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Introduction

• AdS/CFT provides a surprising twist to large-N gauge theories: the
existence of extra dimensions, including the radial holographic dimension.

• It has provided a dual description of strongly-coupled gauge theories
translating their physics into string/gravitational dynamics.

• The best studied/controlled example is a maximally supersymmetric and
conformal gauge theory whose string dual is described in terms of critical
string theory (in ten-dimensions).

• There have been further 10d solutions that broke susy and produced
gravitational duals to theories that in IR involve only gluon dynamics.
They all however have KK modes at the same scale as Λ, which so far we
have been unable to decouple.

• Alternative attempts have focused in noncritical string theory, where there
are no KK Modes. Here however one has to address the strong curvature
problem that is generic. Progress has been sporadic in this direction.
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AdS/QCD

♠ A basic phenomenological approach: use a slice of AdS5, with a UV cutoff, and an IR
cutoff. Polchinski+Strassler

♠ It successfully exhibits confinement (trivially via IR cutoff), and power-like behavior in
hard scattering amplitudes

♠ It may be equipped with a bifundamental scalar, T , and U(Nf)L × U(Nf)R, gauge fields
to describe mesons. Erlich+Katz+Son+Stepanov, DaRold+Pomarol

Chiral symmetry is broken by hand, via IR boundary conditions. The low-lying meson

spectrum looks ”reasonable”.

♠ Shortcomings:

• The glueball spectrum does not fit very well the lattice calculations. It has the wrong
asymptotic behavior m2

n ∼ n2 at large n.

• Magnetic quarks are confined instead of screened.

• Chiral symmetry breaking is input by hand.

• The meson spectrum has also the wrong UV asymptotics m2
n ∼ n2.

♠ The asymptotic spectrum can be fixed by introducing a non-dynamical

dilaton profile Φ ∼ r2 (soft wall)
Karch+Katz+Son+Stephanov
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Improving AdS/QCD

♠ We will use input from both string theory and the gauge theory (QCD)
in order to provide an improved phenomenological holographic model for
real world QCD.

♠ This is an exploratory adventure, and we will short-circuit several obsta-
cles on the way.

♠ As we will see, we will get an interesting perspective on the physics of
pure glue as well as on the quark sector.

♠ The model that will be advocated will be a form of dilaton gravity in 5
dimensions supplemented with space filling flavour branes.

♠ We will analyze the finite temperature dynamics that will be compared
to that of QCD.

Finite temperature in Improved Holographic QCD, E. Kiritsis

5



A string theory for QCD:basic expectations

• Pure SU(Nc) d=4 YM is expected to be dual to a string theory in 5 dimensions only.
Essentially a single adjoint field → a single extra dimension.

• The theory becomes asymptotically free and conformal at high energy → we expect the
classical saddle point solution to asymptote to AdS5.

♠ operators with lowest dimension are expected to be the only (important) non-trivial bulk
fields in the large-Nc saddle-point

• scalar YM operators with ∆UV > 4 → m2 > 0 fields near the AdS5 boundary → vanish
fast in the UV regime and do not affect correlators of low-dimension operators.

• Their dimension typically grows large in the IR. Large ’t Hooft coupling is expected to
suppress the growth in the IR

• This is compatible with the success of low-energy SVZ sum rules as compared to data.

• It is prohibitively difficult otherwise

♠ Therefore we will consider Tµν ↔ gµν, tr[F 2] ↔ φ, tr[F ∧ F ] ↔ a
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The nature of the string

• Large-N arguments about the axion (dual to the gauge theory θ-angle)

indicate that it must be a RR field.

• The string theory must have no on-shell fermionic states at all because

there are no gauge invariant fermionic operators in pure YM.

• Therefore the string theory must be a 5d-superstring theory resembling

the II-0 class.

♠ Another RR field we expect to have is the RR 4-form, as it is necessary

to “seed” the D3 branes responsible for the gauge group.

• It is non-propagating in 5D

• It seems to be however responsible for the non-trivial IR structure of the

gauge theory vacuum.
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The effective action, I

• as Nc →∞, only string tree-level is dominant.

• Relevant field for the vacuum solution: gµν, a, φ, F5.

• The vev of F5 ∼ Nc ε5. It appears always in the combination e2φF2
5 ∼ λ2,

with λ ∼ Nc eφ All higher derivative corrections (e2φF2
5 )n are O(1) at large

Nc.

• This is not the case for all other RR fields: in particular for the axion as

a ∼ O(1)

(∂a)2 ∼ O(1) , e2φ(∂a)4 =
λ2

N2
c
(∂a)4 ∼ O

(
N−2

c

)

Therefore to leading order O(N2
c ) we can neglect the axion.
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The UV regime

• In the far UV, the space should asymptote to AdS5.

• The ’t Hooft coupling should behave as (r → 0)

λ ∼ 1

log(rΛ)
+ · · · → 0

• Therefore, as r → 0

Curvature → finite , (∂φ)2 ∼ (∂λ)2

λ2
∼ 1

log2(rΛ)
→ 0 , λ2 → 0

• For λ → 0 the potential in the Einstein frame starts as V (λ) ∼ λ
4
3 and

cannot support the asymptotic AdS5 solution.

