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Introduction

• Lorentz invariance has emerged as fundamental symmetry in particle

physics since the early 1900’s

• Although attempts have been made to violate it (especially recently), it

remain in the minds of physicists as a central principle of physics.

• We should not forget that we believe in Lorentz invariance because ex-

periment says so.

It is a direct corollary of the constancy of the speed of light in all inertial

frames.

• There seems to be no fundamental reason that prohibits Lorentz-invariance

violations at higher energies
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The Lifshitz scaling symmetry

• Scale invariance is another central principle, that although typically broken
in nature, it is powerful enough to organize whole regions of parameters in
fundamental theories. (All perturbative theories we use are in this class.)

t → b t , xi → b xi

• Lorentz invariance implies an isotropic scaling. Poincaré invariance and
locality together with scale invariance implies conformal invariance.

• In low energy+condensed matter systems, non-relativistic dynamics emerges
naturally.

• Sometimes dynamical criticality emerges and scale invariance is non-
relativistic

t → bz t , xi → b xi

z is a dynamical critical exponent.

• A typical example of such a scaling appears in the Lifshitz critical theory
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The Lifshitz (free) field theory

SL =
∫

dtd2x

[
1

2
Φ̇2 − γ(¤Φ)2

]
, ¤ =

2∑

i=1

∂i∂i

with z = 2:

[t] = 2 , [xi] = 1 , [Φ] = 0 , [γ] = 0

• It appears as a tri-critical point in a theory, with normal, BCS and striped
phases by tuning

Sg =
∫

dtd2x

[
1

2
Φ̇2 − α Φ¤Φ− γ (¤Φ)2 + · · ·

]

by tuning α → 0

• Although this is a 3d theory, its has 2d properties: in particular any
polynomial in Φ is classically marginal and the propagator is logarithmically
divergent in the IR

∂

∂|∆~x|〈Φ(t1, ~x1)Φ(t2, ~x2)〉 =
1− e−

|∆~x|2
4∆t

|∆~x|
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• The Lifshitz theory with z > 1 has at least one obvious relevant operator,
namely (∂Φ)2 which drives the theory to a Lorentz invariant theory in the
IR,

Sfull =
∫

dtd2x

[
1

2
Φ̇2 + m2 Φ¤Φ− γ (¤Φ)2 + · · ·

]
→

∫
dtd2x

[
1

2
Φ̇2 +

m2

2
Φ¤Φ

]

with m = c.

• Lorentz invariance is not always guaranteed in the IR. For several Lifshitz
scalars the individual speed of light could be different.

• In theories with dynamical critical exponent z > 1 the lower critical di-
mension is raised. 3+1 dimensional gravity can become marginal if z = 3

Hǒrava

• So far holographic flows have been found where a z > 1 theory holo-
graphically flows to a z = 1 theory.

Kachru+Liu+Mullingan

• Very recently an opposite holographic flow was found in the D3-D7 system
from z = 1 to z > 1.

Azeyanagi+Li+Takayanagi

• It seems that always z ≥ 1

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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Higher derivative Gravity

• The use of higher derivative couplings to improve gravity’s UV behavior
is not new.

• It is known that R + R2 gravity is asymptotically free with propagator

1

k2 − (k2)2

M2
p

=
1

k2
− 1

k2 −M2
p

Tomboulis

• It has however ghosts

• The idea is to combine:

1. broken Lorentz invariance to avoid ghosts (by including higher spatial
derivatives but no time derivatives)

2. anisotropic scaling to make the theory scale invariant in the UV.
Hǒrava

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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Hǒrava-Lifshitz Gravity

• Start from the ADM decomposition of the metric

ds2 = −N2 dt2 + gij(dxi + N idt)(dxj + Njdt) , Ni = gijN
j.

• The kinetic terms are given by

SK =
2

κ2

∫
dtd3x

√
gN Kij Gij;kl Kkl =

2

κ2

∫
dtd3x

√
gN

(
KijK

ij − λK2
)

in terms of the supermetric

Gij;kl =
1

2

(
gikgjl + gilgjk

)
−λgijgkl , Gij;kl =

1

2

(
gikgjl + gilgjk

)
+

λ

1− 3λ
gijgkl

and the extrinsic curvature

Kij =
1

2N
(ġij −∇iNj −∇jNi)

• λ is a dimensionless coupling that breaks full diff invariance

• General Relativity has λ = 1

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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• For renormalizability we would like to impose that z = 3, so that the
spatial metric components are dimensionless

t → b3 t , xi → b xi

[N ] = 0 , [gij] = 0 , [Ni] = 2 , [w] = 0

• The ”potential” is

V =
∫

dtd3x
√

gN V (gij)

• For renormalizability it should contain up to six derivatives. The six-
derivative terms are classically-scale invariant. Terms with a lower number
of derivatives are ”relevant”.

