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Novel techniques based on holographic ideas are tried on the prototype strongly coupled
gauge theory: QCD The ideas are developed and a well motivated phenomenological model
(Improved Holographic QCD) is presented and compared to various non-perturbative regimes,
both at zero and finite temperature.

1 Introduction

Strongly coupled gauge theories are omnipresent in theoretical physics, and have been forced
experimentally upon us with the realization that the strong interactions are best described by
an asymptotically free SU(3) gauge theory. The gauge coupling is weak at large energies and
perturbation theory is applicable. However it is strong at low energy and almost all realistic
observables contain parts that are sensitive to strongly coupled physics.

Beyond QCD, theorists have argued that strongly coupled gauge theories can play an impor-
tant role in the physics beyond the standard model. We will mention here two such incarnations.
The first concerns a strongly coupled gauge theory that is responsible for producing a composite
Higgs that will break the electroweak symmetry at lower energies, 1. Such classes of theories
come under the name of ‘technicolor” and although their popularity had its ups and downs, they
are reanalyzed currently due to the use of novel non-perturbative holographic tools.

The second example concerns strong coupling dynamics that can trigger supersymmetry



breaking in a hidden sector. This supersymmetry breaking is expected to be transferred to
the Supersymmetric SM sector either via universal interactions (gravity) or via gauge gauge
interactions (gauge mediation). We should also mention that in theories beyond the SM, and
especially in string theory vacua, strongly coupled hidden sectors are generic 2 and if their
associated scales are in the TeV region they might produce signals at LHC.

Various techniques have been developed to deal with the strong coupling problem of gauge
theories. The most straightforward one, is numerical evaluation of the quantities of interest on
a computer. This is the lattice approach that has been applied mostly to QCD, with consid-
erable success. The lattice approach after 30 years is a mature discipline that has however its
limitations, that basically translate into limitations of computing power. Despite the success of
computational approaches, several interesting QCD observables remain out of reach, or cannot
be computed to the required accuracy (examples are transport coefficients at finite temperature,
relevant for recent heavy ion data from RHIC, or the physics at finite baryon number density
and chemical potential)

A different theoretical approach was postulated by ’t Hooft in 1974, in order to generate
a different perturbative expansion of strongly-coupled gauge theories. This is known as the
large-N expansion where N is the number of colors. Although it turned out that it was not
possible to calculate even the leading approximation in this expansion for 4d gauge theories,
several important properties were uncovered 4: (a) The perturbative expansion in powers of
1/N has the structure of a string theory with string coupling constant gs ∼ 1/N . (b) The
gauge invariant QCD bound states, namely glueballs and mesons are non-interacting with O(1)
masses, to leading order. Their widths vanish as 1/N2 for glueballs and 1/N for mesons. (c)
Baryons are heavy, with masses N , and behave as solitonic objects. Theorists have attempted
to construct this string theory in four dimensions, but existing experience with string theories
did not suggest optimism in this direction.

A new twist to the quest of the string theory underlying a strongly coupled gauge theory
came with the realization 5 that for such a gauge theory string should propagate in more than 4
dimensions. In a much more symmetric relative of QCD, namely N=4 superconformal SU(N)
gauge theory, the dual string theory turned-out to be a type IIB string propagating in a ten-
dimensional spacetime of the form AdS5×S5. In particular the fifth (radial) dimension of AdS5

provided the holographic dimension that somehow captured the RG scale of the four-dimensional
gauge theory that was defined on the AdS5 boundary. This duality turned out to be a weak-
strong coupling duality in the following sense: The gauge theory, that is exactly conformally
invariant, has two dimensionless parameters: the number of colors N that we take large, and
the ’t Hooft coupling λ ≡ g2

Y MN that we keep fixed in the large-N limit. When λ ¿ 1 one
can use perturbation theory, and the relevant leading order diagrams are the planar diagrams.
When λ À 1 perturbative techniques are of no use even as N → ∞. On the other hand, the
dual string theory is propagating on a manifold with curvature scale 1/`2, whose relation to the
string length `s involves the ’t Hooft coupling: `2 =

√
λ `2

s. Moreover as the YM gauge coupling
constant is given by g2

Y M ∼ gs, the string coupling constant in the large-N limit is given by
gs ∼ λ

N and for fixed λ it is O(1/N). Therefore, at large-N and large ’t Hooft coupling, λ →∞,
the theory is described by a string that moves on a weakly curved ten-dimensional manifold,
and can therefore approximated by the dynamics of its zero modes: the strongly coupled large-N
sYM theory is equivalent to type IIB supergravity on the AdS5 × S5 background.