• Therefore asymptotic AdS5 must arise from curvature corrections

Seff ∼
∫

d5x
1

λ2
Z (R,0,0)
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• Setting λ = 0 at leading order we can generically get an AdS5 solution

coming from balancing the higher curvature corrections.

• There is a ”good” (but hard to derive the coefficients) perturbative

expansion around this asymptotic AdS5 solution by perturbing around it:

eA =
`

r
[1 + δA] , λ =

1

b0 log(rΛ)
+ · · ·

• This turns out to be a regular expansion of the solutions in powers of

Pn(log log(rΛ))

(log(rΛ))−n

• Effectively this can be rearranged as a “perturbative” expansion in λ(r).

• Using λ as a radial coordinate the solution for the metric can be written

E ≡ eA =
`

r(λ)

[
1 + c1λ + c2λ2 + · · ·

]
= ` (e−

b0
λ )

[
1 + c′1λ + c′2λ2 + · · ·

]
, λ → 0
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The IR regime

• Here the situation is a bit more obscure. The constraints/input are:
confinement and mass gap.

• We do expect that λ →∞ at the IR bottom.

• This is a ”singularity” in the conventional sense: it must be ”repulsive”, ie the string

theory, and even better some effective field theory should not break down there.

• (Very) naive intuition from N=4 and other 10d strongly coupled theories
suggests that in this regime there should be a two derivative description of
the physics.

• Similar intuition is coming from the linear dilaton solution that suggests
that the (string frame) curvature vanishes at the IR bottom.

• At the IR bottom the space must end (singularity) where the scale factor
vanishes.
♠ If it happens very slowly, we loose confinement

♠ if it happens very fast, the singularity is strong and the theory is incomplete (boundary

conditions are needed at the singularity.
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Improved Holographic QCD: a model

The simplification in this model relies on writing down a two-derivative

action

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
+ V (λ)

]

with

lim
λ→0

V (λ) =
12

`2


1 +

∞∑

n=1

cnλn


 , lim

λ→∞
V (λ) = λ

4
3
√

logλ + subleading

The small λ asymptotics “simulate” the UV expansion around AdS5.

• There is a 1-1 correspondence between the YM β-function, β(λ) and W :

(
3

4

)3
V (λ) = W2 −

(
3

4

)2 (
∂W

∂ logλ

)2
, β(λ) = −9

4
λ2 d logW (λ)

dλ

once a choice of energy is made (here E = AE). Renormalization and

other choices modify β(λ) beyond two-loop level
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There are some shortcomings localized at the UV

• Conformal anomaly is incorrect.

• Shear viscosity ratio is constant and equal to that of N=1 sYM

both of the above need Riemann curvature corrections.

Many other observables are coming out very well both at T=0 and finite T

♠ The axion contribution

δS = M3
p

∫
d5x

√
g Z(λ) (∂a)2

with

lim
λ→0

Z(λ) = c0 + c1λ + c2λ2 + · · · , lim
λ→∞

Z(λ) = C∞λ4 + · · ·

a(r) = θUV

∫∞
r

dr
e3AZ∫∞

0
dr

e3AZ
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Quarks (Nf ¿ Nc) and mesons

• Flavor is introduced by Nf D4 + D̄4 branes pairs inside the bulk back-

ground. Their back-reaction on the bulk geometry is suppressed by Nf/Nc.

• The important world-volume fields are

Tij ↔ q̄i
a
1 + γ5

2
qj
a , Aij

µ
L,R ↔ q̄i

a
1± γ5

2
γµqj

a

Generating the U(Nf)L × U(Nf)R chiral symmetry.

• The UV mass matrix mij corresponds to the source term of the Tachyon

field. It breaks the chiral (gauge) symmetry. The normalizable mode cor-

responds to the vev 〈q̄i
a
1+γ5

2 q
j
a〉.

• We show that the expectation value of the tachyon is non-zero and T ∼ 1,

breaking chiral symmetry SU(Nf)L × SU(Nf)R → SU(Nf)V . The anomaly

plays an important role in this (holographic Coleman-Witten)
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• The fact that the tachyon diverges in the IR (fusing D with D̄) constraints the UV

asymptotics and determines the quark condensate 〈q̄q〉 in terms of mq. A GOR relation is

satisfied (for an asymptotic AdS5 space)

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• We can derive formulae for the anomalous divergences of flavor currents, when they are
coupled to an external source.

• When mq = 0, the meson spectrum contains N2
f massless pseudoscalars, the U(Nf)A

Goldstone bosons.

• The WZ part of the flavor brane action gives the Adler-Bell-Jackiw U(1)A axial anomaly

and an associated Stuckelberg mechanism gives an O
(

Nf

Nc

)
mass to the would-be Goldstone

boson η′, in accordance with the Veneziano-Witten formula.

• Studying the spectrum of highly excited mesons, we find the expected property of linear

confinement: m2
n ∼ n.

