reparametrizations of scalar
bulk invariants is equivalent to RG invariance. Because of renormalization
effects, the boundary is typically shifted and in this case field redefinitions must
be combined with appropriate radial diffeomorphisms that amount to RG-
transformations.

Another source of scheme dependence in our setup comes from the choice of
the energy function. Again we may also consider this as a radial coordinate and
therefore it is subject to coordinate transformations. A relation between k and E is
the b-function,

dk
d log E

¼ bðkÞ: ð4:15Þ

b by definition transforms as a vector under k reparametrizations and as a form
under E reparametrizations. bðkÞ can therefore be thought of as a vector field
implementing the change of coordinates from k to E and vice-versa.

Physical quantities should be independent of scheme. They are quantities that
are fully diffeomorphism invariant. If the gravitational theory had no boundary
there would be no diffeomorphism invariant quantities, except for possible topo-
logical invariants. Since we have a boundary, diffeomorphism invariant quantities
are defined at the boundary.

Note that scalar quantities are not invariant. To be invariant they must be scalar
and constant. We therefore need to construct scalar functions that are invariant
under changes of radial coordinates.

We can fix this reparametrization invariance by picking a very special frame.
For example choosing the (string) metric in the conformal frame

ds2 ¼ e2A dr2 þ dxldxl

� �

; kðrÞ ð4:16Þ

or in the domain-wall frame

ds2 ¼ du2 þ e2Adxldxl; kðuÞ ð4:17Þ

fixes the radial reparametrizations almost completely. In conformal frame, com-
mon scalings of r; xl are allowed, corresponding to constant shifts of AðrÞ.

Eventually we are led to calculate and compare our results to other ways of
calculating (like the lattice). Some outputs are easier to compare (for example
correlators). Others are much harder as they are not invariant (like the value of the
coupling at a given energy scale).

4 Improved Holographic QCD 89



In the UV such questions are well understood. The asymptotic energy scale is
fixed by comparison to conformal field theory examples. This is possible because
the space is asymptotically AdS5.9

The coupling constant is also fixed to leading order from the coupling of the
dilaton to D3 branes (up to an overall multiplicative factor). Subleading (in per-
turbation theory) redefinitions of the coupling constant and the energy lead to
changes in the b-function beyond two loops.

More in detail, as it has been described in [23–25], the general form of the
kinetic term for the gauge fields on a D3 brane is expected to be:

SF2 ¼ e�UZðR; nÞTr½F2	; n � �e2U F2
5

5!
ð4:18Þ

where ZðR; nÞ is an (unknown) function of curvature R and the five-form field
strength, n. At weak background fields, Z ’ � 1

4þ � � �. In the UV regime,
expanding near the boundary in powers of the coupling k � NceU we obtain, [25]

SF2 ¼ Nc Tr½F2	 1
k

ZðR
; n
Þ �
ZnðR
; n
Þ

FnnðR
; n
Þ
ffiffiffiffiffi

n

p k

‘
þOðk2Þ

� �

ð4:19Þ

where FðR; nÞ is the bulk effective action and R
; n
 are the boundary values for
these parameters. Therefore the true ’t Hooft coupling of QCD is

k0t Hooft ¼ �
k

ZðR
; n
Þ
1þ ZnðR
; n
Þ

ZðR
; n
ÞFnnðR
; n
Þ
ffiffiffiffiffi

n

p k

‘
þOðk2Þ

� �

: ð4:20Þ

In the IR, more important changes can appear between our k and other definitions
as for example in lattice calculations.

In the region of strong coupling we know much less in order to be guided
concerning the correct definition of the energy. We can obtain some hints however
by comparing with lattice results.10 In particular, based on lattice calculations
using the Schröndiger functional approach [68], it is argued that at long distance L
the ’t Hooft coupling constant scales as

klat� emL; m ’ 3
4

m0þþ : ð4:21Þ

9 As the dilaton is now not constant there is a non-trivial question: in which frame is the metric
AdS. In [25] it was argued that this should be the case in the string frame. The difference of
course between the string and Einstein frame is subleading in the UV as the coupling constant
vanishes logarithmically. But this may not be the case in the IR where we have very few criteria
to check. In the model we are using we impose that the space is asymptotically AdS in the
Einstein frame as this is the only choice consistent with the whole framework.
10 We would like to thank K. Kajantie for asking the question, suggesting to compare with lattice
data, and providing the appropriate references.
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This was based on a specific definition of the coupling constant, and length scale on
the lattice as well as on numerical data, and some general expectations on the fall-
off of correlations in a massive theory. This suggests an IR b function of the form

L
dk
dL
¼ k log

k
k0
; k ¼ k0 emL: ð4:22Þ

On the other hand our b-function at strong coupling uses the UV definition of
energy, log E ¼ AE (the scale factor in the Einstein frame), E� 1=L and is

L
dk
dL
¼ 3

2
k 1þ 3

4
a� 1

a

1
log k

þ � � �
� �

; k ’ L

L0


 �3
2

: ð4:23Þ

where a is a parameter in the IR asymptotics of the potential. The case we consider
as best fitting YM is a ¼ 2 as then the asymptotic glueball trajectories are linear.

Consider now taking as length scale the string scale factor eAs in the IR.11 Since
it increases, it is consistent to consider it as a monotonic function of length. From
its relation to the Einstein scale factor As ¼ AE þ 2

3 log k and (4.23) we obtain

dk
dAs
¼ 2a

a� 1
k log kþ � � � ð4:24Þ

Therefore if we define as length scale in the IR

log L ¼ 2a

a� 1
As ! L ¼ eAs

� 	

2a
a�1 ð4:25Þ

we obtain a running of the coupling compatible with the given lattice scheme. Note

however that L ¼ eAsð Þ
2a

a�1 cannot be a global choice but should be only valid in the IR.
The reason is that this function is not globally monotonic.

We conclude this section by restating that physical observables are independent of
scheme. But observables like the ’t Hooft coupling constant do depend on schemes,
and it is obvious that our scheme is very different from lattice schemes in the IR.

4.4 The Potential and the Parameters of the Model

We will make the following ansatz for the potential,12

VðkÞ ¼ 12
‘2

1þ V0kþ V1k
4=3 log 1þ V2k

4=3 þ V3k
2

� 
h i1=2
� �

; ð4:26Þ

11 The string scale factor is not a monotonic function on the whole manifold [23, 24], and this is
the reason that it was not taken as a global energy scale. In particular in the UV, eAs decreases
until it reaches a minimum. The existence of the minimum is crucial for confinement. After this
minimum eAs increases and diverges at the IR singularity.
12 Further studies of IHQCD with different potentials can be found in [69].
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which interpolates between the two asymptotic behaviors (4.4) for small k and
(4.6) for large k, with Q ¼ 2=3 and P ¼ 1=2. Not all the parameters entering this
potential have physical relevance. Below we will discuss the independent
parameters of the model, and their physical meaning.

4.4.1 The Normalization of the Coupling Constant k

As discussed in the previous section, the relation between the bulk field kðrÞ and
the physical QCD ’t Hooft coupling kt ¼ g2

YMNc is a priori unknown. In the UV,
the identification of the D3-brane coupling to the dilaton implies that the relation is
linear, and depends on an a priori unknown coefficient j, defined as:

k ¼ jkt: ð4:27Þ

The coefficient j can in principle be identified by relating the perturbative UV
expansion of the Yang–Mills b-function, to the holographic b-function for the bulk
field k:

bðktÞ ¼ �b0k
2
t � b1k

3
t þ � � � ; b0 ¼

22

3ð4pÞ2
; b1 ¼

51
121

b2
0; . . . ð4:28Þ

bðkÞ ¼ �b0k
2 � b1k

3 þ � � � ; b0 ¼
9
8

v0; b1 ¼
9
4

v1 �
207
256

v2
0 . . . ð4:29Þ

The two expressions (4.28) and (4.29) are consistent with a linear relation as in
(4.27), and expanding the identity jbtðktÞ ¼ bðjktÞ to lowest order leads to:

j ¼ b0=b0: ð4:30Þ

Therefore, to relate the bulk field k to the true coupling kt one looks at the linear
term in the expansion of the potential. More generally, the other b function
coefficients are related by bn ¼ jnþ1bn, and the combinations bn=bnþ1

0 ¼ bn=b
nþ1
0

are j-independent (however they are scheme-dependent for n� 2).
As discussed in Sect. 4.3, the introduction of the coefficient j amounts to a field

redefinition and therefore its precise value does not affect physical (scheme-
independent) quantities. In this sense, j is not a parameter that can be fixed by
matching some observable computed in the theory. Assuming the validity of the
relation (4.27), we could eventually fix j by matching a RG-invariant (but scheme-
dependent) quantity, e.g. k at a given energy scale.

However, as we discuss later in this section, rescaling k in the potential (thus
changing j) affects other parameters in the models, that are defined in the string
frame, e.g. the fundamental string length ‘s: if we hold the physical QCD string
tension fixed, the ratio ð‘s=‘Þ scales with degree �2=3 under a rescaling of j.

An important point to keep in mind, is that the simple linear relation (4.27) may
be modified at strong coupling, but again this does not have any effect on physical
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observables. As long as we compute RG-invariant and scheme-independent
quantities, knowledge of the exact relationship k ¼ FðktÞ is unnecessary.

4.4.2 The AdS Scale ‘

This is set by the overall normalization of the potential, and its choice is equivalent
to fixing the unit of energy. It does not enter dimensionless physical quantities. As
usual the AdS length at large Nc is much larger than the Planck length
(‘p� 1=ðMpN2=3

c Þ, independently of the ’t Hooft coupling.

4.4.3 The UV Expansion Coefficients of VðkÞ

They can be fixed order by order by matching the Yang–Mills b-function. We
impose this matching up to two-loops in the perturbative expansion, i.e. Oðk3Þ in ðkÞ.
One could go to higher orders by adding additional powers of k inside the loga-
rithm, but since our purpose is not to give an accurate description of the theory in
the UV, we choose not to introduce extra parameters.13

Identifying the energy scale with the Einstein frame scale factor,
log E � log bðrÞ, we have the relation (4.29) between the b-function coefficients
and the expansion parameters of VðkÞ, with

v0 ¼ V0; v1 ¼ V1
ffiffiffiffiffi

V2
p

: ð4:31Þ

The term proportional to V2 in (4.26) is needed to reproduce the correct value of
the quantity b1=b2

0 ¼ b1=b
2
0 ¼ 51=121, which is invariant under rescaling of k.

Thus, V2 is not a free parameter, but is fixed in terms of V0 and V1 by:

V2 ¼ b4
0

23þ 36 b1=b2
0

81V1


 �2

; b0 ¼
9
8

V0;
b1

b2
0

¼ 51
121

: ð4:32Þ

As explained earlier in this section, when discussing the normalization of the
coupling, fixing the coefficient V0 is the same as fixing the normalization j through
(4.30). As we argued, the actual value of j should not have any physical
consequences, so it is tempting to set V0 ¼ 1 by a field redefinition, k! k=V0 and
eliminate this parameter altogether.

In fact, most of the quantities we will compute are not sensitive to the value of
V0, but for certain quantities, such as the string tension, some extra care is needed.
In general, we can ask whether two models of the same form (4.3), but with

13 Moreover, higher order b-function coefficients are known to be scheme-dependent.
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different potentials VðkÞ and ~VðkÞ, such that ~VðkÞ ¼ VðakÞ for some constant a,
lead to different physical predictions. As we can change from one model to the
other simply by a field redefinition k! ak (this has no effect on the other terms in
the action in the Einstein frame, (4.3), clearly the two potentials lead to the same
result for any physical quantity that can be computed unambiguously from the
Einstein frame action, e.g. dimensionless ratios between glueball masses, critical
temperature, latent heat etc.

However a rescaling of k does affect the string frame metric, since the latter

explicitly contains factors of k: bsðrÞ ¼ bðrÞk2=3 [23, 24] thus, under the rescaling
k! ak; bsðrÞ ! a2=3bsðrÞ. This means that any dimensionless ratio of two
quantities, such that one of them remains fixed in the string frame and the other in
the Einstein frame, will depend on a. An example of this is the ratio ‘s=‘, where ‘s

is the string length, that we will discuss shortly.
Therefore, we can safely perform a field redefinition and set V0 to a given value,

as long as we are careful when computing quantities that depend explicitly on the
fundamental string length.

Bearing this caveat in mind, we will choose a normalization such that b0 ¼ b0, i.e.

V0 ¼
8
9
b0; ð4:33Þ

so that the normalization of k in the UV matches the physical Yang–Mills cou-
pling. With this choice, out of the four free parameters Vi appearing in (4.26) only
V1 and V3 play a non-trivial role (V2 being fixed by (4.32)).

