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Introduction

♠ QCD is a very successful theory for the strong interactions.

♠ Remarkably, we do not have analytical control over most of the energy

regime. Even numerically (lattice), many aspects of the theory are still

beyond reach.

♠ Were it not phenomenological models most accelerator data n the past

20 years would have been useless.

Improved Holographic QCD, E. Kiritsis

3



♠ What we cannot reliably calculate:

• Observable rates for accelerator experiments. In particular, structure

functions have to be measured. Hadronization is done by the Lund

Monte Carlo model or the fragmentation model.

• Glueball spectra for higher glueballs (third and up), mesons (3-4-th and

up and baryons (2nd and up). Decay widths for all of the above.

• There are at least two weak matrix elements that cannot be computed

so far reliably enough by lattice computations: The ∆I = 1
2 matrix

elements of type 〈K|O∆I=1/2,3/2|ππ〉 , and the BK ∼ 〈K|O∆S=2|K̄〉.

• Data associated to the chiral symmetry breaking (like the quark con-

densate), or its restauration at higher temperatures.

• In general matrix elements with at least two particle final states.
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• Real time finite temperature correlation functions (associated to QGP

dynamics)

• Finite temperature physics at finite baryon density.

♠ Several complementary semi-phenomenological techniques have been de-

veloped to deal with the above (chiral perturbation theory, perturbation

theory resummation schemes, SD equations, bag models, etc.) with varied

success.

¦ There are two competing (rather successful) phenomenological models of

QCD (Lund and fragmentation models) that are essential today in inter-

preting collider QCD data.
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AdS/CFT and holography

♠ The large Nc approximation to QCD has promised a string theory de-
scription of the color singlet sector of gauge theories.

’t Hooft

♠ The nature of this string theory became more palpable with the formu-
lation of the AdS/CFT correspondence for N = 44 sYM.

Maldacena, Witten, Gubser+Klebanov+Polyakov

The surprise involved the emergence of an extra holographic dimension.

♠ This has started an effort to extend it to theories as close to QCD as
possible.

♠ The original and most controlled approaches relied on ”perturbing” the
original AdS/CFT correspondence in ten-dimensional (critical) string the-
ory.

♠ More recent attempts dared to use a non-critical string framework.

♠ Some holographic-inspired phenomenological models also popped up
(AdS/QCD).
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A string theory for QCD:basic expectations

• Pure SU(Nc) d=4 YM is expected to be dual to a string theory in 5

dimensions only. Essentially a single adjoint field→ a single extra dimension.

• The theory becomes asymptotically free and conformal at high energy →
we expect the classical saddle point solution to asymptote to AdS5.

♠ Which bulk fields are expected to be non-trivial in the large-Nc saddle-

point?

• scalar YM operators with ∆UV > 4 → m2 > 0 fields near the AdS5

boundary → most probably not excited in the vacuum as suggested by a fit

of the low energy SVZ sum rules to data.

• bulk fields with zero or negative masses near the boundary may get vevs.

Advantage here is that the theory is weakly coupled at UV so UV dimensions

are reliably known.
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• What are all gauge invariant YM operators of dimension 4 or less?
• They are given by Tr[FµνFρσ].
Decomposing into U(4) reps:

( ⊗ )symmetric = ⊕ (1)

We must remove traces to construct the irreducible representations of O(4):

= ⊕ ⊕ • , = •

The two singlets are the scalar (dilaton) and pseudoscalar (axion)

φ ↔ Tr[F 2] , a ↔ Tr[F ∧ F ]

The traceless symmetric tensor

→ Tµν = Tr

[
F 2

µν −
1

4
gµνF

2

]

is the conserved stress tensor dual to a massless graviton in 5d reflecting the translational
symmetry of YM.

→ T 4
µν;ρσ = Tr[FµνFρσ − 1

2
(gµρF

2
νσ − gνρF

2
µσ − gµσF 2

νρ + gνσF 2
µρ) +

1

6
(gµρgνσ − gνρgµσ)F

2]

It has 10 independent d.o.f, it is not conserved and it should correspond to a similar

massive tensor in 5d. We do not expect it to play an non-trivial role in the large-Nc, YM

vacuum also for reasons of Lorentz invariance.

• Therefore the nontrivial fields are expected to be: gµν, φ, a

Improved Holographic QCD, E. Kiritsis
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bosonic string or superstring?

• Consider the axion a dual to Tr[F ∧ F ]. We can show that it must come
from a RR sector.

In large-Nc YM, the proper scaling of couplings is obtained from

LY M = Nc Tr

[
1

λ
F2 +

θ

Nc
F ∧ F

]
, ζ ≡ θ

Nc
∼ O(1)

EY M(θ) ' N2
c min

k∈Z
H

(
θ + 2πk

Nc

)
, H(θ) = H(−θ) (CP )

Witten
Therefore, H(x) = C0 + C1x2 + C2x4 + · · · and

EY M(θ) ' C0 N2
c + C1θ2 + C2

θ4

N2
c

+ · · ·

In the string theory action

S ∼
∫

e−2φ [R + · · · ] + (∂a)2 + e2φ(∂a)4 + · · · , eφ ∼ g2
Y M

∼
∫

N2
c

λ2 [R + · · · ] + (∂a)2 +
λ2

N2
c
(∂a)4 + · · · , λ ∼ Nce

φ , a = θ[1 + · · · ]
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bosonic string or superstring? (continued)

• The string theory must have no on-shell fermionic states at all because

there are no gauge invariant fermionic operators in pure YM.

• Therefore the string theory must be a 5d-superstring theory resembling

the II-0 class.

♠ Another RR field we expect to have is the RR 4-form, as it is necessary

to “seed” the D3 branes responsible for the gauge group.

• It is non-propagating in 5D

• We will see later however that it is responsible for the non-trivial IR

structure of the gauge theory vacuum.

Improved Holographic QCD, E. Kiritsis
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The minimal effective string theory spectrum

• NS-NS → gµν , Bµν , φ

• RR → Spinor5×Spinor5=F0 + F1 + F2 + (F3 + F4 + F5)

♠ F0 ↔ F5 → C4, background flux → no propagating degrees of freedom.

♠ F1 ↔ F4 → C3 ↔ C0: C0 is the axion, C3 its 5d dual that couples to

domain walls separating oblique confinement vacua.

♠ F2 ↔ F3 → C1 ↔ C2: They are associated with baryon number (as we

will see later when we add flavor). Dual operators are a mystery.

• In an ISO(3,1) invariant vacuum solution, only gµν, φ, C0 = a can be

non-trivial.

ds2 = e2A(r)(dr2 + dx2
4) , a(r), φ(r)

Improved Holographic QCD, E. Kiritsis
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The relevant “defects”

• Bµν → Fundamental string (F1). This is the QCD (glue) string: funda-

mental tension `2s ∼ O(1)

• Its dual B̃µ → NS0: Tension is O(N2
c ). It is an effective magnetic baryon

vertex binding Nc magnetic quarks.