• The detailed spectrum of mesons remains to be worked out

Finite temperature in Improved Holographic QCD, E. Kiritsis

15



Concrete potential

• The superpotential chosen is

W = (3 + 2b0λ)2/3
[
18 +

(
2b20 + 3b1

)
log(1 + λ2)

]4/3
,

with corresponding potential

β(λ) = − 3b0λ2

3 + 2b0λ
− 6(2b20 + 3b21)λ

3

(1 + λ2)
(
18 +

(
2b20 + 3b21

)
log(1 + λ2)

)

which is everywhere regular and has the correct UV and IR asymptotics.

• b0 is a free parameter and b1/b20 is taken from the QCD β-function
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Linearity of the glueball spectrum

10 20 30 40 50 60 70
n
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n
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8

M2

(a) (b)

(a) Linear pattern in the spectrum for the first 40 0++ glueball states. M2

is shown units of 0.015`−2.

(b) The first 8 0++ (squares) and the 2++ (triangles) glueballs. These

spectra are obtained in the background I with b0 = 4.2, λ0 = 0.05.
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Comparison with lattice data (Meyer)

n

3000
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M

n

3000
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M

(a) (b)

Comparison of glueball spectra from our model with b0 = 4.2, λ0 = 0.05

(boxes), with the lattice QCD data from Ref. I (crosses) and the AdS/QCD

computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The

masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. I.

`2eff = 6.88 `2
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r

0.00025

0.0005

0.00075

0.001

0.00125

0.0015

0.00175

0.002

exp@2 AsD

The string frame scale factor in background I with b0 = 4.2, λ0 = 0.05.

We can “measure”

`

`s
' 6.26 , `2sR ' −0.5 (1)

and predict

αs(1.2GeV ) = 0.34,

which is within the error of the quoted experimental value α(exp)
s (1.2GeV ) = 0.35± 0.01
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The fit to Meyer lattice data

JPC Ref I (MeV) Our model (MeV) Mismatch Nc →∞ [?] Mismatch

0++ 1475 (4%) 1475 0 1475 0

2++ 2150 (5%) 2055 4% 2153 (10%) 5%

0−+ 2250 (4%) 2243 0

0++∗ 2755 (4%) 2753 0 2814 (12%) 2%

2++∗ 2880 (5%) 2991 4%

0−+∗ 3370 (4%) 3288 2%

0++∗∗ 3370 (4%) 3561 5%

0++∗∗∗ 3990 (5%) 4253 6%

Comparison between the glueball spectra in Ref. I and in our model. The

states we use as input in our fit are marked in red. The parenthesis in the

lattice data indicate the percent accuracy.
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YM at finite temperature

The theory at finite temperature can be described by:
(1) The “thermal vacuum solution”. This is the zero temperature solution
we desribed so far with time periodically identified with period β.

(2) The “black-hole solution”

ds2 = b(r)2
[

dr2

f(r)
− f(r)dt2 + dxidxi

]
, Φ = Φ(r)

We can show the following:

• For T > Tmin there are two black-hole solutions with the same temper-
ature but different horizon positions. One is a “large” BH the other is
“small”.

• When T < Tmin only the “thermal vacuum solution” exists: it describes
the confined phase at finite temperature.

• When T > Tmin three competing solutions exist. The large BH has the
lowest free energy for T > Tc > Tmin. It describes the deconfined QGP
phase.
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• All solutions have two parameters: T and Λ.

For the Black hole solution we can calculate the temperature as

1

4π T
= b3T (rh)

∫ rh

0

du

bT (u)3

• The free energy is calculated as a boundary term for both the black-

holes and the thermal vacuum solution. They are all UV divergent but their

differences are finite. We find

F = (M3V3N2
c )

[
6bT (ε)

√
f(ε)

[
bT (ε)ḃT (ε)

√
f(ε)− b0(ε)ḃ0(ε)

]
+ ḟ(ε)b3T (ε)

)

with

f(ε) ' 1−π T b3T (rh)
ε4

`3

[
1 +O

(
1

log(εΛ)

)]
+· · · , bT (ε)−b0(ε) = C(T )ε3+· · ·

The rules of AdS/CFT relate C(T ) to the gluon condensate:

C(T ) ∝ 〈Tr[F2]〉T − 〈Tr[F2]〉0
The free energy difference is therefore given by

F
M3

p N2
c V3

= 12
C(T )

`
− πTb3(rh) = 12

C(T )

`
− TS

4M3
p N2

c V3
,

23



• The existence of the non-trivial deconfinement transition is due to the
non-zero condensate C(T ).

• For the YM potential the minimum temperature for the black-holes is
Tmin ' 210 MeV with λh ' 12. The critical temperature is

Tc ' 235± 15 MeV with λh ' 8 ,
L

1
4
h

Tc
= 0.65

√
Nc

to be compared with 260± 11 MeV and 0.77
√

Nc
Lucini+Teper, Lucini+Teper+Wenger

• The specific heat for the QGP solution is positive as it should. For the
small black-hole it is negative.

• In the QGP phase, the qq̄ potential is screened.

