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Introduction |

&d QCD is a very successful theory for the strong interactions.

& Remarkably, we do not have analytical control over most of the energy
regime. Even numerically (lattice), many aspects of the theory are still
beyond reach.

& Were it not phenomenological models most accelerator data n the past
20 years would have been useless.
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& What we cannot reliably calculate:

e Observable rates for accelerator experiments. In particular, structure
functions have to be measured. Hadronization is done by the Lund
Monte Carlo model or the fragmentation model.

e Glueball spectra for higher glueballs (third and up), mesons (3-4-th and
up and baryons (2nd and up). Decay widths for all of the above.

e [ here are at least two weak matrix elements that cannot be computed
so far reliably enough by lattice computations: The Al = % matrix

elements of type (K|Oaj—=1/23/2[7m) , and the By ~ (K|Oag5=2]K).

e Data associated to the chiral symmetry breaking (like the quark con-
densate), or its restauration at higher temperatures.

e In general matrix elements with at least two particle final states.



e Real time finite temperature correlation functions (associated to QGP
dynamics)

e Finite temperature physics at finite baryon density.

& Several complementary semi-phenomenological techniques have been de-
veloped to deal with the above (chiral perturbation theory, perturbation
theory resummation schemes, SD equations, bag models, etc.) with varied
SUCCESS.

¢ There are two competing (rather successful) phenomenological models of
QCD (Lund and fragmentation models) that are essential today in inter-
preting collider QCD data.

Improved Holographic QCD, E. Kiritsis
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AdS/CFT and holography \

& The large N. approximation to QCD has promised a string theory de-

scription of the color singlet sector of gauge theories. v Hooft

& The nature of this string theory became more palpable with the formu-

lation of the AdS/CFT correspondence R;Par/ N.= ﬁ%}ttér\;,(M/bser+x/ebanov+Po/yakov

The surprise involved the emergence of an extra holographic dimension.

& This has started an effort to extend it to theories as close to QCD as
possible.

& The original and most controlled approaches relied on " perturbing” the
original AdS/CFT correspondence in ten-dimensional (critical) string the-
ory.

& More recent attempts dared to use a non-critical string framework.

& Some holographic-inspired phenomenological models also popped up
(AdS/QCD).

Improved Holographic QCD, E. Kiritsis
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Critical string theory holography |

& Several ‘“successful” holographic models of non-trivial gauge dynamics

e The non-supersymmetric D4 solution,due to Witten, dual to N = 45
sYM on a circle, whose supersymmetry is broken by the boundary con-
ditions of the fermions. It exhibits confinement in the IR.

e Flavor has been successfully incorporated by Sakai+Sugimoto by adding
D+ (dipole) branes.

e [ he Chamseddine-Volkov solution interpreted by Maldacena and Nunes
as the dual of a confining compactified gauge theory (emerging by
wrapping NSg branes on a two-cycle).

e T he Klebanov-Strassler solution corresponding to a cascade of quiver
gauge theories, that confine in the IR.



& In all of the above, confinement related quantities (string tension, glue-
ball, masses etc, finite temperature effects) can be calculated analytically.

& The same applies to the Sakai-Sugimoto model for flavor, except two
major drawbacks:

The absence of bare quark masses and the chiral-symmetry-breaking condensate.

& In all the above solutions, the scale of KK excitations is of the same
order as A of the confining gauge theory.

& None so far has managed to overcome this obstacle in critical string
theory models.

Improved Holographic QCD, E. Kiritsis
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Non-Critical holography I

& Non-critical string theories have been explored in order to avoid the KK

problem.
Kuperstein4+Sonnenschein, Klebanov+Maldacena, Bigazzi+ Casero-+ Cotrone-+Kiritsis+Paredes

& They are expected to involve large curvatures (due to the éc term) and
the supergravity approximation seems problematic.

& They may provide reliable information on some quantities despite the
strong curvature (cf. WZW CFTs).

& Recent progress in solving exactly for probe D-branes in non-critical

backgrounds has provided important insights for non-critical holography.
Fotopoulos+Niarchos-+Prezas, Ashok-+Murthy—+ Troost

& It is fair to say that non-critical holography is so far largely unexplored.
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HolographiCc meson dynamics: the models |

e Flavor is obtained by adding Ny << Ng¢ D+ D pairs
e [ here are several working models of flavor:

& Non-supersymmetric backgrounds with abelian D,flavor brane.
Babington+Erdmenger+Evans+ Guralnic+Kirsch
Kruczenski+Mateos-+Myers+Winters

& Non-supersymmetric D4+ Dg + Dg
Sakai+Sugimoto

& Hard-wall AdS/QCD plus a scalar, plus U(Ng)f, x U(Ny)g vectors
Erlich+Katz+son-+Stephanov, DaRold+Pomarol
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Non-supersymmetric backgrounds with abelian flavor branes I

e D7 brane in deformed AdSs.
e Only abelian axial symmetry U(1) 4 realized geometrically as an isometry.

e A quark mass can be introduced, and a quark condensate can be calcu-
lated.

e U(1)4 is spontaneously broken du to the embedding.
e Correct GOR relation
e Qualitatively correct ' mass.

e NO non-abelian flavor symmetry (due to N=2 Yukawas)

Improved Holographic QCD, E. Kiritsis
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T he Sakal-Sugimoto model I

e D4 on non-susy S! plus D8 branes.
e [ he flavor symmetry is realized on world-volume

e FUll U(Ny)p, x U(Ny)r symmetry broken to U(Ny)y .

e Chiral symmetry breaking as brane-antibrane recombination.

e Quark constituent mass
e Qualitatively correct n’ mass

e NO quark mass parameter, nor chiral condensate.