4.4.4 The 5D Planck Scale Mp

Mp appears in the overall normalization of the 5D action (4.3). Therefore it enters
the overall scale of quantities derived by evaluating the on-shell action, e.g. the
free energy and the black-hole mass. It also sets the conversion factor between the
entropy and horizon area. Mp cannot be fixed directly as we lack a detailed
underlining string theory for YM. To obtain quantitative predictions, Mp must be
fixed in terms of the other dimension-full quantity of the model, namely the AdS
scale ‘. As shown in [29] this can be done by imposing that the high-temperature
limit of the black-hole free energy be that of a free gluon gas with the correct
number of degrees of freedom.14 This requires:

ðMp‘Þ3 ¼
1

45p2
: ð4:34Þ

14 Note that this is conceptually different from the N ¼ 4 case. There, near the boundary, the
theory is strongly coupled and this number must be calculated in string theory. It is different by
a factor of 3/4 from the free sYM answer. Here near the boundary the theory is free. Therefore
the number of degrees of freedom can be directly inferred.
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4.4.5 The String Length

In the non-critical approach the relation between the string length ‘s and the 5D
Planck length (or the AdS length ‘) is not known from first principles. The
string length does not appear explicitly in the two-derivative action (4.3), but it
enters quantities like the static quark–antiquark potential. The ratio ‘s=‘ can be
fixed phenomenologically to match the lattice results for the confining string
tension.

More in detail, the relation between the fundamental and the confining string
tensions Tf and r is given by:

r ¼ Tf b2ðr
Þk4=3ðr
Þ; ð4:35Þ

where r
 is the point where the string frame scale factor, bsðrÞ � bðrÞk2=3ðrÞ, has
its minimum. Fixing the confining string tension by comparison with the lattice
result we can find Tf (more precisely, the dimensionless quantity Tf ‘

2, since the
overall scale of the metric depends on ‘). The string length is in turn given by
‘s=‘ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pTf ‘2
p

.
As is clear from (4.35), rescaling k! ak, keeping the value of the QCD

string tension r and of the AdS scale ‘ fixed, affects the fundamental string length
in AdS units as ‘s=‘! a�2=3ð‘s=‘Þ. Therefore two models a and b, defined in the
Einstein frame by (4.3), but with potentials related by VbðkÞ ¼ VaðakÞ, must
have different fundamental string tensions in order to reproduce the same result for
the QCD string tension. The quantity ‘s=‘ therefore depends on the value of V0.

4.4.6 Integration Constants

Besides the parameters appearing directly in the gravitational action, there are also
other physically relevant quantities that label different solutions to the 5th order
system of field equations. Any solution is characterized by a scale K, the tem-
perature T and a value for the gluon condensate G, that correspond to three of the
five independent integration constants.15

Regularity at the horizon fixes G as a function of T , so that effectively the gluon
condensate is a temperature-dependent quantity.

The quantity K controls the asymptotic form of the solution, as it enters the

dilaton running in the UV: k ’ �ðb0 log rKÞ�1. It can be defined in a repara-
metrization invariant way as:

15 The remaining two are the value f ð0Þ which should be set to one for the solution (4.9) to
obey the right UV asymptotics, and an unphysical degree of freedom in the reparametrization
of the radial coordinate.
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K ¼ ‘�1 lim
k!0

bðkÞ
exp � 1

b0k

h i

kb1=b2
0

8

<

:

9

=

;

; ð4:36Þ

and it is fixed once we specify the value of the scale factor bðkÞ at a given k0.
Every choice of K corresponds to an inequivalent class of solutions, that differ

by UV boundary conditions. Each class is thermodynamically isolated, since
solutions with different K’s have infinite action difference. Thus, in the canonical
partition sum we need to consider only solutions with a fixed value of K. However,
this choice is merely a choice of scale, as solutions with different K’s will give the
same predictions for any dimensionless quantity. In short, K is the holographic
dual to the QCD strong coupling scale: it is defined by the initial condition to the
holographic RG equations, and does not affect dimensionless quantities such as
mass ratios, etc. Therefore, as long as all solutions we consider obey the same UV
asymptotics, the actual value of K is immaterial, since the physical units of the
system can always be set by fixing ‘.

To summarize, the only nontrivial phenomenological parameters we have at our
disposal are V1 and V3 appearing in (4.26). The other quantities that enter our
model are either fixed by the arguments presented in this section, or they only
affect trivially (e.g. by overall rescaling that can be absorbed in the definition of
the fundamental string scale) the physical quantities.

In the next section we present a numerical analysis of the solutions and ther-
modynamics of the model defined by (4.26), and show that for an appropriate
choice of the parameters it reproduces the lattice results for the Yang–Mills
deconfinement transition and high-temperature phase as well as the zero temperature
glueball data.

4.5 Matching the Thermodynamics of Large-Nc YM

Assuming a potential of the form (4.26), we look for values of the parameters such
that the thermodynamics of the 5D model match the lattice results for the ther-
modynamics of 4D YM. As explained in Sect. 4.3, we set V0 and V2 as in (4.33 and

4.32), respectively, with b0 ¼ b0 ¼ 22=3ð4pÞ�2.
We then vary V1 and V3 only. We fix these parameters by looking at thermo-

dynamic quantities corresponding to the latent heat per unit volume, and the
pressure at one value of the temperature above the transition, which we take as 2Tc.

It is worth remarking that V1 and V3 are phenomenological parameters that we
use to fit dimensionless QCD quantities. The single (dimension-full) parameter of
pure Yang–Mills, the strong coupling scale, is an extra input that fixes the overall
energy scale of our solution.

Using the numerical method explained in [32], for each set of parameters
ðV1;V3Þ we numerically generate black-hole solutions for a range of values of kh,
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then from the metric at the horizon and its derivative we extract the temperature
and entropy functions TðkhÞ and SðkhÞ, and the function FðkhÞ from the integrated
form of the first law,

FðkhÞ ¼
Z

þ1

kh

d�kh Sð�khÞ
dTð�khÞ

d�kh
: ð4:37Þ

Here SðkhÞ is given by (4.13) and both the large black hole and small black-hole
branches are needed in order the get the full result for the free energy. This is
because the integral in (4.37) extends to þ1, entering deeply in the small black-
hole branch.

The behavior of the thermodynamic functions is shown in Figs. 4.1, 4.2 and 4.3,
for the best fit parameter values that we discuss below. One can see the existence
of a minimal temperature Tmin ¼ TðkminÞ, and a critical value kc where F changes
sign. The resulting function FðTÞ is shown in Fig. 4.1.

The phase transition is first order, and the latent heat per unit volume Lh, nor-
malized by N2

c T4
c , is given by the derivative of the curve in Fig. 4.4 at T=Tc ¼ 1.

1 1.1 1.2

T

Tc
0

0.01

0.01

0.02

0.03

F

Nc
2 Tc

4 V3

Fig. 4.1 The free energy
density (in units of Tc) as a
function of T=Tc, for V1 ¼ 14
and V3 ¼ 170. The vertical
lines correspond to the
critical temperature (solid)
and the minimum black-hole
temperature (dashed)

Tc

λc 0.12 0.4 0.8 1.2
λ h

1

1.2

1.4

T

Tmin

Fig. 4.2 Temperature in
units of Tmin, as a function of
kh, for V1 ¼ 14 and
V3 ¼ 170. The dashed
horizontal and vertical lines
indicate the critical
temperature and the critical
value of the dilaton field at
the horizon
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Equivalently, Lh is proportional to the jump in the entropy density s ¼ S=V3 at the
phase transition from the thermal gas (whose entropy is of Oð1Þ, in the limit
Nc !1) to the black hole (whose entropy scales as N2

c in the same limit): thus, in
the large Nc limit,

Lh � TDs ’ TcsðkcÞ ð4:38Þ

up to terms of Oð1=N2
c Þ.

To fix V1 and V3 we compare our results to the data of G. Boyd et al. [70]. The
relevant quantities to compare are the dimensionless ratios pðTÞ=T4; eðTÞ=T4 and
sðTÞ=T3, where p ¼ F=V3 is the pressure, and e ¼ pþ Ts is the energy density.
Lattice results for these functions are available in the range T ¼ Tc� 5Tc, and can
be seen in Fig. 7 of [70]. The analysis of [70] correspond to Nc ¼ 3, but one
expects that the thermodynamic functions do not change to much for large Nc.16

0.4 0.8 1.2
λh

0.04

0.02

0.02

F

Nc
2V3 Tmin

4

Fig. 4.3 The free energy
density in units of Tmin, as a
function of kh

λc 0.4 0.8 1.2
λh
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1

S

Nc
2V3 Tmin

3

Fig. 4.4 Entropy density in
units of Tmin, as a function of
kh

16 See e.g. [71–73], in which results for Nc ¼ 8 do not different significantly from those for
Nc ¼ 3 as well as the recent high-precision data by Panero [74, 75].
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An additional quantity of relevance is the value for the ‘‘dimensionless’’ latent
heat per unit volume, Lh=T4

c which for large Nc was found in [76] to be
ðLh=T4

c Þlat ¼ 0:31N2
c . The result for N2

c ¼ 3 is slightly lower (’0:28N2
c ).

As already noted in [28, 29], the qualitative features of the thermodynamic
functions are generically reproduced in our setup: the curves 3pðTÞ=T4; eðTÞ=T4

and 3sðTÞ=4T3 increase starting at Tc, then (very slowly) approach the constant
free field value p2N2

c=15 (given by the Stefan–Boltzmann law) as T increases. By
computing the thermodynamic functions for various sets of values of V1 and V3 we
obtain that:

(1) V1 roughly controls the height reached by the curves pðTÞ=T4; eðTÞ=T4 and
sðTÞ=T3 at large T=Tc (* a few): for larger V1 the curves approach the free
field limit faster;

(2) V3 does not affect much the height of the curves at large T=Tc, but on the other
hand it changes the latent heat, which is increasing as V3 decreases.

The best fit corresponds to the values

V1 ¼ 14 V3 ¼ 170: ð4:39Þ

Below we discuss the values of various physical quantities (both related to ther-
modynamics, and to zero-temperature properties) obtained with this choice of
parameters.

4.5.1 Latent Heat and Equation of State

The comparison between the curves pðTÞ=T4; eðTÞ=T4 and sðTÞ=T3 obtained in
our models with (4.39), and the lattice results [70] is shown in Fig. 4.5. The match

free gas

e

T 4 Nc
2

3 s

4 T 3 Nc
2

3 p

T 4 Nc
2
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T
Tc

0.0
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0.2

0.3

0.4

0.5

0.6

0.7
Fig. 4.5 Temperature
dependence of the
dimensionless
thermodynamic densities,
normalized such that they
reach the common limiting
value p2=15 (dashed
horizontal line) as T !1.
The dots correspond to the
lattice data for Nc ¼ 3 [70]
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is remarkably good for Tc\T\2Tc, and deviates slightly from the lattice data in
the range up to 5Tc.

The latent heat we obtain is:

Lh=T4
c ¼ 0:31N2

c ; ð4:40Þ

which matches the lattice result for Nc !1 [76].
An interesting quantity is the trace anomaly ðe� 3pÞ=T4, (also known as

interaction measure), that indicates the deviation from conformality, and it is
proportional to the thermal gluon condensate. The trace anomaly in our setup is
shown, together with the corresponding lattice data, in Fig. 4.6, and the agree-
ment is again very good. Our results agree even better with recent high-precision
lattice calculations of the thermodynamics functions done by Panero at different
values of Nc up to Nc ¼ 8, [74, 75]. In Fig. 4.7 a comparison (taken from [74,
75]) of the normalized interaction measure with lattice results for different Nc is
shown.

We also compute the specific heat per unit volume cv, and the speed of sound cs

in the deconfined phase, by the relations

cv ¼ �T
o2F

oT2
; c2

s ¼
s

cv
: ð4:41Þ

These are shown in Figs. 4.8 and 4.9 respectively. The speed of sound is shown
together with the lattice data, and the agreement is remarkable.

Lh Nc
2Tc

4
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e 3 p

T4 Nc
2

Fig. 4.6 The trace anomaly
as a function of temperature
in the deconfined phase of the
holographic model (solid
line) and the corresponding
lattice data [70] for Nc ¼ 3
(dots). The peak in the lattice
data slightly above Tc is
expected to be an artifact of
the finite lattice volume. In
the infinite volume limit the
maximum value of the curve
is at Tc, and it equals
Lh=N2

c T4
c
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4.5.2 Glueball Spectrum

In [23, 24], the single phenomenological parameters of the potential was fixed by
looking at the zero-temperature spectrum, i.e. by computing various glueball mass
ratios and comparing them to the corresponding lattice results. The masses are
computed by deriving the effective action for the quadratic fluctuations around the
background [77] and subsequently reducing the dynamics to four dimensions.

Fig. 4.7 The rescaled trace anomaly (so that it is Nc-independent) as a function of temperature in
the deconfined phase of the holographic model (solid line) and the corresponding recent high
precision lattice data taken from [74, 75] for different Nc. The errors shown are statistical only
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Fig. 4.8 The specific heat
(divided by T3), as a function
of temperature, in the
deconfined phase of the
holographic model
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The associated thermodynamics for this potential was studied in [28] which was
in qualitative agreement with lattice QCD results, but not in full quantitative
agreement. This is due to the fact that the thermodynamics depends more on the
details of the potential than the glueball spectrum for the main Regge trajectories.
Here we use the potential (4.26), but with the two phenomenological parameters
V1 and V3 already determined by the thermodynamics (4.39).