• Matching the T →∞ regime to an ideal gas of free gluons we obtain

(Mp`)
3 =

1

45π2
, Mphysical = MpN

2
3
c =

(
8

45π2`3

)1
3 ' 4.6 GeV

• In the QGP phase, the axion is constant and 〈F ∧ F 〉 vanishes.
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General phase structure

• For a general potential we can prove the following (under mild assump-
tions):

i. There exists a phase transition at finite T, if and only if the zero-T
theory confines.

ii.This transition is of the first order for all of the confining geometries,
with a single exception described in iii:

iii. In the limit confining geometry b0(r) → exp(−Cr) (as r →∞), the phase
transition is of the second order and happens at T = 3C/4π. This is the
linear dilaton vacuum solution in the IR.

iv. All of the non-confining geometries at zero T are always in the black
hole phase at finite T. They exhibit a second order phase transition at
T = 0+.
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Temperature versus horizon position
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We plot the relation T (rh) for various potentials parameterized by a. a = 1
is the critical value below which there is only one branch of black-hole
solutions.
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Free energy versus horizon position
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We plot the relation F(rh) for various potentials parameterized by a. a = 1

is the critical value below which there is no first order phase transition .
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The transition in the free energy
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Equation of state
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The speed of sound
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The specific heat

Tc
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The bulk viscosity

It is defines from the Kubo formula

ζ =
1

9
lim
ω→0

1

ω
Im GR(ω) , GR(ω) ≡

∫
d3x

∫
dt eiωtθ(t) 〈0|[Tii(~x, t), Tii(~0,0)]|0〉

Using a parametrization ds2 = e2A(fdt2+d~x2)+ e2B

f
dr2 in a special gauge φ = r the relevant

metric perturbation decouples
Gubser+Nellore+Pufu+Rocha

h′′11 = −
(
− 1

3A′ − 4A′ + 3B′ − f ′

f

)
h′11 +

(
−e2B−2A

f2
ω2 +

f ′

6fA′ −
f ′

f
B′

)
h11

with

h11(0) = 1 , h11(rh) ' C eiωt
∣∣∣ log

λ

λh

∣∣∣
− iω

4πT

The correlator is given by the conserved number of h-quanta

Im GR(ω) = −4M3G(ω) , G(ω) =
e4A−Bf

4A′2 |Im[h∗11h
′
11]|

finally giving

ζ

s
=

C2

4π

V ′(λh)2

V (λh)2
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Open problems

• Tune the dilaton potential

• Re-Calculate quantities relevant for heavy ion collisions: jet quenching,

quark energy loss etc.

• Calculate the finite temperature Polyakov loops in various symmetry chan-

nels.

• Investigate quantitatively the meson sector

• Investigate the θ dependence of the meson sector.

• Calculate the phase diagram in the presence of baryon number.
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The low dimension spectrum

• What are all gauge invariant YM operators of dimension 4 or less?

• They are given by Tr[FµνFρσ].
Decomposing into U(4) reps:

( ⊗ )symmetric = ⊕ (2)

We must remove traces to construct the irreducible representations of O(4):

= ⊕ ⊕ • , = •

The two singlets are the scalar (dilaton) and pseudoscalar (axion)

φ ↔ Tr[F 2] , a ↔ Tr[F ∧ F ]

The traceless symmetric tensor

→ Tµν = Tr

[
F 2

µν −
1

4
gµνF

2

]

is the conserved stress tensor dual to a massless graviton in 5d reflecting the translational
symmetry of YM.

→ T 4
µν;ρσ = Tr[FµνFρσ − 1

2
(gµρF

2
νσ − gνρF

2
µσ − gµσF 2

νρ + gνσF 2
µρ) +

1

6
(gµρgνσ − gνρgµσ)F

2]

34



It has 10 independent d.o.f, it is not conserved and it should correspond to a similar

massive tensor in 5d. We do not expect it to play an non-trivial role in the large-Nc, YM

vacuum also for reasons of Lorentz invariance.

• Therefore the nontrivial fields are expected to be:
gµν, φ, a

Finite temperature in Improved Holographic QCD, E. Kiritsis
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The minimal effective string theory spectrum

• NS-NS → gµν , Bµν , φ

• RR → Spinor5×Spinor5=F0 + F1 + F2 + (F3 + F4 + F5)

♠ F0 ↔ F5 → C4, background flux → no propagating degrees of freedom.

♠ F1 ↔ F4 → C3 ↔ C0: C0 is the axion, C3 its 5d dual that couples to
domain walls separating oblique confinement vacua.

♠ F2 ↔ F3 → C1 ↔ C2: They are associated with baryon number (as we
will see later when we add flavor). Dual operators are a mystery (topological
currents?).

• In an ISO(3,1) invariant vacuum solution, only gµν, φ, C0 = a can be
non-trivial.

ds2 = e2A(r)(dr2 + dx2
4) , a(r), φ(r)
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The relevant “defects”

• Bµν → Fundamental string (F1). This is the QCD (glue) string: fundamental tension
`2s ∼ O(1)

• Its dual B̃µ → NS0: Tension is O(N2
c ). It is an effective magnetic baryon vertex binding

Nc magnetic quarks.

• C4 → D3 branes generating the gauge symmetry.

