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Introduction

• AdS/CFT has provided so far controlled/computable examples of con-

finement, chiral symmetry breaking and hadron spectra of concrete gauge

theories

• Its direct application to QCD is marred by two (related) problems:

♠ The KK problem of critical examples

♠ The strong curvature problem of non-critical (or hierarchically separated

critical examples)

• We will follow the non-critical road, try to understand what we expect

from the string theory dual to QCD, and motivate a phenomenological

approximation (model).

• We will then use the model to compute experimentally interesting non-

perturbative quantities like transport coefficients.
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What are we after?

• Interactions of hadrons at medium or low energy (little or no help from

lattice, partial help from chiral perturbation theory)

• Transport coefficients of the deconfined phase (not computable directly

from lattice, crucial for understanding current (RHIC) and future (LHC)

heavy-ion data)

• The phase structure and properties of dense matter (not computable

from lattice, important for understanding properties of nuclei, and dense

nuclear matter, like neutron stars)

• Exploring the strong dynamics of other QCD-like theories, eg.

♠ N=1 super- QCD. (a very interesting toy model and may be relevant for

nature)

♠ Technicolor theories
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A string theory for QCD:basic expectations

• Pure SU(Nc) d=4 YM at large Nc is expected to be dual to a string

theory in 5 dimensions only. Essentially a single adjoint field → a single

extra dimension.

• The theory becomes asymptotically free and conformal at high energy →
we expect the classical saddle point solution to asymptote to AdS5.

♠ Operators with lowest dimension (or better: lowest bulk masses) are

expected to be the only important non-trivial bulk fields in the large-Nc

saddle-point

• Scalar YM operators with ∆UV > 4 → m2 > 0 fields near the AdS5

boundary → vanish fast in the UV regime and do not affect correlators of

low-dimension operators.
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• Their dimension may grow large in the IR. Large ’t Hooft coupling is

expected to supress the effects the growth in the IR

• This is suggested by the success of low-energy SVZ sum rules as compared

to data.

♠ Therefore we will consider

Tµν ↔ gµν, tr[F2] ↔ φ, tr[F ∧ F ] ↔ a
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Bosonic string or superstring?

• Consider the axion a dual to Tr[F ∧ F ]. We can show that it must come

from a RR sector.

In large-Nc YM, the proper scaling of couplings is obtained from

LY M = Nc Tr

[
1

λ
F2 +

θ

Nc
F ∧ F

]
, ζ ≡ θ

Nc
∼ O(1)

It can be shown
Witten

EY M(θ) ' C0 N2
c + C1θ2 + C2

θ4

N2
c

+ · · ·

In the string theory action

S ∼
∫

e−2φ [R + · · · ] + (∂a)2 + e2φ(∂a)4 + · · · , eφ ∼ g2
Y M , λ ∼ Nce

φ

∼
∫

N2
c

λ2 [R + · · · ] + (∂a)2 +
λ2

N2
c
(∂a)4 + · · · , a = θ[1 + · · · ]
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bosonic string or superstring? (continued)

• The string theory must have no on-shell fermionic states at all because

there are no gauge invariant fermionic operators in pure YM. (even with

quarks modulo baryons).

• Therefore the string theory must be a 5d-superstring theory resembling

the II-0 class.

♠ Another RR field we expect to have is the RR 4-form, as it is necessary

to “seed” the D3 branes responsible for the gauge group.

• It is non-propagating in 5D

• We will see later however that it is responsible for the non-trivial IR

structure of the gauge theory vacuum.
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The minimal effective string theory spectrum

• NS-NS → gµν ↔ Tµν , Bµν ↔ Tr[F ]3 , φ ↔ Tr[F2]

• RR → Spinor5×Spinor5=F0 + F1 + F2 + (F3 + F4 + F5)

♠ F0 ↔ F5 → C4, background flux → no propagating degrees of freedom.

♠ F1 ↔ F4 → C3 ↔ C0: C0 is the axion, C3 its 5d dual that couples to
domain walls separating oblique confinement vacua.

♠ F2 ↔ F3 → C1 ↔ C2: They are associated with baryon number (as we
will see later when we add flavor). Dual operators are a mystery (topological
currents?).

• In an ISO(3,1) invariant vacuum solution, only gµν, φ, C0 = a can be
non-trivial.

ds2 = e2A(r)(dr2 + dx2
4) , a(r), φ(r)
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The relevant “defects”

• Bµν → Fundamental string (F1). This is the QCD (glue) string: funda-

mental tension `2s ∼ O(1)

• Its dual B̃µ → NS0: Tension is O(N2
c ). It is an effective magnetic baryon

vertex binding Nc magnetic quarks.

• C5 → D4: Space filling flavor branes. They must be introduced in pairs:

D4 + D̄4 for charge neutrality/tadpole cancelation → gauge anomaly

cancelation in QCD.

• C4 → D3 branes generating the gauge symmetry.
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• C3 → D2 branes : domain walls separating different oblique confinement

vacua (where θk+1 = θk + 2π). Its tension is O(Nc)

• C2 → D1 branes: These are the magnetic strings:

(strings attached to magnetic quarks) with tension O(Nc)

• C1 → D0 branes. These are the baryon vertices: they bind Nc quarks,

and their tension is O(Nc).

Its instantonic source is the (solitonic) baryon in the string theory.

• C0 → D−1 branes: These are the Yang-Mills instantons.
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The effective action, I

• as Nc →∞, only string tree-level is dominant.

