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1. Introduction

Ever since the Standard Model (SM) was accepted as the correct description of
particle physics phenomena in the accessible energy range,its fundamental (the-
oretical) limitations were obvious and a new quest was launched for a more fun-
damental theory. This theory would share the low-energy successes of the SM
while it would extend its range of validity to the ultimate energy frontier. As
GUTs suggested, this ultimate frontier must at least reach the Planck scale and
therefore the fundamental theory should include a quantum theory of gravity as
well. Subsequent inclusion of supersymmetry in order to manage the hierarchy
problem only made the quest for quantum (super) gravity evenmore inevitable.

Such observations opened Pandora’s box as it was already widely appreciated
that even defining perturbative gravity theories was so far intractable. Interest-
ingly, perturbatively well-defined quantum theories of gravity were known (as
superstring theories) as was first pointed out by Scherk and Schwarz [1] and in-
dependently Yoneya [2] in the mid 70s. Almost nobody paid however attention to
this observation until 1984, when superstring theories came to the forth. The rea-
son was advocated to be anomaly cancelation [3] and uniqueness. After almost
forty years of research in string theory (since the originalVeneziano paper [4]),
we know today that uniqueness is, to put it mildly, the most elusive property
of the theory. On the other hand, the fact that it contains a perturbatively well-
defined quantum theory of gravity, (at least when supersymmetry is unbroken) is
non-trivial. Never the less, the theory seems incapable of addressing phenomena
close or beyond the Planck scale, unless it is defined (aroundvery specific back-
grounds) via large-N gauge theories/matrix models. There is even a dichotomy
of point of view: is string theory a single theory with many different vacua, as
probably most people hope/advocate? Or is it a collection ofdifferent theories,
defined holographically via large-N field theories as a minority would argue?

Whatever the answer to the previous question, the original challenge remains:
can we construct a theory that contains a controllable perturbative theory of quan-
tum gravity and reduces to the standard model at low energies? This question
was addressed in recurring waves in the context of the heterotic theories in the
80s and early 90s without a clean answer (see for example [6]). Model building
in the heterotic string turned out to be very difficult, at least compared with field
theory model building. The reasons are clear: In field theory, at least in perturba-
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6 E. Kiritsis

tion theory, the input needed to construct a fundamental theory is a gauge group,
fermions and bosons in specific representations, and a finitenumber of couplings
(Yukawa and scalar), that reflect very closely the phenomenology we want to
reproduce: the spectrum of particles and their low energy interactions.

In the heterotic string however the input needed for model building is very
remotely connected to the spectrum and the phenomenology wewant to achieve.
In particular the input is the geometry and other backgroundfields of the internal
space, and in its most abstract form, the CFT describing the compact part of space
and time. Therefore, producing the spectrum and gauge groups we like is very
difficult, and matching the couplings, most of the time intractable. Although
heterotic vacua were found that come close to the SM, none does it very well.
The reasons for the difficulties advocated above can be used to argue that the SM
is probably there (maybe in more than one incarnation), we just have a hard time
to find it.

The return of open string vacua and the advent of orientifolds in the early-
to-mid 90s [7] has created a new string arena for “model building/searching".
Moreover, it was realized [8–10] that the natural distinction of open and closed
string sectors, was helpful in turning the search for SM intoa modular enter-
prize, where one could put together his favorite open stringsector, generating the
SM and its extensions and postpone the stringy compatibility conditions till the
end. This so-called ”bottom-up" approach has yielded todaya far richer set of
SM-like orientifold vacua (see [12] for reviews) although aclone of the (non-
supersymmetric) SM still remains to be found.

Building the SM spectrum using D-branes involves several peculiarities that
were realized along the way. Generically speaking we obtainproduct gauge
groups. Unified models are typically difficult to obtain (both E6 and SO(10) are
not possible perturbatively). SU(5) as we will see is possible in various forms,
however its detailed phenomenology, especially the quark masses, needs “fine-
tuning". Once we move to product groups, very few of the possible ways of
realizing the standard model have been so far explored. The reason is that prod-
uct groups are mostly “unmotivated" from the theory point ofview1 It has been
already observed [8] that there several different ways of embedding the hyper-
charge inside a product gauge group containing the SM model.Moreover, differ-
ent hypercharge embeddings lead to different phenomenology at or beyond the
SM regime [13].

It is therefore an important task to examine the different ways of embedding
successfully the SM spectrum into the Chan-Paton (CP) gaugegroups of orien-
tifolds and this is what we will review in this lecture.

1There are however exceptions: the Pati-Salam SU(4)×SU(2)2 model or the trinification SU(3)3

are in this class.



Orientifolds, and the search for the Standard Model in string theory 7

The strategy for building orientifold vacua can be described as follows. One
starts from a type II vacuum, typically based on a solvable (bulk) CFT. This vac-
uum describes a “compactification" of the type II theory to four dimensions with
(or without) space-time supersymmetry. One then builds theBCFT associated to
this bulk CFT. In particular this involves the constructionof boundary states, that
can be intuitively thought of as possible branes to be placedin the closed string
background (if they carry non-zero CP multiplicities). Onethen chooses an ori-
entifold projection, to define the open string sector (invariant boundary states).
At this stage, we can choose CP multiplicities of appropriate branes (bound-
ary states) in view of reproducing the SM gauge group. The spectrum is then
checked, and once we are happy with it we try to solve the tadpole conditions.
Rarely this works without adding other branes. We must therefore add other
branes that must generate “hidden sectors" of the theory (ifdone appropriately).
We continue this until the tadpole conditions are solved.

This is the algorithm that we will use, combined with a few extra ingredi-
ents. The first is a list of rational CFTs that can be used as building blocks of
the bulk type II partition function. The second is an algorithm using simple cur-
rents to generate many more modular invariant partition functions starting from
a left-right diagonal one [14]. The third involves general formulae for bound-
ary and crosscap coefficients for such BCFTs developed in a series of papers by
Schellekens and collaborators [15]. The final ingredient isthat all of the above
can be algorithmized so that the search can be done numerically. This is an enor-
mous advantage as the vacua that can be searched are so numerous that millions
of spectra can be produced that match chirally the SM spectrum. In the first ap-
plication of this numerical algorithm to an extended searchfor a concrete brane
configuration realizing the SM model 200000 different successful spectra were
found in millions of copies, [17] using Gepner models [18] asbuilding blocks2

The kind of bottom up models considered in [17] were variations on the “Madrid"
model first proposed in [16]. They are characterized by four stacks of branes with
a Chan-Paton groupU(3)a ×U(2)b ×U(1)c ×U(1)d, with the standard model
generatorY embedded asY = 1

6
Qa − 1

2
Qb − 1

2
Qc. The variations include the

possibility of choosing the second and third Chan-Paton factor real, and allowing
theB−L abelian vector boson to be either massive or massless in the exact string
theory. These models have a perturbatively unbroken baryonand lepton number.