• C4 → D3 branes generating the gauge symmetry.

• C3 → D2 branes : domain walls separating different oblique confinement

vacua (where θk+1 = θk + 2π). Its tension is O(Nc)

Improved Holographic QCD, E. Kiritsis
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• C2 → D1 branes: These are the magnetic strings (strings attached to

magnetic quarks) with tension O(Nc)

• C5 → D4: Space filling flavor branes. They must be introduced in pairs:

D4 + D̄4 for charge neutrality/tadpole cancellation.

• C1 → D0 branes. These are the baryon vertices: they bind Nc quarks,

and their tension is O(Nc).

• C0 → D−1 branes: These are the Yang-Mills instantons.

Improved Holographic QCD, E. Kiritsis
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The effective action, I

• as Nc →∞, only string tree-level is dominant.

• Relevant field for the vacuum solution: gµν, a, φ, F5.

• by definition the vev of F5 ∼ Nc ε5. It appears always in the combination

e2φF2
5 ∼ λ2, with λ ∼ Nc eφ All higher derivative corrections (e2φF2

5 )n are

O(1) at large Nc.

• This is not the case for all other RR fields: in particular for the axion as

a ∼ O(1)

(∂a)2 ∼ O(1) , e2φ(∂a)4 =
λ2

N2
c
(∂a)4 ∼ O

(
N−2

c

)

Therefore to leading order O(N2
c ) we can neglect the axion.

Improved Holographic QCD, E. Kiritsis
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The effective action II

Therefore:

Seff = M3
p N2

c

∫
d5x

1

λ2
Z

(
R, (∂φ)2,

λ2

N2
c

F2
5

)

• Moreover as the F5 is non-propagating its equation of motion gives

G

(
R, (∂φ)2,

λ2

N2
c

F2
5

)
= 0

which if solved implicitly and substituted back in the effective action gives

Seff = M3
p N2

c

∫
d5x

1

λ2
Z̃

(
R, (∂φ)2, λ2

)

• In particular, a potential for the dilaton, λ will be generated from the

higher derivative terms due to F5.

Improved Holographic QCD, E. Kiritsis
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The UV regime

• In the far UV, the space should asymptote to AdS5.

• The ’t Hooft coupling should behave as (r → 0)

λ ∼ 1

log(rΛ)
+ · · · → 0

• Therefore, as r → 0

Curvature → finite , (∂φ)2 ∼ (∂λ)2

λ2
∼ 1

log2(rΛ)
→ 0 , λ2 → 0

• For λ → 0 the potential in the Einstein frame starts as V (λ) ∼ λ
4
3 and

cannot support the asymptotic AdS5 solution.

• Therefore asymptotic AdS5 must arise from

Seff = M3
p N2

c

∫
d5x

1

λ2
Z (R,0,0)

Improved Holographic QCD, E. Kiritsis
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• Such AdS5 solutions are “easy to find” as in the example

S =
∫

d5x
√

g Z(R)

There is a a constant curvature solution with R∗ that is a zero of the

function

xZ′(x)− 5

2
Z(x)

• This must involve at least two such terms and therefore, we do not

expect a ”good” derivative expansion for finding the solution.

• There is however a ”good” (but hard to derive) perturbative expansion

around this asymptotic AdS5 solution by perturbing around it:

eA =
`

r
[1 + δA] , λ =

1

b0 log(rΛ)
+ · · ·

Improved Holographic QCD, E. Kiritsis
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• This turns out to be an regular expansion of the solutions in powers of

Pn(log log(rΛ))

(log(rΛ))−n

• The coefficients of that expansion are various functions of the constant

curvature invariants of AdS5 that are (unknown) numbers.

• Effectively this can be rearranged as a “perturbative” expansion in λ(r).

• It is even cleaner to use λ as the radial coordinate instead of r and write

the metric solution in terms of λ.

• The solution for the metric can be written

E ≡ eA =
`

r(λ)

[
1 + c1λ + c2λ2 + · · ·

]
= ` (e−

b0
λ )

[
1 + c′1λ + c′2λ2 + · · ·

]
, λ → 0

Improved Holographic QCD, E. Kiritsis
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The IR regime

• Here the situation is a bit more obscure. The constraints/input are:
confinement and mass gap.

• We do expect that λ →∞ at the IR bottom.

• This is a ”singularity” in the conventional sense: it must be ”repulsive”,
ie the string theory, and even better some effective field theory should not
break down there.

• (Very) naive intuition from N=4 and other 10d strongly coupled theories
suggests that in this regime there should be a two derivative description of
the physics.

• At the IR bottom the space must end (singularity) where the scale factor
vanishes.

♠ If it happens very slowly, we loose confinement

♠ if it happens very fast, the singularity is strong and the theory is incom-
plete (boundary conditions are needed at the singularity.

Improved Holographic QCD, E. Kiritsis
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An assessment of IR asymptotics

• As λ →∞ we assume that the potential terms dominate and we param-

eterize the effective action in the IR as

Seff ∼
∫ √

g

[
R +

4

3

(∂λ)2

λ2
+ V (λ) =

]
, V (λ)− 4

3
λ2

(
dW

dλ

)2
+

64

27
W2

Parameterize the IR asymptotics (λ →∞) as

W (λ) ∼ (logλ)
P
2 λQ

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at

finite r = r0.

eA(r) ∼





(r0 − r)
4

9Q2−4 Q > 2
3

exp
[
− C

(r0−r)1/(P−1)

]
Q = 2

3

Improved Holographic QCD, E. Kiritsis
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• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞
The scale factor eA vanishes there as

eA(r) ∼ exp[−Cr1/(1−P )].

The asymptotic spectrum of glueballs is linear only if P = 1
2

• Q = 2/3, P = 1 leads to confinement but the singularity may be at a

finite or infinite value of r depending on subleading asymptotics of the

superpotential.

♠ If Q < 2
√

2/3, no ad hoc boundary conditions are needed to determine

the glueball spectrum: the singularity is “good” (repulsive).

♠ when Q > 2
√

2/3, the spectrum is not well defined without extra boundary

conditions in the IR because both solutions to the mass eigenvalue equation

are IR normalizable.

Improved Holographic QCD, E. Kiritsis
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Selecting the IR asymptotics

Only the Q = 2/3, 0 ≤ P < 1 is compatible with

• Confinement (it happens non-trivially: a minimum in the string frame scale factor )

• Mass gap+discrete spectrum (except P=0)

• good singularity

• R → 0 partly justifying the original assumption. More precisely: the string frame metric

becomes flat at the IR . But (∂φ)2 ∼ V (λ).