• C3 → D2 branes : domain walls separating different oblique confinement vacua (where
θk+1 = θk + 2π). Its tension is O(Nc)

• C2 → D1 branes: These are the magnetic strings (strings attached to magnetic quarks)
with tension O(Nc)

• C5 → D4: Space filling flavor branes. They must be introduced in pairs: D4 + D̄4 for
charge neutrality/tadpole cancellation.

• C1 → D0 branes. These are the baryon vertices: they bind Nc quarks, and their tension
is O(Nc).

• C0 → D−1 branes: These are the Yang-Mills instantons.
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An assessment of IR asymptotics

• As λ →∞ we assume that the potential terms dominate and we param-

eterize the effective action in the IR as

Seff ∼
∫ √

g

[
R +

4

3

(∂λ)2

λ2
+ V (λ) =

]
, V (λ) =

4

3
λ2

(
dW

dλ

)2
+

64

27
W2

Parameterize the IR asymptotics (λ →∞) as

W (λ) ∼ (logλ)
P
2 λQ

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at

finite r = r0.

eA(r) ∼





(r0 − r)
4

9Q2−4 Q > 2
3

exp
[
− C

(r0−r)1/(P−1)

]
Q = 2

3
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• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞
The scale factor eA vanishes there as

eA(r) ∼ exp[−Cr1/(1−P )].

The asymptotic spectrum of glueballs is linear only if P = 1
2

• Q = 2/3, P = 1 leads to confinement but the singularity may be at a

finite or infinite value of r depending on subleading asymptotics of the

superpotential.

♠ If Q < 2
√

2/3, no ad hoc boundary conditions are needed to determine

the glueball spectrum: the singularity is “good” (repulsive).

♠ when Q > 2
√

2/3, the spectrum is not well defined without extra boundary

conditions in the IR because both solutions to the mass eigenvalue equation

are IR normalizable.
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Selecting the IR asymptotics

Only the Q = 2/3, 0 ≤ P < 1 is compatible with

• Confinement (it happens non-trivially: a minimum in the string frame scale factor )

• Mass gap+discrete spectrum (except P=0)

• good singularity

• R → 0 partly justifying the original assumption. More precisely: the string frame metric

becomes flat at the IR . But (∂φ)2 ∼ V (λ).

♠ It is interesting that the lower endpoint: P=0 corresponds to linear
dilaton and flat space (string frame). It is confining with a mass gap but
continuous spectrum.

• For linear asymptotic trajectories for fluctuations (glueballs) we must
choose P = 1/2

V (λ) = λ
4
3

[
1 + c1λ2 + c2λ4 + · · ·

]
∼ λ

4
3
√

logλ +subleading as λ →∞
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Further α′ corrections

There are further dilaton terms generated by the 5-form in:

• The kinetic terms of the graviton and the dilaton ∼ λ2n.

• The kinetic terms on probe D3 branes that affect the identification of

the gauge-coupling constant, ∼ λ2n+1. There is also a multiplicative factor

relating gY M2 to eφ, (not known). Can be traded for b0.

• Corrections to the identification of the energy. At r = 0, E = 1/r. There

can be log corrections to our identification E = eA, and these are a power

series in ∼ λ2n.

• It is a remarkable fact that all such corrections affect the higher that the

first two terms in the β-function (or equivalently the potential), that are

known to be non-universal!

the metric is also insensitive to the change of b0 by changing Λ.
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Organizing the vacuum solutions

A useful variable is the phase variable

X ≡ Φ′

3A′
=

β(λ)

3λ
, eΦ ≡ λ

and a superpotential

W2 −
(
3

4

)2 (
∂W

∂Φ

)2
=

(
3

4

)3
V (Φ).

with

A′ = −4

9
W , Φ′ = dW

dΦ

X = −3

4

d logW

d logλ
, β(λ) = −9

4
λ

d logW

d logλ

♠ The equations have three integration constants: (two for Φ and one for A) One

corresponds to the “gluon condensate” in the UV. It must be set to zero otherwise the IR

behavior is unacceptable. The other is Λ. The third one is a gauge artifact (corresponds

to overall translation in the radial coordinate).
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The IR regime

For any asymptotically AdS5 solution (eA ∼ `
r):

• The scale factor eA(r) is monotonically decreasing
Girardelo+Petrini+Porrati+Zaffaroni

Freedman+Gubser+Pilch+Warner

• Moreover, there are only three possible, mutually exclusive IR asymp-

totics:

♠ there is another asymptotic AdS5 region, at r →∞, where expA(r) ∼ `′/r,

and `′ ≤ ` (equality holds if and only if the space is exactly AdS5 everywhere);

♠ there is a curvature singularity at some finite value of the radial coordi-

nate, r = r0;

♠ there is a curvature singularity at r →∞, where the scale factor vanishes

and the space-time shrinks to zero size.
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Wilson-Loops and confinement

• Calculation of the static quark potential using the vev of the Wilson loop
calculated via an F-string worldsheet.

Rey+Yee, Maldacena

T E(L) = Sminimal(X)

We calculate

L = 2
∫ r0

0
dr

1√
e4AS(r)−4AS(r0) − 1

.