Improved Holographic QCD,
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AdS/QCD |

& A basic phenomenological approach: use a slice of AdSs, with a UV cutoff, and an IR
cutoft. Polchinski4+Strassler

& It successfully exhibits confinement (trivially via IR cutoff), and power-like behavior in
hard scattering amplitudes

& It may be equipped with a bifundamental scalar, T, and U(N¢)r x U(N¢)g, 9auge fields

to describe mesons. ,
Erlich+Katz+Son-+Stepanov, DaRold+Pomarol

Chiral symmetry is broken by hand, via IR boundary conditions. The low-lying meson
spectrum looks " reasonable”.

& Shortcomings:

e [ he glueball spectrum fits badly the lattice calculations. It has the wrong behavior

m2 ~ n? at large n.

n
e Magnetic quarks are confined instead of screened.
e Chiral symmetry breaking is input by hand.

e The meson spectrum has also the wrong UV asymptotics m2 ~ n?.
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11



Improving AdS/QCD |

& The goal is to use input from both string theory and the gauge the-
ory (QCD) in order to provide an improved phenomenological holographic
model for real world QCD.

& This is an exploratory adventure, and we will short-circuit several obsta-
cles on the way.

&d As we will see, we will get an interesting perspective on the physics of
pure glue as well as on the quark sector.

Improved Holographic QCD, E. Kiritsis
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A string theory for QCD:basic expectations |

e Pure SU(N.) d=4 YM is expected to be dual to a string theory in 5
dimensions only. Essentially a single adjoint field — a single extra dimension.

e [ he theory becomes asymptotically free and conformal at high energy —
we expect the classical saddle point solution to asymptote to AdSs.

& Which bulk fields are expected to be non-trivial in the large-N,. saddle-
point?

e scalar YM operators with Ay, > 4 — m?2 > 0 fields near the AdSs
boundary — most probably not excited in the vacuum as suggested by a fit
of the low energy SVZ sum rules to data.

e bulk fields with zero or negative masses near the boundary may get vevs.
Advantage here is that the theory is weakly coupled at UV so UV dimensions
are reliably known.

Improved Holographic QCD, E. Kiritsis
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e What are all gauge invariant YM operators of dimension 4 or less?
e They are given by Tr[F,, F,.].
Decomposing into U(4) reps:

(H@)H)symmetric - H}@E (1)

We must remove traces to construct the irreducible representations of O(4):

H}:@@@@o : E:o

The two singlets are the scalar (dilaton) and pseudoscalar (axion)
¢ Tr[F? , a< Tr[FAF)]
The traceless symmetric tensor

2 1 2
o — Ty, =1Tr FW — ZQWF

is the conserved stress tensor dual to a massless graviton in 5d reflecting the translational
symmetry of YM.

1 1
7 T,lfrl/;pa = Tr[FuwkFps — E(gupra - QVpFia - gMUFI/Qp T gvoFip) + g(gupgwf - g,,pgw)FQ]
It has 10 independent d.o.f, it is not conserved and it should correspond to a similar

massive tensor in 5d. We do not expect it to play an non-trivial role in the large-N., YM
vacuum also for reasons of Lorentz invariance.

e Therefore the nontrivial fields are expected to be: guv, ¢, a
Improved Holographic QCD, E. Kiritsis
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bosonic string or superstring? I

e Consider the axion a dual to Tr[F A F]. We can show that it must come
from a RR sector.

In large-N. YM, the proper scaling of couplings is obtained from

1 5 0 0
Lyyy=NeTr|-F24+_—FAF| . ¢(=—~0(1
Y M C r IA _F be ] C pVb ( )
0 + 27k
Eyr(0) ~ N2 mip H( +N7T) , H(0)=H(-0) (CP)
C
Therefore, H(z) = Cy + C1a2 4+ Coz* + --- and Witten
94

EYM(Q) ~ CO NCQ —+ 0192 -+ CQNQ 4+ ...

In the string theory action

SN/€_2¢[R+'”]+(aa)2+82¢(aa)4+°“ . e~ gty
>, A2 4
/)\2 [R_I_ ]_I_(aa) +N—62(aa) + - ) )\NNcegb : a:9[1_|_...]

Improved Holographic QCD, E. Kiritsis
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bosonic string or superstring? (continued) I

e [ he string theory must have no on-shell fermionic states at all because
there are no gauge invariant fermionic operators in pure YM.

e [ herefore the string theory must be a 5d-superstring theory resembling
the II-O class.

& Another RR field we expect to have is the RR 4-form, as it is necessary
to “seed” the D3 branes responsible for the gauge group.

e It is non-propagating in 5D

e We will see later however that it is responsible for the non-trivial IR
structure of the gauge theory vacuum.

Improved Holographic QCD, E. Kiritsis
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The minimal effective string theory spectrum |

e NS-NS — Juv B,ul/ , ¢
e RR — SpinorgxSpinors=Fy + F7] + F> + (F3 + F4 + Fx)
® [ — Fg — (4, background flux — no propagating degrees of freedom.

N — Fp — (3« Cp: Cpis the axion, C'3 its 5d dual that couples to
domain walls separating oblique confinement vacua.