♠ It is interesting that the lower endpoint: P=0 corresponds to linear
dilaton and flat space (string frame). It is confining with a mass gap but
continuous spectrum.

• For linear asymptotic trajectories for fluctuations (glueballs) we must
choose P = 1/2

V (λ) = λ
4
3

[
1 + c1λ2 + c2λ4 + · · ·

]
∼ λ

4
3
√

logλ +subleading as λ →∞

Improved Holographic QCD, E. Kiritsis
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Improved Holographic QCD: a model

The simplification in this model relies on writing down a two-derivative

action

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
+ V (λ)

]

with

lim
λ→0

V (λ) =
12

`2


1 +

∞∑

n=1

cnλn


 , lim

λ→∞
V (λ) = λ

4
3
√

logλ + subleading

The small λ asymptotics “simulate” the UV expansion around AdS5.

• There is a 1-1 correspondence between the YM β-function, β(λ) and W :

β(λ) = −9

4
λ2 d logW (λ)

dλ

once a choice of energy is made (here E = AE). Renormalization and

other choices modify β(λ) beyond two-loop level

Improved Holographic QCD, E. Kiritsis
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Shortcomings localized at the UV

• Conformal anomaly is incorrect.

• Shear viscosity ratio is constant and equal to that of N=1 sYM

both of the above need Riemann curvature corrections.

Many other observables though are coming out very well both at T=0 and
finite T

Nitti’s talk at this meeting

♠ The axion contribution

δS = M3
p

∫
d5x

√
gZ(λ)(∂a)2

with

lim
λ→0

Z(λ) = c0 + c1λ + c2λ2 + · · · , lim
λ→∞

Z(λ) = C∞λ4 + · · ·

a(r) = θUV

∫∞
r

dr
e3AZ∫∞

0
dr

e3AZ

Improved Holographic QCD, E. Kiritsis
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Parameters

• All dimensionless coefficients of the potential are a priori parameters.

However, a simple form is typically chosen for simplicity. In our example we

fit only one parameter.

• We also have Mp, and the AdS length, `. Asking correct T →∞ thermo-

dynamics fixes (Mp`)3 = 1
45π2. ` is not a parameter but a unit of length.

• We have 3 initial conditions in the system of graviton-dilaton equations:

One is fixed by picking the branch that corresponds asymptotically to λ ∼
1

log(rΛ)

The other fixes Λ → ΛQCD.

The third is a gauge artifact as it corresponds to a choice of the origin of

the radial coordinate.

Improved Holographic QCD, E. Kiritsis
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Quarks (Nf ¿ Nc) and mesons

• Flavor is introduced by Nf D4 + D̄4 branes pairs inside the bulk back-

ground. Their back-reaction on the bulk geometry is suppressed by Nf/Nc.

• The important world-volume fields are

Tij ↔ q̄i
a
1 + γ5

2
qj
a , Aij

µ
L,R ↔ q̄i

a
1± γ5

2
γµqj

a

Generating the U(Nf)L × U(Nf)R chiral symmetry.

• The UV mass matrix mij corresponds to the source term of the Tachyon

field. It breaks the chiral (gauge) symmetry. The normalizable mode cor-

responds to the vev 〈q̄i
a
1+γ5

2 q
j
a〉.

• We show that the expectation value of the tachyon is non-zero and T ∼ 1,

breaking chiral symmetry SU(Nf)L × SU(Nf)R → SU(Nf)V . The anomaly

plays an important role in this (holographic Coleman-Witten)

Improved Holographic QCD, E. Kiritsis
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• The fact that the tachyon diverges in the IR (fusing D with D̄) constraints the UV

asymptotics and determines the quark condensate 〈q̄q〉 in terms of mq. A GOR relation is

satisfied (for an asymptotic AdS5 space)

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• We can derive formulae for the anomalous divergences of flavor currents, when they are
coupled to an external source.

• When mq = 0, the meson spectrum contains N2
f massless pseudoscalars, the U(Nf)A

Goldstone bosons.

• The WZ part of the flavor brane action gives the Adler-Bell-Jackiw U(1)A axial anomaly

and an associated Stuckelberg mechanism gives an O
(

Nf

Nc

)
mass to the would-be Goldstone

boson η′, in accordance with the Veneziano-Witten formula.

• Studying the spectrum of highly excited mesons, we find the expected property of linear

confinement: m2
n ∼ n.

• The detailed spectrum of mesons remains to be worked out

Improved Holographic QCD, E. Kiritsis
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Linearity of the glueball spectrum

10 20 30 40 50 60 70
n

20

40

60

80

100

M2

2 4 6 8
n

2

4

6

8

M2

(a) (b)

(a) Linear pattern in the spectrum for the first 40 0++ glueball states. M2

is shown units of 0.015`−2.

(b) The first 8 0++ (squares) and the 2++ (triangles) glueballs. These

spectra are obtained in the background I with b0 = 4.2, λ0 = 0.05.
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Comparison with lattice data: Ref I

n

3000

4000

5000

6000

M

n

3000

4000

5000

6000

M

(a) (b)

Comparison of glueball spectra from our model with b0 = 4.2, λ0 = 0.05

(boxes), with the lattice QCD data from Ref. I (crosses) and the AdS/QCD

computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The

masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. I.

`2eff = 6.88 `2
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10 20 30 40 50 60 70
r

0.00025

0.0005

0.00075

0.001

0.00125

0.0015

0.00175

0.002

exp@2 AsD

The string frame scale factor in background I with b0 = 4.2, λ0 = 0.05.

We can “measure”

`

`s
' 6.26 , `2sR ' −0.5 (2)

and predict

αs(1.2GeV ) = 0.34,

which is within the error of the quoted experimental value α(exp)
s (1.2GeV ) = 0.35± 0.01

Improved Holographic QCD, E. Kiritsis
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The fit to Ref I

JPC Ref I (MeV) Our model (MeV) Mismatch Nc →∞ [?] Mismatch

0++ 1475 (4%) 1475 0 1475 0

2++ 2150 (5%) 2055 4% 2153 (10%) 5%

0−+ 2250 (4%) 2243 0

0++∗ 2755 (4%) 2753 0 2814 (12%) 2%

2++∗ 2880 (5%) 2991 4%

0−+∗ 3370 (4%) 3288 2%

0++∗∗ 3370 (4%) 3561 5%

0++∗∗∗ 3990 (5%) 4253 6%

Comparison between the glueball spectra in Ref. I and in our model. The

states we use as input in our fit are marked in red. The parenthesis in the

lattice data indicate the percent accuracy.