In the search that we review here the only feature assumed is the most robust
part of what we presently know about the Standard Model: thatthere are three
chiral families of quarks and leptons in the familiar representations ofSU(3) ×
SU(2)×U(1). In practice, we still have to make a few concessions. In particular,

2Orientifolds using Gepner models were developed in [19]- [24], although getting chiral spectra
proved to be a difficult exercise. This was first achieved in [22].



8 E. Kiritsis

we will have to limit the number of participating branes and forbid non-chiral
mirror pairs of arbitrary charge. This will be discussed in more detail in the next
section.

The features that are allowed include
• Anti-quarks realized as anti-symmetric tensors ofU(3)
• Charged leptons and neutrinos realized as anti-symmetric tensors
• Non-standard embeddings of theY -charge
• Embeddings ofY in non-abelian groups
• Strong-Weak unification (e.g.SU(5))
• Baryon-lepton unification (e.g.Pati-Salam models)
• Trinification
• Baryon and/or lepton number violation
• Family symmetries

Not all of these features are desirable, but the strategy is to allow as many possi-
bilities in an early stage, and leave the final selection to the last stage, so that it
will not be necessary to restart the entire search procedureif new insights emerge.

Some of these options may address unsolved problems that occur for the
Madrid realization [16] of the standard model. For example,the perturbatively
unbroken lepton number of these models makes it hard to implement a see-saw
like mechanism to give small masses to neutrinos3. Coupling constant unifica-
tion, if it is indeed a fundamental feature of nature and not asemi-coincidence,
is not automatic in the standard realization, but it would bein SU(5) models.
This does not mean that the Madrid realization cannot accommodate the cur-
rent experimental values of the couplings constants, but only that the fact that
they presently appear to converge (with gaugino contributions taken into account)
would be a mere coincidence. We will find some really simple and elegant re-
alizations ofSU(5) models, but instantons need to be advocated to generate up-
quark masses [11,28,32,35]. We will comment on this in section 7.

One of our goals is to analyse which model can be built from a bottom-up
point of view, and how many of them can be realized as top-downmodels. By
“bottom-up" we mean here a brane realization that produces the correct chiral
standard model spectrum if the gauge group is reduced toSU(3)×SU(2)×U(1)
(without assuming a particular mechanism for that reduction). On the “top-down"
side two types of concepts should be distinguished: standard model brane con-
figurations and solutions to the tadpole conditions. The focus in this lecture is on
the former,i.e. choices of boundary labels4 a, b, c andd such that with an appro-

3Instantons may bypass this difficulty, however, [31, 33].
4We label the complete set of boundaries of a given modular invariant partition function of a

CFT asa, b, c, d, . . .. The specific boundaries that participate in a Standard Model configuration are
denoted asa, b, c andd. We allow a maximum of four (plus a hidden sector), with the first two
corresponding toSU(3)color andSU(2)weak .
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priate choice of the Chan-Paton gauge group and the appropriate embedding of
SU(3) × SU(2) × U(1) one obtains the standard model. Here we also require
that the standard modelU(1) generator does not acquire mass due to bilinear
axion couplings.

Given such a standard model configuration, there may still beuncanceled
tadpoles in RR closed string one-point functions on the diskand the crosscap.
Within this context, the only way to cancel them is to add additional hidden mat-
ter, except in a few cases where they already cancel among thestandard model
branes. To see if this can happen is an extremely time-consuming, and ultimately
unsolvable problem. Furthermore for any given brane configuration there may
be many ways of canceling the tadpoles. In the continuum theory, background
fluxes, not considered here, contribute to the tadpoles. Butperhaps more impor-
tantly, the set of boundary states we consider here is limited by the choice of
rational CFT. We consider the complete set of boundaries allowed by the RCFT,
i.e. all boundaries that respect its chiral algebra. But that chiral algebra is larger
than theN = 2 world-sheet algebra required to describe a geometric Calabi-Yau
compactification. Since we get thec = 9 chiral algebra as a tensor product of
minimalN = 2 algebras, the chiral algebra also contains all differencesof the
N = 2 algebras of the factors. If we would reduce the chiral algebra, additional
boundary states are allowed, and could contribute to tadpole cancelation.

It is essentially impossible to conclude, with RCFT techniques alone, that the
tadpoles of a certain standard model configuration cannot becanceled. Positive
results, on the other hand, imply that one has a valid supersymmetric string vac-
uum. We see tadpole cancelation therefore mainly as an existence proof of a
given string vacuum. Once that proof has been given, we do notcontinue search-
ing for additional tadpole solutions for the same chiral configuration. This gives
an enormous cut-off in computer time. One should keep in mindthat for the most
frequent chiral model considered in [17], we found a total of16 million tadpole
solutions (about 110000 of them distinct). We now keep only one of those so-
lutions. This also implies that we cannot provide meaningful statistical results
regarding tadpole solutions, but only regarding brane configurations.

We summarize briefly the results:
• We develop a detailed classification of allowed embeddings of the SM hyper-

charge inside the orientifold gauge group. To do this, we classify brane stacks
according to how they contribute to the hypercharge. The hypercharge embed-
ding is then characterized by a real variablex which is quantized in half-integral
units in genuine non-orientable vacua.
• We produce 19345 chirally distinct top-down SM spectra (before tadpole can-

celation) and 1900 chirally distinct models solving the tadpole conditions and
realizing the different embeddings.
• We find that thex = 1

2
hypercharge embedding dominates by far all other
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choices. The Madrid embedding [16] belongs to this class.
• The presence of chiral symmetric and antisymmetric tensorsis highly sup-

pressed. For some hypercharge embeddings, such tensors arecrucial for anomaly
cancelation and they may produce anti-quarks and other weaksinglets. This im-
plies the associated suppression of such embeddings.
• We produce the first examples of supersymmetric SU(5) and flipped SU(5)

orientifold vacua, with the correct chiral spectrum (no extra gauge groups and
no exoticGCP chiral states). However, as we argue, all such orientifold models,
as well as models with quarks in the antisymmetric representation have a serious
phenomenological problem associated with masses.
• We find some minimal supersymmetric Pati-Salam and trinification vacua.
• We have examples of spectra (but no tadpole solutions yet) with extended

(N=4 or N=8) supersymmetry in the bulk and N=1 supersymmetryon the branes.
• We have found SM spectra solving the tadpole conditions on a relative of the

quintic CY.
Most of the work that is reviewed here, has appeared in [11].