® 5 — F3 — (1< Cy: They are associated with baryon number (as we
will see later when we add flavor). Dual operators are a mystery.

e In an ISO(3,1) invariant vacuum solution, only guv,¢,Co = a can be
non-trivial.

ds? = GQA(T)(CZTQ + dﬂ?zQL) , a(r),o(r)

Improved Holographic QCD, E. Kiritsis
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T he relevant ‘'defects” |

e B,, — Fundamental string (F7). This is the QCD (glue) string: funda-
mental tension £2 ~ O(1)

e Its dual B, — NSg: Tension is O(NZ2). It is an effective magnetic baryon
vertex binding N, magnetic quarks.

e (4 — D3 branes generating the gauge symmetry.

e ('3 — Do branes : domain walls separating different oblique confinement
vacua (where 0411 = 0 + 2m). Its tension is O(Nc)

Improved Holographic QCD, E. Kiritsis
18



e C> — Dy branes: These are the magnetic strings (strings attached to
magnetic quarks) with tension O(N.)

e ('s — Dgy: Space filling flavor branes. They must be introduced in pairs:
D4 + D4 for charge neutrality/tadpole cancellation.

e (1 — Dg branes. These are the baryon vertices: they bind N, quarks,
and their tension is O(N.).

e Cg — D_1 branes: These are the Yang-Mills instantons.

Improved Holographic QCD, E. Kiritsis
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T he effective action, 1 |

e as N, — oo, only string tree-level is dominant.
e Relevant field for the vacuum solution: guv,a, ¢, Fs.

e by definition the vev of F5 ~ N¢ €5. It appears always in the combination
e??F2 ~ A2, with A ~ N¢ e? All higher derivative corrections (e??F2)" are
O(1) at large N..

e [ his is not the case for all other RR fields: in particular for the axion as
a~ O(1)

A2 _
(0a)? ~ O(1) , €??(8a)* = N—g(a“)4 ~ O (N;?)

Therefore to leading order O(NZ2) we can neglect the axion.

Improved Holographic QCD, E. Kiritsis
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T he effective action II |

1 A2
2 2 2
Sepf = MZNg /d% 2 (R, (0¢) ,N2F5>

C

Therefore:

e Moreover as the Fy is non-propagating its equation of motion gives

G (R (D)2 /\—2F2> =0
’ ’_DJQ 5

&

which if solved implicitly and substituted back in the effective action gives

1
Sepr = MSNCQ/d5w = Z (R, (8¢)%,72)

e In particular, a potential for the dilaton, A will be generated from the
higher derivative terms due to Ff.

Improved Holographic QCD, E. Kiritsis
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The UV regime |

e In the far UV, the space should asymptote to AdSs.

e The 't Hooft coupling should behave as (r — 0)

1
log(r\) T
e [ herefore, asr — 0
ON)?2 1
Curvature — finite , (9¢)2 ~ (92) A2 =0

~ 0
A2 log2(r/N\) -

4
e For A\ — 0O the potential in the Einstein frame starts as V(\) ~ A3 and
cannot support the asymptotic AdSs solution.

e T herefore asymptotic AdSs must arise from
1
372 5
Serr = MPNZ [ d® = 2 (R,0,0)

Improved Holographic QCD, E. Kiritsis
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e Such AdSsy solutions are “easy to find” as in the example

S = /d% V3 Z(R)

There is a a constant curvature solution with Ry that is a zero of the

function

27 (z) — 22(:1;)

e [ his must involve at least two such terms and therefore, we do not
expect a "good’ derivative expansion for finding the solution.

e There is however a "good” (but hard to derive) perturbative expansion
around this asymptotic AdSg solution by perturbing around it:

1
~ bplog(rA) to

14
e = Z[1+564] , A
/ri

Improved Holographic QCD, E. Kiritsis
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e T his turns out to be an regular expansion of the solutions in powers of

Pr(loglog(rA\))
(log(rA))—"

e [ he coefficients of that expansion are various functions of the constant
curvature invariants of AdSs that are (unknown) numbers.

e Effectively this can be rearranged as a “perturbative” expansion in A\(r).

e It is even cleaner to use A\ as the radial coordinate instead of r and write
the metric solution in terms of .

e [ he solution for the metric can be written

/ b
E=el = o) [1—|—c1)\+02>\2+---} = ¢ (e V) [1+c’1)\+c’2>\2+"' ., A—0
r
Improved Holographic QCD, E. Kiritsis
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T he IR regime |

e Here the situation is a bit more obscure. The constraints/input are:
confinement and mass gap.

e \We do expect that A — oo at the IR bottom.

e [ his is a "singularity” in the conventional sense: it must be "repulsive”,
ie the string theory, and even better some effective field theory should not
break down there.

e (Very) naive intuition from N=4 and other 10d strongly coupled theories
suggests that in this regime there should be a two derivative description of
the physics.

e At the IR bottom the space must end (singularity) where the scale factor
vanishes.

& If it happens very slowly, we loose confinement

& if it happens very fast, the singularity is strong and the theory is incom-
plete (boundary conditions are needed at the singularity.

Improved Holographic QCD, E. Kiritsis
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An assessment of IR asymptotics I

e As A\ — oo we assume that the potential terms dominate and we param-
eterize the effective action in the IR as

4 (0A)? _ 5 (AW 64
effN/\f[R+3 v +V(/\)—] , V(A)—gA (d/\> + =

Parameterize the IR asymptotics (A — oco) as

W) ~ (log \)2 AQ

e )>2/3 or Q=2/3 and P > 1 leads to confinement and a singularity at
finite »r = rg.