• Relevant field for the vacuum solution: gµν, a, φ, F5.

• The vev of F5 ∼ Nc ε5. It appears always in the combination e2φF2
5 ∼ λ2,

with λ ∼ Nc eφ All higher derivative corrections (e2φF2
5 )n are O(1).

A non-trivial potential for the dilaton will be generated already at string

tree-level.

• This is not the case for all other RR fields: in particular for the axion as

a ∼ O(1)

(∂a)2 ∼ O(1) , e2φ(∂a)4 =
λ2

N2
c
(∂a)4 ∼ O

(
N−2

c

)

Therefore to leading order O(N2
c ) we can neglect the axion.
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The UV regime

• In the far UV, the space should asymptote to AdS5.

• The ’t Hooft coupling should behave as (r → 0)

λ ∼ 1

log(rΛ)
+ · · · → 0 , r ∼ 1

E

The effective action to leading order in Nc is

Seff ∼
∫

d5x
√

g e−2φ Z( `2sR , `2s(∂φ)2 , e2φ`2sF2
5 )

Solving the equation of motion of F5 amounts to replacing

e2φ `2s F2
5 ∼ e2φN2

c ≡ λ2

Seff ∼ N2
c

∫
d5x

√
g

1

λ2
H( `2sR , `2s(∂λ)2 , λ2 )
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• As r → 0

Curvature → finite , ¤φ ∼ (∂φ)2 ∼ (∂λ)2

λ2
∼ λ2 ∼ 1

log2(rΛ)
→ 0

• For λ → 0 the potential in the Einstein frame starts as V (λ) ∼ λ
4
3 and

cannot support the asymptotic AdS5 solution.

• Therefore asymptotic AdS5 must arise from curvature corrections:

Seff '
∫

d5x
1

λ2
H

(
`2s R,0,0

)

• Setting λ = 0 at leading order we can generically get an AdS5 solution
coming from balancing the higher curvature corrections.

H(x,0,0) ≡ f(x) , x∗f ′(x∗) +
5

2
f(x∗) = 0 , x∗ = `2sR = 12

`2s
`2

INTERESTING QUESTION: Is there a good toy example of string vacuum (CFT)

which is not Ricci flat, and is supported only by a metric?
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• There is a ”good” (but hard to derive the coefficients) perturbative
expansion around this asymptotic AdS5 solution by perturbing inwards :

eA =
`

r
[1 + δA(r)] , λ =

1

b0 log(rΛ)
+ · · ·

• This turns out to be a regular expansion of the solution in powers of

Pn(log log(rΛ))

(log(rΛ))−n

• Effectively this can be rearranged as a “perturbative” expansion in λ(r).
In the case of running coupling, the radial coordinate can be substituted by
λ(r).

• Using λ as a radial coordinate the solution for the metric can be written

E ≡ eA =
`

r(λ)

[
1 + c1λ + c2λ2 + · · ·

]
= ` (e−

b0
λ )

[
1 + c′1λ + c′2λ2 + · · ·

]
, λ → 0
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Conclusion: The asymptotic AdS5 is stringy, but the rest of the geometry

is ”perturbative around the asymptotics”. We cannot however do compu-

tations even if we seen the structure.

QUESTION: Can one constrain H(R,0,0) by asking the stress tensor cor-

relators asymptote to free correlators near the boundary?
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The IR regime

• Here the situation is more obscure. The constraints/input will be: con-
finement and mass gap.

• We do expect that λ →∞ (or becomes large) at the IR bottom.

• Intuition from N=4 and other 10d strongly coupled theories suggests that
in this regime there should be an (approximate) two-derivative description
of the physics.

• From the string σ-model we can write
Tseytlin

Seff ∼ N2
c

∫
d5x

√
g

1

λ2

[
(∂λ)2

λ2
+ H( `2sR , λ2 )

]

• For the theory to reduce to two derivatives, R → 0 in the IR (string
frame). Then

H( `2sR , λ2 ) ∼ `2s R + V (λ) +O(R2)
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• The simplest solution linear dilaton with this property is the linear dilaton

solution with

λ ∼ eQr , V (λ) ∼ δc = 10−D → constant , R = 0

• As we shall see this property persists with potentials V (λ) ∼ (logλ)P .

Moreover all such cases have confinement, a mass gap and a discrete spec-

trum (except the P=0 case).

• At the IR bottom (in the string frame) the scale factor vanishes, and 5D

space becomes (asymptotically) flat.
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Improved Holographic QCD: a model

The simplification in this model relies on writing down a two-derivative
action

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
+ V (λ)

]

with

lim
λ→0

V (λ) =
12

`2


1 +

∞∑

n=1

cnλn


 , lim

λ→∞
V (λ) = λ

4
3
√

logλ + subleading

• The small λ asymptotics “simulate” the UV expansion around AdS5.

• There is a 1-1 correspondence between the YM β-function, β(λ) and W :

(
3

4

)3
V (λ) = W2 −

(
3

4

)2 (
∂W

∂ logλ

)2
, β(λ) = −9

4
λ2 d logW (λ)

dλ

once a choice of energy is made (here logE = AE).
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Not everything is perfect: There are some shortcomings localized at the

UV

• The conformal anomaly is incorrect.

• Shear viscosity ratio is constant and equal to that of N=4 sYM.

(This is not expected to be a serious error in the experimentally interesting

Tc ≤ T ≤ 4Tc range.)

Both of the above need Riemann curvature corrections.