2. What we are looking for

Our goal is to search for the most general embedding of the standard model in
the Chan-Paton gauge group of Gepner Orientifolds.

We first introduce some notation. We denote the full Chan-Paton group as
GCP. This is the group obtained directly from the multiplicities of the branes,
without taking into account masses generated by two-point axion-gauge boson
couplings. We require that the standard model gauge group,GSM = SU(3) ×
SU(2)×U(1)Y is a subgroup ofGCP. Furthermore we require that the generator
of U(1)Y does not get a mass from axion-gauge boson couplings.

The main condition we impose on the spectrum is the presence of three fam-
ilies of quarks and leptons, and the absence of chiral exotics. Since chirality
can be defined with respect to various groups, and the term “exotics" is used
in different senses in the literature, we will define this more precisely. Group-
theoretically, the standard-model-like spectra we allow are described as follows.
Denote the full set of massless representations ofGCP asRCP. The subset of
these representations that is chiral with respect toGCP is denotedRchir

CP . The
reduction of these representations to the the groupGSM are denoted asRSM and
Rchir

SM respectively. By “reduction" we mean here only that we decompose repre-
sentations in terms of representations of a subgroup. No assumptions are made at
this point regarding dynamical mechanisms (like the Brout-Englert-Higgs mech-
anism) to achieve such a reduction. Consider now the subset of eitherRSM or
Rchir

SM that is chiral with respect toGSM. The result is required to be precisely the
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following set of left-handed fermions (all fermions will bein left-handed form in
this paper)

3 × [(3, 2,
1

6
) + (3∗, 1,−

2

3
) + (3∗, 1,

1

3
) + (1, 2,−

1

2
) + (1, 1, 1)] (2.1)

Any other particles must be non-chiral with respect toGSM. This may include
left-handed anti-neutrinos in the representation(1, 0, 0) and MSSM Higgs pairs,
(1, 2, 1

2
) + (1, 2,− 1

2
). Anything else will be called exotic.

The foregoing describes the most general configuration one could reasonably
call an embedding of the standard model without chiral exotics, but we will have
to impose a few additional constraints to make a search feasible. First of all
we require that the standard model groupsSU(3) andSU(2) come each from
a single stack of branes, denoteda and b respectively. This forbids diagonal
embeddings of these groups in more than one CP factor. In general by a stack
we mean a single label for a real (orthogonal or symplectic) boundary, or a pair
of conjugate labels for complex, unitary branes. The CP factor yieldingSU(3)
must beU(3), whereas the weak gauge symmetrySU(2) can come from either
U(2) or Sp(2). The groupO(3) is not allowed, because one cannot get spinor
representations of orthogonal groups in perturbative openstring constructions.

The hypercharge generatorY is a linear combination of the unitary phase fac-
tors ofU(3), U(2) (if available) and any other generator of one of the other fac-
tors inGCP. All representations(3, 2) must necessarily come from bi-fundamentals
of the a andb stacks, but not all anti-quarks can come from those stacks. Al-
though there can be anti-quarks due to chiral anti-symmetric tensors ofSU(3),
they all have the same hypercharge. Hence there must be at least one other stack
of branes, labeledc.

In principle there could be any number of additional stacks of branes, but for
purely practical reasons we allow at most one more stack (labeledd) to contribute
to the standard model representation (2.1)5. Additional branes may be present,
and may be required for tadpole cancellation. They will be referred to as the
“hidden sector". If stackd does not contribute to (2.1) at all we regard it as part
of the hidden sector. The standard model branesa, b,c (andd, if present) will be
called the “observable sector". Note that left-handed anti-neutrinos6 are not listed
in (2.1). We do not impose ana priori constraint7 on the number of left-handed
anti-neutrinos, although in some cases a certain number of such states is required

5In general we also expect that the number of exotics to rise fast with the number of additional
stacks participating in the SM group.

6Since our convention is to represent all matter in terms of left-handed fermions, right-handed
neutrinos are referred to as left-handed anti-neutrinos.

7The minimum number is two in order to accommodate the experimental data. We will comment
further on neutrino masses in section 7.4.
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by anomaly cancellation inGCP. They may in fact come from the hidden sector
or the observable sector, or even from strings stretching between the two sectors.

Our next condition concerns the precise definition of the standard model gen-
eratorY . We allow it to be embedded in the most general way possible inthe
Chan-Paton factors of branec andd (in addition to the unitary phases ofa andb).
In principle it could also have components in the hidden sector without affecting
any of the foregoing, as long as all particles charged under those components of
Y are massive or at least non-chiral. One could even try to use this as a mech-
anism to cancel bilinear axion coupling ofY , which would give theY -boson a
mass8. We will not consider that possibility here. This is equivalent to a restric-
tion to standard model realizations with at most four participating branes, except
for one intriguing possibility: a three brane realization with a fourth brane added
purely to fix the axion couplings ofY , without contributing to quarks or leptons.
This possibility was not included in our search. It should bementioned how-
ever, that a qualitatively similar situation does indeed arise. There are orientifold
vacua where there is a U(1) arising from the SM stack of branes, under which
all SM particles are neutral. In this case there is a continuous family of possible
hypercharge embeddings. In some cases, the masslessness condition breaks the
degeneracy. This provides a string realization of the field theory models in [40].
In other cases, even the masslessness condition does not lift the degeneracy.

The general form ofY is

Y =
∑

α

tαQα +Wc +Wd , (2.2)

whereα runs over the valuesa,b,c,d,Qα is the brane charge of braneα (+1 for
a complex brane,−1 for its conjugate, and 0 for a real brane), andWc andWd

are generators from the non-abelian part of the Chan-Paton group. ThereforeWc

andWd are traceless. Such contributions toY occur for example in Pati-Salam
and trinification models, and therefore we want to allow thispossibility.