( 4
rg — r)9Q%—4 > 2
\ P Go—n VD ©=3

Improved Holographic QCD,

E. Kiritsis

26



e ) =2/3, and 0 < P < 1 leads to confinement and a singularity at r = oo
The scale factor e? vanishes there as

eA(r) ~ exp[—Cfrl/(l_P)].

The asymptotic spectrum of glueballs is linear only if P = %

e )=2/3,P=1 leads to confinement but the singularity may be at a

finite or infinite value of r depending on subleading asymptotics of the
superpotential.

hIfQ < 2\/5/3, no ad hoc boundary conditions are needed to determine
the glueball spectrum: the singularity is “good” (repulsive).

& when Q) > 2\/5/3, the spectrum is not well defined without extra boundary
conditions in the IR because both solutions to the mass eigenvalue equation
are IR normalizable.

Improved Holographic QCD, E. Kiritsis
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Selecting the IR asymptotics I

Only the Q@ =2/3, 0 < P <1 is compatible with
e Confinement (it happens non-trivially: a minimum in the string frame scale factor )

Mass gap-discrete spectrum (except P=0)

e good singularity

e R — O partly justifying the original assumption. More precisely: the string frame metric
becomes flat at the IR . But (8¢)2 ~ V().

& It is interesting that the lower endpoint: P=0 corresponds to linear
dilaton and flat space (string frame). It is confining with a mass gap but
continuous spectrum.

e For linear asymptotic trajectories for fluctuations (glueballs) we must
choose P=1/2

4 4
V(\) = )3 [1 + 1 A2 4 o\ - } ~ A\3+v/10g X + subleading as A — oo

Improved Holographic QCD, E. Kiritsis
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Improved Holographic QCD: a model |

The simplification in this model relies on writing down a two-derivative
action

4(8>\)2
SEinstein = M?’NCQ/dSa:\f !R 3y

o
with
lim V() = 22 (1+ S cn/\”) o lim vy = A3\/log X + subleading

n=1
The small A asymptotics “simulate” the UV expansion around AdSs.

e There is a 1-1 correspondence between the YM g-function, 3(\) and W:

_ 9,5 dlog W(N)
BN = 4A d\

once a choice of energy is made (here E = Ag). Renormalization and
other choices modify 8(\) beyond two-loop level

Improved Holographic QCD, E. Kiritsis
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Shortcomings localized at the UV

e Conformal anomaly is incorrect.

e Shear viscosity ratio is constant and equal to that of N=1 sYM
both of the above need Riemann curvature corrections.

Many other observables though are coming out very well both at T=0 and

finite T
Nitti's talk at this meeting

& The axion contribution

58 = M3 / d%2./57Z(\)(8a)>

with
im Z(\) =cg+cih+ o 2+, lim Z(\) = CooA* + - --
A—0 A— 00
00 de;
r 3Ay
a(r) = Ouy —4
fO e3A7
Improved Holographic QCD, E. Kiritsis
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Parameters I

e All dimensionless coefficients of the potential are a priori parameters.
However, a simple form is typically chosen for simplicity. In our example we
fit only one parameter.

e We also have My, and the AdS length, £. Asking correct T' — oo thermo-

dynamics fixes (Mp€)3 = 4517r2. ¢ is not a parameter but a unit of length.

e \We have 3 initial conditions in the system of graviton-dilaton equations:

One is fixed by picking the branch that corresponds asymptotically to A ~

1
log(rA)

The other fixes A — Agep-

The third is a gauge artifact as it corresponds to a choice of the origin of
the radial coordinate.
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31



Further o’ corrections |

There are further dilaton terms generated by the 5-form in:
e The Kkinetic terms of the graviton and the dilaton ~ \2~.

e [ he kinetic terms on probe D3 branes that affect the identification of
the gauge-coupling constant, ~ \2*+1 There is also a multiplicative factor
relating gy-;,2 to e?, (not known). Can be traded for bg.

e Corrections to the identification of the energy. At r =0, E = 1/r. There
can be log corrections to our identification F = eA, and these are a power
series in ~ \27.

e It is a remarkable fact that all such corrections affect the higher that the
first two terms in the @-function (or equivalently the potential), that are
known to be non-universal!

the metric is also insensitive to the change of bg by changing A.
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Organizing the vacuum solutions |

A useful variable is the phase variable
P’ A
_ P BN R

34 3x
and a superpotential

- (3) (5) = () v

with
4 d
Al=—Ww , o= W
9 dd
3dlogW O dlogW
4 dlog A 4 dlog A

@ The equations have three integration constants: (two for ® and one for A) One
corresponds to the “gluon condensate” in the UV. It must be set to zero otherwise the IR
behavior is unacceptable. The other is A. The third one is a gauge artifact (corresponds
to overall translation in the radial coordinate).
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T he IR regime |

For any asymptotically AdSs solution (e? ~ £):

e The scale factor eA(") js monotonically decreasing
Girardelo+Petrini4+Porrati4+Zaffaroni
Freedman+ Gubser+Pilch+Warner

e Moreover, there are only three possible, mutually exclusive IR asymp-
totics:

& there is another asymptotic AdSs region, at r — oo, where exp A(r) ~ £'/r,
and ¢’ < ¢ (equality holds if and only if the space is exactly AdSs everywhere);

& there is a curvature singularity at some finite value of the radial coordi-
nate, r = rq;

M there is a curvature singularity at r — oo, where the scale factor vanishes

and the space-time shrinks to zero size.
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Wilson-Loops and confinement I

e Calculation of the static quark potential using the vev of the Wilson loop
calculated via an F-string worldsheet.