It diverges when eAs has a minimum (at r = r∗). Then

E(L) ∼ Tf e2AS(r∗) L

• Confinement → As(r∗) is finite. This is a more general condition that
considered before as AS is not monotonic in general.

• Effective string tension

Tstring = Tf e2AS(r∗)
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General criterion for confinement

• the geometric version:
A geometry that shrinks to zero size in the IR is dual to a confining 4D
theory if and only if the Einstein metric in conformal coordinates vanishes
as (or faster than) e−Cr as r →∞, for some C > 0.

• It is understood here that a metric vanishing at finite r = r0 also satisfies
the above condition.

♠ the superpotential

A 5D background is dual to a confining theory if the superpotential grows
as (or faster than)

W ∼ (logλ)P/2λ2/3 as λ →∞ , P ≥ 0

♠ the β-function A 5D background is dual to a confining theory if and only
if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system) Linear trajectories correspond to K = − 3
16
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Classification of confining superpotentials

Classification of confining superpotentials W (λ) as λ →∞ in IR:

W (λ) ∼ (logλ)
P
2 λQ , λ ∼ E−

9
4Q

(
log

1

E

) P
2Q

, E → 0.

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at finite r = r0.

eA(r) ∼
{

(r0 − r)
4

9Q2−4 Q > 2
3

exp
[
− C

(r0−r)1/(P−1)

]
Q = 2

3

• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞ The scale factor
eA vanishes there as

eA(r) ∼ exp[−Cr1/(1−P )].

• Q = 2/3, P = 1 leads to confinement but the singularity may be at a finite or infinite
value of r depending on subleading asymptotics of the superpotential.

♠ If Q < 2
√

2/3, no ad hoc boundary conditions are needed to determine the glueball spec-
trum → One-to-one correspondence with the β-function This is unlike standard AdS/QCD
and other approaches.

• when Q > 2
√

2/3, the spectrum is not well defined without extra boundary conditions in
the IR because both solutions to the mass eigenvalue equation are IR normalizable.
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Confining β-functions

A 5D background is dual to a confining theory if and only if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system). Linear trajectories correspond to K =

− 3
16

• We can determine the geometry if we specify K:

• K = −∞: the scale factor goes to zero at some finite r0, not faster than a power-law.

• −∞ < K < −3/8: the scale factor goes to zero at some finite r0 faster than any power-
law.

• −3/8 < K < 0: the scale factor goes to zero as r →∞ faster than e−Cr1+ε

for some ε > 0.

• K = 0: the scale factor goes to zero as r →∞ as e−Cr (or faster), but slower than e−Cr1+ε

for any ε > 0.

The borderline case, K = −3/8, is certainly confining (by continuity), but whether or not

the singularity is at finite r depends on the subleading terms.
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Parameters

• All dimensionless coefficients of the potential are a priori parameters.
However, a simple form is typically chosen for simplicity. In our example we
fit only one parameter.

• We also have Mp, and the AdS length, `. Asking correct T →∞ thermo-
dynamics fixes

(Mp`)
3 =

1

45π2
, Mphysical = MpN

2
3
c =

(
8

45π2`3

)1
3 ' 4.6 GeV

` is not a parameter but a unit of length.

• We have 3 initial conditions in the system of graviton-dilaton equations:

♠ One is fixed by picking the branch that corresponds asymptotically to
λ ∼ 1

log(rΛ)

♠ The other fixes Λ → ΛQCD.

♠ The third is a gauge artifact as it corresponds to a choice of the origin
of the radial coordinate.
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Comments on confining backgrounds

• For all confining backgrounds with r0 = ∞, although the space-time is

singular in the Einstein frame, the string frame geometry is asymptotically

flat for large r. Therefore only λ grows indefinitely.

• String world-sheets do not probe the strong coupling region, at least

classically. The string stays away from the strong coupling region.

• Therefore: singular confining backgrounds have generically the property

that the singularity is repulsive, i.e. only highly excited states can probe it. This

will also be reflected in the analysis of the particle spectrum (to be presented later)

• The confining backgrounds must also screen magnetic color charges.

This can be checked by calculating ’t Hooft loops using D1 probes:

♠ All confining backgrounds with r0 = ∞ and most at finite r0 screen properly

♠ In particular “hard-wall” AdS/QCD confines also the magnetic quarks.
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Particle Spectra: generalities

• Linearized equation:

ξ̈ + 2Ḃξ̇ + ¤4ξ = 0 , ξ(r, x) = ξ(r)ξ(4)(x), ¤ξ(4)(x) = m2ξ(4)(x)

• Can be mapped to Schrodinger problem

− d2

dr2
ψ + V (r)ψ = m2ψ , V (r) =

d2B

dr2
+

(
dB

dr

)2
, ξ(r) = e−B(r)ψ(r)

• Mass gap and discrete spectrum visible from the asymptotics of the

potential.