There is one more condition we impose for practical reasons,namely that
Rchir

CP may only yield representations of standard model particlesor their mirrors.
The main purpose of this condition (as we will see in more detail below) is to
prevent an unlimited proliferation ofGCP-chiral, butGSM non-chiral represen-
tations such as(1, 1, q) + (1, 1,−q), with q arbitrary. In addition, this condition
also forbids triplets ofSU(2)weak, which can be chiral with respect toU(2)b.

One may distinguish three types of matter in these models: OO, OH and HH,
where the two letters indicate if the endpoints of the open string are in the ob-
servable or hidden sector. All conditions on OO matter were already formulated
above. The “no chiral exotics" constraint formulated aboveallows HH matter to

8Anomalous U(1) masses have been calculated for general orientifolds in [39].
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be chiral with respect toGCP. For OH matter we impose a somewhat stronger
constraint, namely that there cannot be any bi-fundamentals between the stan-
dard model and the hidden sector that are chiral with respectto GCP. This is a
stronger condition because the “no chiral exotics" constraint allows SM-Hidden
sector bi-fundamentals as long as they are non-chiral with respect toGSM. For
example a mirror quark pair(3, V ) + (3∗, V ), whereV is a vector in a hidden
sectorU(N) group, could be allowed under the more general rules. The resulting
U(N) anomalies can be cancelled in various ways.

We will allow the brane stacksa, b, c, d to have identical labels, with the
exception ofc andd (if they are identical, we might as well regard them as a
single brane stack with a larger CP multiplicity). By allowing identical labels we
are able to obtain examples of unified models, such as (flipped) SU(5) or Pati-
Salam like models. In the case of identical labels, we count them as follows: the
QCD and weak group count as one stack each, and the branes thatremain after
removing the QCD and weak groups count as additional stacks,such that the
total does not exceed four. For example, we can getU(5) models with at most
two additional CP-factors (plus any number of hidden sectorbranes).

We conclude this section with a summary of the kind of “exotics" (plus sin-
glets and Higgs candidates) that may occur in generic models, indicating which
kind we do and do not allow. We splitGCP into an observable and a hidden part
asGO×GH. In all cases we combine representations into non-chiral sets (usually,
but not always pairs) if possible. We can distinguish the following possibilities

1. Matter of type OO

(a) Non-chiral with respect toGCP. This may include symmetric and anti-
symmetric tensors or adjoints ofSU(3) or of SU(2), mirror pairs of quarks
and leptons, as well as bi-fundamentals with unusual and in afew cases
even irrational charges. All particles in this class are allowed by our condi-
tions.

(b) Chiral with respect toGCP, non-chiral with respect toGSM . Examples are
symmetric tensors ofU(2)weak, mirror pairs of quark and lepton doublets
that are chiral with respect toU(2)weak, mirror pairs where one member
of the pair is a rank-2 tensor and the other member a bi-fundamental. We
do allow such particles, except the symmetricU(2)weak tensors, and non-
chiral pairs of quarks and leptons with non-standard charges.

(c) Chiral with respect toGCP, chiral with respect toGSM, non-chiral with
respect toQED × QCD. An example of such exotics would be a fourth
family. Exotics of this type are not allowed by our conditions.

(d) Chiral with respect toGCP, chiral with respect toGSM, and chiral with
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respect toQED × QCD. Clearly this is not acceptable.

A mass term for exotics of type 1a is allowed by the full gauge symmetry, and
hence it is possible that such a term is generated by shiftingthe moduli of the
model. It is an interesting question whether the appearanceof such exotics
is a special feature of RCFT, or if they persist outside the rational points.
It should be possible to get some insight in this question by analysing the
coupling of these particles to the moduli, but this is beyondthe scope of this
paper. Exotics of type 1b may get a mass without invoking the standard model
Higgs mechanism, and hence may become more massive than standard quarks
and leptons. However, this will always require some additional dynamical
mechanism beyond perturbative string theory. Exotics of type 1c require the
standard model Higgs mechanism to get a mass. This may not be sufficient,
since the Higgs couplings themselves may be forbidden by string symmetries,
in which case additional mechanisms must be invoked. In any case it would
be hard to argue that such particles would be considerably more massive than
known quarks and leptons.

2. Matter of type HH. These are standard model singlets. No constraints are
imposed on this kind of matter. One may distinguish two kinds.

(a) Non-chiral with respect toGCP. These particles may get a mass from
continuous deformations of the model, as above.

(b) Chiral with respect toGCP, non-chiral with respect toGH. These particles
may get a mass from hidden sector dynamics.

3. Matter of type OH. In many cases particles in this class have half-integer
charge. This occurs if the electromagnetic charge gets a contribution 1

2
from

each observable brane, which turns out to be the most frequently occurring
kind of model. There are many possibilities for the chiralities, which we list
here for completeness. We use a notation(χGCP

, χGH
, χGO

, χGSM
, χQED×QCD),

where eachχ indicates chirality, and can beY (yes) orN (no).

(a) (N,N,N,N,N).

(b) (Y,N,N,N,N).

(c) (Y,Y,N,N,N).

(d) (Y,N,Y,N,N).

(e) (Y,N,Y,Y,N).

(f) (Y,N,Y,Y,Y).
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(g) (Y,Y,Y,N,N).

(h) (Y,Y,Y,Y,N).

(i) (Y,Y,Y,Y,Y).

An example of type 3b, chiral with respect to the full Chan-Paton group,
but not with respect to any of its subgroups, is(3, 0, V ) + (3∗, 0, V ) + 3 ×

(1, 1, V ∗)+3×(1,−1, V ∗) in U(3)×U(1)×U(N), with the first two factors
fromGO and the last fromGH. Of all these possibilities, only 3a is allowed by
our criteria. Types 3b, 3c and 3g might be tolerated on more general grounds,
and types 3f and 3i are clearly unacceptable.