∇iRjk∇iRjk , ∇iRjk∇jRik , R¤R , Rij¤Rij

modify already the propagator while

R3 , RRijR
ij , RijR

i
kRjk

provide scale invariant interactions.

• The (local) invariance of the theory is

t → h0(t) , xi → hi(t, xj)

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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The Cotton tensor

• There is a special scale invariant term that is also conformal CijC
ij with

Cij the Cotton-tensor

Cij =
εikl

√
g
∇k

(
Rj

l −
1

4
Rδj

l

)

• In 3d it is the unique tensor that satisfies

Cij = Cji , Ci
i = 0 , ∇i Cij = 0 ,

and is conformal

gij → e2φ(x) gij , Cij → e5φ(x) Cij

• It is the analogue of the Weyl tensor in 3d.

• It can be obtained by the variation of the 3d gravitational CS action

S =
∫

ω3(Γ) , ω3(Γ) = Tr[Γ ∧ dΓ +
2

3
Γ ∧ Γ ∧ Γ]

• Adding it to the gravitational potential provides a source of CP violation
in gravity, that may have measurable consequences

Takahashi+Soda

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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Detailed Balance

• There are potentials that have special properties:

V =
δW (gij)

δij
Gij;kl

δW (gkl)

δkl

• W is an invariant functional in 3d

• This property is known as ”Detailed Balance”

• In condensed matter physics it is known that such potentials have non-
trivial RG properties.

• It is an important ingredient of stochastic quantization
Parisi+Wu

• Hǒrava postulated at the marginal level

W =
1

w2

∫
ω3(Γ) + µ

∫
d3x [R− 2ΛW ]

where

[w] = 0 , [µ] = [−1] , [ΛW ] = −2

• The full action (obeying detailed balance) is :

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis

9



.
S=

∫
dtd3x

√
gN

[
α(KijK

ij−λK2)+βCijC
ij+γEijkRil∇jR

l
k+

+ζRijR
ij+ηR2+ξR+σ

]
,

α=
2

κ2
, β=− κ2

2w4
, γ=

κ2µ

2w2
, ζ=−κ2µ2

8

η=
κ2µ2

8(1−3λ)

1−4λ

4
, ξ=

κ2µ2

8(1−3λ)
ΛW , σ=

κ2µ2

8(1−3λ)
(−3Λ2

W ).

[κ] = 0 , [w] = 0 , [λ] = 0 , [µ] = −1 , [ΛW ] = −3

• Dropping detailed balance, all 8 parameters above can be considered
independent.
• There is a special value of λ = 1

3. For this value, the marginal part of the
action is Weyl invariant.
• The theory has a spectral dimension (Hǒrava)

ds ≡ −2
dP (σ)

d logσ
= 2

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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The IR action

• In the IR the most relevant terms are

S=
∫

dtd3x
√

gN
[
α(KijK

ij−λK2) +ξR+σ
]
,

• In order for this to reproduce Einstein gravity this must have λ ' 1 in
the IR to a good degree of accuracy.

• Defining x0 = ct, choosing λ = 1 and

c =

√
ξ

α
, 16πGN =

1√
αξ

, ΛE = − σ

2ξ
, , [c] = −2 , [x0] = 1

the action is that of Einstein

SE =
1

16πGN

∫
d4x

√
g̃

[
KijK

ij −K2 + R− 2ΛE

]
=

1

16πGN

∫
d4x

√
g̃

[
R̃− 2ΛE

]
.

• Diff invariance is restored in the IR.

• Similar ideas about gauge invariance and Lorentz invariance have been
explored earlier

Nielsen+Chanda+Ninomiya, Iliopoulos+Nanopoulos+Tomaras

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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Propagating degrees of freedom

• The UV fixed point is obtain by taking κ, w → 0 with γ = κ
w and λ fixed.

• Expanding

gij ' δij + whij , N ' 1 + w n , Ni ' w ni

• n drops out at quadratic level and we fix the gauge

ni = 0 , Hij ≡ hij − λδijh , ∂iHij = 0

• Separating the trace and traceless part

Hij = Ĥij +
1

2

(
δij −

∂i∂j

∂2

)
H

we obtain

SKin ∼
∫

dtd3x

[
( ˙̂Hij)

2 +
1− λ

2(1− 3λ)
(Ḣ)2

]
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• The potential coming from the Cotton tensor is

V ∼
∫

dtd3x Ĥij¤3Ĥij

• Ĥij is a massless spin-two graviton. It has a dispersion relation of the

form

E2

c2
=

(~k2)3

M4
± (~k2)2

m2
+ ~k2

• Note that the (~k2)2 term that is coming from the R2 terms can have

either sign. The only constraint is that there should be no poles in the

Euclidean propagator: m2 < 2M2.