The glueball spectrum is obtained holographically as the spectrum of normal-
izable fluctuations around the zero-temperature background. As explained in the
introduction, and motivated in [23–25], here we consider explicitly the 5D metric,
one scalar field (the dilaton), and one pseudoscalar field (the axion). As a con-
sequence, the only normalizable fluctuations above the vacuum correspond to spin
0 and spin 2 glueballs17 (more precisely, states with JPC ¼ 0þþ; 0�þ; 2þþ), each
species containing an infinite discrete tower of excited states.

In 4D YM there are many more operators generating glueballs, corresponding
to different values of JPC , that are not considered here. These are expected to
correspond holographically to other fields in the noncritical string spectrum (e.g.
form fields, which may yield spin 1 and CP-odd spin 2 states) and to higher string
states that provide higher-spin glueballs. As the main focus is in reproducing the
YM thermodynamics in detail rather than the entire glueball spectrum, we choose
not to include these states.18 Therefore we only compare the mass spectrum
obtained in our model to the lattice results for the lowest 0þþ; 0�þ; 2þþ glueballs

free gas

0 1 2 3 4 5

T

Tc

0.1

0.2

0.3

0.4
cs

2Fig. 4.9 The speed of sound
in the deconfined phase, as a
function of temperature, for
the holographic model (solid
line) and the corresponding
lattice data [70] for Nc ¼ 3
(dots). The dashed horizontal
line indicates the conformal
limit c2

s ¼ 1=3

17 Spin 1 excitations of the metric can be shown to be non-normalizable.
18 A further reason is that, unlike the scalar and (to some extent) the pseudoscalar sector that we
are considering, the action governing the higher Regge slopes is less and less universal as one
goes to higher masses. Only a precise knowledge of the underline string theory is expected to
provide detailed information for such states.
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and their available excited states. These are limited to one for each spin 0 species,
and none for the spin 2, in the study of [78, 79], which is the one we use for our
comparison. This provides two mass ratios in the CP-even sector and two in the
CP-odd sector.

The glueball masses are computed by first solving numerically the zero-tem-
perature Einstein’s equations, by setting f ðrÞ ¼ 1, and using the resulting metric
and dilaton to setup an analogous Schrödinger problem for the fluctuations [23,
24]. The results for the parity-conserving sector are shown in Table 4.1, and are in
good agreement with those reported by [78, 79] for Nc ¼ 3, whereas the results
reported by [80] for large Nc are somewhat larger. The CP-violating sector (axial
glueballs) will be discussed separately.

We should add that there are other lattice studies (see e.g. [81]) that report
additional excited states. Our mass ratios offer a somewhat worse fit of the mass
ratios found in [81] (whose results are not entirely compatible with those of [78,
79] for the states the two studies have in common). We should stress however that
reproducing the detailed glueball spectrum is secondary here since the main focus
is thermodynamics. However, the comparison of our spectrum to the existing
lattice results shows that our model provides a good global fit to 4D YM also with
respect to quantities beyond thermodynamics.

Unlike the various mass ratios, the value of any given mass in AdS-length units
(e.g. m0þþ‘) does depend on the choice of integration constants in the UV, i.e. on
the value of bUV and kUV. Therefore its numerical value does not have an intrinsic
meaning. However it can be used as a benchmark against which all other
dimension-full quantities can be measured (provided one always uses the same UV
b.c.). On the other hand, given a fixed set of initial conditions, asking that m0þþ
matches the physical value (in MeV) obtained on the lattice, fixes the value of ‘
hence the energy unit.

4.5.3 Critical Temperature

The thermodynamic quantities we have discussed so far, are dimensionless ratios,
in units of the critical temperature. To compute Tc, we need an extra dimension-
full quantity which can be used independently to set the unit of energy. In lattice
studies this is typically the confining string tension r in the T ¼ 0 vacuum, with a

value of around ð440 MeVÞ2, and results are given in terms of the dimensionless
ratio Tc=

ffiffiffi

r
p

. In our case we cannot compute r directly, since it depends on the
fundamental string tension, which is a priori unknown. Instead, we take the mass
m0þþ of the lowest-lying glueball state as a reference.

Table 4.1 Glueball masses

HQCD Nc ¼ 3 [78, 79] Nc ¼ 1 [80]

m0
þþ=m0þþ 1.61 1.56(11) 1.90(17)
m2þþ=m0þþ 1.36 1.40(4) 1.46(11)
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We compute m0þþ with the potential (4.26), with V1 and V3 fixed as in (4.39),
then compare Tc=m0þþ to the same quantity obtained on the lattice. For the lattice
result, we take the large Nc result of [76], Tc=

ffiffiffi

r
p
¼ 0:5970ð38Þ, and combine it

with the large Nc result for the lowest-lying glueball mass [80], m0þþ=
ffiffiffi

r
p
¼

3:37ð15Þ. The two results are in fair agreement, without need to adjust any extra
parameter:

Tc

m0


 �

hQCD

¼ 0:167;
Tc

m0


 �

lattice

¼ 0:177ð7Þ: ð4:42Þ

In physical units, the critical temperature we obtain is given by

Tc ¼ 0:56
ffiffiffi

r
p
¼ 247 MeV: ð4:43Þ

4.5.4 String Tension

The fundamental string tension Tf ¼ 1
2p‘2

s
cannot be computed from first principles

in our model, but can be obtained using as extra input the lattice value of the
confining string tension r, at T ¼ 0. The fundamental and confining string tensions
are related by (4.35).

As for the critical temperature, we can relate Tf to the value of the lowest-lying
glueball mass, by using the lattice relation

ffiffiffi

r
p
¼ m0þþ

3:37 [80]. Since what we actually
compute numerically is m0þþ‘, this allows us to obtain the string tension Tf (and
fundamental string length ‘s ¼ 1=

ffiffiffiffiffiffiffiffiffiffi

2pTf
p

in AdS units:

Tf ‘
2 ¼ 0:19; ‘s=‘ ¼ 0:15: ð4:44Þ

This shows that the fundamental string length in our model is about an order of
magnitude smaller than the AdS length. The meaning of this fact is a little more
complicated conceptually, as the discussion in [25] indicates. Also, we should
stress that, as discussed in Sect. 4.4, this result depends on our choice of the overall
normalization of k: changing the potential by k! jk will yield different
numerical values in (4.44) without affecting the other physical quantities.

Another related observable is the spatial string tension. It is calculated from the
expectation value of the rectangular Wilson loop which stretches in spatial
dimensions only. This has been calculated on the lattice [82], as well as using the
high-temperature (resumed) perturbative expansion plus a zero-temperature
calculation of the string tension in three-dimensional YM theory [83]. The two
calculation agree reasonably well.

The spatial string tension at finite temperature can be calculated in IHQCD [84]
by calculating the relevant Wilson loop. Very good agreement was found with the
lattice calculations, especially at temperatures not far from the phase transition.
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Finally, several calculations of quark–antiquark potentials exist. At zero tem-
perature the long distance asymptotics of the quark potential was calculated in [23,
24] and used to classify the dilaton potentials as a function of the confinement
property. The full quark potential including the short distance behavior was
computed in [85]. There a comparison to the Cornell potential was done as well as
with quarkonium spectra finding excellent agreement with data. The issue of
quarkonium potentials from IHQCD-like theories was also recently discussed in
[86].

Finally the Polyakov loop was recently computed [87, 88] in similar Einstein
dilaton models that were studied first in [26].

4.5.5 CP-Odd Sector

The CP-odd sector of pure Yang–Mills is described holographically by the addi-
tion of a bulk pseudoscalar field aðrÞ (the axion) with action19:

Saxion ¼
M3

p

2

Z

d5xZðkÞ ffiffiffiffiffiffiffi�g
p ðolaÞðolaÞ: ð4:45Þ

The field aðrÞ is dual to the topological density operator TrF~F. The prefactor ZðkÞ
is a dilaton-dependent normalization. The axion action is suppressed by a factor
1=N2

c with respect to the action (4.3) for the dilaton and the metric, meaning that in
the large-Nc limit one can neglect the back-reaction of the axion on the
background.

As shown in [23, 24], requiring the correct scaling of aðrÞ in the UV, and
phenomenologically consistent axial glueball masses, constrain the asymptotics of
ZðkÞ as follows:

ZðkÞ� Z0; k! 0; ZðkÞ� k4; k!1; ð4:46Þ

where Z0 is a constant. As a simple interpolating function between these large- and
small- k asymptotics we can take the following:

ZðkÞ ¼ Z0ð1þ cak
4Þ: ð4:47Þ

The parameter Z0 can be fixed by matching the topological susceptibility of pure
Yang–Mills theory, whereas ca can be fixed by looking at the axial glueball mass
spectrum.

19 This action was justified in [23–25]. The dilaton dependent coefficient ZðkÞ is encoding both
the dilaton dependence as well as the UV curvature dependence of the axion kinetic terms in
the associated string theory. We cannot determine it directly from the string theory, but we pin
it down by a combination of first principles and lattice input, as we explain further below.
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4.5.5.1 Axial Glueballs

As in [23, 24], we can fix ca by matching to the lattice results the mass ratio
m0�þ=m0þþ between the lowest-lying axial and scalar glueball states. This is
independent of the overall coefficient Z0 in (4.47). The lattice value m0�þ=m0þþ ¼
1:49 [78, 79] is obtained for:

ca ¼ 0:26: ð4:48Þ

With this choice, the mass of the first excited axial glueball state is in good
agreement with the corresponding lattice result [78, 79]:

m0�þ

m0þþ


 �

hQCD

¼ 2:10
m0�þ

m0þþ


 �

lattice

¼ 2:12ð10Þ: ð4:49Þ

4.5.5.2 Topological Susceptibility

In pure Yang–Mills, the topological v susceptibility is defined by:

EðhÞ ¼ 1
2
vh2; ð4:50Þ

where EðhÞ is the vacuum energy density in presence of a h-parameter. EðhÞ can
be computed holographically by solving for the axion profile aðrÞ on a given
background, and evaluating the action (4.45) on-shell.

In the deconfined phase, the axion profile is trivial, implying a vanishing
topological susceptibility [29]. This is in agreement with large-Nc arguments and
lattice results [31].

In the low-temperature phase, the axion acquires a non-trivial profile,

aðrÞ ¼ aUV

FðrÞ
Fð0Þ ; FðrÞ �

Z

1

r

dr

ZðkðrÞÞe3AðrÞ : ð4:51Þ

This profile is shown, for the case at hand, in Fig. 4.10, where the axion is nor-
malized to its UV value.

The topological susceptibility is given by [23, 24]:

v ¼ M3
pFð0Þ�1 ¼ M3

p

Z

1

0

dr

e3AðrÞZðrÞ

2

4

3

5

�1

; ð4:52Þ

where ZðrÞ � ZðkðrÞÞ. Evaluating this expression numerically with ZðkÞ as in
(4.47), and ca ¼ 0:26 (to match the axial glueball spectrum), we can determine the
coefficient Z0 by looking at the lattice result for v. For Nc ¼ 3 [89] obtained

v ¼ ð191 MeVÞ4, which requires Z0 ¼ 133.
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In Table 4.4 we present a summary of the various physical quantities discussed
in this section, as obtained in our holographic model, and their comparison with
the lattice results for large Nc (when available) and for Nc ¼ 3. The quantities
shown in the upper half of the table are the ones that were used to fix the free
parameters (reported in the last column) of the holographic model.

4.5.6 Coupling Normalization

Finally, we can relate the field kðrÞ to the running ’t Hooft coupling. All other
quantities we have discussed so far are scheme-independent and RG-invariant.
This is not the case for the identification of the physical YM ’t Hooft coupling,
which is scheme dependent.

In the black-hole phase we can take kh � kðrhÞ as a measure of the temperature-
dependent coupling. In Fig. 4.11 we show kh as a function of the temperature in
the range Tc to 5Tc.
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Fig. 4.10 Axion profile in
the radial direction. The x-
axis is taken to be the energy
scale, EðrÞ ¼ E0bðrÞ, where
the unit E0 is fixed to match
the lowest glueball mass
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λ hFig. 4.11 The coupling at

the horizon as a function
of temperature in the range
Tc–5Tc
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As a reference, we may take the result of [70], that found g2ð5TcÞ ’ 1:5 for
Nc ¼ 3, which translates to ktð5TcÞ ’ 5. On the other hand, if we make the
assumption that the identification k ¼ kt is valid at all scales (not only in the UV),
we find in our model ktð5TcÞ ’ 0:04 (see Fig. 4.11), i.e. a factor of 100 smaller
than the lattice result.

This discrepancy is almost certainly due to the identification (4.27) being very
different from lattice at strong coupling.

4.6 Bulk Viscosity

The bulk viscosity f is an important probe of the quark–gluon plasma. Its profile as
a function of T reveals information regarding the dynamics of the phase transition.
In particular, both from the low-energy theorems and lattice studies [12, 40, 41],
there is evidence that f increases near Tc.