• We shall see that other observables can come out very well both at T=0

and finite T

Dynamics and Thermodynamics in Improved Holographic QCD, Elias Kiritsis
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Parameters

• We have 3 initial conditions in the system of graviton-dilaton equations:

♠ One is fixed by picking the branch that corresponds asymptotically to

λ ∼ 1
log(rΛ)

♠ The other fixes Λ → ΛQCD.

♠ The third is a gauge artifact as it corresponds to a choice of the origin

of the radial coordinate.

• We also have the Planck scale Mp, and the AdS length, `.

Asking for correct T →∞ thermodynamics (free gas) fixes

(Mp`)
3 =

1

45π2
, Mphysical = MpN

2
3
c =

(
8

45π2`3

)1
3 ' 4.6 GeV

` is not a parameter but a unit of length.
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• All dimensionless coefficients of the potential are a priori parameters.

However, a simple form is typically chosen for simplicity.

• At T = 0 we fit only one parameter:the normalization of the ’t Hooft

coupling.

• At T > 0 we fit one more parameter:the coefficient of the leading strong

coupling term.

• We choose a dilaton potential with large-λ asymptotics V (λ) ∼ √
logλ to

obtain linear asymptotic glueball spectrum.

Dynamics and Thermodynamics in Improved Holographic QCD, Elias Kiritsis
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Comparison with lattice data

n

3000

4000

5000

6000

M

n

3000

4000

5000

6000

M

(a) (b)

Comparison of glueball spectra from our model with b0 = 4.2, λ0 = 0.05 (boxes), with the lattice QCD data

from Meyer (crosses) and the AdS/QCD computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs.

The masses are in MeV, and the scale is normalized to match the lowest 0++ state.

We measure :
`eff

`
= 2.62 ,

`s

`
' 0.16

and post-dict

αs(1.2 GeV ) = 0.34,

which is within the error of the quoted experimental value α(exp)
s (1.2 GeV ) = 0.35± 0.01
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Finite temperature

The theory at finite temperature can be described by:

(1) The “thermal vacuum solution”. This is the zero-temperature solution

we described so far with time periodically identified with period β.

(2) “black-hole” solutions

ds2 = b(r)2
[

dr2

f(r)
− f(r)dt2 + dxidxi

]
, λ = λ(r)

♠ We need VERY UNUSUAL boundary conditions: The dilaton (scalar) is

diverging at the boundary so that λ ∼ eφ → 1
log r → 0

• The boundary AdS is NOT at a minimum of the potential.

• No such type of solutions have been analyzed so far in the literature.
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General phase structure

• For a general potential (with no minimum) the following can be shown :

i. There exists a phase transition at finite T = Tc, if and only if the zero-T

theory confines.

ii.This transition is of the first order for all of the confining geometries,

with a single exception described in iii:

iii. In the limit confining geometry b0(r) → e−Cr, λ0 → e
3
2Cr, (as r → ∞),

the phase transition is of the second order and happens at T = 3C/4π.

This is the linear dilaton vacuum solution in the IR.

iv. All of the non-confining geometries at zero T are always in the black

hole phase at finite T. They exhibit a second order phase transition at

T = 0+.

Dynamics and Thermodynamics in Improved Holographic QCD, Elias Kiritsis

18



Finite-T Confining Theories

• There is a minimal temperature Tmin for the existence of Black-hole

solutions

• When T < Tmin only the “thermal vacuum solution” exists: it describes

the confined phase at small temperatures.

• For T > Tmin there are two black-hole solutions with the same temper-

ature but different horizon positions. One is a “large” BH the other is

“small”.

• When T > Tmin three competing solutions exist. The large BH has the

lowest free energy for T > Tc > Tmin. It describes the deconfined “Gluon-

Glass” phase.

Dynamics and Thermodynamics in Improved Holographic QCD, Elias Kiritsis
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Temperature versus horizon position

min temperature

small BH

big BH

rh
200

300

400

500

THMeVL
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Α>1

Α=1

Α<1

T_min

T_min

r_min

rh

100

200

300

400

500

T

We plot the relation T (rh) for various potentials parameterized by a. a = 1

is the critical value below which there is only one branch of black-hole

solutions.
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The free energy

• The free energy is calculated from the action as a boundary term for

both the black-holes and the thermal vacuum solution. They are all UV

divergent but their differences are finite.

F
M3

p V3
= 12G(T )− T S(T )

• G is the temperature-depended gluon condensate 〈Tr[F2]〉T −〈Tr[F2]〉T=0

defined as

lim
r→0

λT (r)− λT=0(r) = G(T ) r4 + · · ·

• It is G the breaks conformal invariance essentially and leads to a non-trivial

deconfining transition (as S > 0 always)
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Free energy versus horizon position

Α>1

Α£1

r_minr_c
rh

-0.4

-0.3

-0.2

-0.1

0.1

F

We plot the relation F(rh) for various potentials parameterized by a. a = 1

is the critical value below which there is no first order phase transition .
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The transition in the free energy

Fbh=Fth

cr
it

ic
al

te
m

pe
ra

tu
re

200 250 300 350 400
THMeVL

-0.0004

-0.0003

-0.0002

-0.0001

0.0000

0.0001

F

Nc
2 V3

AGeV4E
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Critical temperature and latent heat

• For the YM potential the minimum temperature for the black-holes is

Tmin ' 210 MeV with λh ' 12. The critical temperature is

Tc ' 235± 15 MeV with λh ' 8 ,
L

1
4
h

Tc
= 0.65

√
Nc

to be compared with 260± 11 MeV and 0.77
√

Nc
Lucini+Teper, Lucini+Teper+Wenger

• The specific heat for the QGP solution is positive as it should. For the

small black-hole it is negative.