Improved Holographic QCD, E. Kiritsis
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Open ends

• This phenomenological approach towards an improved holographic QCD

model seems promising

• With a few choices of parameters the physics of pure glue at T = 0 and

T > 0 is mostly reproduced correctly.

♠ Calculate the meson spectrum and compare with data.

♠ Explore the baryon spectrum

♠ Recalculate the dipole moment of the neutron in connection with the

strong CP problem.

♠ Calculate RHIC/LHC finite T observables (like jet quenching and bulk

viscosity )

Improved Holographic QCD, E. Kiritsis
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Thank you for your patience!
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Concrete models: I

• r0 = ∞ and a = 2:

β(λ) = − 3b0λ2

3 + 2b0λ
− 3a(2b20 + 3b21)λ

3

(1 + λ2)
(
9a +

(
2b20 + 3b21

)
log(1 + λ2)

)

is everywhere regular and has the correct UV and IR asymptotics.

W = (3 + 2b0λ)2/3
[
9a +

(
2b20 + 3b1

)
log(1 + λ2)

]2a/3
,

5 10 15 20 25
r

0.05

0.1

0.15

0.2

0.25

0.3

eA

2.5 5 7.5 10 12.5 15
r

2

4

6

8

Λ

The scale factor and ’t Hooft coupling that follow from β. b0 = 4.2, λ0 = 0.05, A0 = 0.

The units are such that ` = 0.5. The dashed line represents the scale factor for pure AdS.
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Dependence of absolute mass scale on λ0

0.1 0.2 0.3 0.4 0.5
Λ0

-8

-6

-4

-2

logIm0M

Dependence on initial condition λ0 of the absolute scale of the lowest lying

glueball (shown in Logarithmic scale)
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Dependence of mass ratios on λ0

0.0 0.1 0.2 0.3 0.4 0.5
Λ0

1.2

1.4

1.6

1.8

2.0

�������������

m0*

m0

The mass ratios R20

R20 =
m2++

m0++
.
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The glueball wavefunctions

r@m0D 20 r@LD 40 60

r
�����
l

Ψ@rD

Normalized wave-function profiles for the ground states of the 0++ (solid

line) ,0−+ (dashed line), and 2++ (dotted line) towers, as a function of

the radial conformal coordinate. The vertical lines represent the position

corresponding to E = m0++ and E = Λp.
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The lattice glueball data

Available lattice data for the scalar and the tensor glueballs. Ref. I =H. B. Meyer, [arXiv:hep-lat/0508002].

and Ref. II = C. J. Morningstar and M. J. Peardon, [arXiv:hep-lat/9901004] + Y. Chen et al., [arXiv:hep-

lat/0510074]. The first error corresponds to the statistical error from the the continuum extrapolation. The

second error in Ref.I is due to the uncertainty in the string tension
√

σ. (Note that this does not affect

the mass ratios). The second error in the Ref. II is the estimated uncertainty from the anisotropy. In the

last column we present the available large Nc estimates according to B. Lucini and M. Teper, [arXiv:hep-

lat/0103027]. The parenthesis in this column shows the total possible error followed by the estimations in

the same reference.

Improved Holographic QCD, E. Kiritsis
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Pseudoscalar glueballs
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Lowest 0−+ glueball mass in MeV as a function of ca in Z(λ) = Za(1+caλ4).

Improved Holographic QCD, E. Kiritsis

38



α-dependence of scalar spectrum
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The 0++ spectra for varying values of α that are shown at the right end

of the plot. The symbol * denotes the AdS/QCD result.
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QCD at finite temperature

The thermal vacuum can be described by
(1) The “thermal vacuum solution”. This is the zero temperature solution we desribed
so far with time periodically identified with period β.

(2) The “black-hole solution”

ds2 = b(r)2

[
dr2

f(r)
− f(r)dt2 + dxidxi

]
, Φ = Φ(r)

We can show the following:

• For T > Tmin there are two black-hole solutions with the same temperature but different
horizon positions. One is a “large” BH the other is “small”.
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• When T < Tmin only the “thermal vacuum solution” exists: it describes

the confined phase at finite temperature.

• When T > Tmin three competing solutions exist. The large BH has the

lowest free energy. It describes the deconfined QGP phase.

• The minimum temperature for the black-holes is Tmin ' 210 MeV with

λh = 0.34. The critical temperature is

Tc ' 240 MeV , λh = 0.54

• The specific heat for the QGP solution is positive as it should:

dE

dT
=

E

T + 3
4π

∂ log b
∂rh

• In the QGP phase, the qq̄ potential is screened. This is better than lattice

results.
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Temperature versus horizon position
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We plot the relation T (rh) for various potentials parameterized by a. a = 1
is the critical value below which there is only one branch of black-hole
solutions.
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The free energy as a function of rh
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The transition in the free energy

Fbh=Fth

cr
it

ic
al

te
m

pe
ra

tu
re

200 250 300 350 400
THMeVL

-0.0004

-0.0003

-0.0002

-0.0001

0.0000

0.0001

F

Nc
2 V3

AGeV4E

Improved Holographic QCD, E. Kiritsis

44



The thermodynamic quantities
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Equation of state
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The speed of sound (bulk viscosity)
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The specific heat
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AdS/QCD

♠ A basic phenomenological approach: use a slice of AdS5, with a UV cutoff, and an IR
cutoff.

Polchinski+Strassler

♠ It successfully exhibits confinement (trivially via IR cutoff), and power-like behavior in
hard scattering amplitudes

♠ It may be equipped with a bifundamental scalar, T , and U(Nf)L × U(Nf)R, gauge fields
to describe mesons.

Erlich+Katz+Son+Stepanov, DaRold+Pomarol

Chiral symmetry is be broken by hand, via IR boundary conditions. The low-lying meson

spectrum looks ”reasonable”.

♠ Shortcomings:

• The glueball spectrum fits badly the lattice calculations. It has the wrong behavior
m2

n ∼ n2 at large n.

• Magnetic quarks are confined instead of screened.

• Chiral symmetry breaking is input by hand.

• The meson spectrum has also the wrong UV asymptotics m2
n ∼ n2.
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Improving AdS/QCD

♠ The goal is to use input from both string theory and the gauge the-

ory (QCD) in order to provide an improved phenomenological holographic

model for real world QCD.

♠ This is an exploratory adventure, and we will short-circuit several obsta-

cles on the way.

♠ As we will see, we will get an interesting perspective on the physics of

pure glue as well as on the quark sector.