T E(L) — Sminimal(X)

Rey-+Yee, Maldacena

We calculate
1

L =2 /TO dr -
0\ [eAAs(N—4As(ro) _ 1

It diverges when e?s has a minimum (at r = r4). Then

E(L) ~ Ty e24s(m) [,

e Confinement — Ag(rs) is finite. This is a more general condition that
considered before as Ag is not monotonic in general.

e Effective string tension

2Ag(rx
Tstring = 1y e s(r+)
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General criterion for confinement |

e the geometric version:

A geometry that shrinks to zero size in the IR is dual to a confining 4D
theory if and only if the Einstein metric in conformal coordinates vanishes
as (or faster than) e ¢" as r — oo, for some C > 0.

e It is understood here that a metric vanishing at finite »r = rg also satisfies
the above condition.

M the superpotential
A 5D background is dual to a confining theory if the superpotential grows
as (or faster than)

W ~ (log\)f/2)2/3 as A= , P>0

M the [-function A 5D background is dual to a confining theory if and only
if

A 1
lim @4—— log A = K, —o0 < KO0
A—00 3 2
3

(No explicit reference to any coordinate system) Linear trajectories correspond to K = —16
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Classification of confining superpotentials I

Classification of confining superpotentials W(\) as A — oo in IR:

P
P 9 1\ 20
W) ~ (log\)2 AQ | A~ E 3@ (Iog E) v E—o0.
e () >2/3or @=2/3 and P > 1 leads to confinement and a singularity at finite » = ro.
(ro — 1) Q>3
e (1) ~ o _32
exb [—W} =3

e () =2/3,and 0 < P < 1 leads to confinement and a singularity at »r = co The scale factor
e vanishes there as

e (r) ~ exp[—Crt/A=P).

e ) =2/3,P =1 leads to confinement but the singularity may be at a finite or infinite
value of r depending on subleading asymptotics of the superpotential.

NIfQ < 2\/5/3, no ad hoc boundary conditions are needed to determine the glueball spec-
trum — One-to-one correspondence with the g-function This is unlike standard AdS/QCD
and other approaches.

e when @Q > 2+/2/3, the spectrum is not well defined without extra boundary conditions in
the IR because both solutions to the mass eigenvalue equation are IR normalizable.

Improved Holographic QCD, E. Kiritsis
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Confining g-functions I

A 5D background is dual to a confining theory if and only if

(@ L

lim —)IogA:K, —o00 < KO0

A—00

3 2

(No explicit reference to any coordinate system). Linear trajectories correspond to K =

_3
16

e \We can determine the geometry if we specify K:

e K = —o0: the scale factor goes to zero at some finite rg, not faster than a power-law.

e —00 < K < —3/8: the scale factor goes to zero at some finite ro faster than any power-
law.

e —3/8 < K < 0: the scale factor goes to zero as r — oo faster than e=¢""" for some e > 0.

e K = 0: the scale factor goes to zero as r — oo as e~¢7 (or faster), but slower than e~ ¢
for any € > O.

The borderline case, K = —3/8, is certainly confining (by continuity), but whether or not
the singularity is at finite » depends on the subleading terms.

Improved Holographic QCD, E. Kiritsis
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Comments on confining backgrounds |

e For all confining backgrounds with rg = oo, although the space-time is
singular in the Einstein frame, the string frame geometry is asymptotically
flat for large r. Therefore only A grows indefinitely.

e String world-sheets do not probe the strong coupling region, at least
classically. The string stays away from the strong coupling region.

e [ herefore: singular confining backgrounds have generically the property
that the singularity is repulsive, i.e. only highly excited states can probe it. This
will also be reflected in the analysis of the particle spectrum (to be presented later)

e [ he confining backgrounds must also screen magnetic color charges.
This can be checked by calculating 't Hooft loops using Dy probes:

& All confining backgrounds with rg = co and most at finite rqg screen properly

& In particular “hard-wall” AdS/QCD confines also the magnetic quarks.

Improved Holographic QCD, E. Kiritsis
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Particle Spectra: generalities |

e Linearized equation:

E+2BE+Tae=0 , £(ra)=¢rEW (), DM (x) = m2®(a)
e Can be mapped to Schrodinger problem

d?B dB

dr? T <$

2 5 2 _B(r)
~EN AV =P V() = ) ) = Oy

e Mass gap and discrete spectrum visible from the asymptotics of the
potential.

e Large n asymptotics of masses obtained from WKB

nmw = /T2 \/m2 — V(r) dr
r1

e Spectrum depends only on initial condition for A (~ Agcp) and an overall
energy scale (e“!) that must be fixed.
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e scalar glueballs

e tensor glueballs

B(r) = —A(r) o Iog

® pseudo-scalar glueballs

B(r) = ZA() + % 109 Z(\)

e Universality of asymptotics

n—>oo(

O++)

mn—>oo(

predicts d = 4 via

Improved Holographic QCD,

2++) 1

2o,

N2
B(r) = gA(r)

3

o—l——l—)

7 mn—>oo(

=2n+ J 4+ c,

B(\)?