• In the QGP phase, the qq̄ potential is screened.

Dynamics and Thermodynamics in Improved Holographic QCD, Elias Kiritsis

24



Thermodynamic variables
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Equation of state
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The speed of sound
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The bulk viscosity:data
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Open problems

THEORETICAL:

• Investigate further the structure of the string dual of QCD. Try to control
the UV physics (to which RR flux plays little role).

MORE PRACTICAL:

• Re-Calculate quantities relevant for heavy ion collisions: jet quenching
parameter, drag force etc.

• Calculate the finite-temperature Polyakov loops and Debye screening
lengths in various symmetry channels.

• Investigate quantitatively the meson sector

• Calculate the phase diagram in the presence of baryon number.
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AdS/QCD

♠ A basic phenomenological approach: use a slice of AdS5, with a UV cutoff, and an IR
cutoff. Polchinski+Strassler

♠ It successfully exhibits confinement (trivially via IR cutoff), and power-like behavior in
hard scattering amplitudes

♠ It may be equipped with a bifundamental scalar, T , and U(Nf)L × U(Nf)R, gauge fields
to describe mesons. Erlich+Katz+Son+Stepanov, DaRold+Pomarol

Chiral symmetry is broken by hand, via IR boundary conditions. The low-lying meson

spectrum looks ”reasonable”.

♠ Shortcomings:

• The glueball spectrum does not fit very well the lattice calculations. It has the wrong
asymptotic behavior m2

n ∼ n2 at large n.

• Magnetic quarks are confined instead of screened.

• Chiral symmetry breaking is input by hand.

• The meson spectrum has also the wrong UV asymptotics m2
n ∼ n2.

♠ The asymptotic spectrum can be fixed by introducing a non-dynamical

dilaton profile Φ ∼ r2 (soft wall)
Karch+Katz+Son+Stephanov

Dynamics and Thermodynamics in Improved Holographic QCD, Elias Kiritsis

30



The low dimension spectrum

• What are all gauge invariant YM operators of dimension 4 or less?

• They are given by Tr[FµνFρσ].
Decomposing into U(4) reps:

( ⊗ )symmetric = ⊕ (1)

We must remove traces to construct the irreducible representations of O(4):

= ⊕ ⊕ • , = •

The two singlets are the scalar (dilaton) and pseudoscalar (axion)

φ ↔ Tr[F 2] , a ↔ Tr[F ∧ F ]

The traceless symmetric tensor

→ Tµν = Tr

[
F 2

µν −
1

4
gµνF

2

]

is the conserved stress tensor dual to a massless graviton in 5d reflecting the translational
symmetry of YM.

→ T 4
µν;ρσ = Tr[FµνFρσ − 1

2
(gµρF

2
νσ − gνρF

2
µσ − gµσF 2

νρ + gνσF 2
µρ) +

1

6
(gµρgνσ − gνρgµσ)F

2]

31



It has 10 independent d.o.f, it is not conserved and it should correspond to a similar

massive tensor in 5d. We do not expect it to play an non-trivial role in the large-Nc, YM

vacuum also for reasons of Lorentz invariance.

• Therefore the nontrivial fields are expected to be:
gµν, φ, a
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31-



An assessment of IR asymptotics

• As λ →∞ we assume that the potential terms dominate and we param-

eterize the effective action in the IR as

Seff ∼
∫ √

g

[
R +

4

3

(∂λ)2

λ2
+ V (λ) =

]
, V (λ) =

4

3
λ2

(
dW

dλ

)2
+

64

27
W2

Parameterize the IR asymptotics (λ →∞) as

W (λ) ∼ (logλ)
P
2 λQ

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at

finite r = r0.

eA(r) ∼





(r0 − r)
4

9Q2−4 Q > 2
3

exp
[
− C

(r0−r)1/(P−1)

]
Q = 2

3
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• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞
The scale factor eA vanishes there as

eA(r) ∼ exp[−Cr1/(1−P )].

The asymptotic spectrum of glueballs is linear only if P = 1
2

• Q = 2/3, P = 1 leads to confinement but the singularity may be at a

finite or infinite value of r depending on subleading asymptotics of the

superpotential.

♠ If Q < 2
√

2/3, no ad hoc boundary conditions are needed to determine

the glueball spectrum: the singularity is “good” (repulsive).

♠ when Q > 2
√

2/3, the spectrum is not well defined without extra boundary

conditions in the IR because both solutions to the mass eigenvalue equation

are IR normalizable.
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Selecting the IR asymptotics

Only the Q = 2/3, 0 ≤ P < 1 is compatible with

• Confinement (it happens non-trivially: a minimum in the string frame scale factor )

• Mass gap+discrete spectrum (except P=0)

• good singularity

• R → 0 partly justifying the original assumption. More precisely: the string frame metric

becomes flat at the IR . But (∂φ)2 ∼ V (λ).

♠ It is interesting that the lower endpoint: P=0 corresponds to linear
dilaton and flat space (string frame). It is confining with a mass gap but
continuous spectrum.

• For linear asymptotic trajectories for fluctuations (glueballs) we must
choose P = 1/2

V (λ) = λ
4
3

[
1 + c1λ2 + c2λ4 + · · ·

]
∼ λ

4
3
√

logλ +subleading as λ →∞
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Further α′ corrections

There are further dilaton terms generated by the 5-form in:

• The kinetic terms of the graviton and the dilaton ∼ λ2n.