• Large n asymptotics of masses obtained from WKB

nπ =
∫ r2

r1

√
m2 − V (r) dr

• Spectrum depends only on initial condition for λ (∼ ΛQCD) and an overall

energy scale (eA) that must be fixed.
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• scalar glueballs

B(r) =
3

2
A(r) +

1

2
log

β(λ)2

9λ2

• tensor glueballs

B(r) =
3

2
A(r)

• pseudo-scalar glueballs

B(r) =
3

2
A(r) +

1

2
logZ(λ)

• Universality of asymptotics

m2
n→∞(0++)

m2
n→∞(2++)

→ 1 ,
m2

n→∞(0+−)

m2
n→∞(0++)

=
1

4
(d− 2)2

predicts d = 4 via

m2

2πσa
= 2n + J + c,
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The axion background

• The kinetic term of the axion is suppressed by 1/N2
c . (it is an angle in

the gauge theory, it is RR in string theory)

ä +

(
3Ȧ +

Ż(λ)

Z(λ)

)
ȧ = 0 → ȧ =

C e−3A

Z(λ)

It can be interpreted as the flow equation of the effective θ-angle.
• The full solution is

a(r) = θUV + 2πk + C
∫ r

0
r
e−3A

Z(λ)
, C = 〈Tr[F ∧ F ]〉

• The vacuum energy is

E(θUV ) =
M3

2N2
c

∫
d5x

√
gZ(λ)(∂a)2 =

M3

2N2
c

Ca(r)
∣∣∣∣
r=r0

r=0

• Consistency requires to impose that a(r0) = 0. This determines C and

E(θUV ) = −M3

2
Mink

(θUV + 2πk)2
∫ r0
0

dr
e3AZ(λ)

,
a(r)

θUV + 2πk
=

∫ r0
r

dr
e3AZ(λ)∫ r0

0
dr

e3AZ(λ)
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(a) (b)

(a) An example of the axion profile (normalized to one in the UV) as a function of
energy, in one of the explicit cases we treat numerically. The energy scale is in MeV,
and it is normalized to match the mass of the lowest scalar glueball from lattice data,
m0 = 1475MeV . The axion kinetic function is taken as Z(λ) = Za(1+caλ4), with ca = 100
(the masses do not depend on the value of Za). The vertical dashed line corresponds to

Λp ≡ 1
`

exp
[
A(λ0)− 1

b0λ0

]
(b0λ0)

b1/b2
0

. In this particular case Λ = 290MeV .

(b)A detail showing the different axion profiles for different values of ca. The values are

ca = 0.1 (dashed line), ca = 10 (dotted line) and ca = 100 (solid line).
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Tachyon dynamics

• In the vacuum the gauge fields vanish and T ∼ 1. Only DBI survives

S[τ ] = TD4

∫
drd4x

e4As(r)

λ
V (τ)

√
e2As(r) + τ̇(r)2 , V (τ) = e−

µ2

2 τ2

• We obtain the nonlinear field equation:

τ̈ +

(
3ȦS −

λ̇

λ

)
τ̇ + e2ASµ2τ + e−2AS

[
4ȦS −

λ̇

λ

]
τ̇3 + µ2τ τ̇2 = 0.

• In the UV we expect

τ = mq r + σ r3 + · · · , µ2`2 = 3

• We expect that the tachyon must diverge before or at r = r0. We find
that indeed it does at the singularity. For the r0 = ∞ backgrounds

τ ∼ exp
[
2

a

R

`2
r

]
as r →∞
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• Generically the solutions have spurious singularities: τ(r∗) stays finite but

its derivatives diverges as:

τ ∼ τ∗ + γ
√

r∗ − r.

The condition that they are absent determines σ as a function of mq.

• The easiest spectrum to analyze is that of vector mesons. We find

(r0 = ∞)

Λglueballs =
1

R
, Λmesons =

3

`

(
α`2

2R2

)(α−1)/2

∝ 1

R

(
`

R

)α−2
.

This suggests that α = 2. preferred also from the glue sector.
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Fluctuations around the AdS5 extremum

0.2 0.4 0.6 0.8 1
Λ

-0.4

-0.2

0.2

0.4

0.6

0.8

V

• In QCD we expect that

1

λ
=

1

Nceφ
∼ 1

log r
, ds2 ∼ 1

r2
(dr2 + dxµdxµ) as r → 0

• Any potential with V (λ) ∼ λa when λ ¿ 1 gives a power different that
of AdS5

• There is an AdS5 minimum at a finite value λ∗. This cannot be the UV
of QCD as dimensions do not match.
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Near an AdS extremum

V =
12

`2
− 16ξ

3`2
φ2 +O(φ3) ,

18

`
δA′ = δφ′2 − 4

`2
φ2 = O(δφ2) , δφ′′ − 4

`
δφ′ − 4ξ

`2
δφ = 0

where φ << 1. The general solution of the second equation is

δφ = C+e
(2+2

√
1+ξ)u

` + C−e
(2−2

√
1+ξ)u

`

For the potential in question

V (φ) =
e

4

3
φ

`2s

[
5− N2

c

2
e2φ −Nf eφ

]
, λ0 ≡ Nce

φ0 =
−7x +

√
49x2 + 400

10
, x ≡ Nf

Nc

ξ =
5

4

[
400 + 49x2 − 7x

√
49x2 + 400

100 + 7x2 − x
√

49x2 + 400

]
,

`2s
`2

= e
4

3
φ0

[
100 + 7x2 − x

√
49x2 + 400

400

]

The associated dimension is ∆ = 2 + 2
√

1 + ξ and satisfies

2 + 3
√

2 < ∆ < 2 + 2
√

6 or equivalently 6.24 < ∆ < 6.90

It corresponds to an irrelevant operator. It is most probably relevant for the Banks-Zaks
fixed points.