Improved Holographic QCD, E. Kiritsis

50



A preview of the results: pure glue

♠ The starting point of pure QCD: a two-derivative action in 5d involving

gµν ↔ Tµν , φ ↔ Tr[F2] , a ↔ Tr[F ∧ F ]

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
− Z(λ)

2N2
c

(∂a)2 + V (λ)

]
, λ = Nc eφ

with

V (λ) = V0


1 +

∞∑

n=1

Vnλn


 = −4

3
λ2

(
dW

dλ

)2
+

64

27
W2.

• There is a 1-1 correspondence between the QCD β-function, β(λ) and
W :

β(λ) = −9

4
λ2 d logW (λ)

dλ

• There is a similar statement between Z(λ) and the (non-perturbative)
β-function for the θ-angle.
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• The space is asymptotically AdS5 in the UV (r → 0) modulo log correc-

tions (in the Einstein frame):

ds2 = e2A(r)(dr2 + ηµνdxµdxµ) , E ≡ eA(r)

• There are various extra α′ corrections to the potential (∼ β-function).They

only correct the non-universal terms. Moreover, α′ corrections to the en-

ergy definition E can be set to zero in a special scheme (the ”holographic”

scheme).

• ALL confining backgrounds have an IR singularity at r = r0. There are

two classes: r0=finite and r0 = ∞. The singularity is always ”good”: all

spectra are well defined without extra input.

• λ →∞ at the IR singularity.

• In the r0 = ∞ class of backgrounds, the curvature (in the string frame)

vanishes in the neighborhood of the IR singularity.
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Classification of confining superpotentials W (λ) as λ →∞ in IR:

W (λ) ∼ (logλ)
P
2 λQ , λ ∼ E−

9
4Q

(
log

1

E

) P
2Q

, E → 0.

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at
finite r = r0.

• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞
The scale factor eA vanishes there exponentially in the r coordinate.

• For all potentials that confine, the spectrum of 0++ and 2++ glueballs
has a mass gap and is purely discrete. For the 0+− glueballs this is the
case if

Z(λ) ∼ λd , d > 2 as λ →∞.

We will later derive that d = 4.
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• In all physically interesting confining backgrounds the magnetic color

charges are screened. This is an improvement with respect to AdS/QCD

models (magnetic quarks are also confined instead) .

• Of all the possible confining asymptotics, there is a unique one that

guarantees “linear confinement” for all glueballs. It corresponds to the

case Q = 2/3, P = 1/2, i.e.

W (λ) ∼ (logλ)
1
4 λ

2
3 , β(λ) = −3

2
λ

[
1 +

3

8 logλ
+ · · ·

]
, λ ∼ E−

3
2

(
log

1

E

)3
8

This choice also seems to be preferred from considerations of the meson

sector as discussed below.

• Numerical calculation of the 0++ and 2++ glueball spectra and compar-

ison with lattice data gives a clear preference for the r0 = ∞ asymptotics.
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.

• We can find the background solution for the axion:

a(r) = (θUV + 2πk)
∫ r0

r

dr

e3AZ(λ)

/ ∫ r0

0

dr

e3AZ(λ)

written in terms of the axion coupling function Z(λ) and the scale factor

eA. This provides the “running” of the effective QCD θ angle.

• A direct holographic calculation of the θ-dependent vacuum energy gives

E(θUV ) ∼ Mink(θUV + 2πk)2

.

• Note that always a(E = 0) = 0. This suggests that the θ angle is screened

in the IR.
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Preview: quarks (Nf ¿ Nc) and mesons

• Flavor is introduced by Nf D4 + D̄4 branes pairs inside the bulk back-

ground. Their back-reaction on the bulk geometry is suppressed by Nf/Nc.

• The important world-volume fields are

Tij ↔ q̄i
a
1 + γ5

2
qj
a , Aij

µ
L,R ↔ q̄i

a
1± γ5

2
γµqj

a

Generating the U(Nf)L × U(Nf)R chiral symmetry.

• The UV mass matrix mij corresponds to the source term of the

Tachyon field. It breaks the chiral (gauge) symmetry. The normalizable

mode corresponds to the vev 〈q̄i
a
1+γ5

2 q
j
a〉.

• We show that the expectation value of the tachyon is non-zero and T ∼ 1,
breaking chiral symmetry SU(Nf)L × SU(Nf)R → SU(Nf)V . The anomaly
plays an important role in this (holographic Coleman-Witten)
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• The fact that the tachyon diverges in the IR (fusing D with D̄) constraints the UV

asymptotics and determines the quark condensate 〈q̄q〉 in terms of mq. A GOR relation is

satisfied (for an asymptotic AdS5 space)

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• We can derive formulae for the anomalous divergences of flavor currents, when they are
coupled to an external source.

• When mq = 0, the meson spectrum contains N2
f massless pseudoscalars, the U(Nf)A

Goldstone bosons.

• The WZ part of the flavor brane action gives the Adler-Bell-Jackiw U(1)A axial anomaly

and an associated Stuckelberg mechanism gives an O
(

Nf

Nc

)
mass to the would-be Goldstone

boson η′, in accordance with the Veneziano-Witten formula.

• Studying the spectrum of highly excited mesons, we find the expected property of linear

confinement: m2
n ∼ n.
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Motivating the effective action

• The basic string motivated action for the 5d theory is

S5 = M3
∫

d5x
√

g

[
e−2φ

(
R + 4(∂φ)2 +

δc

`2s

)
− 1

2 · 5!
F2
5 −

1

2
(da)2

]

F5 = dC4 seeds the D3 branes that generate the U(Nc) group.

• The C4 equation of motion gives

∗F5 = Nc

and the dual action in the Einstein frame gE = e
4
3φ gs

SE = M3
∫

d5x
√

g

[
R− 4

3
(∂φ)2 − e2φ

2
(∂a)2 + Vs(φ)

]
, Vs(φ) =

e
4
3φ

`2s

[
δc− N2

c

2
e2φ

]

• Higher derivative corrections involving the F5 upon dualization provide
further terms in the dilaton potential

Vs(φ) =
e
4
3φ

`2s


δc +

∞∑

n=1

an (Nce
φ)2n




MORE INFO
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♠ This potential is very good for the IR behavior but in the UV it vanishes
with λ and this is not the correct behavior.

♠ We need a potential that in the Einstein frame asymptotes to a constant
V0 = 12

`2
as λ → 0.

♠ This is generated by higher-derivative corrections in the curvature. Here

we postulate it.

♠ The five form will then generate a series of (perturbative) terms in λ:

V (λ) = V0


1 +

∞∑

n=1

anλa n




we will take a = 1 for simplicity (by adjusting the kinetic term).

♠ This matches the weak coupling expansion of perturbative QCD and will

give the perturbative β-function expansion.

♠ We will ignore other effects of higher-derivative terms associated with R

and (∂Φ)2. Motivated partly by the success of SVZ sum rules
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♠ The “resumed” two-derivative action reads

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
+ V (λ)

]
, λ = Nc eφ

after redefining the kinetic terms.