• The kinetic terms on probe D3 branes that affect the identification of

the gauge-coupling constant, ∼ λ2n+1. There is also a multiplicative factor

relating gY M2 to eφ, (not known). Can be traded for b0.

• Corrections to the identification of the energy. At r = 0, E = 1/r. There

can be log corrections to our identification E = eA, and these are a power

series in ∼ λ2n.

• It is a remarkable fact that all such corrections affect the higher that the

first two terms in the β-function (or equivalently the potential), that are

known to be non-universal!

the metric is also insensitive to the change of b0 by changing Λ.
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Organizing the vacuum solutions

A useful variable is the phase variable

X ≡ Φ′

3A′
=

β(λ)

3λ
, eΦ ≡ λ

and a superpotential

W2 −
(
3

4

)2 (
∂W

∂Φ

)2
=

(
3

4

)3
V (Φ).

with

A′ = −4

9
W , Φ′ = dW

dΦ

X = −3

4

d logW

d logλ
, β(λ) = −9

4
λ

d logW

d logλ

♠ The equations have three integration constants: (two for Φ and one for A) One

corresponds to the “gluon condensate” in the UV. It must be set to zero otherwise the IR

behavior is unacceptable. The other is Λ. The third one is a gauge artifact (corresponds

to overall translation in the radial coordinate).
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The IR regime

For any asymptotically AdS5 solution (eA ∼ `
r):

• The scale factor eA(r) is monotonically decreasing
Girardelo+Petrini+Porrati+Zaffaroni

Freedman+Gubser+Pilch+Warner

• Moreover, there are only three possible, mutually exclusive IR asymp-

totics:

♠ there is another asymptotic AdS5 region, at r →∞, where expA(r) ∼ `′/r,

and `′ ≤ ` (equality holds if and only if the space is exactly AdS5 everywhere);

♠ there is a curvature singularity at some finite value of the radial coordi-

nate, r = r0;

♠ there is a curvature singularity at r →∞, where the scale factor vanishes

and the space-time shrinks to zero size.
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Wilson-Loops and confinement

• Calculation of the static quark potential using the vev of the Wilson loop
calculated via an F-string worldsheet.

Rey+Yee, Maldacena

T E(L) = Sminimal(X)

We calculate

L = 2
∫ r0

0
dr

1√
e4AS(r)−4AS(r0) − 1

.

It diverges when eAs has a minimum (at r = r∗). Then

E(L) ∼ Tf e2AS(r∗) L

• Confinement → As(r∗) is finite. This is a more general condition that
considered before as AS is not monotonic in general.

• Effective string tension

Tstring = Tf e2AS(r∗)
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General criterion for confinement

• the geometric version:
A geometry that shrinks to zero size in the IR is dual to a confining 4D
theory if and only if the Einstein metric in conformal coordinates vanishes
as (or faster than) e−Cr as r →∞, for some C > 0.

• It is understood here that a metric vanishing at finite r = r0 also satisfies
the above condition.

♠ the superpotential

A 5D background is dual to a confining theory if the superpotential grows
as (or faster than)

W ∼ (logλ)P/2λ2/3 as λ →∞ , P ≥ 0

♠ the β-function A 5D background is dual to a confining theory if and only
if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system) Linear trajectories correspond to K = − 3
16
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Classification of confining superpotentials

Classification of confining superpotentials W (λ) as λ →∞ in IR:

W (λ) ∼ (logλ)
P
2 λQ , λ ∼ E−

9
4Q

(
log

1

E

) P
2Q

, E → 0.

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at finite r = r0.

eA(r) ∼
{

(r0 − r)
4

9Q2−4 Q > 2
3

exp
[
− C

(r0−r)1/(P−1)

]
Q = 2

3

• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞ The scale factor
eA vanishes there as

eA(r) ∼ exp[−Cr1/(1−P )].

• Q = 2/3, P = 1 leads to confinement but the singularity may be at a finite or infinite
value of r depending on subleading asymptotics of the superpotential.

♠ If Q < 2
√

2/3, no ad hoc boundary conditions are needed to determine the glueball spec-
trum → One-to-one correspondence with the β-function This is unlike standard AdS/QCD
and other approaches.

• when Q > 2
√

2/3, the spectrum is not well defined without extra boundary conditions in
the IR because both solutions to the mass eigenvalue equation are IR normalizable.
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Confining β-functions

A 5D background is dual to a confining theory if and only if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system). Linear trajectories correspond to K =

− 3
16

• We can determine the geometry if we specify K:

• K = −∞: the scale factor goes to zero at some finite r0, not faster than a power-law.

• −∞ < K < −3/8: the scale factor goes to zero at some finite r0 faster than any power-
law.

• −3/8 < K < 0: the scale factor goes to zero as r →∞ faster than e−Cr1+ε

for some ε > 0.

• K = 0: the scale factor goes to zero as r →∞ as e−Cr (or faster), but slower than e−Cr1+ε

for any ε > 0.

The borderline case, K = −3/8, is certainly confining (by continuity), but whether or not

the singularity is at finite r depends on the subleading terms.
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Comments on confining backgrounds

• For all confining backgrounds with r0 = ∞, although the space-time is

singular in the Einstein frame, the string frame geometry is asymptotically

flat for large r. Therefore only λ grows indefinitely.