3. Classification of bottom-up embeddings

Here we will discuss the possible values of the coefficientstα that occur in the
brane decomposition ofY . We will use the following expression forY :

Y =
∑

α

xαQα , (3.1)

whereQα is theU(1) charge of braneα. In contrast to (2.2) the sum is here not
a priori restricted to a definite number of branes. In our search we will allow
also the possibility that diagonal Lie algebra generatorsW of SO(N), Sp(2N)
or SU(N) groups contribute toY , but this can always be taken into account
by splitting those groups intoU(m) factors according to theW eigenvaluesei.
For example, if there are two distinct eigenvalues9 we get for symplectic groups
Sp(2N) a contributionWα = diag(N × (e), N × (−e)), which can be ac-
commodated by splittingSp(2N) into conjugate brane stacks with a CP group
U(N) and a contributioneQα. Geometrically, this means that the2N symplec-
tic branes are moved off the orientifold plane. The same reasoning applies to
O(2N) branes. If there areO(2N+1) stacks, the assumption of at most two dis-
tinct eigenvalues only allows the traceless generatorW = 0 in (2.2), and hence
such branes cannot contribute toY at all. Finally,U(N) branes can contribute
tαQα+diag(n1×e1, n2×e2), with n1+n2 = N , n1e1+n2e2 = 0. This can be
regarded as two stacksU(n1)×U(n2) contributing(tα+e1)Qα1

+(tα+e2)Qα2
,

so thatxα1
= tα + e1 andxα2

= tα + e2 Therefore formula 3.1 covers all cases.
The brane configurations we consider here are subject to two constraints: the

spectrum must match that of the standard model in the chiral sense, with chirality

9Two is the maximum we allow. If there are more, this necessarily yields unconventional quark
or lepton charges. For more details, see appendix A.
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defined with respect toSU(3) × SU(2) × U(1). Furthermore all cubic anoma-
lies in each factor of the full Chan-Paton group must cancel.This must be true
because we want to be able to cancel tadpoles, and tadpole cancellation imposes
cubic anomaly cancellation (mixed anomalies are cancelledby the generalized
Green-Schwarz mechanism). The tadpoles are usually cancelled by adding hid-
den sectors, which adds new massless states to the spectrum.We do not allow
these to be chiral with respect toSU(3)×SU(2)×U(1), and hence they cannot
alter the cubic anomalies. The cubic anomaly cancellation conditions that are de-
rived from tadpole cancellation are the usual ones for the non-abelian subgroups
of U(N), N > 2. Vectors contribute 1, symmetric tensorsN + 4 and anti-
symmetric tensorsN − 4, and conjugates contribute with opposite signs. But the
same condition emerges even ifN = 1 andN = 2. This means that for example
a combination of three vectors and an anti-symmetric tensoris allowed in aU(1)
factor. This is counter-intuitive, because the anti-symmetric tensor does not even
contribute massless states, so that one is left with just three chiral massless par-
ticles, all with charge 1. The origin of the paradox is that itis incorrect to call
this condition “anomaly cancellation" ifN = 1 andN = 2 and if chiral ten-
sors are present. It is simply a consequence of tadpole cancellation; the anomaly
introduced by the three charge 1 particles is factorizable,and cancelled by the
Green-Schwarz mechanism.

One might entertain the thought that this peculiarU(1) cancellation might
have something to do with the fact that we have three familiesof standard model
particles. For example, one could assign the sameU(1) charge to all quarks
or leptons of a certain type, and then cancel this anomaly with anti-symmetric
tensors. This would require this particle type to appear with a multiplicity di-
visible by three. Because theU(1) is anomalous, it would acquire a mass via
the Green-Schwarz term. However, although configurations of this kind can in-
deed be constructed, they are complicated and unlikely to occur. We did indeed
find examples ofU(1) anomaly cancellations due to anti-symmetric tensors, but
usually with a more complicated family structure that does not admit such an
interpretation.

3.1. Orientable configurations

Let us now return to our goal of determining the possibilities for Y . We begin
by demonstrating that in principle all real values of the leading coefficientxa are
allowed. Using the quark doublet charges we may writeY as follows

Y = (x−
1

3
)Qa + (x −

1

2
)Qb + rest (3.2)

Here we assume (without loss of generality) that the quark doublets all come
from bi-fundamentals(V, V ∗) stretching between the QCD and the weak brane.
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The second entry could also be aV , but then we can conjugateU(2) to obtain
(V, V ∗). A mixture of V andV ∗ is however not allowed if we wantx to take
all real values; neither is a chiral anti-symmetric tensor in eitherU(3) or U(2),
or the option of usingSp(2) instead ofU(2). Here and in the following all
representations are in terms of left-handed spinors.

Now we need lepton doublets. They can only be bi-fundamentals ending on
theU(2). The other end must be on a brane that contributes toY in such a way
that the total charge is either− 1

2
or 1

2
. The latter value is considered because

in addition to lepton doublets, we also allow mirrors, or MSSM Higgs pairs.
Again we will write these bi-fundamentals exclusively as(V, V ∗) (the first entry
corresponds toU(2)). Mixtures of(V, V ) and(V, V ∗) between the same branes
would fix x, and if there are no mixtures we can convert all bi-fundamentals to
the form(V, V ∗). The multiplicities of these bi-fundamentals may be negative,
in which case we interpret them as(V ∗, V ).

Since we only allowSU(2) doublets with charges± 1
2
, the possibilities for

the charge coefficients of the new branes arex or x− 1. We refer to branes with
these charges as “type C" and “type D" respectively (the QCD and weak branes
are defined to be of type A and B respectively. We use small lettersa, b, c, d,
e,. . . to label different stacks, and capitals A,B,C,. . . to label their types, with
respect to the hypercharge embedding. Branesa andb are always of type A and
B, but there is no one-to-one correspondence for the other branes). Note that
these types C and D become equivalent (up to conjugation) if and only if x = 1

2
.

We are not requiring that the type C or D branes are identical for all leptons or
Higgs, or each other’s conjugate, even if their charges would allow that.

Letn1 be the net number of chiral states between braneb and all of the C-type
branes, andn2 the same for type D. To be precise:

n1 =
∑

i

[(N(V, V ∗)bCi
−N(V ∗, V )bCi

)] , (3.3)

whereN is the absolute number of massless states with given properties. We
now impose anomaly cancellation inU(2) (for three families)

− 9 + n1 + n2 = 0 , (3.4)

because no chiral tensors are allowed for genericx. We also impose the require-
ment of having three chiral lepton doublets

n1 − n2 = 3 (3.5)

which can be solved to yieldn1 = 6 andn2 = 3. Note that the anomaly con-
ditions for the Chan-Paton factors at the other end can awaysbe satisfied for
some of the solutions. This is because the solution allows all multiplicities of
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N(V, V ∗) as well asN(V ∗, V ) to be multiples of three. If we make three open
strings end on the sameU(1) brane, the correspondingU(1) anomalies can al-
ways be cancelled by anti-symmetric tensors.