• We must choose the holographic energy: the natural choice is E = eAE frame as it is
monotonic and end at zero in the IR singularity.

• We may now solve the equations perturbatively in λ around λ = 0 and r = 0 (this is a
weak coupling expansion) to find

dλ

d logE
≡ β(λ) = −b0λ

2 + b1λ
3 + b2λ

4 + · · ·
with

1

λ
= L− b1

b0
logL +O

(
logL

L

)
, L ≡ −b0 log(rΛ)

e2A =
`2

r2

[
1 +

8

32 log rΛ
+ · · ·

]

V =
12

`2

[
1 +

8

9
(b0λ) +

23− 36b1

b2
0

34
(b0λ)2 + · · ·

]

♠ One-to-one correspondence with the perturbative β-function, and the perturbative po-

tential.
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Organizing the vacuum solutions

A useful variable is the phase variable

X ≡ Φ′

3A′
=

β(λ)

3λ
, eΦ ≡ λ

and a superpotential

W2 −
(
3

4

)2 (
∂W

∂Φ

)2
=

(
3

4

)3
V (Φ).

with

A′ = −4

9
W , Φ′ = dW

dΦ

X = −3

4

d logW

d logλ
, β(λ) = −9

4
λ

d logW

d logλ

♠ The equations have three integration constants: (two for Φ and one for A) One

corresponds to the “gluon condensate” in the UV. It must be set to zero otherwise the IR

behavior is unacceptable. The other is Λ. The third one is a gauge artifact (corresponds

to overall translation in the radial coordinate).
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The IR regime

For any asymptotically AdS5 solution (eA ∼ `
r):

• The scale factor eA(r) is monotonically decreasing
Girardelo+Petrini+Porrati+Zaffaroni

Freedman+Gubser+Pilch+Warner

• Moreover, there are only three possible, mutually exclusive IR asymp-

totics:

♠ there is another asymptotic AdS5 region, at r →∞, where expA(r) ∼ `′/r,

and `′ ≤ ` (equality holds if and only if the space is exactly AdS5 everywhere);

♠ there is a curvature singularity at some finite value of the radial coordi-

nate, r = r0;

♠ there is a curvature singularity at r →∞, where the scale factor vanishes

and the space-time shrinks to zero size.
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Wilson-Loops and confinement

• Calculation of the static quark potential using the vev of the Wilson loop
calculated via an F-string worldsheet.

Rey+Yee, Maldacena

T E(L) = Sminimal(X)

We calculate

L = 2
∫ r0

0
dr

1√
e4AS(r)−4AS(r0) − 1

.

It diverges when eAs has a minimum (at r = r∗). Then

E(L) ∼ Tf e2AS(r∗) L

• Confinement → As(r∗) is finite. This is a more general condition that
considered before as AS is not monotonic in general.

• Effective string tension

Tstring = Tf e2AS(r∗)
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General criterion for confinement

• the geometric version:
A geometry that shrinks to zero size in the IR is dual to a confining 4D
theory if and only if the Einstein metric in conformal coordinates vanishes
as (or faster than) e−Cr as r →∞, for some C > 0.

• It is understood here that a metric vanishing at finite r = r0 also satisfies
the above condition.

♠ the superpotential

A 5D background is dual to a confining theory if the superpotential grows
as (or faster than)

W ∼ (logλ)P/2λ2/3 as λ →∞ , P ≥ 0

♠ the β-function A 5D background is dual to a confining theory if and only
if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system) Linear trajectories correspond to K = − 3
16
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Comments on confining backgrounds

• For all confining backgrounds with r0 = ∞, although the space-time is

singular in the Einstein frame, the string frame geometry is asymptotically

flat for large r. Therefore only λ grows indefinitely.

• String world-sheets do not probe the strong coupling region, at least

classically. The string stays away from the strong coupling region.

• Therefore: singular confining backgrounds have generically the property

that the singularity is repulsive, i.e. only highly excited states can probe it. This

will also be reflected in the analysis of the particle spectrum (to be presented later)

• The confining backgrounds must also screen magnetic color charges.

This can be checked by calculating ’t Hooft loops using D1 probes:

♠ All confining backgrounds with r0 = ∞ and most at finite r0 screen properly

♠ In particular “hard-wall” AdS/QCD confines also the magnetic quarks.
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Particle Spectra: generalities

• Linearized equation:

ξ̈ + 2Ḃξ̇ + ¤4ξ = 0 , ξ(r, x) = ξ(r)ξ(4)(x), ¤ξ(4)(x) = m2ξ(4)(x)

• Can be mapped to Schrodinger problem

− d2

dr2
ψ + V (r)ψ = m2ψ , V (r) =

d2B

dr2
+

(
dB

dr

)2
, ξ(r) = e−B(r)ψ(r)

• Mass gap and discrete spectrum visible from the asymptotics of the

potential.

• Large n asymptotics of masses obtained from WKB

nπ =
∫ r2

r1

√
m2 − V (r) dr

• Spectrum depends only on initial condition for λ (∼ ΛQCD) and an overall

energy scale (eA) that must be fixed.
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• scalar glueballs

B(r) =
3

2
A(r) +

1

2
log

β(λ)2

9λ2

• tensor glueballs

B(r) =
3

2
A(r)

• pseudo-scalar glueballs

B(r) =
3

2
A(r) +

1

2
logZ(λ)

• Universality of asymptotics

m2
n→∞(0++)

m2
n→∞(2++)

→ 1 ,
m2

n→∞(0+−)

m2
n→∞(0++)

=
1

4
(d− 2)2

predicts d = 4 via

m2

2πσa
= 2n + J + c,
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The axion background

• The kinetic term of the axion is suppressed by 1/N2
c . (it is an angle in

the gauge theory, it is RR in string theory)

ä +

(
3Ȧ +

Ż(λ)

Z(λ)

)
ȧ = 0 → ȧ =

C e−3A

Z(λ)

It can be interpreted as the flow equation of the effective θ-angle.
• The full solution is

a(r) = θUV + 2πk + C
∫ r

0
r
e−3A

Z(λ)
, C = 〈Tr[F ∧ F ]〉

• The vacuum energy is

E(θUV ) =
M3

2N2
c

∫
d5x

√
gZ(λ)(∂a)2 =

M3

2N2
c

Ca(r)
∣∣∣∣
r=r0

r=0

• Consistency requires to impose that a(r0) = 0. This determines C and

E(θUV ) = −M3

2
Mink

(θUV + 2πk)2
∫ r0
0

dr
e3AZ(λ)

,
a(r)

θUV + 2πk
=

∫ r0
r

dr
e3AZ(λ)∫ r0

0
dr

e3AZ(λ)
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(a) An example of the axion profile (normalized to one in the UV) as a function of
energy, in one of the explicit cases we treat numerically. The energy scale is in MeV,
and it is normalized to match the mass of the lowest scalar glueball from lattice data,
m0 = 1475MeV . The axion kinetic function is taken as Z(λ) = Za(1+caλ4), with ca = 100
(the masses do not depend on the value of Za). The vertical dashed line corresponds to

Λp ≡ 1
`

exp
[
A(λ0)− 1

b0λ0

]
(b0λ0)

b1/b2
0

. In this particular case Λ = 290MeV .