• String world-sheets do not probe the strong coupling region, at least

classically. The string stays away from the strong coupling region.

• Therefore: singular confining backgrounds have generically the property

that the singularity is repulsive, i.e. only highly excited states can probe it. This

will also be reflected in the analysis of the particle spectrum (to be presented later)

• The confining backgrounds must also screen magnetic color charges.

This can be checked by calculating ’t Hooft loops using D1 probes:

♠ All confining backgrounds with r0 = ∞ and most at finite r0 screen properly

♠ In particular “hard-wall” AdS/QCD confines also the magnetic quarks.
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Particle Spectra: generalities

• Linearized equation:

ξ̈ + 2Ḃξ̇ + ¤4ξ = 0 , ξ(r, x) = ξ(r)ξ(4)(x), ¤ξ(4)(x) = m2ξ(4)(x)

• Can be mapped to Schrodinger problem

− d2

dr2
ψ + V (r)ψ = m2ψ , V (r) =

d2B

dr2
+

(
dB

dr

)2
, ξ(r) = e−B(r)ψ(r)

• Mass gap and discrete spectrum visible from the asymptotics of the

potential.

• Large n asymptotics of masses obtained from WKB

nπ =
∫ r2

r1

√
m2 − V (r) dr

• Spectrum depends only on initial condition for λ (∼ ΛQCD) and an overall

energy scale (eA) that must be fixed.
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• scalar glueballs

B(r) =
3

2
A(r) +

1

2
log

β(λ)2

9λ2

• tensor glueballs

B(r) =
3

2
A(r)

• pseudo-scalar glueballs

B(r) =
3

2
A(r) +

1

2
logZ(λ)

• Universality of asymptotics

m2
n→∞(0++)

m2
n→∞(2++)

→ 1 ,
m2

n→∞(0+−)

m2
n→∞(0++)

=
1

4
(d− 2)2

predicts d = 4 via

m2

2πσa
= 2n + J + c,

Dynamics and Thermodynamics in Improved Holographic QCD, Elias Kiritsis

44



The axion background

• The kinetic term of the axion is suppressed by 1/N2
c . (it is an angle in

the gauge theory, it is RR in string theory)

ä +

(
3Ȧ +

Ż(λ)

Z(λ)

)
ȧ = 0 → ȧ =

C e−3A

Z(λ)

It can be interpreted as the flow equation of the effective θ-angle.
• The full solution is

a(r) = θUV + 2πk + C
∫ r

0
r
e−3A

Z(λ)
, C = 〈Tr[F ∧ F ]〉

• The vacuum energy is

E(θUV ) =
M3

2N2
c

∫
d5x

√
gZ(λ)(∂a)2 =

M3

2N2
c

Ca(r)
∣∣∣∣
r=r0

r=0

• Consistency requires to impose that a(r0) = 0. This determines C and

E(θUV ) = −M3

2
Mink

(θUV + 2πk)2
∫ r0
0

dr
e3AZ(λ)

,
a(r)

θUV + 2πk
=

∫ r0
r

dr
e3AZ(λ)∫ r0

0
dr

e3AZ(λ)
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(a) An example of the axion profile (normalized to one in the UV) as a function of
energy, in one of the explicit cases we treat numerically. The energy scale is in MeV,
and it is normalized to match the mass of the lowest scalar glueball from lattice data,
m0 = 1475MeV . The axion kinetic function is taken as Z(λ) = Za(1+caλ4), with ca = 100
(the masses do not depend on the value of Za). The vertical dashed line corresponds to

Λp ≡ 1
`

exp
[
A(λ0)− 1

b0λ0

]
(b0λ0)

b1/b2
0

. In this particular case Λ = 290MeV .

(b)A detail showing the different axion profiles for different values of ca. The values are

ca = 0.1 (dashed line), ca = 10 (dotted line) and ca = 100 (solid line).
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Quarks (Nf ¿ Nc) and mesons

• Flavor is introduced by Nf D4 + D̄4 branes pairs inside the bulk back-

ground. Their back-reaction on the bulk geometry is suppressed by Nf/Nc.

• The important world-volume fields are

Tij ↔ q̄i
a
1 + γ5

2
qj
a , Aij

µ
L,R ↔ q̄i

a
1± γ5

2
γµqj

a

Generating the U(Nf)L × U(Nf)R chiral symmetry.

• The UV mass matrix mij corresponds to the source term of the Tachyon

field. It breaks the chiral (gauge) symmetry. The normalizable mode cor-

responds to the vev 〈q̄i
a
1+γ5

2 q
j
a〉.

• We show that the expectation value of the tachyon is non-zero and T ∼ 1,

breaking chiral symmetry SU(Nf)L × SU(Nf)R → SU(Nf)V . The anomaly

plays an important role in this (holographic Coleman-Witten)
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• The fact that the tachyon diverges in the IR (fusing D with D̄) constraints the UV

asymptotics and determines the quark condensate 〈q̄q〉 in terms of mq. A GOR relation is

satisfied (for an asymptotic AdS5 space)

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• We can derive formulae for the anomalous divergences of flavor currents, when they are
coupled to an external source.

• When mq = 0, the meson spectrum contains N2
f massless pseudoscalars, the U(Nf)A

Goldstone bosons.

• The WZ part of the flavor brane action gives the Adler-Bell-Jackiw U(1)A axial anomaly

and an associated Stuckelberg mechanism gives an O
(

Nf

Nc

)
mass to the would-be Goldstone

boson η′, in accordance with the Veneziano-Witten formula.