Since 5 there has been a flurry of attempts to devise such correspondences for gauge theories
with less supersymmetry with the obvious final goal: QCD. Several interesting string duals
with a QCD-like low-lying spectrum and confining IR physics were proposed 6. Although such
theories reproduced the qualitative features of IR QCD dynamics, they contain Kaluza-Klein
modes, not expected in QCD, with KK masses of the same order as the dynamical scale of the
gauge theory. Above this scale, the theories deviate from QCD.



A different and more phenomenological approach was in the meantime developed and is
now known as AdS/QCD. The original idea was formulated in 7 and it was successfully applied
to the meson sector in 8. The bulk gravitational background consists of a slice of AdS5, and a
constant dilaton. There is a UV and an IR cutoff. Moreover, the confining IR physics is imposed
by boundary conditions at the IR boundary. This approach, although crude, has been partly
successful in studying meson physics, despite the fact that the dynamics driving chiral symmetry
breaking must be imposed by hand via IR boundary conditions. Its shortcomings however
include a glueball spectrum that does not fit well the lattice data, the fact that magnetic quarks
are confined instead of screened, and asymptotic Regge trajectories for glueballs and mesons are
quadratic instead of linear.

2 Improved Holographic QCD

In9 an improved holographic phenomenological model for QCD was proposed. It reunited inputs
from both gauge theory and string theory while keeping the simplicity of a two-derivative action.
It could describe both the region of asymptotic freedom as well as the strong IR dynamics of
QCD.

The basic fields of the pure gauge theory (the closed string sector) that are non-trivial in
the vacuum solution and describe the pure gauge dynamics, are the 5d metric gµν (dual to the
YM stress tensor), a scalar Φ (the dilaton, dual to Tr[F 2] ) that controls the ’t Hooft coupling
λt of QCD, and an axion a, that is dual to the QCD instanton density Tr[F ∧F ] and its source
represents the θ angle. Quarks can be added to the pure gauge theory by adding D4− D̄4 brane
pairs in the background gauge theory solution. The D4− D̄4 tachyon condensation then induces
chiral symmetry breaking, 11,9.

The action for the 5D Einstein-dilaton theory reads,

S5 = M3
p N2

c

(
−

∫
d5x

√
g

[
R− 4

3
(∂λ)2

λ2
+ V (λ)

]
+ 2

∫

∂M
d4x

√
h K

)
(1)

where Mp is the Planck mass. The second term in the action is the Gibbons-Hawking with K
being the extrinsic curvature on the boundary.

The only nontrivial input in the two-derivative action of the graviton and the dilaton is the
dilaton potential V (λ), where λ = eΦ. λ is proportional to the ’t Hooft coupling of the gauge
theory, λ = κλt. The constant of proportionality κ is treated as a parameter to be fitted to data.
The potential is directly related to the gauge theory β-function once a holographic definition of
energy is chosen. Although the shape of V (λ) is not fixed without knowledge of the exact gauge
theory β-function, its UV and IR asymptotics can be determined.

In the UV, the input comes from perturbative QCD. We demand asymptotic freedom with
logarithmic running. This implies in particular that the asymptotic UV geometry is that of
AdS5 with logarithmic corrections. It requires a (weak-coupling) expansion of V (λ) of the form
V (λ) = 12/`2(1 + v1λ + v2λ

2 + · · ·).
Demanding confinement of the color charges restricts the large-λ asymptotics of V (λ). In 9

we focused on potentials such that, as λ → ∞, V (λ) ∼ λ
4
3 (log λ)(α−1)/α where α is a positive

parameter. The IR asymptotics of the solution in the Einstein frame are:

ds2
0 → e−C( r

` )
α(

dr2 + dx2
4

)
, λ0 → e3C/2( r

` )
α
(

r

`

) 3
4
(α−1)

(2)

where the constant C is related to ΛQCD. Confinement requires α ≥ 1. The parameter α

characterizes the large excitation asymptotics of the glueball spectrum, mn ∼ n
α−1

α . For linear
confinement, we choose α = 2.