For a viscous fluid the shear g and bulk f viscosities are defined via the rate of
entropy production as

os

ot
¼ g

T
oivj þ ojvi �

2
3
ðo � vÞdij

� �2

þ f
T
ðo � vÞ2: ð4:53Þ

Therefore, in a holographic setup, the bulk viscosity can be defined as the
response of the diagonal spatial components of the stress–energy tensor to a small
fluctuation of the metric. It can be directly related to the retarded Green’s function
of the stress–energy tensor by Kubo’s linear response theory (Table 4.2):

Table 4.2 Collected in this table is the complete set of physical quantities that we computed in
our model and compared with data

HQCD Lattice Nc ¼ 3 Lattice Nc !1 Parameter

½p=ðN2
c T4Þ	T¼2Tc

1.2 1.2 – V1 ¼ 14

Lh=ðN2
c T4

c Þ 0.31 0.28 [70] 0.31 [76] V3 ¼ 170

½p=ðN2
c T4Þ	T!þ1 p2=45 p2=45 p2=45 Mp‘ ¼ ½45p2	�1=3

m0þþ=
ffiffiffi

r
p

3.37 3.56 [78, 79] 3.37 [80] ‘s=‘ ¼ 0:15
m0�þ=m0þþ 1.49 1.49 [78, 79] – ca ¼ 0:26
v ð191 MeVÞ4 ð191 MeVÞ4 [89] – Z0 ¼ 133

Tc=m0þþ 0.167 – 0.177(7)
m0
þþ=m0þþ 1.61 1.56(11) 1.90(17)
m2þþ=m0þþ 1.36 1.40(4) 1.46(11)
m0
�þ=m0þþ 2.10 2.12(10) –

The upper half of the table contains the quantities that we used as input (shown in boldface) for
the holographic QCD model (HQCD). Each quantity can be roughly associated to one parameter
of the model (last column). The lower half of the table contains our ‘‘postdictions’’ (i.e. quantities
that we computed after all the parameters were fixed) and the comparison with the corresponding
lattice results. The value we find for the critical temperature corresponds to Tc ¼ 247 MeV
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f ¼ � 1
9

lim
x!0

1
x

ImGRðx; 0Þ; ð4:54Þ

where GRðw; pÞ is the Fourier transform of retarded Green’s function of the stress–
energy tensor:

GRðw; pÞ ¼ �i

Z

d3xdteixt�ip�xhðtÞ
X

3

i;j¼1

h½Tiiðt; xÞ; Tjjð0; 0Þ	i: ð4:55Þ

A direct computation of the RHS on the lattice is non-trivial as it requires analytic
continuation to Lorentzian space-time. In Refs. [40, 41] the low energy theorems
of QCD, as well as (equilibrium) lattice data at finite temperature were used in
order to evaluate a particular moment of the spectral density of the relevant cor-
relator. using a parametrization of the spectral density via two time-dependent
constants, one of which is the bulk viscosity a relation for their product was
obtained as a function of temperature. This can be converted to a relation for f,
assuming the other constant varies slowly with temperature.

The conclusion was that f=s increases near Tc. Another conclusion is that the
fermionic contributions to f are small compared to the glue contributions.

The weak point of the approach of [41], is that it requires an ansatz on the
spectrum of energy fluctuations, and further assumptions on the other parameters.
which are not derived from first principles.

A direct lattice study of the bulk viscosity was also made in [12]. Here, the
result is also qualitatively similar 4.12. However, the systematic errors in this
computation are large especially near Tc, mostly due to the analytic continuation
that one has to perform after computing the Euclidean correlator on the lattice.

The results of references [40, 41] and the assumptions of the lattice calculation
have been recently challenged in [90].

4.6.1 The Holographic Computation

The holographic approach offers a new way of computing the bulk viscosity. In the
holographic set-up, f is obtained from (4.54). Using the standard AdS/CFT pre-
scription, the two point-function of the energy-momentum tensor can be read off
from the asymptotic behavior of the metric perturbations dglm. This is similar in
spirit to the holographic computation of the shear viscosity [6], but it is technically
more involved. A recent treatment of the fluctuation equation governing the scalar
mode of a general Einstein-Dilaton system can be found in [91]. Here, we follow
the method proposed by [92].

As explained in [92], one only needs to examine the equations of motion in the
gauge r ¼ U, where the radial coordinate is equal to the dilaton. In our type of
metrics, the applicability of this method requires some clarifications, that we
provide in [93]. Using SOð3Þ invariance and the five remaining gauge degrees of
freedom the metric perturbations can be diagonalized as
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dg ¼ diagðg00; g11; g11; g11; g55Þ; ð4:56Þ

where

g00 ¼ �e2Af ½1þ h00ðUÞe�i�t	; g11 ¼ e2A½1þ h11ðUÞe�i�t	; ð4:57Þ

g55 ¼
e2B

f
½1þ h55ðUÞe�i�t	;

where the functions A and B emerge from the metric

ds2 ¼ e2AðUÞð�fdt2 þ dxmdxmÞ þ e2BðUÞ dU2

f
: ð4:58Þ

Here, the fluctuations are taken to be harmonic functions of t while having an
arbitrary dependence on U.

The bulk viscosity depends only on the correlator of the diagonal components
of the metric and so it suffices to look for the asymptotics of h11. Interestingly, in
the r ¼ U gauge this decouples from the other components of the metric and
satisfies the following equation20

h0011 � � 8
9A0
� 4A0 þ 3B0 � f 0

f


 �

h011 � � e2B�2A

f 2
x2 þ 4f 0

9fA0
� f 0B0

f


 �

h11 ¼ 0 :

ð4:59Þ

One needs to impose two boundary conditions. First, we require that only the
infalling condition survives at the horizon:

h11 ! cbðUh � UÞ�
ix

4pT ; U! Uh; ð4:60Þ

where cb is a normalization factor. The second boundary condition is that h11 has
unit normalization on the boundary:

h11 ! 1; U! �1: ð4:61Þ

Having solved for h11ðUÞ, Kubo’s formula (4.54) and a wise use of the AdS/CFT
prescription to compute the stress–energy correlation function [92] determines the
ratio of bulk viscosity as follows.

The AdS/CFT prescription relates the imaginary part of the retarded Tii Green’s
function to the number flux of the h11 gravitons F [92]:

Im GRðx; 0Þ ¼ �
F

16pG5
ð4:62Þ

20 Difference in the various numerical factors in this equation w.r.t [92] is due to our different
normalization of the dilaton kinetic term.
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where the flux can be calculated as the Noether current associated to the Uð1Þ
symmetry h11 ! eihh11 in the gravitational action for fluctuations. One finds,

F ¼ i
e4A�Bf

3A02
½h
11h011 � h11h


0

11	: ð4:63Þ

As F is independent of the radial variable, one can compute it at any U, most
easily near the horizon, where h11 takes the form (4.60). Using also the fact that
ðdA=dUÞðUhÞ ¼ �8VðUhÞ=9V 0ðUhÞ, one finds

Fð/Þ ¼ 27
32

�jcbð�Þj2e3AðUhÞ V
0ðUhÞ2

VðUhÞ
: ð4:64Þ

Then, (4.54 and 4.62) determine the ratio of bulk viscosity and the entropy density
as,

f
s
¼ 3

32p
V 0ðUhÞ
VðUhÞ


 �2

jcbj2: ð4:65Þ

In the derivation we use the Bekenstein–Hawking formula for the entropy density,
s ¼ exp 3AðUhÞ=4G5.

To find f we need to find cb only in the limit x! 0. The computation is
performed by numerically solving equation (4.59) with the appropriate boundary
conditions. There are two separate methods that one can employ to determine the
quantity cb:

1. One can solve (4.59) numerically with a fixed x=T , but small enough so that cb

reaches a fixed value. The method is valid also for finite values of x. From a
practical point of view, it is easier to solve (4.59) with the boundary condition
(4.60) with a unit normalization factor, read off the value on the boundary
h11ð�1Þ from the solution and finally use the symmetry of (4.59) under
constant scalings of h11 to determine jcbj ¼ 1=jh11ð�1Þj.

2. An alternative method of computation that directly extracts the information at
x ¼ 0 follows from the following trick [92]. Instead of solving (4.59) for small
but finite x, one can instead solve it for x ¼ 0. This is a simpler equation, yet
complicated enough to still evade analytic solution. Let us call this solution h0

11.
One numerically solves it by fixing the boundary conditions on the boundary:
h0

11ð�1Þ ¼ 1 and the derivative dh0
11=dUð�1Þ is chosen such that h11 is

regular at the horizon. Matching this solution to the expansion of (4.60) for
small x than yields jcbj ¼ h0

11ðUhÞ.

Both methods were used to obtain f=s as a function of T and checked that they
yield the same result. As explained in [29], most of the thermodynamic observ-
ables are easily computed using the method of scalar variables [29, 93].

The results are presented in Fig. 4.12. This figure gives a comparison of the
curve obtained by the holographic calculation sketched above by solving (4.59) and
the lattice data of [12]. We also show g=s ¼ 1=4p in this figure for comparison.
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The result is qualitatively similar to the lattice result where f=s increases as T
approaches Tc, however the rate of increase is slower than the lattice. As a result, we
obtain a value f=sðTcÞ � 0:06 that is an order of magnitude smaller than the lattice
result [12] which is 0.8. Note however that the error bars in the lattice evaluation are
large near Tc and do not include all possible systematic errors from the analytic
continuation.

We should note the fact that the holographic calculation gives a smaller value for
the bulk viscosity near Tc than the lattice calculation is generic and has been found for
other potentials with similar IR asymptotics [92]. The fact that the value of f=s near
Tc is correlated with the IR asymptotics of the potential will be shown further below.

Another fact that one observes from Fig. 4.12 is that f=s vanishes in the high T
limit. This reflects the conformal invariance in the UV and can be shown ana-
lytically as follows. f=s is determined by formula (4.65). In the high T limit,
(corresponding to kh ! 0, near the boundary), the fluctuation coefficient jcbj ! 1.
This is because of the boundary condition h11ðk ¼ 0Þ ¼ 1. We use the relation
between T and kh in the high T limit [29],

kh ! b0 logðpT=KÞð Þ�1: ð4:66Þ

Substitution in (4.65) leads to the result,

f
s large !

2
27p

1

log2ðpT=KÞ
;

�

�

�

�

as T !1: ð4:67Þ

As s itself diverges as T3 in this limit—it corresponds to an ideal gas—we learn
that f also diverges as T3= log2ðTÞ. Divergence at high T is expected from the
bulk-viscosity of an ideal gas. We do not expect however the details of the
asymptotic result to match with the pQCD result, for the same reasons that
the shear-viscosity-to-entropy ratio does not, [25]. We note however, that the
asymptotic T-dependence is very similar to the pQCD result [94]:
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f=s / log�2ðpT=KÞ log�1 logðpT=KÞ : ð4:68Þ

4.6.2 Holographic Explanation for the Rise of f=s Near Tc

With the same numerical methods, one can also compute the ratio f=s on the small
black-hole branch. As this solution has a smaller value of the action than the large
black-hole solution, it is a subleading saddle point in the phase space of the theory,
hence bears no direct significance for an holographic investigation of the quark–
gluon plasma. However, as we show below, the existence of this branch provides a
holographic explanation for the peak in f=s in the quark–gluon plasma, near Tc.

From the practical point of view, we find the second numerical method above
(solving the fluctuation equation at x ¼ 0) easier in the range of kh that corre-
sponds to the small black hole. The result is shown in Fig. 4.13a. The presence of
two branches for T [ Tmin, is made clear in this figure. See also Fig. 4.13b for the
respective ranges of kh that correspond to small and large BHs. In Fig. 4.13a, f=s
on the large BH branch is depicted with a solid curve and the small BH branch is
depicted with a dashed curve. We observe that f=s keeps increasing on the large-
BH branch as T is lowered, up to the temperature Tmin where the small and large
BH branches merge.21 On the other hand, on the small BH branch f=s keeps
increasing as the T is increased, up to a certain Tmax that lies between Tmin and Tc,
see Fig. 4.14. From this point onwards, f=s decreases with increasing T.

A simple fact that can be proved analytically is that the derivative of f=s
diverges at Tmin. This is also clear from Fig. 4.14. This is shown by inspecting
(4.65). The T derivative is determined as d=dT ¼ ðdT=dkhÞd=dkh. Whereas the
derivative w.r.t kh is everywhere smooth,22 the factor dT=dkh diverges at Tmin by
definition, see Fig. 4.13b.

Therefore, the presence of a Tmin where the large and the small black holes meet,
in other words, the presence of a small black-hole branch is responsible for the
increase of f=s near Tmin. As in most of the holographic constructions that we
analyzed, and specifically in the example we present here, Tc and Tmin are close to one
another, this fact implies a rise in the bulk viscosity near Tc. This proposal, combined
with the fact that the existence of a small BH branch and color confinement in the
dual gauge theory at zero T are in one-to-one correspondence [29], suggests that in
confining large-N gauge theories, there will be a peak in the ratio f=s close to Tc.