= 2(d-2)3

E. Kiritsis
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T he axion background |

e The kinetic term of the axion is suppressed by 1/NZ2. (it is an angle in
the gauge theory, it is RR in string theory)

Z(N) —0 . C e 34
Z(A)) B T6Y

It can be interpreted as the flow equation of the effective 68-angle.
e [ he full solution is

a—+ (3A—|—

—3A4
— 0 onk + C / O =(Tr[FAF
a(r) = Oy + 2nk + ") (Tr[ )
e [ he vacuum energy is
> M3 T=TQ
E0yy) = r\/9Z(X\)(0a)* = SN? 5Ca(r)
C r—
e Consistency requires to impose that a(rg) = 0. This determines C' and
M3 (Oyy + 27k)? a(r) Jr? 3Az</\>
Eyy) = ——F-Ming, —5— S S A
Jo” @az0m Uv T 2T Jo® 63,42(”
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a a

ayv w
1 1) | -
— -
0.8 0.8 |/ _— ////,
0.6 0.6 /|
0. 4] 0.4 Y Ny
0.2 0.2 . /,J’
]
500 1000 1500 2000 °ner9YIMEV] 100 200 300 400 500 600  onerOYIMEVI
(a) (b)

(a) An example of the axion profile (normalized to one in the UV) as a function of
energy, in one of the explicit cases we treat numerically. The energy scale is in MeV,
and it is normalized to match the mass of the lowest scalar glueball from lattice data,
mo = 1475MeV. The axion kinetic function is taken as Z(\) = Z,(1 4+ c,\*), with ¢, = 100
(the masses do not depend on the value of Z,). The vertical dashed line corresponds to

eXD[AO\o)—;
/\p

= )Z)I/Z)Q”OA0]. In this particular case A = 290MeV.

1
¢

(b)A detail showing the different axion profiles for different values of ¢,. The values are
ce = 0.1 (dashed line), ¢, = 10 (dotted line) and ¢, = 100 (solid line).
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Quarks (Ny < N¢) and mesons |

e Flavor is introduced by Nf Dy + D4 branes pairs inside the bulk back-
ground. Their back-reaction on the bulk geometry is suppressed by Nf/NC.
e [ he important world-volume fields are

— 1 —+"y5 j R — 1 j:’y5

.._[/7 .
T;; «+ qq @ , Al eaq 5 va}

Generating the U(Nf)L X U(Nf)R chiral symmetry.

e The UV mass matrix m;; corresponds to the source term of the Tachyon
field. It breaks the chiral (gauge) symmetry. The normalizable mode cor-

. 5
responds to the vev ((7&1"57 Q).

e \We show that the expectation value of the tachyon is non-zero and 7' ~ 1,
breaking chiral symmetry SU(N); x SU(N;)r — SU(Ny)y. The anomaly
plays an important role in this (holographic Coleman-Witten)

Improved Holographic QCD, E. Kiritsis
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e The fact that the tachyon diverges in the IR (fusing D with D) constraints the UV
asymptotics and determines the quark condensate (gq) in terms of m,. A GOR relation is

satisfied (for an asymptotic AdSs space)

™m —

f7

® \\Ve can derive formulae for the anomalous divergences of flavor currents, when they are
coupled to an external source.

e When m, = 0, the meson spectrum contains NJ% massless pseudoscalars, the U(Nf)A
Goldstone bosons.

e The WZ part of the flavor brane action gives the Adler-Bell-Jackiw U(1) 4 axial anomaly

and an associated Stuckelberg mechanism gives an O (%) mass to the would-be Goldstone

boson 7/, in accordance with the Veneziano-Witten formula.

e Studying the spectrum of highly excited mesons, we find the expected property of linear
confinement: m% ~ M.

e [ he detailed spectrum of mesons remains to be worked out
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Tachyon dynamics |

e In the vacuum the gauge fields vanish and T'~ 1. Only DBI survives

e As(r) 2

0

V(r) V24 L 22 | V() =e 27

2

S[r] = TD4/drd4a:

e \We obtain the nonlinear field equation:

. A . A
T+ <3AS — X) -+ eQAS,uQT + e 24s

4AS—X] =S 4 ulr 72 =0.

e In the UV we expect

r=mgrtorit.. . p22=3

e We expect that the tachyon must diverge before or at »r = rg. We find
that indeed it does at the singularity. For the rg = oo backgrounds

exp[QR ] as
T ~ — — 7 r — 00
a 02

46



e Generically the solutions have spurious singularities: 7(r.) stays finite but
its derivatives diverges as:

T ~ T + YVTsx — 7.

The condition that they are absent determines o as a function of mg.

e [ he easiest spectrum to analyze is that of vector mesons. We find
(ro = o0)

B 1 B 3 aeQ (a—1)/2 1 /4 o—2
/\glueballs — E’ Nmesons = Z Q—RQ X E (E) .

This suggests that o = 2. preferred also from the glue sector.
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Concrete model |

3bpA° 6(2b3 + 3b7)\3
34 2bpX (14 )\2) (18 + (zbg + 3b§) log(1 + ,\2))

IS everywhere regular and has the correct UV and IR asymptotics.

BO) = -

W = (34 2bpA)/3 |18 + (2b3 + 3b1 ) log(1 + A2>}4/3 ,

8t
0.3+

0.25;
0.15¢

0.05¢

25 2.5 5 7.5 10 12.5 15
The scale factor and 't Hooft coupling that follow from (. bg = 4.2, Ao = 0.05, Ag = 0.