Next we need anti-quarks. Since for generalx anti-symmetricU(3) tensors
are not allowed, they must be bi-fundamentals between theU(3) stack and other
branes. If we introduce new branes for the anti-quark strings to end on, we can
always arrange the configuration so that the anti-quarks areof the form(V ∗, V ).
Then we need a brane of type C for down anti-quarks and a brane of type D for
up anti-quarks. One may also use one of the already present branes of type C
and D for this purpose, provided that only combinations(V, V ∗) or (V ∗, V ) are
used. Anything else implies a condition onx. Even if one uses distinct branes
for all particle types, there are many ways to cancel theU(1) anomalies using
anti-symmetric tensors.

Finally we need charged lepton singlets and their mirrors. They can occur in
four different ways for genericx:

1. With both ends on an existing brane of types C and D.

2. With one end on a previous C or D brane and one end on a new one.This
would require new branes with various possible charges. In particular, it al-
lows the following new charges:x + 1, x − 2 and their conjugates. We refer
to these as types E and F. Forx = 1

2
these are each other’s conjugates, and for

x = 3
2
, 1, 0 and− 1

2
some of the types C,D,E and F are equivalent.

3. With both ends on the same, new brane. This requires a new brane withtα =
± 1

2
. We call this type G, unless it coincides with a previous type.

4. With both ends on two distinct new branes. This would in principle allow two
new branes with contributionsy and1 − y to Y . Such branes (if they do not
coincide with any previous type) will be called type H.

There are even more possibilities if one allows arbitrary numbers of additional
branes for charged leptons. For example, one can connect newbranes to types E
and F with charge contributionsx − 2 or x + 3, connect new branes to types G
and H or add more branes of type H. By allowing mirror leptons one can build
arbitrarily long chains of branes in this manner. However, this is too baroque10 to
consider seriously, and can in any case not be realized with at most four branes,

10It should be kept in mind that as the number of branes participating in the SM configuration
increases, the number of chiral exotics, fractionally charged particles and other unwanted states in-
creases exponentially fast. It is possible that the lower success rate may be compensated by the
potentially larger number of such configurations. It is still true however, that the effective field theory
of such vacua, will be very complicated or maybe intractable.
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a restriction we will ultimately impose. Already the fourthoption is then impos-
sible.

Options three and four split the standard model into two chirally disconnected
sectors (i.e. there are no chiral strings connecting the two). This implies that the
Y anomaly does not cancel in each sector separately, and hencethe two com-
ponents of the would-beY -boson must have Green-Schwarz couplings to axions
that give it a mass. In principle these contributions could cancel forY , but that
seems improbable, and hence reduces the statistical likelihood of this sort of con-
figuration in a search. Furthermore lepton Yukawa couplingsare perturbatively
forbidden in such models.

The same four options exist for left-handed anti-neutrinos, but we do not im-
pose any requirements on our construction with regard to their multiplicity. If
they come from strings not attached to any of the previous branes, we regard them
as part of the hidden sector.11 Furthermore, we do not allowY to have contribu-
tions from branes that do not couple to charged quarks and leptons. Otherwise
one could extendY by arbitrarily large linear combinations that only contribute
non-chiral states. This implies that we regard a brane configuration as complete
(prior to tadpole cancellation) if all charged quark and leptons exist chirally, and
if all cubicU(N) anomalies cancel. This configuration may already contain a few
candidate right-handed neutrinos, and additional ones mayappear, after tadpole
cancellation, from hidden sector states, or strings between the standard model
and the hidden sector.

Clearly this still leaves a huge number of possibilities to realize this kind
of configuration, but there is an obvious maximally economical choice, namely
identifying all branes of equal charge with each other, and the brane with oppo-
site charge with its conjugate. This then results in aU(3)×U(2)×U(1)×U(1)
model with the following chiral spectrum

3 × (V, V ∗, 0, 0)

3 × (V ∗, 0, V, 0)

3 × (V ∗, 0, 0, V )

6 × (0, V, V ∗, 0)

3 × (0, V, 0, V ∗)

3 × (0, 0, V, V ∗)

Although we anticipated the possible need for anti-symmetric tensors, it turns
out that they are not needed at all in this particular configuration. All anomalies

11In the actual search we have relaxed this condition slightly, and allowed a braned that just yields
anti-neutrinos.
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are already cancelled. This is a consequence of standard model anomaly cancel-
lation. The formula forY is

Y = (x−
1

3
)Qa + (x −

1

2
)Qb + xQc + (x− 1)Qd (3.6)

This model has the feature that it can be realized entirely interms of oriented
strings, which of course implies thatx is not fixed. The converse is not true
because one can allowU(1) anti-symmetric tensors; they do not yield massless
particles and hence give no restriction onx. By construction, this is the minimal
realization of the standard model in terms of oriented strings. Oriented configu-
rations (although more complicated than the one shown above) were considered
earlier in [41] [9] in the context of type-II theories.

One can generalize these orientable models further by allowing stackc and/or
d to consist of several type C and D branes. The most general configuration
can be denoted asU(3) × U(2) × U(p1 + q1) × U(p2 + q2), wherep1 is the
number of type C branes on stack c, etc. To achieve this split we allow non-
trivial generatorsWc andWd in the definition ofY . This gives an infinite set
of solutions, all with at least three Higgs pairs (this follows fromU(2) anomaly
cancellation). All these models have in fact precisely the same structure as the
basic four-stack model above, except for an additional possibility that occurs if
type C or D branes are in different positions (i.e. have different boundary labels).
If in total three open strings are needed ending on brane C to get three anti-
quarks, then if there are several type C branes the total number of such strings
must be three. However, each multiplicity can be positive and negative, and hence
cancellations are possible, that show up in the spectrum as additional mirrors on
top of the basic configuration.

One of these cases corresponds to the “trinification" model [42,43]. One starts
with a gauge groupSU(3)color × SU(3)L × SU(3)R and matter in three copies
of the representation(V, V ∗, 0) + (V ∗, 0, V ) + (0, V, V ∗). This configuration
fits into our construction by starting with four stacks (a, b, c, d) with a CP group
U(3) × U(2) × U(1) × U(3), andY = − 1

6
Qb + 1

3
Qc +Wd, whereWd is the

SU(3)d generatordiag(1
3
, 1

3
,− 2

3
). The spectrum is three times(V, V ∗, 0, 0) +

(V, 0, V ∗, 0) + (V ∗, 0, 0, V ) + (0, V, 0, V ∗) + (0, 0, V, V ∗). The trinification
model is obtained by putting stacksb andc on top of each other. In terms of the
foregoing discussion, this model hasx = 1

3
, and three branes of type C (one from

stackc and two from stackd) plus one brane of type D (from stackd). The value
x = 1

3
can easily be understood as follows: in a standard trinification modelY

is embedded entirely inSU(3) factors, and cannot have components in the brane
charges. Therefore in particular it cannot have any component inU(3)a.