Another fact that can be shown analytically is that f=s asymptotes to a finite
value as T !1 in the small black-hole branch.23 We find that,

21 As far as the thermodynamics of the gluon plasma is concerned, the temperatures below Tc
(on the large BH branch) has little importance, because for T\Tc the plasma is in the confined
phase.
22 Note that cb is also a function of kh. As both the fluctuation (4.59) and the boundary
conditions are smooth at kh ¼ kmin, one concludes that cb also is smooth at this point.
23 See the discussion at appendix B of [93].
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f
s small !

1
6p
;

�

�

�

�

as T !1: ð4:69Þ

As the entropy density vanishes in this limit [29], we conclude that f should vanish
with the same rate.

For a general potential with strong coupling asymptotics

VðkÞ� kQ as k!1; ð4:70Þ

taking into account (4.65), (4.69) is modified to

f
s small !

3Q2

32p
;

�

�

�

�

as rh ! r0: ð4:71Þ

where r0 is the position of the singularity in the zero temperature solution.
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Fig. 4.13 a Numerical evaluation of f=g both on the large-BH branch (the solid curve) and on
the small BH branch (the dashed curve). Tm denotes Tmin. b The two branches of black-hole
solutions, that correspond to different ranges of kh. The large BH corresponds to kh\kmin and the
small BH corresponds to kh [ kmin
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For confining theories, the limit rh ! r0 corresponds to T !1 on the small
BH branch. However, one can show that the result (4.71) holds quite generally,
regardless of whether the zero T theory confines or not. In particular, for the non-
confining theories—that is either when Q\4=3 or when Q ¼ 4=3 but the sub-
leading term in the potential vanishes at the singularity—there is only the large
black-hole branch and the limit rh ! r0 corresponds to the zero T limit of this BH.
Thus, we also learn that there exist holographic models that correspond to non-
confining gauge theories whose zero T limit yield a constant f=s. This constant
approaches zero as Q! 0, i.e. in the limiting AdS case.

We also see that the asymptotic value of f=s in the small BH branch is close to
the value of f=s near Tc. We shall give an explanation of this fact in the next
subsection. Using the asymptotic formula (4.71), the fact that Q [ 4

3 for con-

finement and Q� 4
ffiffi

2
p

3 for the IR singularity to be good and repulsive we may
obtain a range of values where we expect f=s to vary, namely

1
6p
� f

s small;asymptotic�
1

3p

�

�

�

�

: ð4:72Þ

A final observation concerns the coefficient cbðkhÞ in (4.65). This part is the
only input from the solution of the fluctuation equation, the rest of (4.65) is fixed
by the dilaton potential entirely. We plot the numerical result for cb in Fig. 4.15 as
a function of the coupling at the horizon kh.

First of all, Fig. 4.15 provides a check that, the approximate bound of [92]
jcbj � 1, is satisfied in the entire range. One also observes cb approaches to 1 in the
IR and UV asymptotics. These facts can be understood analytically: In the UV

Tmin

Tc

Tmax

0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
T Tc

ζ s

Fig. 4.14 An inset from the Fig. 4.13 around the maximum of f=s
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(near the boundary) it is because of the boundary condition cb ¼ 1. In the IR, it is
more subtle, and it is explained in appendix B of [93].

Finally, we observe that the deviation of cb from the asymptotic value 1 is
maximum around the phase transition point kc. In fact, we numerically observed
that the top of the curve in Fig. 4.15 coincides with kc to a very high accuracy.
Whether this is just a coincidence or not, remains to be clarified.

4.6.3 The Adiabatic Approximation

Motivated by the Chamblin-Reall solutions [95], Gubser et al. [26] proposed an
approximate adiabatic formula for the speed of sound. In the case when V 0=V is a
slowly varying function of U [26] proposes the following formulae for the entropy
density and the temperature:

log s ¼ � 8
3

Z

Uh

dU
V

V 0
þ � � � ; ð4:73Þ

log T ¼
Z

Uh

dU
1
2

V 0

V
� 8

9
V

V 0


 �

� � � ; ð4:74Þ

where the ellipsis denote contributions slowly varying in Uh.24

It is very useful to reformulate this approximation using the method of scalar
variables, which in turn allows us to extract the general T dependence of most of
the thermodynamic observables in an approximate form. Here, we apply this
formalism to the computation of f=s. The method of scalar variables and the
details of the adiabatic approximation in the scalar variables are given in [93].

For the scalar variable X ¼ U0

3A0 the adiabatic approximation means

λc

0.00 0.01 0.02 0.03 0.04
λh1.0

1.1

1.2

1.3

1.4

1.5

1.6
cbFig. 4.15 The coefficient jcbj

of (4.65) as a function of kh

24 Various coefficients in these equations differ from [26] due to our different normalization of
the dilaton kinetic term.
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XðUÞ � � 3
8

V 0ðUÞ
VðUÞ : ð4:75Þ

The fluctuation (4.59) greatly simplifies with (4.75). In fact, as shown in [93], the
solution becomes independent of U. With unit normalization on boundary, the
adiabatic solution in the entire range of U 2 ð�1;UhÞ becomes hadbðUÞ ¼ 1.
Consequently, the coefficient cb in (4.65) becomes unity, hence:

f
s adb ¼

3
32p

V 0ðUhÞ
VðUhÞ


 �2
�

�

�

�

�

: ð4:76Þ

We plot this function in kh in Fig. 4.16, where we also provide the exact numerical
result for comparison. Note that in Fig. 4.16 the whole large black-hole branch has
been compressed at the left of the figure for kh . 0:04 The same functions in the
variable T=Tc are plotted in Fig. 4.17.

The validity of the adiabatic approximation (4.75), is determined by the rate at
which V 0=V varies with U. In particular, the approximation becomes exact in the
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T Tc
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0.06

0.08

ζ
s

Fig. 4.17 Comparison of the
exact f=s with the adiabatic
approximation in variable T.
Solid curve is the full
numerical result and the
dashed curve follows from
(4.76)
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Fig. 4.16 Comparison of the exact f=s with the adiabatic approximation in the variable kh. Solid
curve is the full numerical result and the dashed curve follows from (4.76)
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limits where V 0=V becomes constant. This happens for a constant potential or a
potential that is a single power of k (exponential in U). This is the case in the UV
(U! �1, where the potential becomes a constant) and the IR (U! þ1 where
the potential becomes a power law.). Therefore (4.76) allows us to extract the
analytic behavior of f=s in the limits Uh ! �1.

The numerical values one obtains from (4.76) in the intermediate region may
differ from the exact result (4.65) considerably, especially near Tc. However, we
expect that the general shape will be similar.

Finally, the adiabatic approximation hints at why, in the particular background
that we study, f=s at Tc is close to the limit value (4.69): In order to see this we
rewrite (4.76) as

f
s adb ¼

2
3p

X2

�

�

�

�

: ð4:77Þ

In the limit (4.69) we have X ! �1=2. The only other point where X ¼ �1=2, is
at the minimum of the string frame scale factor U
. This is the point where the
confining string saturates [23, 24]. On the other hand, we expect on general
physical grounds that the de-confinement phase transition happens near this point,
i.e. Uc � U
. Thus, the adiabatic formula predicts that f=sðUcÞ be close to the limit
value 1=6p.25

4.6.4 Buchel’s Bound

In [96], Buchel proposed a bound for the ratio of the bulk and shear viscosities,
motivated by certain well-understood holographic examples. In four space-time
dimensions the Buchel bound reads,

f
g
� 2

1
3
� c2

s


 �

: ð4:78Þ

We note that the bound is proposed to hold in the entire range of temperature from
Tc to 1. This bound is trivially satisfied for exact conformal theories such as
N ¼ 4 YM, and saturated in theories on Dp branes [96, 97]. With the numerical
evaluation at hand, we can check (4.78) in our case. In Fig. 4.18a we plot the LHS
and RHS of the bound.26 We clearly see that the bound is satisfied for all

25 This argument may break down for two (dependent) reasons: First of all the adiabatic
approximation becomes lees good near Uc. This is because, in this region V 0=V varies relatively
more rapidly as a function of U. Secondly, precisely because of this, even though Uc is not far
away from U
 the difference can result in a considerable change in the value of f=s through
(4.76).
26 Since this theory contains two derivatives only, g

s has the universal value 1=4p.
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temperatures. As expected, both the LHS and the RHS of (4.78) vanishes in the
high T conformal limit.

A clear picture of Buchel’s bound is obtained by defining the function:

CðTÞ ¼ f=g

2 1=3� c2
s

� 	 ; ð4:79Þ

in terms of which the bound is simply C [ 1. In Fig. 4.18b we show the function
CðTÞ obtained numerically in our IHQCD model, between Tc and 5Tc. The values
of this function are mildly dependent on temperature, and are between 1.5 and 2,
the same range of values that were recently considered in the hydrodynamic codes
by Heinz and Song [98].

We may also investigate the fate of the bound at large T. using the asymptotics
of f=s in (4.67)

f
s large ¼

2
27p

1

log2ðpT=KÞ
þ � � � ;

�

�

�

�

as T !1: ð4:80Þ
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Fig. 4.18 a Comparison of f=g (solid line) and the RHS of (4.78) (dashed line), obtained using
the speed of sound of the IHQCD model [22]. b Plot of the function CðTÞ defined in (4.79) as a
function of temperature. The horizontal dashed line indicates where Buchel’s bound is saturated.
We see that the bound is satisfied in the entire range of temperatures
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and

1
c2

s

� 3 ¼ 4
3

1

log2 T
Tc

� 
þ 32b

9

log log T
Tc

� 
� 


log3 T
Tc

� 
 þ � � � ð4:81Þ

from [29], that can be rewritten as

1
3
� c2

s ¼
4

27
1

log2 T
Tc

� 
þ 32b

81

log log T
Tc

� 
� 


log3 T
Tc

� 
 þ � � � ð4:82Þ

where b ¼ b1

b2
0
¼ 3�34

2�121 is the ratio of the two-loop to the one-loop squared b-function

coefficients in large-Nc YM.
Since in this class of models g=s ¼ 1=4p exactly we obtain

lim
T!1

f=g

2 1=3� c2
s

� 	 ¼ 1 ð4:83Þ

in agreement with a recently derived general formula, in Einstein dilaton gravity
[99]

lim
T!1

f=g

2 1=3� c2
s

� 	 ¼ 2p
4� D

4� 2D
cot

pD
4


 �

ð4:84Þ

where D is the scaling dimensions of the scalar operator in the UV, that is marginal
in our case.

It has also been suggested recently [100–102] that the speed of sound squared,
in Einstein dilaton gravity asymptotes to 1/3 at high temperatures from below.
This is evident in our asymptotic formula (4.82), although the formulae in [100–
102] fail to capture correctly the marginal case that is relevant here.

4.7 The Drag Force on Strings and Heavy Quarks

We will now consider an (external) heavy quark moving through an infinite vol-
ume of gluon plasma with a fixed velocity v at a finite temperature T [17, 19, 20].
The quark feels a drag force coming from its interaction with the plasma and an
external force has to be applied in order for it to keep a constant velocity. In a more
realistic set up one would like to describe the deceleration caused by the drag.

The heavy external quark can be described by a string whose endpoint is at the
boundary. One can accommodate flavor by introducing D-branes, but we will not
do this here. A first step is to describe the classical string ‘‘trailing’’ the quark.

We consider the Nambu–Goto action on the world-sheet of the string.

120 U. Gursoy et al.



SNG ¼ �
1

2p‘2
s

Z

drds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det �gMNoaXMobXN
� 	

q

; ð4:85Þ

where the metric is the string frame metric. The ansatz we are going to use to
describe the trailing string is [19, 20]

X1 ¼ vt þ nðrÞ; X2 ¼ X3 ¼ 0; ð4:86Þ

along with the gauge choice

r ¼ r; s ¼ t; ð4:87Þ

where r is the (radial) holographic coordinate. The string is moving in the X1

direction.
This is a ‘‘steady-state’’ description of the moving quark as acceleration and

deceleration are not taken into account. For a generic background the action of the
string becomes

S ¼ � 1
2p‘2

s

Z

dtdr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�g00grr � g00g11n
02 � g11grrv2

q

: ð4:88Þ

Note that g00 is negative, and we should check whether our solution produces a
real action. For example a straight string stretching from the quark to the horizon is
a solution to the equations of motion but has imaginary action.