(b)A detail showing the different axion profiles for different values of ca. The values are

ca = 0.1 (dashed line), ca = 10 (dotted line) and ca = 100 (solid line).
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Critical string theory holography

♠ Several “successful” holographic models of non-trivial gauge dynamics

• The non-supersymmetric D4 solution,due to Witten, dual to N = 45

sYM on a circle, whose supersymmetry is broken by the boundary con-

ditions of the fermions. It exhibits confinement in the IR.

• Flavor has been successfully incorporated by Sakai+Sugimoto by adding

D7 (dipole) branes.

• The Chamseddine-Volkov solution interpreted by Maldacena and Nuñes

as the dual of a confining compactified gauge theory (emerging by

wrapping NS5 branes on a two-cycle).

• The Klebanov-Strassler solution corresponding to a cascade of quiver

gauge theories, that confine in the IR.

70



.

♠ In all of the above, confinement related quantities (string tension, glue-

ball, masses etc, finite temperature effects) can be calculated analytically.

♠ The same applies to the Sakai-Sugimoto model for flavor, except two

major drawbacks:

The absence of bare quark masses and the chiral-symmetry-breaking condensate.

♠ In all the above solutions, the scale of KK excitations is of the same

order as Λ of the confining gauge theory.

♠ None so far has managed to overcome this obstacle in critical string

theory models.
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Non-Critical holography

♠ Non-critical string theories have been explored in order to avoid the KK

problem.
Kuperstein+Sonnenschein, Klebanov+Maldacena, Bigazzi+Casero+Cotrone+Kiritsis+Paredes

♠ They are expected to involve large curvatures (due to the δc term) and

the supergravity approximation seems problematic.

♠ They may provide reliable information on some quantities despite the

strong curvature (cf. WZW CFTs).

♠ Recent progress in solving exactly for probe D-branes in non-critical

backgrounds has provided important insights for non-critical holography.
Fotopoulos+Niarchos+Prezas, Ashok+Murthy+Troost

♠ It is fair to say that non-critical holography is so far largely unexplored.
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Fluctuations around the AdS5 extremum

0.2 0.4 0.6 0.8 1
Λ
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V

• In QCD we expect that

1

λ
=

1

Nceφ
∼ 1

log r
, ds2 ∼ 1

r2
(dr2 + dxµdxµ) as r → 0

• Any potential with V (λ) ∼ λa when λ ¿ 1 gives a power different that
of AdS5

• There is an AdS5 minimum at a finite value λ∗. This cannot be the UV
of QCD as dimensions do not match.
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Near an AdS extremum

V =
12

`2
− 16ξ

3`2
φ2 +O(φ3) ,

18

`
δA′ = δφ′2 − 4

`2
φ2 = O(δφ2) , δφ′′ − 4

`
δφ′ − 4ξ

`2
δφ = 0

where φ << 1. The general solution of the second equation is

δφ = C+e
(2+2

√
1+ξ)u

` + C−e
(2−2

√
1+ξ)u

`

For the potential in question

V (φ) =
e

4

3
φ

`2s

[
5− N2

c

2
e2φ −Nf eφ

]
, λ0 ≡ Nce

φ0 =
−7x +

√
49x2 + 400

10
, x ≡ Nf

Nc

ξ =
5

4

[
400 + 49x2 − 7x

√
49x2 + 400

100 + 7x2 − x
√

49x2 + 400

]
,

`2s
`2

= e
4

3
φ0

[
100 + 7x2 − x

√
49x2 + 400

400

]

The associated dimension is ∆ = 2 + 2
√

1 + ξ and satisfies

2 + 3
√

2 < ∆ < 2 + 2
√

6 or equivalently 6.24 < ∆ < 6.90

It corresponds to an irrelevant operator. It is most probably relevant for the Banks-Zaks
fixed points.

Bigazzi+Casero+Cotrone+Kiritsis+Paredes

RETURN
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Further α′ corrections

There are further dilaton terms generated by the 5-form in:

• The kinetic terms of the graviton and the dilaton ∼ λ2n.

• The kinetic terms on probe D3 branes that affect the identification of

the gauge-coupling constant, ∼ λ2n+1. There is also a multiplicative factor

relating gY M2 to eφ, (not known). Can be traded for b0.

• Corrections to the identification of the energy. At r = 0, E = 1/r. There

can be log corrections to our identification E = eA, and these are a power

series in ∼ λ2n.

• It is a remarkable fact that all such corrections affect the higher that the

first two terms in the β-function (or equivalently the potential), that are

known to be non-universal!

the metric is also insensitive to the change of b0 by changing Λ.
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Holographic meson dynamics: the models

• Flavor is obtained by adding Nf << NC D+D̄ pairs

• There are several working models of flavor:

♠ Non-supersymmetric backgrounds with abelian D7flavor brane.
Babington+Erdmenger+Evans+Guralnic+Kirsch

Kruczenski+Mateos+Myers+Winters

♠ Non-supersymmetric D4+ D8 + D̄8
Sakai+Sugimoto

♠ Hard-wall AdS/QCD plus a scalar, plus U(Nf)L × U(Nf)R vectors
Erlich+Katz+son+Stephanov, DaRold+Pomarol
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Classification of confining superpotentials

Classification of confining superpotentials W (λ) as λ →∞ in IR:

W (λ) ∼ (logλ)
P
2 λQ , λ ∼ E−

9
4Q

(
log

1

E

) P
2Q

, E → 0.

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at finite r = r0.

eA(r) ∼
{

(r0 − r)
4

9Q2−4 Q > 2
3

exp
[
− C

(r0−r)1/(P−1)

]
Q = 2

3

• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞ The scale factor
eA vanishes there as

eA(r) ∼ exp[−Cr1/(1−P )].

• Q = 2/3, P = 1 leads to confinement but the singularity may be at a finite or infinite
value of r depending on subleading asymptotics of the superpotential.

♠ If Q < 2
√

2/3, no ad hoc boundary conditions are needed to determine the glueball spec-
trum → One-to-one correspondence with the β-function This is unlike standard AdS/QCD
and other approaches.