The units are such that ¢ = 0.5. The dashed line represents the scale factor for pure AdS.
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Dependence of absolute mass scale on Ag I

log(m)
- ° PY
o ¢ °
| | | | | | |.| | | | | | | | | | | | | | | | | | A
0
&r 0.2 0.3 0.4 0.5
I [
-2+
- [
_al
- @
-6
_al

Dependence on initial condition Ap of the absolute scale of the lowest lying

glueball (shown in Logarithmic scale)
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Dependence of mass ratios on Ap I

rrb*
My
20
®eo0ggq0 © ° ® ® ® °
18+
16+
14+
12+
1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | A’O
0.0 0.1 0.2 0.3 0.4 0.5
The mass ratios Rog
mo++
Rop =
mo++
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T he glueball wavefunctions I

wir]

Normalized wave-function profiles for the ground states of the 071 (solid
line) ,0~t (dashed line), and 21T+ (dotted line) towers, as a function of
the radial conformal coordinate. The vertical lines represent the position

corresponding to B = mg+4+ and E = Ap.
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Ccomparison of scalar and tensor potential \

Effective Schrodinger potentials for scalar (solid line) and tensor (dashed
line) glueballs. The units are chosen such that ¢ = 0.5.
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Comparison with lattice data: Ref II |

M M
. .
6000¢ * 6000¢ N
5000¢ R - 5000¢ R a
] []
4000¢ R u 4000¢ R O
] []
3000¢ ¥ 3000¢ R
n i n
Yy ¢
(a) (b)

Comparison of glueball spectra from our model with bg = 2.55, \g = 0.05
(boxes), with the lattice QCD data from Ref. II (crosses) and the AdS/QCD
computation (diamonds), for (a) 0t+ glueballs; (b) 2T1 glueballs. The
masses are in MeV, and the scale is normalized to match the lowest ot

state from Ref. II.
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Linearity of the glueball spectrum |

M M
100 | o [ a
K
0000 8 7 .
. L
80 e —
’.0‘ r A
! [ .

o 6r

60 - ‘.0‘ L A

™
“““ |

o [ A
ot 4+ "
40 + o' t
ot | A
o =
”o‘ |
20| oot 2} A
0“’ [
o A
0‘. ]
.
o
. ‘ n n
10 20 30 40 50 60 70 2 4 6 8

(a) Linear pattern in the spectrum for the first 40 0+ glueball states. M?2
is shown units of 0.015¢72.

(b) The first 8 071 (squares) and the 2771 (triangles) glueballs. These
spectra are obtained in the background I with bg = 4.2, A\ = 0.05.
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T he lattice glueball data |

JTT | Ref. I (m/y/a) | Ref. 1 (MeV) | Ref. Il (mrg) | Ref. 11 (MeV) | N, — oo(m/+/o)
0 | 3.347(68) 1475(30)(65) | 4.16(11)(4) | 1710(50)(80) | 3.37(15)

ot | 6.26(16) 2755(70)(120) | 6.50(44)(7) | 2670(180)(130) | 6.43(50)

o* | 7.65(23) 3370(100)(150) | NA NA NA

0¥ | 9.06(49) 3990(210)(180) | NA NA NA

2| 4.916(91) 2150(30)(100) | 5.83(5)(6) | 2390(30)(120) | 4.93(30)

2| 6.48(22) 2880(100)(130) | NA NA NA

Rao | 1.46(5) 1.46(5) 1.40(5) 1.40(5) 1.46(11)

Roo | 1.87(8) 1.87(8) 1,56(15) 1.56(15) 1.90(17)

Available lattice data for the scalar and the tensor glueballs. Ref. I =H. B. Meyer, [arXiv:hep-lat/0508002].
and Ref. II = C. J. Morningstar and M. J. Peardon, |[arXiv:hep-lat/9901004]| + Y. Chen et al.,
lat /0510074]|

[arXiv:hep-
The first error corresponds to the statistical error from the the continuum extrapolation. The
second error in Ref.l is due to the uncertainty in the string tension {/o. (Note that this does not affect
the mass ratios). The second error in the Ref. II is the estimated uncertainty from the anisotropy. In the
last column we present the available large N. estimates according to B. Lucini and M. Teper, [arXiv:hep-
lat/0103027]. The parenthesis in this column shows the total possible error followed by the estimations in

the same reference.
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Comparison with lattice data: Ref 1 |

M M
L4 L4
6000} R 6000; *
L] ]
5000 . . 5000 . =
4000/ . 9 4000 . -
3000 M 3000/ ¥
n X n
& 3
(a) (b)

Comparison of glueball spectra from our model with bg = 4.2, \g = 0.05
(boxes), with the lattice QCD data from Ref. I (crosses) and the AdS/QCD
computation (diamonds), for (a) 01T+ glueballs; (b) 277+ glueballs. The
masses are in MeV, and the scale is normalized to match the lowest 0T
state from Ref. I.

(2, =6.88 (°
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exp 2 As]
0.002

0.00175¢
0. 0015+
0. 00125

0.001¢;
0. 00075 ¢
0. 0005 ¢

0. 00025}

The string frame scale factor in background I with bg = 4.2, Ao = 0.05.