The parameters of the holographic model a priori are: the Planck mass Mp, which governs
the scale of interactions between the glueballs in the theory, the parameters vi that specify the
shape of the potential, the scale Λ that plays the role of ΛQCD and the AdS scale `. The latter
is not a physical parameter but only a choice of scale: only Λ` enters into the computation of
physical observables. Before choosing a potential, κ that relates λ and the ’t Hooft coupling, is
not a parameter as the physics is independent of κ. This is characteristic of the leading order
in the large-Nc expansion. Once a potential has been chosen then it is not the case anymore as
κ can be calculated by comparing for example to the perturbative QCD β-function. A specific
choice for V (λ) was made in 9 with the appropriate asymptotic properties, that only depended
on the parameter κ, hence fixing all vi. Finally, κ and Λ are fixed by matching to the lattice
data for the first two 0++ glueball masses. Once Λ is fixed, all other interesting scales like the
effective QCD string tension σ are also fixed.

Glueball masses can be obtained by computing the spectrum of normalizable fluctuations of
the metric and dilaton around the background solution. In table 1 we give an overview of the
glueball spectrum calculated here and its comparison to the best existing lattice data both for
N = 3 and N → ∞. In figure 1 we give the almost linear trajectories of the 0++ and the 2++

states as computed from our model.

3 Finite temperature and deconfinement

We will now turn to the finite temperature dynamics in the pure gauge sector derived from the
setup of9. We find that this setup describes very well the basic features of large-Nc Yang Mills at
finite temperature. It exhibits a first order deconfining phase transition. The equation of state
and speed of sound of the high temperature phase are remarkably similar to the corresponding
lattice results. Moreover, using the zero temperature potential and without adding any extra
parameter, we obtain a value for the critical temperature in very good agreement with the one
computed from the lattice, 10.

The deconfinement transition. At finite temperature there exist two distinct types of
solutions to the action (1) with AdS asymptotics:

i. The thermal graviton gas, obtained by compactifying the Euclidean time in the zero tem-
perature solution with τ ∼ τ + 1/T :

ds2 = b2
0(r)

(
dr2 + dτ2 + dx2

3

)
, λ = λ0(r).

This solution exists for all T ≥ 0 and it corresponds to the confined phase, if the gauge
theory at zero T confines.

ii. The black hole (BH) solutions (in Euclidean time) of the form:

ds2 = b2(r)

(
dr2

f(r)
+ f(r)dτ2 + dx2

3

)
, λ = λ(r). (3)

with f(0) = 1. There exists a singularity in the interior at r = ∞ that is now hidden by
a regular horizon at r = rh where f vanishes. Such solutions correspond to a deconfined
phase.

As we discuss below, in confining theories the BHs exist only above a certain minimum temper-
ature, T > Tmin.

The thermal gas as well as BH solution has two parameters: T and Λ. Near the horizon,
f → fh(rh − r) with 4πT = fh. From Einstein’s equations, 10:

4π T = b−3(rh)
(∫ rh

0

du

b(u)3

)−1

. (4)



In the large-Nc limit, the physics is dominated by the saddle point with minimum free energy.
For a given temperature we must therefore compare the free energies of solutions i. and ii.

We introduce a cutoff boundary at r/` = ε in order to regulate the infinite volume. The
difference of the two scale factors is given near the boundary as

b(ε)− b0(ε) = C(T )ε3 + · · · (5)

By the standard rules of AdS/CFT we can relate C(T ) to the difference of VEVs of the gluon
condensate: C(T ) ∝ 〈TrF 2〉T − 〈TrF 2〉0.

The free energy difference is given by

F
M3

p N2
c V3

= 12
C(T )

`
− πTb3(rh) = 12

C(T )
`

− TS

4M3
p N2

c V3
, (6)

where, in the last equality, we used the fact that the entropy is given by the area of the horizon. It
is clear that the existence of a non-trivial deconfinement phase transition is driven by a non-zero
value for the thermal gluon condensate C(T ).

For a general potential we can prove the following (under mild assumptions):
i. There exists a phase transition at finite T, if and only if the zero-T theory confines.
ii.This transition is of the first order for all of the confining geometries, with a single exception
described in iii:
iii. In the limit confining geometry b0(r) → exp(−Cr) (as r → ∞), the phase transition is of
the second order and happens at T = 3C/4π.
iv. All of the non-confining geometries at zero T are always in the black hole phase at finite T.
They exhibit a second order phase transition at T = 0+.

We illustrate the function T (rh) schematically in figure 2. It follows that in the confining
geometries α > 1, for a given T > Tmin, there always exist a big and a small black hole solution.
The big BH has positive specific heat hence it is thermodynamically stable, whereas the small
BH is unstable. In the borderline confining geometry α = 1, there is a single BH solution.