We note that the action does not depend on n but only its derivative, therefore
the corresponding ‘‘momentum’’ is conserved

pn ¼ �
1

2p‘2
s

g00g11n
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�g00grr � g00g11n
02 � g11grrv2

q : ð4:89Þ

We solve for n0 to obtain

n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�g00grr � g11grrv2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g00g11 1þ g00g11=ð2p‘2
s pnÞ2

� 


r : ð4:90Þ

The numerator changes sign at some finite value of the fifth coordinate rs. For the
solution to be real, the denominator has to change sign at the same point. We
therefore determine rs via the equation

g00ðrsÞ þ g11ðrsÞv2 ¼ 0; ð4:91Þ

and the constant momentum

p2
n ¼ �

g00ðrsÞg11ðrsÞ
ð2p‘2

s Þ
2 ð4:92Þ
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Writing the string-frame metric as

ds2 ¼ e2As
dr2

f
� f dt2 þ dx � dx

� �

ð4:93Þ

(4.91) becomes

v2 ¼ f ðrsÞ ð4:94Þ

The induced world-sheet metric is therefore

gab ¼ e2AsðrÞ
�ðf ðrÞ � v2Þ e2AsðrsÞv2

f ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðrÞ�v2

e4AsðrÞf ðrÞ�e4AsðrsÞv2

q

e2AsðrsÞv2

f ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðrÞ�v2

e4AsðrÞf ðrÞ�e4AsðrsÞv2

q

e4AsðrÞf 2ðrÞ�v4e4AsðrsÞ

f 2ðrÞ e4AsðrÞf ðrÞ�v2e4AsðrsÞ½ 	

0

@

1

A ð4:95Þ

We can change the time coordinate to obtain a diagonal induced metric t ¼
sþ fðrÞ with

f0 ¼ e2AsðrsÞv2

f ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf ðrÞ � v2Þðe4AsðrÞf ðrÞ � e4AsðrsÞv2Þ
p

The new metric is

ds2 ¼ e2AsðrÞ �ðf ðrÞ � v2Þds2 þ e4AsðrÞ

ðe4AsðrÞf ðrÞ � e4AsðrsÞv2Þ dr2

� �

ð4:96Þ

and near r ¼ rs it has the expansion

ds2 ¼ �f 0ðrsÞe2AsðrsÞðr � rsÞ þ Oððr � rsÞ2Þ
h i

ds2

þ e2AsðrsÞ

ð4v2A0sðrsÞ þ f 0ðrsÞÞðr � rsÞ
þ Oð1Þ

� �

dr2 ð4:97Þ

This is a world-sheet black-hole metric with horizon at the turning point r ¼ rs:

4.7.1 The Drag Force

The drag force on the quark can be determined by calculating the momentum that
is lost by flowing along the string into the horizon:

Fdrag ¼
dp1

dt
¼ � 1

2p‘2
s

g00g11n
0

ffiffiffiffiffiffiffi�g
p ¼ pn: ð4:98Þ

This can be obtained by considering the world-sheet Noether currents Pa
M and

expressing the loss of momentum as DPz
x1
¼
R

Pr
1. This may be evaluated at any

value of r, but it is more convenient to evaluate it at r ¼ rs.
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We finally find that

Fdrag ¼ �
1

2p‘2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�g00ðrsÞg11ðrsÞ
p

: ð4:99Þ

Using the form (4.93) of our finite-temperature metric in the string frame we
finally obtain

Fdrag ¼ �
e2AsðrsÞ

ffiffiffiffiffiffiffiffiffiffi

f ðrsÞ
p

2p‘2
s

¼ � e2AðrsÞ
ffiffiffiffiffiffiffiffiffiffi

f ðrsÞ
p

kðrsÞ4=3

2p‘2
s

; ð4:100Þ

where in the second equality we expressed the force in terms of the Einstein-frame
scale factor and the ‘‘running’’ dilaton. Substituting from (4.94) we obtain

Fdrag ¼ �
v e2AsðrsÞ

2p‘2
s

¼ � v e2AðrsÞkðrsÞ4=3

2p‘2
s

; ð4:101Þ

Before proceeding further, we will evaluate the drag force for the conformal case
of N ¼ 4 SYM where

eAs ¼ ‘
r
; v2 ¼ f ðrsÞ ¼ 1� ðpTrsÞ4;

‘2

‘2
s

¼
ffiffiffi

k
p

: ð4:102Þ

Substituting in (4.101) we obtain [17–20]

Fconf ¼
p
2

ffiffiffi

k
p

T2 v
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p : ð4:103Þ

Moving on to YM, to compute the drag force from (4.101) we must first
determine ‘s in the IHQCD model. In this setup there is no analog of the
N ¼ 4 SYM relation (4.102) between ‘; ‘s and k. Rather, the fundamental
string length ‘s is determined in a bottom-up fashion, by matching the effective
string tension to the QCD string tension rc derived from the lattice calculations.
We obtain

rc ¼
1

2p‘2
s

e2As;oðr
Þ ¼ 1
2p‘2

s

e2Aoðr
Þkoðr
Þ4=3; ð4:104Þ

where r
 is the point where the zero-temperature string scale factor (at T = 0)

As;oðrÞ has a minimum. For a typical value of rc�ð440 MeVÞ2 [78, 79] we find

‘s ¼ 6:4 ‘; ð4:105Þ

where ‘ is the radius of the asymptotic AdS space.
On the other hand, unlike inN ¼ 4 SYM, in the IHQCD model the value of the

coupling kðrsÞ in (4.101) is not an extra parameter to be fixed by hand, but rather
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it is determined dynamically together with the background metric (Figs. 4.19
and 4.20).

4.7.2 The Relativistic Asymptotics

When v! 1 then rs ! 0 and we approach the boundary. Near the boundary
(r ! 0) we have the following asymptotics of the scale factor and the ’t Hooft
coupling [23, 24]
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Fig. 4.20 The ratio of the drag force in improved holographic QCD to the drag force in N ¼ 4
SYM is shown. The ratio is computed for different temperatures as a function of velocity. The
’t Hooft coupling for the N ¼ 4 SYM theory is taken to be 5:5. As temperature increases the
value of the ratio decreases
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Fig. 4.19 The ratio of the drag force in improved holographic QCD to the drag force in N ¼ 4
SYM is shown. The ratio is computed for different velocities as a function of temperature. The
’t Hooft coupling for the N ¼ 4 SYM theory is taken to be 5:5. We chose this value as it is
considered in the central region of possible values for the ’t Hooft coupling. It is seen that as the
velocity increases the value of the ratio decreases
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f ðrÞ ’ 1� pT e3AðrhÞ

‘3
r4 1þO 1

logðKrÞ


 �� �

þOðr8Þ;

eAðrÞ ¼ ‘
r

1þO 1
logðKrÞ


 �� �

þ � � � ð4:106Þ

and

kðrÞ ¼ � 1
b0 logðrKÞ þ OðlogðrKÞ�2Þ ð4:107Þ

where rh is the position of the horizon.
We therefore obtain for the turning point

rs ’
‘3ð1� v2Þ
pTe3AðrhÞ

� �

1
4

1þO 1
logð1� v2Þ


 �� �

; kðrsÞ ’ �
4

b0 log 1� v2½ 	 þ � � �

ð4:108Þ

and the drag force

Fdrag ’ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pT‘b3ðrhÞk
8
3ðrsÞ

q

2p‘2
s

v
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p þ � � � ð4:109Þ

We also use

e3AðrhÞ ¼ sðTÞ
4pM3

p N2
c

¼ 45p‘3sðTÞ
N2

c

ð4:110Þ

where sðTÞ the entropy per unit three-volume, and we write the relativistic
asymptotics of the drag force as,

Fdrag ’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pT‘b3ðrhÞ
p

2p‘2
s

v
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

� b0
4 log 1� v2½ 	

� 
4
3

þ � � � ð4:111Þ

¼ � ‘
2

‘2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

45 TsðTÞ
4N2

c

s

v
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

� b0
4 log 1� v2½ 	

� 
4
3

þ � � �

The force is proportional to the relativistic momentum combination v=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

modulo a power of log 1� v2½ 	. This factor is present because, as argued in [25] the
asymptotic metric is AdS in the Einstein frame instead of the string frame. Its
effects are not important phenomenologically.
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4.7.3 The Non-relativistic Asymptotics

We now consider the opposite limit, v! 0. In this case the turning point
asymptotes to the horizon, rs ! rh and we have the expansion

f ðrÞ ’ 4pTðrh � rÞ þ Oððrh � rÞ2Þ; rs ¼ rh �
v2

4pT
þOðv4Þ ð4:112Þ

and

Fdrag ’ �
e2AðrhÞkðrhÞ

4
3

2p‘2
s

v 1� v2

2pT
A0ðrhÞ �

v2

3pT

k0ðrhÞ
kðrhÞ

þ Oðv4Þ
� �

ð4:113Þ

’ � ‘
2

‘2
s

45p sðTÞ
N2

c


 �2
3kðrhÞ

4
3

2p
vþOðv3Þ

where primes are derivatives with respect to the conformal coordinate r.

4.7.4 The Diffusion Time

For a heavy quark with mass Mq we may rewrite (4.103) as

Fconf �
dp

dt
¼ � 1

s
p; p ¼ Mqv

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ð4:114Þ

where the first equation defines the diffusion time s. In the conformal case, the
diffusion time is constant,

sconf ¼
2Mq

p
ffiffiffi

k
p

T2
: ð4:115Þ

This is not anymore the case in QCD, where s defined as above is momentum
dependent. We may still define it as in (4.114) in which case we obtain the
following limits (Fig. 4.21):

lim
p!1

s ¼ Mq
‘2

s

‘2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4N2
c

45 TsðTÞ

s

b0

4
log

p2

M2
q

 !4
3

þ � � � ð4:116Þ

lim
p!0

s ¼ Mq
‘2

s

‘2

N2
c

45p sðTÞ


 �

2
3 2p

kðrhÞ
4
3

þ � � � ð4:117Þ
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4.7.5 Including the Correction to the Quark Mass

In order to estimate the diffusion time of a quark of finite rest mass, we must take
into account the fact that the mass of the quark receives medium-induced
corrections. In other words, the mass appearing in (4.114) is a temperature-
dependent quantity, MqðTÞ 6¼ MqðT ¼ 0Þ. The ratio MqðTÞ=Mqð0Þ can be esti-
mated holographically by representing a static quark of finite mass by a static,
straight string27 stretched along the radial direction starting at a point r ¼ rq 6¼ 0.
At zero temperature, the IR endpoint of the string can be taken as the ‘‘confine-
ment’’ radius, r
, where the string frame metric reaches its minimum value; At
finite temperature, the string ends in the IR at the BH horizon.28 The masses of the
quark at zero and finite T are related to the world-sheet action evaluated on the
static solution ðs ¼ t; r ¼ rÞ :

Mqð0Þ ¼
‘

2p‘2
s

Z

r


rq

dr e2AoðrÞk4=3
o ðrÞ ; MqðTÞ ¼

‘

2p‘2
s

Z

rh

rq

dr e2AðrÞk4=3ðrÞ: ð4:118Þ
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Fig. 4.21 The ratio of the diffusion time in the Improved Holographic QCD model to the
diffusion time in N ¼ 4 SYM is shown. The ’t Hooft coupling for N ¼ 4 SYM is taken to be
k ¼ 5:5. The heavy quark has a mass of Mq ¼ 1:3 GeV. Note that with the definition of the
diffusion time in (4.114) the ratio is the inverse of the ratio of the forces. A similar plot is valid for
the bottom quark as well, as the mass drops out of the ratio. although the energy scales are
different. In this plot the x-axis is taken to be in MeV units. As temperature increases the ratio
also increases

27 This representation ignores the fact that the kinetic mass of a moving quark may be different
from the static mass [17].
28 It would stop at the confinement radius if the latter were closer to the boundary than the
horizon, i.e. if r
ðTÞ\rhðTÞ. However, in the model we are considering, in the large BH branch
we find that the relation rh\r
 is always satisfied.
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The value rq can be fixed numerically by matching Mqð0Þ to the physical
quark mass, and translating the fundamental string tension in physical units by

using the relation (4.104), with rc ¼ ð440 MeVÞ2. This makes MqðTÞ a function
of Mqð0Þ. The ratios MqðTÞ=Mqð0Þ we found numerically in the model under
consideration is shown in Fig. 4.22 for the Charm (Mð0Þ ¼ 1:5 GeV) and Bottom
(Mð0Þ ¼ 4:5 GeV) quarks. The fact that, in the deconfined plasma, the quark
mass decreases with increasing temperature is a direct consequence of the
holographic framework,29 since for higher temperature, the distance to the
horizon is smaller. An indication that this result may be in the right direction
comes from the lattice computation of the shift in the position of the quarkonium
resonance peak at finite temperature [104]: in the deconfined phase the char-
monium peak moves to lower mass at higher temperature. Our result for the
medium-induced shift in the constituent quark mass is consistent with these
observations.