• The speed of light is infinite in the UV and finite in the IR.

• This leads to a static gravitational potential that is

V ∼ 1

4πr
r →∞ , V ∼ −M3r2 r → 0

12-



.

• H is an extra degree of freedom. It has a potential containing (~k2)2

and (~k2) terms but no (~k2)3 term. It might generate non-renormalizability

problems.

• It should decouple at λ = 1
3 (Weyl symmetry) and at λ = 1 (diffeomor-

phism invariance)

• An important question which is crucial for the fate of this theory is the

RG running of λ.

• If λ = 1 is a stable fixed point, then things are fine. Otherwise there

seems to be insurmountable trouble

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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Generalized Lifshitz QFTs (scalar matter)

• For scalars( [Φ] = 0)

Snr =
∫

d3xdt
√

gN

[
1

N2
(Φ̇−N i∂iΦ)2 + F [ξ1, ξ2, · · · ,Φ]

]
, ξn = Φ¤nΦ

where the (renormalizable) potential F is

F [ξn,Φ] = F0(Φ) + F1(Φ) ξ1 + F11(Φ)ξ21 + F111(Φ)ξ31+

+F2(Φ)ξ2 + F21(Φ)ξ2ξ1 + F3(Φ)ξ3.

and dispersion relation

E2

F1(0)
=

1

4

F ′′0(0)

F1(0)
+ (~k2)− F2(0)

F1(0)
(~k2)2 +

F3(0)

F1(0)
(~k2)3

• Like in gravity the speed of light is infinite in the UV (E2 ∼ k6).

• In the IR it is c2 = F1(0). It is not a priori equal to that of gravity.

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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Generalized Lifshitz QFTs (vectors)

• For (abelian) vectors, [A0] = −2 , [Ai] = 0

Snr = − 1

4g2

∫
d3xdt

√
gN

[
− 2

N2
gij(F0i −NkFki)(F0j −N lFlj)−

−M2

N2
(A0 −N iAi)(A0 −NjAj) + G[Ai]

]
,

F0i = ∂tAi − ∂iA0 , Fij = ∂iAj − ∂jAi

Define the magnetic field

Bi =
1

2

εi
jk

√
g

Fjk , Fij =
εij

k

√
g

Bk , ∇iBi = 0.

G = a0 + a1ζ1 + a2ζ2
1 + a3ζ3

1 + a4ζ2 + a5ζ1ζ2 + a6ζ3 + a7ζ4,

ζ1 = BiB
i , ζ2 = ∇iBj∇iBj , ζ3 = ∇iBj∇iBk∇jBk , ζ4 = ∇i∇jBk∇i∇jBk,

• ai are arbitrary functions of AiA
i.

• The ”stress-tensor” is no-longer traceless → w 6= 1
3.

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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Cosmology: General expectations

• As c → ∞ in the UV, it is plausible that no inflation is needed to solve

the horizon problem.

• The theory contains higher derivatives but in a controlable fashion. They

may be relevant in resolving singularities

• The UV theory is scale invariant: therefore it can generate a scale invari-

ant spectrum of cosmological perturbations without the need for accelera-

tion.

• Spatial curvature effects are enhanced, to 1
a4 or 1

a6 making the flatness

problem milder.

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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Cosmological backgrounds

• We make a cosmological ansatz

N(t) , Ni = 0 , gij = a2(t)γij

We can fix the gauge N = 1

• The Friedman equations are

3α(3λ− 1)H2 = ρ− σ − 6kξ

a2
− 12k2(ζ + 3η)

a4

ρ̇ + 3H(ρ + p) = 0

ρ = − 1√
g

δSM

δN
, p = − 2

3N
√

g
gijδSM

δgij
.

• if we add an R3 term in the action, there will also be a term ∼ k3

a6

• If λ < 1
3, then all positivity properties are reversed.

16



• The k2/a4 although generated by curvature, resembles mirage/dark radi-

ation. It is due to the R2 terms as in the case of holography
Kiritsis

• It can generate a bouncing cosmology provided there is non-relativistic

matter
Calcagni, Kiritsis+Kofinas

• It was argued that in the contracting phase before the bounce scale

invariant perturbations can be generated
Brandenberger

• For non-relativistic scalars, we obtain the same pressure and density as

in relativistic ones (spatial derivatives do not contribute)

• This seems not to be the case for vectors.

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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On cosmological perturbations

• Homogeneous cosmology sees very little of the structure of the classical

theory and in particular the scale-invariant part.

• The perturbations see the full structure of the theory

• tensor perturbations satisfy
Takahashi+Soda

∂2

∂η2
vA
~k

+

[
(kA

eff)
2 − 2

η2

]
vA
~k

= 0

(kA
eff)

2 = c2k2
[
1 +

(1− 3λ)

ΛW c2
H2(ckη)2(1 + ρA 2H

w2µc
ckη)2

]

• The non-trivial polarization may be observable depending on the value of

the couplings.