We can “measure”

— ~626 , (R~ —-0.5 (2)

S
and predict

as(1.2GeV) = 0.34,

which is within the error of the quoted experimental value o' (1.2GeV) = 0.35 + 0.01
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T he fit to Ref I |

0
%

%

JPC | RefI (MeV) | Our model (MeV) | Mismatch | N. — oo [?] | Mismatch
o+t | 1475 (4%) 1475 0 1475
2t+ 2150 (5%) 2055 4% 2153 (10%) 5
00—t | 2250 (4%) 2243 0
ot+t* | 2755 (4%) 2753 0 2814 (12%) 2
2t++* | 2880 (5%) 2901 4%
0—T* | 3370 (4%) 3288 2%
ot+*= | 3370 (4%) 3561 5%
ot +** 1 3990 (5%) 4253 6%

Comparison between the glueball spectra in Ref. I and in our model. The
states we use as input in our fit are marked in red. The parenthesis in the
lattice data indicate the percent accuracy.
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Pseudoscalar glueballs I

2800 e ® °

=

2700 |®
2600
2500

2400

100 200 300 400 500

Lowest 0~ glueball mass in MeV as a function of ¢q in Z(\) = Za(14ca)\?).
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a-dependence of scalar spectrum I

M
ﬁ **
10000}
8000/ ’ 20
, :10
6000! ’ +3
4000| ' ‘ . 2
2000,
2 3 4 5

The 0T spectra for varying values of o that are shown at the right end
of the plot. The symbol * denotes the AdS/QCD result.
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Two black hole branches I

.
: 550}
2.5 . 500¢
2 L 450
1.5/ o 400
350!

o 300!
0.5/ 250¢

the two branches of black holes: T as a
horizon coupling.
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Temperature versus horizon position I

T

500

400 :

300
200

100 |

rh

We plot the relation T'(r;,) for various potentials parameterized by a. a =1
is the critical value below which there is only one branch of black-hole
solutions.
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T he free energy as a function of ry, I

F

0.1 a>1

rh

—0.1f
—0.2f
~0.3f

-041}
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T he transition In the free energy |

F

N2 V3

GeV*]

200
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The thermodynamic quantities |

0.7
e L
- 3 free gas energy density
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T4 N2
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Equation of state I

et al. latent heat
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T he speed of sound I

perature

0—>C§

2
—— 2 Csqa
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T he specific heat |

cV(Gev?)
0.6]

0.1/
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400 600 800 71000
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Open problems |

The YM sector

e Show that all ((Tr[F A F])™) correlators are UV finite (matching a similar
statement made in Lattice YM by Giusti and Luscher)

e Calculate the #-induced decay rate of an excited 0~ 1 glueball to two 0+
glueballs.

The flavor sector

e Find the nontrivial profile of the tachyon in the QCD vacuum and calcu-
late the quark condensate as a function of the light quark masses.

e Calculate the masses of mesons

e Calculate the three-point functions of mesons and therefore their decay
widths.
68



e Calculate the 6-dependent couplings of three pions as well as p — nn™.

e Recalculate the dipole moment of the neutron using the non-trivial axion
solution

Finite temperature

e Calculate the finite viscosity at finite temperature without and with
quarks.

e Calculate the phase diagram at finite baryon chemical potential.

e Calculate the finite temperature Polyakov loops in various symmetry chan-
nels.

Improved Holographic QCD, E. Kiritsis
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Fluctuations around the AdSgy extremum \

Vv

0.8}
0.6
04
0.2

‘ ‘ ‘ ‘ -~ A
0p 02 04 06 08 \1
~04

o In QCD we expect that
1 1 1

1
= ~ . ds® ~ —(dr? + dz,dz" as r— 0
A N.e? log r r2( T dzy )
e Any potential with V()\) ~ A* when \ <« 1 gives a power different that

of AdSs

e Thereis an AdSg minimum at a finite value A«. This cannot be the UV
of QCD as dimensions do not match.
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Near an AdS extremum

12 165 2 3 18 / 12 4 2 2 " 4 / 4£
V = — O , —O0A =90p° — —0op° = O , 09" — —=d0¢p — —=6p =20
5~ 2?06 ; 2 — 50 (6¢°) ¢ — 500 — 300
where ¢ << 1. The general solution of the second equation is
2424/1+6)u 2-24/146)u
5 = C'_|_€( + / +0) n C_e%
For the potential in question
3¢ N2 —7 4922 4+ 400 N
V(g) = o [5— e Ny e?| | Ao = N = v+ /4927 + o=
5 | 400 4 4922 — 72+/4922 + 400 02 4, | 100 + 722 — 21/4922 + 400
= — , — = es3
4| 100+ 722 — 2+/4922 4 400 2 400
The associated dimension is A =2 4 24/1 4+ £ and satisfies
24+3V2< A <242V6  or equivalently 6.24 < A < 6.90

It corresponds to an irrelevant operator. It is most probably relevant for the Banks-Zaks

fixed points.
Bigazzi+ Casero+ Cotrone-+Kiritsis{Paredes

RETURN
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Estimating the importance of logarithmic scaling \

We keep the IR asymptot|cs of background II,but change the UV to pow ptoting
AdSs, with a small A.. 3 42 R2 2% _|_2‘ [z 4 3
M) == T o) = e+ S /1435 4+ . 100 e

w

Woons = Wo (9 + 40200 — A, )1/3) (9a + (262 + 3b1) log [1 + (A — Af)])zaﬁ.
We fix parameters so that the physical QCD scale is the same (as determined from
asymptotic slope of Regge trajectories.

M
40} " *
n
n
30} . * A
K *
20 + n *
A

10+ at X

n

5 1‘0 1‘5 2‘0 2‘5 3‘0
The stars correspond to the asymptotically free background I with bg = 4.2 and Ao = 0.05; the squares

correspond the results obtained in the first background with R = 11.4¢; the triangles denote the spectrum in

the second background with b0 = 4.2, I+ = 0.071 and [, = 0.01. These values are chosen so that the slopes

coincide asymptotically for large n.
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Detailed plan of the presentation |

Title page 0 minutes

Bibliography 1 minutes

Introduction 5 minutes
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bosonic string or superstring? (continued) 30 minutes
The minimal effective string theory spectrum 32 minutes
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