Bigazzi+Casero+Cotrone+Kiritsis+Paredes

RETURN
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Estimating the importance of logarithmic scaling

We keep the IR asymptotics of background II,but change the UV to power asymptoting
AdS5, with a small λ∗.

eA(r) =
`

r
e−(r/R)2

, Φ(r) = Φ0 +
3

2

r2

R2

√
1 + 3

R2

r2
+

9

4
log

2 r
R

+ 2
√

r2

R2 + 3
2√

6
.

Wconf = W0

(
9 + 4b20(λ− λ∗)2)1/3

) (
9a + (2b20 + 3b1) log

[
1 + (λ− λ2

∗)
])2a/3

.

We fix parameters so that the physical QCD scale is the same (as determined from

asymptotic slope of Regge trajectories.

5 10 15 20 25 30
n

10

20

30

40

M2

The stars correspond to the asymptotically free background I with b0 = 4.2 and λ0 = 0.05; the squares

correspond the results obtained in the first background with R = 11.4`; the triangles denote the spectrum in

the second background with b0 = 4.2, li = 0.071 and l∗ = 0.01. These values are chosen so that the slopes

coincide asymptotically for large n.
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Profile of coupling and scale factor

5 10 15 20 25
r

0.05

0.1

0.15

0.2

0.25

0.3

eA

2.5 5 7.5 10 12.5 15
r

2

4

6

8

Λ

The scale factor and ’t Hooft coupling that follow from β. b0 = 4.2, λ0 = 0.05, A0 = 0.

The units are such that ` = 0.5. The dashed line represents the scale factor for pure AdS.
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Dependence of absolute mass scale on λ0

0.1 0.2 0.3 0.4 0.5
Λ0

-8

-6

-4

-2

logIm0M

Dependence on initial condition λ0 of the absolute scale of the lowest lying

glueball (shown in Logarithmic scale)
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Dependence of mass ratios on λ0

0.0 0.1 0.2 0.3 0.4 0.5
Λ0

1.2

1.4

1.6

1.8

2.0

�������������

m0*

m0

The mass ratios R20

R20 =
m2++

m0++
.
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The glueball wavefunctions

r@m0D 20 r@LD 40 60

r
�����
l

Ψ@rD

Normalized wave-function profiles for the ground states of the 0++ (solid

line) ,0−+ (dashed line), and 2++ (dotted line) towers, as a function of

the radial conformal coordinate. The vertical lines represent the position

corresponding to E = m0++ and E = Λp.
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Comparison of scalar and tensor potential

5 10 15 20
r

0.5

1

1.5

2

V@rD

Effective Schrödinger potentials for scalar (solid line) and tensor (dashed

line) glueballs. The units are chosen such that ` = 0.5.
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The lattice glueball data

Available lattice data for the scalar and the tensor glueballs. Ref. I =H. B. Meyer, [arXiv:hep-lat/0508002].

and Ref. II = C. J. Morningstar and M. J. Peardon, [arXiv:hep-lat/9901004] + Y. Chen et al., [arXiv:hep-

lat/0510074]. The first error corresponds to the statistical error from the the continuum extrapolation. The

second error in Ref.I is due to the uncertainty in the string tension
√

σ. (Note that this does not affect

the mass ratios). The second error in the Ref. II is the estimated uncertainty from the anisotropy. In the

last column we present the available large Nc estimates according to B. Lucini and M. Teper, [arXiv:hep-

lat/0103027]. The parenthesis in this column shows the total possible error followed by the estimations in

the same reference.
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Pseudoscalar glueballs

100 200 300 400 500
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mA

Lowest 0−+ glueball mass in MeV as a function of ca in Z(λ) = Za(1+caλ4).

Finite temperature in Improved Holographic QCD, E. Kiritsis

63



α-dependence of scalar spectrum

2 3 4 5
n

2000
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M

2
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The 0++ spectra for varying values of α that are shown at the right end

of the plot. The symbol * denotes the AdS/QCD result.
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Comparison with lattice data: Ref II

n
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(a) (b)

Comparison of glueball spectra from our model with b0 = 2.55, λ0 = 0.05

(boxes), with the lattice QCD data from Ref. II (crosses) and the AdS/QCD

computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The

masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. II.
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The thermodynamic quantities
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Detailed plan of the presentation

• Title page 0 minutes

• Bibliography 1 minutes

• Introduction 3 minutes

• AdS/QCD 5 minutes

• Improving AdS/QCD 6 minutes

• A string theory for QCD:basic expectation 8 minutes

• The nature of the string theory 9 minutes

• Effective action I 10 minutes

• The UV regime 13 minutes

• The IR regime 15 minutes

• Improved Holographic QCD: a model 19 minutes

• Quarks (Nf ¿ Nc) and mesons 23 minutes
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