We can now write the diffusion time from (4.101) and (4.114) as:

sðT ; vÞ ¼ MqðTÞ
rc

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p koðr
Þ

kðrsÞ


 �4=3

e2Aoðr
Þ�2AðrsÞ; ð4:119Þ

where once again we have eliminated the fundamental string length using
(4.104). Given a set of zero- and finite-temperature solutions, (4.119) can be
evaluated numerically for different values of the velocity and different quark
masses. The results for the Charm (Mqð0Þ ¼ 1:5 GeV) and Bottom (M ¼ 4:5 GeV)
quarks are displayed in Fig. 4.23.
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M T

M0

Fig. 4.22 Ratios between the
thermal mass and the rest
mass of the Charm (curve
labelled ‘‘c’’) and Bottom
(curve labelled ‘‘b’’) quarks,
as a function of temperature

29 For a possible field theoretical explanation of this phenomenon, see [103].
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4.7.6 Temperature Matching and Diffusion Time Estimates

An important question is how we should choose the temperature in our holo-
graphic model in order to compare our results with heavy-ion collision experi-
ments. This is nontrivial, since our setup is designed to describe pure SUðNcÞ
Yang–Mills, whereas at RHIC temperatures there are three light quark flavors that
become relevant. As a consequence, the critical temperatures and the number of
degrees of freedom of the two theories are not the same: for pure SUðNcÞ Yang
Mills we have N2

c � 1 degrees of freedom and a critical temperature around

Tc

1.25 Tc
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p GeV0

1

2

3

4

5

6

7
τ fm

Charm

Tc
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Fig. 4.23 Diffusion time for the Charm and Bottom quarks, as a function of energy, for different
ratios of the temperature to the IHQCD transition temperature Tc
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260 MeV; For SUðNcÞ QCD with Nf flavors the number of degrees of freedom is
N2

c � 1þ NcNf , and the transition temperature is lower, around 180 MeV.
In IHQCD, the transition temperature in physical units was calculated to be

Tc ¼ 247 MeV [32], i.e. close to the lattice result for the pure YM deconfining
temperature. From now on, this is the value we will mean when we refer to Tc.
This is also close to the temperature of QGP at RHIC, which we will denote TQGP,
and is estimated to be around 250 MeV. Since this value is uncertain, below we
give our results for a range of temperatures between 200 and 400 MeV. The higher
temperatures will be relevant for the LHC heavy-ion collision experiments (see
e.g. [105]).

Based on these considerations, there are different ways of fixing the temperature
(see e.g. the recent review [51]): one direct and two alternative schemes (that we
call the energy and entropy scheme).

• Direct scheme: The temperature of the holographic model is identified with the
temperature of the QGP in the experimental situation (at RHIC or LHC),

TðdirÞ
ihqcd ¼ TQGP.

• Energy scheme: One matches the energy densities, rather than the temperatures.
The energy density at RHIC is approximately (treating the QCD plasma as a free

gas.30) �QGP ’ ðp2=15ÞðN2
c � 1þ NcNf ÞðTQGPÞ4. For Nc ¼ Nf ¼ 3, asking that

our energy density matches this value requires us to consider the holographic

model at temperature T ð�Þihqcd given by

�ihqcdðT ð�ÞihqcdÞ ’ 11:2ðTQGPÞ4 ð4:120Þ

• Entropy scheme: Instead of matching the energy densities, alternatively one can
match the entropy density s, which for the QGP, in the free gas approxima-

tion,rQGP ’ 4p2=45ðN2
c � 1þ NcNf ÞðTQGPÞ4. This leads to the identification:

sihqcdðT ðsÞihqcdÞ ¼ 14:9ðTQGPÞ3 ð4:121Þ

The temperature translation table between the various schemes is shown in
Table 4.3. In that table, Tc ¼ 247 MeV is the deconfining temperature of the
holographic model.

In Fig. 4.24 we show the comparison between the diffusion times, as a function
of initial quark momentum, in the different schemes for the Charm and Bottom
quarks, at the temperature TQGP ¼ 250 MeV.

The results for the diffusion times at different temperatures, computed at a
reference heavy quark initial momentum p � 10 GeV, are displayed in Tables 4.4
and 4.5. We see that there is little practical difference between the entropy and

30 This is itself an approximation, since as we know both from experiment and in our
holographic model, the plasma is strongly coupled up to temperatures of a few Tc.
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the Charm and Bottom
quarks, as a function of initial
momentum, at
TQGP ¼ 250 MeV. The
different lines represent the in
the direct scheme (solid),
energy scheme (dashed) and
entropy scheme (dash-
dotted), all corresponding to
the same temperature
TQGP ¼ 250 MeV

Table 4.3 Translation table between different temperature identification schemes

TQGP (MeV) TQGP=Tc T ð�Þihqcd (MeV) T ð�Þihqcd=Tc T ðsÞihqcd (MeV) T ðsÞihqcd=Tc

190 0.77 259 1.05 274 1.11
220 0.89 290 1.18 302 1.23
250 1.01 325 1.31 335 1.35
280 1.13 361 1.46 368 1.49
310 1.26 398 1.61 402 1.63
340 1.38 434 1.76 437 1.77
370 1.50 471 1.90 472 1.91
400 1.62 508 2.06 507 2.05

The first two columns display temperatures in the direct scheme, (in which the temperature of the
holographic model matches the physical QGP temperature) and the corresponding ratio to the
IHQCD critical temperature, that was fixed by YM lattice results at Tc ¼ 247 MeV [32]. The third
and fourth columns display the corresponding temperatures (and respective ratios to Tc) in the
energy scheme, and the last two in the entropy scheme

Table 4.4 The diffusion times for the charm quark are shown for different temperatures, in the
three different schemes

TQGP;MeV scharm (fm/c) (direct) scharm (fm/c) (energy) scharm (fm/c) (entropy)

220 – 4.0 3.6
250 5.7 3.1 3.0
280 4.3 2.6 2.5
310 3.5 2.1 2.1
340 2.9 1.8 1.8
370 2.5 1.5 1.5
400 2.1 1.3 1.3

Diffusion times have been evaluated with a quark initial momentum fixed at p � 10 GeV
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energy schemes; on the other hand the difference between the direct scheme and
the two alternative schemes can be quite substantial.

4.8 Jet Quenching Parameter

In this section we discuss the jet quenching parameter in the class of holographic
models under consideration, and we estimate its numerical value for the concrete
model with potential (4.26) and parameters fixed as in [32]. For the holographic
computation, we will follow [18, 52]. There is another method available [57], but
we will not use it here.

The jet-quenching parameter q̂ provides a measure of the dissipation of the
plasma and it has been associated to the behavior of a Wilson loop joining two
light-like lines. We consider two light-like lines which extend for a distance L�

and are situated distance L apart in a transverse coordinate. Then q̂ is given by the
large Lþ behavior of the Wilson loop

W � e�
1

4
ffiffi

2
p q̂L�L2

: ð4:122Þ

We consider the bulk string frame metric

ds2 ¼ e2AsðrÞ �f ðrÞdt2 þ dx~2 þ dr2

f ðrÞ


 �

: ð4:123Þ

To address the problem of the Wilson loop we make a change of coordinates to
light cone coordinates for the boundary theory

xþ ¼ x1 þ t x� ¼ x1 � t ð4:124Þ

for which the metric becomes

Table 4.5 Diffusion times
for the bottom quark are
shown for different
temperatures, in the three
different schemes

TQGP

ðMeVÞ
sbottom

(fm/c)
(direct)

sbottom

(fm/c)
(energy)

sbottom

(fm/c)
(entropy)

220 – 8.9 8.4
250 11.4 7.5 7.1
280 10.1 6.3 6.1
310 8.6 5.4 5.3
340 7.5 4.7 4.7
370 6.6 4.1 4.1
400 5.8 3.6 3.6

Diffusion times have been evaluated with a quark initial
momentum fixed at p � 10 GeV
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ds2 ¼ e2As dx2
2 þ dx2

3 þ
1
2
ð1� f Þðdx2

þ þ dx2
�Þ þ ð1þ f Þdxþdx� þ

dr2

f


 �

:

ð4:125Þ

The Wilson loop in question stretches across x2, and lies at a constant xþ; x3. It is
convenient to choose a world-sheet gauge in which

x� ¼ s; x2 ¼ r: ð4:126Þ

Then the action of the string stretching between the two lines is given by

S ¼ 1
2p‘2

s

Z

drds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�detðgMNoaXMobXNÞ
q

ð4:127Þ

and assuming a profile of r ¼ rðrÞ we obtain

S ¼ L�

2p‘2
s

Z

dx2 e2As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� f Þ
2

1þ r02

f


 �

s

: ð4:128Þ

The integrand does not depend explicitly on x2, so there is a conserved quantity, c:

r0
oL
or0
� L ¼ c

ffiffiffi

2
p ; ð4:129Þ

which leads to

r02 ¼ f
e4Asð1� f Þ

c2
� 1


 �

: ð4:130Þ

A first assessment of this relation involves determining the zeros and the region
of positivity of the right-hand side. f is always positive and vanishes at the horizon.
For the second factor we need the asymptotics of e4Asð1� f Þ. This factor remains
positive and bounded from below in the interior and up to the horizon. It vanishes
however logarithmically near the boundary as

e4Asð1� f Þ ¼ pT‘e3AðrhÞ � 1
b0 logðKrÞ


 �8
3

1þO 1
logðKrÞ


 �� �

: ð4:131Þ

This is unlike the conformal case where we obtain a constant

e4Asð1� f Þ conformal ¼ ðpT‘Þ4
�

� : ð4:132Þ

Because of this, for fixed c, there is a region near the boundary where r02

becomes negative. At this stage we will avoid this region, by using a modified
boundary at r ¼ �. We will later show that this gymnastics will be irrelevant for
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the computation of the jet quenching parameter, as it involves effectively the limit
c! 0 (Fig. 4.25).

We will place the modified boundary r ¼ � a bit inward from the place r ¼ rmin

where the factor e4As ð1�f Þ
c2 � 1 vanishes:

e4AsðrminÞð1� f ðrminÞÞ ¼ c2: ð4:133Þ
Therefore we choose rmin\�.

Then, in the range �\r\rh the factor e4As ð1�f Þ
c2 � 1 is positive for sufficiently

small c. In this same range, r0 vanishes only at r ¼ rh. This is the true turning point
of the string world-sheet. This is also what happens in the conformal case. It is also
intuitively obvious that the relevant Wilson loop must sample also the region near
the horizon.

The constant c is determined by the fact that the two light-like Wilson loops are
a x2 ¼ L distance apart.

L

2
¼
Z

rh

�

cdr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðe4Asð1� f Þ � c2Þ
p : ð4:134Þ

The denominator vanishes at the turning point. The singularity is integrable.31

Therefore, as we are interested in the small L region, it is obvious from the
expression above that that c must also be small in the same limit.

This relation can then be expanded in powers of c as

L

2c
¼
Z

rh

�

e�2As dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1� f Þ
p þ c2

2

Z

rh

�

e�6As dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1� f Þ3
q þOðc4Þ : ð4:135Þ
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Fig. 4.25 The combination
ð1� f Þe4As is plotted as a
function of the radial
distance, for several
temperatures. The radial
distance is given in units of
the horizon position rc for the
black hole at the critical
temperature Tc. All curves
stop at the corresponding
horizon position

31 Even if we choose � ¼ rmin, the new singularity at r ¼ rmin is also integrable as suggested
from (4.131).
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Therefore to leading order in L

c ¼ L

2
R rh

�
e�2As dr
ffiffiffiffiffiffiffiffiffiffi

f ð1�f Þ
p þ OðL3Þ:: ð4:136Þ

We are now ready to evaluate the Nambu–Goto action of the extremal con-
figuration we have found. Starting from (4.128), we substitute r0 from (4.130), and
change integraLn variable from x2 ! r to obtain

S ¼ 2L�

2p‘2
s

Z

rh

�

dr
e4Asð1� f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f e4Asð1� f Þ � c2ð Þ
p : ð4:137Þ

As in [18, 52], we subtract from (4.137) the action of two free string straight
world-sheets that hang down to the horizon. To compute this action a convenient
choice of gauge is x� ¼ s; r ¼ r. The action of each sheet is

S0 ¼
L�

2p‘2
s

Z

rh

�

dr
ffiffiffiffiffiffiffiffiffiffiffi

g�grr
p ¼ L�

2p‘2
s

Z

rh

�

dr e2As

ffiffiffiffiffiffiffiffiffiffiffi

1� f

2f

s

: ð4:138Þ

The subtracted action is therefore:

Sr ¼ S� 2S0 ¼
L�c2

2p‘2
s

Z

rh

�

dr

e2As
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1� f Þ
p þOðc4Þ ; ð4:139Þ

Using now (4.136) to substitute c we finally obtain

Sr ¼
L�L2

8p‘2
s

1
R rh

�
dr

e2As
ffiffiffiffiffiffiffiffiffiffi

f ð1�f Þ
p þ OðL4Þ : ð4:140Þ

So far we have evaluated the relevant Wilson loop in the fundamental repre-
sentation (by using probe quarks). On the other hand, the Wilson loop that defines
the jet-quenching parameter is an adjoint one. We can obtain it in the large-Nc

limit from the fundamental using trAdjoint ¼ tr2
Fundamental. We finally extract the jet-

quenching parameter as

q̂ ¼
ffiffiffi

2
p

p‘2
s

1
R rh

�
dr

e2As
ffiffiffiffiffiffiffiffiffiffi

f ð1�f Þ
p : ð4:141Þ

We are now ready to remove the cutoff. As the integral appearing is now well-
defined up to the real boundary r ¼ 0 we may rewrite it as
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Z

rh

�

e�2As dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1� f Þ
p ¼

Z

rh

0

e�2As dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1� f Þ
p � Ið�Þ; Ið�Þ ¼

Z

�

0

e�2As dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1� f Þ
p : ð4:142Þ

In [93] we obtain the small � estimate of Ið�Þ that vanishes as � �ðlog �Þ
4
3.