The foregoing orientable standard model configurations canbe realized in
principle in non-orientable string theories. In these realizations the value ofx
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is often fixed by the requirement thatY does not get a mass due to bilinear cou-
plings with axions. Sometimes this yields rather bizarre looking solutions. For
example, in our set of solutions there is one withta = 1

33
. There are also cases

whereY remains massless for any value ofx.

3.2. Charge Quantization

There are further constraints onx if one considers unoriented models. First of
all, for generic values ofx the non-chiral part of the string spectrum contains
states of fractional or even irrational charge, from(V, V ) bi-fundamentals or from
rank-2 tensors. Since such states are always non-chiral, they may be massive, or
become massive under perturbations of the model. They wouldhowever be stable
and are not confined by additional gauge interactions, because they live entirely
within the standard model sector. Therefore, although thispossibility cannot be
completely ruled out, it certainly seems preferable to avoid it.

The foregoing discussion is quite general, and can be used toanalyse charge
quantization for non-standard-model states in any brane realization of the stan-
dard model. The dependence onQa andQb in (3.6) is the most general one
possible, up to an irrelevant sign choice. The complete string spectrum contains
states with charges of all sums and differences of the components ofY , as well
as all values multiplied by 2. It is easy to see that just from branesa andb, we
get the charge quantization condition

x = 0 mod
1

2
, (3.7)

if we require that all massive open string states from bi-fundamentals and rank
two tensors between standard model branesa andb to have integer charges (tak-
ing into account QCD confinement). Clearly this condition also implies charge
integrality if branes of types C,D,E and F are present. Only if charged leptons
come from a chirally decoupled sector (the third or fourth case listed earlier)
further conditions may be needed.

A second type of fractional charges that may occur are those coming from
strings with a single end on a standard model brane, and the other end on a hidden
sector brane. Even if these states are non-chiral, they certainly exist as massive
excitations. In principle, such charges could be confined byhidden sector gauge
groups, but to avoid them altogether, the following condition must hold

x = 0 mod1 . (3.8)

Also this condition can be derived from just thea andb branes. If it is satis-
fied, branes of types C, D, E and F satisfy the hidden sector charge quantization
condition, but types G and H do not, in general.
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Note that the first charge quantization condition (absence of fractional charge
within the standard model sector) is automatically satisfied in oriented strings for
anyx, because the strings that might violate it simply do not exist in oriented
string theories. However, quantization conditions do arise if one wishes to in-
clude hidden branes. These should not contribute toY . This imposes the second
charge quantization condition,x = 0 mod 1, for oriented strings.

3.3. Non-orientable configurations

The foregoing restrictions were necessary if one wishes to avoid non-chiral frac-
tionally charged matter. More severe restrictions apply ifsome of the quarks
and leptons themselves come from states that break the orientability of the open
string theory.

Note first of all that in most cases both type C and type D branesare needed,
in order to get up and down anti-quarks. The only way out is to get either all
down anti-quarks or all up anti-quarks from anti-symmetricU(3) tensors. The
former possibility requiresx = 1

2
, and then types C and D are the same. This

possibility is realized in flippedSU(5) models, of which we will give examples
later. The second option leads tox = 0. Then no type D brane is needed for the
quarks, and type C branes do not contribute toY . This possibility finds a natural
realization inSU(5) GUT models. For all other values ofx at least one type C
and one type D brane is needed in addition to branesa andb.

Consider now the possibility that a chiral state (a quark or lepton, or a mirror)
breaks the orientability of the configuration. Obviously this sort of analysis ap-
plies to each chirally decoupled subsector separately (connected components of
quiver diagrams), and we will only consider the component connected to thea
andb branes.

The possibilities for such a chiral state, and the resultingrestrictions onx are
as follows
• Chiral anti-symmetric tensors on branea; x = 0 or 1

2

• Chiral anti-symmetric tensors on braneb; x = 0, 1
2

or 1
• (V, V ) between on branesa andb; x = 1

2
.

• Chiral tensors on a brane of type C;x = 0, 1
2

or− 1
2

• Chiral tensors on a brane of type D;x = 3
2
, 1 or 1

2

• (V, V ) between branea or b and a type C brane;x = 0 or 1
2
.

• (V, V ) between branea or b and a type D brane;x = 1
2

or 1
• (V, V ) between type C and a type D brane;x = 0, 1

2
or 1

Note that the occurrence of(V, V ) is automatic if one of the endpoint branes is
real, and that(V, V ) between two distinct type C or type D branes is equivalent to
chiral tensors on a single such brane. We can extend this listfurther by including
branes of types E and F, but this will just give similar numbers modulo half-
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integers. Note that in all cases the quantization condition(3.7) is satisfied.
One important general observation can be made now. For values of x other

than0, 1
2

and1 all quarks and lepton doublets must be realized exactly as inthe
orientable four-stack model discussed above, because anti-quark weak singlets
can only come from bi-fundamentals, andU(2) anomaly cancellation cannot be
fixed with anti-symmetric tensors. This only leaves some freedom for the lep-
tonic weak singlets. On the other hand, forx = 0, 1

2
and1 theU(2) anomaly

condition can always be satisfied by adding anti-symmetric tensors. They con-
tribute±2 to the anomaly, but since the total number of doublets is even, so is the
chiral number of doublets (the number ofV ’s minus the number ofV ∗). (Note
that is true for anyU(2) because of cancellation of global anomalies).

If we limit ourselves to four stacks, the number of possibilities is even smaller.
For values ofx other than0 and1

2
branes of both types C and D are needed. This

means that there is no room for E or F branes and the more exoticvalues forx
they might allow. This is true even if branes C and D are “unified" into a single
Chan-Paton group. In order to get a value ofx outside the range− 1

2
, . . . , 3

2
in

a non-orientable configuration, it must be the chiral strings between the unified
C/D brane and E or F type branes that break the orientability,i.e.both(V, V ) and
(V, V ∗) must occur. But it is easy to see that in that case such states necessarily
give rise to leptons with charges±2, because they must couple to both the type
C and the type D brane.