• when Q > 2
√

2/3, the spectrum is not well defined without extra boundary conditions in
the IR because both solutions to the mass eigenvalue equation are IR normalizable.
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Confining β-functions

A 5D background is dual to a confining theory if and only if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system). Linear trajectories correspond to K =

− 3
16

• We can determine the geometry if we specify K:

• K = −∞: the scale factor goes to zero at some finite r0, not faster than a power-law.

• −∞ < K < −3/8: the scale factor goes to zero at some finite r0 faster than any power-
law.

• −3/8 < K < 0: the scale factor goes to zero as r →∞ faster than e−Cr1+ε

for some ε > 0.

• K = 0: the scale factor goes to zero as r →∞ as e−Cr (or faster), but slower than e−Cr1+ε

for any ε > 0.

The borderline case, K = −3/8, is certainly confining (by continuity), but whether or not

the singularity is at finite r depends on the subleading terms.
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The wave-functions of low-lying glueballs

r@m0D 20 r@LD 40 60

r
�����
l

Ψ@rD

Normalized wave-function profiles for the ground states of the 0++ (solid

line),0−+ (dashed line), and 2++ (dotted line) towers, as a function of

the radial conformal coordinate. The vertical lines represent the position

corresponding to E = m0++ and E = Λp.
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Estimating the importance of logarithmic scaling

We keep the IR asymptotics of background II,but change the UV to power asymptoting
AdS5, with a small λ∗.

eA(r) =
`

r
e−(r/R)2

, Φ(r) = Φ0 +
3

2

r2

R2

√
1 + 3

R2

r2
+

9

4
log

2 r
R

+ 2
√

r2

R2 + 3
2√

6
.

Wconf = W0

(
9 + 4b20(λ− λ∗)2)1/3

) (
9a + (2b20 + 3b1) log

[
1 + (λ− λ2

∗)
])2a/3

.

We fix parameters so that the physical QCD scale is the same (as determined from

asymptotic slope of Regge trajectories.

5 10 15 20 25 30
n

10

20

30

40

M2

The stars correspond to the asymptotically free background I with b0 = 4.2 and λ0 = 0.05; the squares

correspond the results obtained in the first background with R = 11.4`; the triangles denote the spectrum in

the second background with b0 = 4.2, li = 0.071 and l∗ = 0.01. These values are chosen so that the slopes

coincide asymptotically for large n.
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Non-supersymmetric backgrounds with abelian flavor branes

• D7 brane in deformed AdS5.

• Only abelian axial symmetry U(1)A realized geometrically as an isometry.

• A quark mass can be introduced, and a quark condensate can be calcu-

lated.

• U(1)A is spontaneously broken du to the embedding.

• Correct GOR relation

• Qualitatively correct η′ mass.

• No non-abelian flavor symmetry (due to N=2 Yukawas)
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The Sakai-Sugimoto model

• D4 on non-susy S1 plus D8 branes.

• The flavor symmetry is realized on world-volume

• Full U(Nf)L × U(Nf)R symmetry broken to U(Nf)V .

• Chiral symmetry breaking as brane-antibrane recombination.

• Quark constituent mass

• Qualitatively correct η′ mass

• No quark mass parameter, nor chiral condensate.
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AdS/QCD

• Crude model: AdS5 with a UV and IR cutoff.

• Addition of U(Nf)L × U(Nf)R vectors and a (Nf , N̄f) scalar T.

• Chiral symmetry broken by hand via IR boundary conditions.

• Vector meson dominance and GOR relation incorporated.

• Chiral condensate not determined.

• Gluon sector problematic.
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The meson sector (Nf << Nc)

• Flavor is introduced via the introduction of Nf pairs of space filling D4+D̄4

branes.

• The crucial world volume fields are the tachyon Tij in (Nf , N̄f) and the

U(Nf)L × U(Nf)R vectors.

• The D-WZW sector depends nontrivial on T and realizes properly the

P and C symmetries. It generates the appropriate gauge and global flavor

anomalies.

• We can introduce explicitly mass matrices for the quarks, and we can

dynamically determine the chiral condensate.
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Comparison of scalar and tensor potential

5 10 15 20
r

0.5

1

1.5

2

V@rD

Effective Schrödinger potentials for scalar (solid line) and tensor (dashed

line) glueballs. The units are chosen such that ` = 0.5.
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.

• We have naturally the χSB breaking order parameter T , and consistency

with anomalies implies that it is non-zero and proportional to the identity

(Holographic Coleman+Witten theorem).

• The pions appear as Goldstone bosons when mq = 0.

• The correct GOR relation is obtained.

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• There is linear confinement (M2
n ∼ n) associated with the vanishing of

the tachyon potential at T →∞.

• We obtain the correct Stuckelberg coupling mixing with 0+− and and

mass for the η′.
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Comparison with lattice data: Ref II

n
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(a) (b)

Comparison of glueball spectra from our model with b0 = 2.55, λ0 = 0.05

(boxes), with the lattice QCD data from Ref. II (crosses) and the AdS/QCD

computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The

masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. II.
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Confining background II:r0 =finite

• We choose a regular β-function with appropriate asymptotics:

β(λ) = − 3b0λ2

3 + 2b0λ
− 3η(2b20 + 3b21)λ

3

9η + 2
(
2b20 + 3b21

)
λ2

, η ≡
√

1 + δ−1 − 1

• Confining backgrounds with r0 =finite have a hard time to match the

lattice results, even for the first few glueballs.
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Tachyon dynamics

• In the vacuum the gauge fields vanish and T ∼ 1. Only DBI survives

S[τ ] = TD4

∫
drd4x

e4As(r)

λ
V (τ)

√
e2As(r) + τ̇(r)2 , V (τ) = e−

µ2

2 τ2

• We obtain the nonlinear field equation:

τ̈ +

(
3ȦS −

λ̇

λ

)
τ̇ + e2ASµ2τ + e−2AS

[
4ȦS −

λ̇

λ

]
τ̇3 + µ2τ τ̇2 = 0.

• In the UV we expect

τ = mq r + σ r3 + · · · , µ2`2 = 3

• We expect that the tachyon must diverge before or at r = r0. We find
that indeed it does at the singularity. For the r0 = ∞ backgrounds

τ ∼ exp
[
2

a

R

`2
r

]
as r →∞

88



• Generically the solutions have spurious singularities: τ(r∗) stays finite but

its derivatives diverges as:

τ ∼ τ∗ + γ
√

r∗ − r.

The condition that they are absent determines σ as a function of mq.

• The easiest spectrum to analyze is that of vector mesons. We find

(r0 = ∞)

Λglueballs =
1

R
, Λmesons =

3

`

(
α`2

2R2

)(α−1)/2

∝ 1

R

(
`

R

)α−2
.

This suggests that α = 2. preferred also from the glue sector.
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