• Studying the spectrum of highly excited mesons, we find the expected property of linear

confinement: m2
n ∼ n.

• The detailed spectrum of mesons remains to be worked out
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Tachyon dynamics

• In the vacuum the gauge fields vanish and T ∼ 1. Only DBI survives

S[τ ] = TD4

∫
drd4x

e4As(r)

λ
V (τ)

√
e2As(r) + τ̇(r)2 , V (τ) = e−

µ2

2 τ2

• We obtain the nonlinear field equation:

τ̈ +

(
3ȦS −

λ̇

λ

)
τ̇ + e2ASµ2τ + e−2AS

[
4ȦS −

λ̇

λ

]
τ̇3 + µ2τ τ̇2 = 0.

• In the UV we expect

τ = mq r + σ r3 + · · · , µ2`2 = 3

• We expect that the tachyon must diverge before or at r = r0. We find
that indeed it does at the singularity. For the r0 = ∞ backgrounds

τ ∼ exp
[
2

a

R

`2
r

]
as r →∞
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• Generically the solutions have spurious singularities: τ(r∗) stays finite but

its derivatives diverges as:

τ ∼ τ∗ + γ
√

r∗ − r.

The condition that they are absent determines σ as a function of mq.

• The easiest spectrum to analyze is that of vector mesons. We find

(r0 = ∞)

Λglueballs =
1

R
, Λmesons =

3

`

(
α`2

2R2

)(α−1)/2

∝ 1

R

(
`

R

)α−2
.

This suggests that α = 2. preferred also from the glue sector.
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Fluctuations around the AdS5 extremum

0.2 0.4 0.6 0.8 1
Λ

-0.4

-0.2

0.2

0.4

0.6

0.8

V

• In QCD we expect that

1

λ
=

1

Nceφ
∼ 1

log r
, ds2 ∼ 1

r2
(dr2 + dxµdxµ) as r → 0

• Any potential with V (λ) ∼ λa when λ ¿ 1 gives a power different that
of AdS5

• There is an AdS5 minimum at a finite value λ∗. This cannot be the UV
of QCD as dimensions do not match.
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Near an AdS extremum

V =
12

`2
− 16ξ

3`2
φ2 +O(φ3) ,

18

`
δA′ = δφ′2 − 4

`2
φ2 = O(δφ2) , δφ′′ − 4

`
δφ′ − 4ξ

`2
δφ = 0

where φ << 1. The general solution of the second equation is

δφ = C+e
(2+2

√
1+ξ)u

` + C−e
(2−2

√
1+ξ)u

`

For the potential in question

V (φ) =
e

4

3
φ

`2s

[
5− N2

c

2
e2φ −Nf eφ

]
, λ0 ≡ Nce

φ0 =
−7x +

√
49x2 + 400

10
, x ≡ Nf

Nc

ξ =
5

4

[
400 + 49x2 − 7x

√
49x2 + 400

100 + 7x2 − x
√

49x2 + 400

]
,

`2s
`2

= e
4

3
φ0

[
100 + 7x2 − x

√
49x2 + 400

400

]

The associated dimension is ∆ = 2 + 2
√

1 + ξ and satisfies

2 + 3
√

2 < ∆ < 2 + 2
√

6 or equivalently 6.24 < ∆ < 6.90

It corresponds to an irrelevant operator. It is most probably relevant for the Banks-Zaks
fixed points.

Bigazzi+Casero+Cotrone+Kiritsis+Paredes

RETURN
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Concrete potential

• The superpotential chosen is

W = (3 + 2b0λ)2/3
[
18 +

(
2b20 + 3b1

)
log(1 + λ2)

]4/3
,

with corresponding potential

β(λ) = − 3b0λ2

3 + 2b0λ
− 6(2b20 + 3b21)λ

3

(1 + λ2)
(
18 +

(
2b20 + 3b21

)
log(1 + λ2)

)

which is everywhere regular and has the correct UV and IR asymptotics.

• b0 is a free parameter and b1/b20 is taken from the QCD β-function
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Linearity of the glueball spectrum

10 20 30 40 50 60 70
n

20
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80
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M2

2 4 6 8
n

2

4

6

8

M2

(a) (b)

(a) Linear pattern in the spectrum for the first 40 0++ glueball states. M2

is shown units of 0.015`−2.

(b) The first 8 0++ (squares) and the 2++ (triangles) glueballs. These

spectra are obtained in the background I with b0 = 4.2, λ0 = 0.05.
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Comparison with lattice data (Meyer)

n
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M

n

3000

4000
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6000

M

(a) (b)

Comparison of glueball spectra from our model with b0 = 4.2, λ0 = 0.05

(boxes), with the lattice QCD data from Ref. I (crosses) and the AdS/QCD

computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The

masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. I.

`2eff = 6.88 `2
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r

0.00025

0.0005

0.00075

0.001

0.00125

0.0015

0.00175

0.002

exp@2 AsD

The string frame scale factor in background I with b0 = 4.2, λ0 = 0.05.