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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• Scalar perturbations are also interesting. We assume a spatially flat

universe and the scalar field in Fourier space: the quadratic action is

S =
∫

d3k
∫

dt a3
[
|Φ̇|2 +

1

a6

(
−`4k6 + y2`2k4 − y1k2 −m2

)
|Φ|2

]
,

• ` is a length scale characteristic of the UV behavior of the scalar theory, and y1,2 are

dimensionless coefficients. In particular, y1 is the square of the speed of light in the scalar

theory.

• The fluctuations δΦ satisfy

δ̈Φ + 3H ˙δΦ +
`4k6 − y2`2k4 + y1k2 + m2

a6
δΦ = 0.

• At high energy the dispersion relation is

E2 ' `4
k6

a6

• Typically, a fluctuation mode oscillates if E >> H, while it is frozen in

the opposite limit E << H.
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• Here:

E2

H2
' `4 k6

H2a6

• If H2a6 is an increasing function of time this will freeze the oscillations

eventually.

• From the cosmological equations we find that this is satisfied for all

matter with w < 1, including curvature. (in normal cosmology, we have

H2a2 instead and w < −1
3).

• At freezout,

k

a
∼ H

1
3

`
2
3

→ Hλphys ∼ (H`)
2
3 À 1

• The solution is

δΦ(t,~k) =
1

(2π)3
√

2κ
e
−iκ

∫
dt
a3

+i~k·~x
, κ ≡

√
`4k6 − y2`2k4 + y1k2 + m2.

18-



〈δΦ(t,~k)δΦ(t,~k′)〉 =
(2π)3

2κ
δ(~k + ~k′) ≡ (2π)3δ(~k + ~k′)2π2

k3
PδΦ

From where we obtain as k` >> 1 a scale invariant spectrum,
Mukohyama, Kiritsis+Kofinas

√
PδΦ =

1

2π`

• The corrections to this relation come from the relevant corrections as
well as logarithmic UV renormalization

• The scalar will remain frozen until the universe cools, then it becomes
relativistic and may decay to other particles.

• No graceful exit seems to be needed here.

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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Outlook and Open problems

• What is the RG flow of marginal couplings? Is λ = 1 a fixed point?

• Is there asymptotic freedom in the UV? This may be important in order

to generate an exponential hierarchy of scales.

• Does this affect how a cosmological constant renormalizes?

• Is the theory really-renormalizable? (there are several subtleties in Lifshitz

like theories including non-commutativity of short distance limits, etc)

• Does the extra scalar degree of freedom decouple properly?

• What is the detailed gravitational interaction both static and dynamic?

• What are constraints on the parameters from solar system measurements?

• Is the core of BH different? How is thermodynamics working?

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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Equations of motion

The equation obtained by varying N is

−α
(
KijK

ij − λK2
)
+βCijC

ij +γEijkRil∇jR
l
k +ζRijR

ij +ηR2+ξR+σ = JN ,

with

JN = −Lmatter −N
δLmatter

δN

The equation obtained by varying Ni is

2α(∇jK
ji − λ∇iK) + N

δLmatter

δNi
= 0.

The equation obtained varying gij is

20



1

2

[
(Emk`Qmi);kj`+(Emk`Qn

m);kingj`−(Emk`Qmi)
;n

;kn gj`−(Emk`Qmi);kRj`

−(Emk`QmiR
n
k);ngj`+(Emk`Qn

mRki);ngj`+
1

2
(Emk`Rn

pk`Q
p
m);ngij−Qk`C

k`gij+

Emk`QmiRj`;k

]
+ ¤[N(2ηR+ξ)]gij+N(2ηR+ξ)Rij+2N(ζRikRk

j−βCikCk
j )

−[N(2ηR+ξ)];ij+¤[N(ζRij+
γ

2
Cij)]− 2[N(ζRik+

γ

2
Cik)]

;k
;j +[N(ζRk`+

γ

2
Ck`)];k`gij

−N

2
(βCk`C

k`+γRk`C
k`+ζRk`R

k`+ηR2+ξR+σ)gij+ 2αN(KikKk
j −λKKij)

−αN

2
(Kk`K

k`−λK2)gij+
α√
g
gikgj`

∂

∂t
[
√

g(Kk`−λKgk`)] + α[(Kik−λKgik)Nj]
;k

+α[(Kjk−λKgjk)Ni]
;k−α[(Kij−λKgij)Nk]

;k + (i ↔ j) = −2N
δLmatter

δgij
, (1)

where

Qij ≡ N(γRij+2βCij).

Cosmology and Hořava-Lifshitz Gravity, Elias Kiritsis
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Black hole solutions
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