Existence of a Tc ≥ Tmin follows from the physical requirement of positive entropy. From
the first law of thermodynamics, it follows that dF/drh = −S dT/drh. Since S > 0 for any
physical system, extrema of F(rh) coincide with the extrema of T (rh). Using also the fact that
F(rh) → −∞ for rh → 0 and F(rh) → 0 near rh → ∞, we arrive at conclusion (ii) described
above: There is a first order transition for all of the confining geometries (This becomes second
order for the borderline case α = 1).

The small rh asymptotics also allows us to fix the value of the Planck mass in (1). This
geometry corresponds to an ideal gas of gluons with a free energy density (We use lowercase
letters for the densities of the corresponding functions) f → (π2/45)N2

c T 4. As the geometry

becomes AdS, eq. (6) implies that: f → π4(Mp`)3N2
c T 4. We conclude that Mp` =

(
45π2

)− 1
3 .

Using the value of ` in 9, we obtain Mp ≈ 2.3 GeV.

4 Numerical Results at finite temperature

In 9 an explicit form of the scalar potential with the correct asymptotics was proposed. The
resulting background, that corresponds to the choice α = 2 in (2), exhibits asymptotic freedom,
linear confinement, and a glueball spectrum in very good quantitative agreement with the lattice
data. Here we present a numerical computation of the relevant thermodynamic quantities in
this same theory. Our general analysis shows that this theory has black hole solutions above a
temperature Tmin and exhibits a first order phase transition at some Tc > Tmin

To analyze the behavior of the theory at finite temperature, we have solved numerically
Einstein’s equations for the metric and dilaton. The integration constants were fixed as explained



earlier. We find a minimum temperature for the existence of black hole solutions, Tmin = 210
MeV.

Next, we compute the free energy difference between the black hole and thermal gas solutions,
as a function of temperature.

The resulting free energy as a function of the temperature is shown in the left of figure 3,
which clearly shows the existence of a minimum temperature, and a first order phase transition
at T = Tc, where F(Tc) = 0. For T < Tc, the thermal gas dominates, and the system is in the
confined phase. For T > Tc, the (large) black hole dominates, corresponding to a deconfined
phase. The entire small black hole branch is always thermodynamically disfavored.

The value we obtain for the critical temperature, Tc = 235 ± 15 MeV, is close to the value
obtained for large-N Yang-Mills 12, which with our normalization of the lightest glueball would
be 260± 11 MeV (combining the results in 12 and 13).

From the free energy we can determine all other quantities by thermodynamic identities:

p = −F/V3, s = 4πM3
p N2

c b3
T (rh), ε = p + Ts. (7)

Next, we present some of the thermodynamic quantities that are compared with the lattice
results.

Latent Heat. The latent heat per unit volume is defined as the jump in the energy at the
phase transition, Lh = Tc∆s(Tc), and it is expected to scale as N2

c in the large Nc limit 12.
From eq. (7) we note that this expectation is reproduced in our theory. Quantitatively, we find
L

1/4
h /Tc ' 0.65

√
Nc. This is to be compared with the value 0.77 reported in 12.

Equation of state and the trace anomaly. A useful indication about the thermody-
namics of a system is given by the relations between the quantities ε/T 4, 3(p/T 4), 3/4(s/T 3).
In the right of figure 3 we compare our results for these quantities with the corresponding lattice
results, reported in 14 (for Nc=3). We find good qualitative agreement. In the low temperature
phase, the thermodynamic functions vanish to the leading order in N2

c and the jump in ε and
s at Tc reflects the first order phase transition. The fact that our curves lay below the lattice
curves may be traced back to the relative smallness of the latent heat in our model.

The trace anomaly, (ε − 3p)/T 4, is plotted in the left of figure 4, together with the lattice
result from 14. From eq. (6), ε − 3p ∝ C(T ), consistent with our interpretation of C(T ) as the
gluon condensate.

Speed of sound. This quantity is defined as c2
s = (∂p/∂ε)S = s/cv. It is expected to be

small at the phase transition, and to reach the conformal value c2
s = 1/3 at high temperatures.

In the right of figure 4 we compare our results with the lattice data, finding good agreement.
Shear viscosity. In agreement with the general results of 15, the ratio between shear

viscosity and entropy density is η/s = (4π)−1.
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Figure 1: Left: Linear pattern in the spectrum for the first 40 0++ glueball states. M2 is shown units of 0.015`−2.
Right: The first 8 0++ (squares) and the 2++ (triangles) glueballs. We used b0 = 4.2, λ0 = 0.05.
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of rh, (right) for the infinite-r geometries of the type (2), for different values of α.
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Figure 3: Left: Black hole free energy. Right: Dimensionless thermodynamic functions. The dashed curves
correspond to the lattice data of reference [14].
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