We can “measure”

`

`s
' 6.26 , `2sR ' −0.5 (2)

and predict

αs(1.2GeV ) = 0.34,

which is within the error of the quoted experimental value α(exp)
s (1.2GeV ) = 0.35± 0.01
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The fit to Meyer lattice data

JPC Ref I (MeV) Our model (MeV) Mismatch Nc →∞ [?] Mismatch

0++ 1475 (4%) 1475 0 1475 0

2++ 2150 (5%) 2055 4% 2153 (10%) 5%

0−+ 2250 (4%) 2243 0

0++∗ 2755 (4%) 2753 0 2814 (12%) 2%

2++∗ 2880 (5%) 2991 4%

0−+∗ 3370 (4%) 3288 2%

0++∗∗ 3370 (4%) 3561 5%

0++∗∗∗ 3990 (5%) 4253 6%

Comparison between the glueball spectra in Ref. I and in our model. The

states we use as input in our fit are marked in red. The parenthesis in the

lattice data indicate the percent accuracy.
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Estimating the importance of logarithmic scaling

We keep the IR asymptotics of background II,but change the UV to power asymptoting
AdS5, with a small λ∗.

eA(r) =
`

r
e−(r/R)2

, Φ(r) = Φ0 +
3

2

r2

R2

√
1 + 3

R2

r2
+

9

4
log

2 r
R

+ 2
√

r2

R2 + 3
2√

6
.

Wconf = W0

(
9 + 4b20(λ− λ∗)2)1/3

) (
9a + (2b20 + 3b1) log

[
1 + (λ− λ2

∗)
])2a/3

.

We fix parameters so that the physical QCD scale is the same (as determined from

asymptotic slope of Regge trajectories.

5 10 15 20 25 30
n

10

20

30

40

M2

The stars correspond to the asymptotically free background I with b0 = 4.2 and λ0 = 0.05; the squares

correspond the results obtained in the first background with R = 11.4`; the triangles denote the spectrum in

the second background with b0 = 4.2, li = 0.071 and l∗ = 0.01. These values are chosen so that the slopes

coincide asymptotically for large n.
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Profile of coupling and scale factor
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Λ

The scale factor and ’t Hooft coupling that follow from β. b0 = 4.2, λ0 = 0.05, A0 = 0.

The units are such that ` = 0.5. The dashed line represents the scale factor for pure AdS.
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Dependence of absolute mass scale on λ0

0.1 0.2 0.3 0.4 0.5
Λ0

-8

-6
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-2

logIm0M

Dependence on initial condition λ0 of the absolute scale of the lowest lying

glueball (shown in Logarithmic scale)
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Dependence of mass ratios on λ0
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The mass ratios R20

R20 =
m2++

m0++
.
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The glueball wavefunctions

r@m0D 20 r@LD 40 60

r
�����
l

Ψ@rD

Normalized wave-function profiles for the ground states of the 0++ (solid

line) ,0−+ (dashed line), and 2++ (dotted line) towers, as a function of

the radial conformal coordinate. The vertical lines represent the position

corresponding to E = m0++ and E = Λp.
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Comparison of scalar and tensor potential

5 10 15 20
r

0.5

1

1.5

2

V@rD

Effective Schrödinger potentials for scalar (solid line) and tensor (dashed

line) glueballs. The units are chosen such that ` = 0.5.
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The lattice glueball data

Available lattice data for the scalar and the tensor glueballs. Ref. I =H. B. Meyer, [arXiv:hep-lat/0508002].

and Ref. II = C. J. Morningstar and M. J. Peardon, [arXiv:hep-lat/9901004] + Y. Chen et al., [arXiv:hep-

lat/0510074]. The first error corresponds to the statistical error from the the continuum extrapolation. The

second error in Ref.I is due to the uncertainty in the string tension
√

σ. (Note that this does not affect

the mass ratios). The second error in the Ref. II is the estimated uncertainty from the anisotropy. In the

last column we present the available large Nc estimates according to B. Lucini and M. Teper, [arXiv:hep-

lat/0103027]. The parenthesis in this column shows the total possible error followed by the estimations in

the same reference.
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Pseudoscalar glueballs
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Lowest 0−+ glueball mass in MeV as a function of ca in Z(λ) = Za(1+caλ4).
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α-dependence of scalar spectrum

2 3 4 5
n

2000

4000

6000

8000

10000

M

2

5
10
20

*

The 0++ spectra for varying values of α that are shown at the right end

of the plot. The symbol * denotes the AdS/QCD result.
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Comparison with lattice data: Ref II
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Comparison of glueball spectra from our model with b0 = 2.55, λ0 = 0.05

(boxes), with the lattice QCD data from Ref. II (crosses) and the AdS/QCD

computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The

masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. II.
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The thermodynamic quantities
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The bulk viscosity: theory

It is defines from the Kubo formula

ζ =
1

9
lim
ω→0

1

ω
Im GR(ω) , GR(ω) ≡

∫
d3x

∫
dt eiωtθ(t) 〈0|[Tii(~x, t), Tii(~0,0)]|0〉

Using a parametrization ds2 = e2A(fdt2+d~x2)+ e2B

f
dr2 in a special gauge φ = r the relevant

metric perturbation decouples
Gubser+Nellore+Pufu+Rocha

h′′11 = −
(
− 1

3A′ − 4A′ + 3B′ − f ′

f

)
h′11 +

(
−e2B−2A

f2
ω2 +

f ′

6fA′ −
f ′

f
B′

)
h11

with

h11(0) = 1 , h11(rh) ' C eiωt
∣∣∣ log

λ

λh

∣∣∣
− iω

4πT

The correlator is given by the conserved number of h-quanta

Im GR(ω) = −4M3G(ω) , G(ω) =
e4A−Bf

4A′2 |Im[h∗11h
′
11]|

finally giving

ζ

s
=

C2

4π

V ′(λh)2

V (λh)2
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