� �ðlog �Þ
4
3We may finally write32

q̂ ¼
ffiffiffi

2
p

p‘2
s

1
R rh

0
dr

e2As
ffiffiffiffiffiffiffiffiffiffi

f ð1�f Þ
p : ð4:143Þ

From (4.143) we obtain, in the conformal case:

q̂conformal ¼
C 3

4

� �

C 5
4

� �

ffiffiffiffiffi

2k
p

p
3
2T3: ð4:144Þ

The conformal value, for the median value of k ¼ 5:5 and T ’ 250 MeV gives
q̂conformal ’ 1:95 GeV2=fm where we used the conversion 1 GeV ’ 5 fm�1.

Numerical evaluation of (4.143) in the non-conformal IHQCD setup33 gives
us a value of q̂ which is lower (at a given temperature) than the conformal value, as
shown in Figs. 4.26, 4.27 and 4.28. Tables 4.6, 4.7, 4.8, and 4.9 display the
numerical values of the jet quenching parameter at different temperatures in the
experimentally relevant range, in different temperature matching schemes.

2 3 4 5
T Tc

0.32

0.34

0.36

0.38

0.40

qihQCD qconf

Fig. 4.26 The ratio of the jet quenching parameter in our model to the jet quenching parameter
in N ¼ 4 is shown. The integral present in (4.141) has been numerically calculated from an
effective cutoff at r ¼ rh=1000. The jet quenching parameter in N ¼ 4 SYM has been calculated
with k‘t Hooft ¼ 5:5

32 In practise, the previous discussion including regularizing the UV is academic. The numerical
calculation is done with a finite cutoff where the boundary conditions for the couplings are
imposed.
33 In this case, the value of ‘s appearing in (4.143) is fixed as explained in Sect. 4.4.
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Fig. 4.27 The jet quenching parameter q̂ for the Improved Holographic QCD model and N ¼ 4
SYM is shown in units of GeV2=fm for a region close to T ¼ Tc. The smallest dashed curve is the
ihQCD result with an effective cutoff of rcutoff ¼ rh=1000. The small dashed curve is the ihQCD
result with the cutoff from the mass of the Bottom quark. The medium dashed curve has a cutoff
coming from the Charm mass and largest dashed curve is the N ¼ 4 SYM result
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Fig. 4.28 The jet quenching parameter q̂ for the Improved Holographic QCD model (lower curve)
and N ¼ 4 SYM (upper curve) are shown in units of GeV2=fm for temperatures up to T ¼ 4Tc

Table 4.6 The jet quenching
parameter q̂ computed with
different cutoffs for the
different temperatures shown
in the first column

TQGP;MeV q̂ðGeV2=fmÞ
(direct)

q̂1ðGeV2=fmÞ
(direct)

220 – –
250 0.5 0.6
280 0.8 0.8
310 1.1 1.1
340 1.4 1.4
370 1.8 1.8
400 2.2 2.2

The computation is done in the direct scheme. The second col-
umn shows q̂ with a cutoff at rcutoff ¼ rh=1000, where rh is the
location of the horizon. In accordance with the conclusions of
appendix q̂ does not change significantly as we vary the cutoff
from rh=1000 to rh=100

4 Improved Holographic QCD 137



Table 4.7 The jet quenching
parameter q̂ using the three
different comparison schemes

TQGP;MeV q̂ðGeV2=fmÞ
(direct)

q̂ðGeV2=fmÞ
(energy)

q̂ðGeV2=fmÞ
(entropy)

220 – 0.9 1.0
250 0.5 1.2 1.3
280 0.8 1.6 1.7
310 1.1 2.1 2.2
340 1.4 2.7 2.8
370 1.8 3.4 3.4
400 2.2 4.2 4.2

For lower temperatures the ‘‘entropy scheme’’ gives higher
values. As energy is increased the energy and entropy schemes
temperatures start to coincide and there is little difference in the
jet quenching parameter as well

Table 4.8 The jet quenching
parameter q̂ using the three
different comparison schemes
with an effective cutoff
provided by the mass of the
Charm quark

TQGP;
MeV

q̂charm

ðGeV2=fmÞ
(direct)

q̂charm

ðGeV2=fmÞ
(energy)

q̂charm

ðGeV2=fmÞ
(entropy)

220 – 1.3 1.5
250 0.8 1.8 2.0
280 1.2 2.6 2.8
310 1.7 3.5 3.6
340 2.2 4.6 4.7
370 2.8 5.9 6.0
400 3.6 7.6 7.5

Again, for lower temperatures the ‘‘entropy scheme’’ gives
higher values. As energy is increased the energy and entropy
schemes temperatures start to coincide and there is little differ-
ence in the jet quenching parameter as well. Also when the
temperature approaches the quark mass the picture of the heavy
quark as a hanging string collapses and results are not reliable

Table 4.9 The jet quenching
parameter q̂ using the three
different comparison schemes
with an effective cutoff
provided by the mass of the
Bottom quark

TQGP;
MeV

q̂bottom

ðGeV2=fmÞ
(direct)

q̂bottom

ðGeV2=fmÞ
(energy)

q̂bottom ðGeV2=fmÞ
(entropy)

220 – 1.0 1.1
250 0.6 1.4 1.5
280 0.9 1.9 2.0
310 1.2 2.5 2.6
340 1.6 3.2 3.2
370 2.0 4.0 4.0
400 2.5 5.0 4.9

The results are close to the q̂ results computed in Table 4.7 since
the mass of the Bottom quark is much larger than the tempera-
tures we examine
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4.9 Discussion and Outlook

The construction presented in this paper offers a holographic description of large-
Nc Yang–Mills theory that is both realistic and calculable, and in quite good
agreement with a large number of lattice results both at zero and finite
temperature.

It is a phenomenological model; as such it is not directly associated to an explicit
string theory construction. In this respect it is in the same class as the models based
on pure AdS backgrounds (with hard or soft walls) [14–16, 106, 107], or on IR
deformations of the AdS metric [108, 109]. In comparison to them however, the
IHQCD approach has the advantage that the dynamics responsible for strong
coupling phenomena (such as confinement and phase transitions) is made explicit in
the bulk description, and it is tied to the fact that the coupling constant depends on
the energy scale and becomes large in the IR. This makes the model consistent and
calculable, once the 5D effective action is specified: the dynamics can be entirely
derived from the bulk Einstein’s equation. The emergence of an IR mass scale and
the finite temperature phase structure are built-in: they need not be imposed by hand
and do not suffer from ambiguities related to IR boundary conditions (as in hard
wall models) or from inconsistencies in the laws of thermodynamics (as in non-
dynamical soft wall models based on a fixed dilaton profile [16] or on a fixed metric
[108, 109]). More specifically, in this approach it is guaranteed that the Bekenstein–
Hawking temperature of the black hole matches the entropy computed as the
derivative of the free energy with respect to temperature.

With an appropriate choice of the potential, a realistic and quantitatively
accurate description of essentially all the static properties (spectrum and equilib-
rium thermodynamics) of the dynamics of pure Yang–Mills can be provided. The
main ingredient responsible for the dynamics (the dilaton potential) is fixed
through comparison with both perturbative QCD and lattice results. It is worth
stressing that such a matching on the quantitative level was only possible because
the class of holographic models we discuss generically provides a qualitatively
accurate description of the strong Yang–Mills dynamics. This is a highly non-
trivial fact, that strongly indicates that a realistic holographic description of real-
world QCD might be ultimately possible.

Although the asymptotics of our potential is dictated by general principles, we
base our choice of parameters by comparing with the lattice results for the ther-
modynamics. There are other physical parameters in the 5D description that do not
appear in the potential: the 5D Planck scale, that was fixed by matching the free
field thermodynamics in the limit T !1; the coefficients in the axion kinetic
term, that were set by matching the axial glueball spectrum and the topological
susceptibility (from the lattice). The quantities that we use as input in our fit, as
well as the corresponding parameters in the 5D model, are shown in the upper half
of Table 4.2.

The fact that our potential has effectively two free parameters depends on our
choice of the functional form. This functional form contains some degree of
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arbitrariness, in that only the UV and IR asymptotics of VðkÞ are fixed by general
considerations (matching the perturbative b-function in the UV, and a discrete
linear glueball spectrum for the IR). Therefore the results presented in this paper
offer more a description, rather than a prediction of the thermodynamics.

Nevertheless, there are several quantities that we successfully ‘‘postdict’’ (i.e.
they agree with the lattice results) once the potential is fixed: apart from the good
agreement of the thermodynamic functions over the whole range of temperature
explored by the lattice studies (see Figs. 4.5, 4.7 and 4.9), they are the lowest
glueball mass ratios and the value of the critical temperature. The comparison of
these quantities with the lattice results is shown in the lower half of Table 4.2, and
one can see that the agreement is overall very good. Moreover the model predicts
the masses of the full towers of glueball states in the 0þ�; 0þþ; 2þþ families.

The fact that IHQCD is consistent with a large number of lattice results is
clearly not the end of the story: its added value, and one of the main reasons for its
interest lies in its immediate applicability beyond equilibrium thermodynamics,
i.e. in the dynamic regimes tested in heavy-ion collision experiments. This is a
generic feature of the holographic approach, in which there are no obstructions (as
opposed to the lattice) to perform real-time computations and to calculate
hydrodynamics and transport coefficients. IHQCD provides a framework to
compute these quantities in a case where the static properties agree with the real-
word QCD at the quantitative level. Therefore the bulk viscosity, drag force and jet
quenching parameters were computed in IHQCD.

4.9.1 Bulk Viscosity

The bulk viscosity was computed by calculating the low frequency asymptotics of
the appropriate stress tensor correlator holographically. The result is that the bulk
viscosity rises near the phase transition but stays always below the shear viscosity.
It floats somewhat above the Buchel bound, with a coefficient of proportionality
varying between 1 and 2. Therefore it is expected to affect the elliptic flow at the
small percentage level [44, 98]. Knowledge of the bulk viscosity is important in
extracting the shear viscosity from the data. This result is not in agreement with
the lattice result near Tc. In particular the lattice result gives a value for the
viscosity that is ten times larger.

The bulk viscosity keeps increasing in the black-hole branch below the tran-
sition point until the large BH turns into the small BH at a temperature Tmin. The
bulk viscosity on the small BH background is always larger than the respective one
in the large BH background. In particular, it can be shown that the T derivative of
the quantity f=s diverges at Tmin. This is the holographic reason for the presence of
a peak in f=s near Tc. On the other hand, as it is shown in [29], the presence of Tmin

(i.e. a small BH branch) is in one-to-one correspondence with color confinement at
zero T. We arrive thus at the suggestion that in a (large N) gauge theory that
confines color at zero T, there shall be a rise in f=s near Tc.
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An important ingredient here is the value of the viscosity asymptotically in the
small BH branch. There the asymptotic value correlates to the IR behavior of the
potential. Taking also into account the fact that this asymptotic value is very close
to the value of the bulk viscosity near Tc, we can derive bounds that suggest that
the bulk viscosity cannot increase a lot near Tc.

4.9.2 Drag Force

The drag force calculated from IHQCD has the expected behavior. Although it
increases with temperature, it does so slower than in N ¼ 4 SYM, signaling the
effects of asymptotic freedom.

4.9.3 Diffusion Time

Based on the drag force calculation the diffusion times can be computed for a
heavy external quark. The numerical values obtained are in agreement with phe-
nomenological models [50]. To accommodate for the fact that IHQCD exhibits a
phase transition around T ¼ 247 MeV (i.e. about 30% higher than in QCD), the
results are compared using alternative schemes, as proposed in [19, 20]. For
example, for an external Charm quark of momentum p ¼ 10 GeV (in the alter-
native scheme) a diffusion time of s ¼ 2:6 fm at temperature T ¼ 280 MeV is
found. Similarly, for a Bottom quark of the same momentum and at the same
temperature, s ¼ 6:3 fm. Generally the numbers obtained are close to those
obtained by [50] and [54].

4.9.4 Jet Quenching

The jet quenching parameter of this model, has been also calculated, based on the
formalism of [18, 52] by computing the appropriate light-like Wilson loop. q̂
grows with temperature, but slower than the T3 growth of N ¼ 4 SYM result.
Again this can be attributed to the incorporation of asymptotic freedom in IHQCD.
Using the alternative scheme to compare with experiment, the results are close to
the lower quoted values of q̂. For example, for a temperature of T ¼ 290 MeV,
which in the alternative ‘‘energy scheme’’ corresponds to a temperature of T ¼
395 MeV in our model, we find that q̂ � 2 GeV2=fm.

However, the numbers obtained for this particular definition of jet quenching
parameter seem rather low and indicate that this may not be the most appropriate
definition in the holographic context. There are other ways to define q̂, in particular
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using the fluctuations of the trailing string solution. This is gives a direct and more
detailed input in the associated Langevin dynamics and captures the asymmetry
between longitudinal and transverse fluctuations. It would be interesting to com-
pute this, along the lines set in [57, 59, 60].
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