This reduces the allowed range forx to − 1
2
. . . 3

2
, and one can read off from

the list which orientation breaking chiral states are allowed in each case. In
the following sections we will show how to construct four-stack non-orientable
realizations of any of these, at least as “bottom up" brane configurations.

3.4. The casesx = − 1
2

or x = 3
2

To get the largest and smallest numbers in this range, the only orientation break-
ing chiral states must be chiral tensors on a type C or type D brane, respectively.
This implies that the first five representations (3.6) (thoseyielding quarks and
lepton doublets) must be identical to those of the four-stack orientable model (up
to mirror pairs due to distributing type C and D branes over various positions, as
discussed above for the orientable configuration). In particular it means that we
can only vary the open string origin of the charged leptons. The values− 1

2
and

3
2

are essentially “dual" to each other under interchange and conjugation of the
type C and D branes.

To construct a non-orientablex = − 1
2

configuration we start with four stacks
(a, b, c, d) generating a CP groupU(3) × U(2) × U(1) × U(1), with the latter
two are type C and D branes respectively. The only allowed deviation in com-
parison to the orientable configuration areSc symmetric tensors on branec, m
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bi-fundamentals(V, V ∗) between branesc andd, Ac anti-symmetric tensors on
branec andAd on braned. Although the anti-symmetric tensor can occur only
in non-orientable strings, they do not break the orientability in the sense of fixing
x, because they do not yield massless particles imposing constraints onx. Their
only rôle is to cancel chiral anomalies.

We get the following conditions from cubic anomaly cancellation and the re-
quirement that the net number of positively charged leptonsmust be three:

5Sc +m− 3Ac = 3

−m− 3Ad = −3

m− Sc = 3

The solution isSc = −3Ad,m = 3− 3Ad, Ac = −6Ad. Hencem andSc must
be multiples of 3, and sinceSc = 0 brings us back to an orientable configuration,
the simplest non-trivial solution isSc = −3,m = 0,Ac = −6 andAd = 1. The
analysis forx = 3

2
is analogous, interchanging the rôles of branes C and D.

Another set of possibilities (forx = − 1
2
) is obtained by putting three type-C

branes in stack c, with the CP multiplicity providing the multiplicities of the anti-
quarks and the lepton doublets. Now anti-symmetric tensorson branec produce
chiral particles, and fixx. A simple sequence of solutions is obtained forSc = 0,
m = 1−Ad,Ac = −Ad. This is aU(3)×U(2)×U(3)×U(1)solution with one
anti-symmetric conjugate tensor on branec (which provides the charged leptons)
and an anti-symmetric tensor on braned, just to cancel anomalies.

One can generalize this further by allowing(p1, q1) type (C,D) branes on stack
c, and(p2, q2) type (C,D) branes. This is accomplished by having CP gauge
groupsU(p1 + q1)c andU(p2 + q2)d, and splitting up their contribution toY
by means of non-trivial generatorWc andWd in (2.2). Since there must be both
type C and type D branes, and they cannot come all from the samestack, we may
requirep1 > 0 andq2 > 0. Solving the constraints then yields solutions only in
the following cases:p1 = 1 or 3, q2 = 0, q2 = 1 and arbitraryp2, each with a
sequence of allowed values for the representation multiplicities. The spectra with
p2 6= 0 are rather unappealing: they either haveGCP-chiral pairs of mirror anti-
quarks, or large numbers of rank-2 tensors. The ones withp2 = 0 were already
discussed above.

3.5. The casex = 1

A simple way to obtain a configuration withx = 1 is to replace the fourth CP
group in the orientable configuration byO(1) in order to break the orientability.
In addition, there is a possibility of allowingk anti-symmetric tensors ofU(2),
yielding k charged leptons. If branec has a Chan-Paton groupU(1), the most



Orientifolds, and the search for the Standard Model in string theory 25

general structure is, with CP-groupU(3) × U(2) × U(1) ×O(1) is

3 × (V, V ∗, 0, 0)

3 × (V ∗, 0, V, 0)

3 × (V ∗, 0, 0, V )

m × (0, V, V ∗, 0)

n × (0, V, 0, V )

l × (0, 0, V, V )

k × (0, A, 0, 0)

t × (0, 0, A, 0)

with the conditions

m− n = 3

−9 +m+ n− 2k = 0

k + l = 3

9 − 2m+ l − 3t = 0

These are respectively the requirements of three lepton doublets,U(2) anomaly
cancellation, three charged leptons and branec anomaly cancellation. This yields
a one-parameter set of solutions,m = 6 + k, n = 3 + k, l = 3 − k, t = −k.
There are many more possibilities if we allow larger CP-factors forc andd. It is
also possible to use aU(1) CP-factor ford. This leads to an additional anomaly
constraint, but there are many ways to satisfy it by replacing some of the vectors
by their conjugates, and adding anti-symmetric and/or symmetric tensors. The
latter yield singlet neutrinos. The complete solution is too complicated to present
here.

3.6. Realizations with three brane stacks forx = 0

The casesx = 0 andx = 1
2

allow far more possibilities. We will solve them here
in general, in the special case that they are realized with just three branes, yielding
a groupU(3) × U(2) × U(p, q), wherep andq are the number of eigenvaluesx
andx− 1.

Consider firstx = 0. We assume that there aret chiral rank-2 tensors on brane
a. Then the most general choice of bi-fundamentals for anti-quarks and lepton
doublets is as follows

n × (V ∗, 0, V )

m × (V ∗, 0, V ∗)
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k × (0, V, V ∗)

l × (0, V, V )

Furthermore we allowr chiral anti-symmetricU(2) tensor, anda ands chiral
anti-symmetric and symmetricU(p, q) tensors. The latter are allowed only if
q = 0 (since otherwise one gets charge 2 leptons), and ifq > 1 noU(p, q) tensors
are allowed at all. Furthermore we must requiremq = lq = 0 to prevent particles
with unacceptable charges. To get three lepton doublets we needk(p − q) = 3,
i.e. p− q = ±3 or±1. The total number of charged leptons is−r − apq.

Let us assume first thatq > 1. Thena = s = 0, andr = −3, andm = l = 0.
U(2) anomaly cancellation then implies(p + q)k − 2r − 9 = 0, and hence
(p + q)k = 3. But we have already seen thatk(p − q) = 3, and hence this is
not consistent with the assumption. Now assumeq = 1. Also in this casem and
l must vanish. Then the condition for getting three anti-down-quarks isnp = 3.
This allowsp = 1 or p = 3, but neither is consistent withp− q = ±3 or±1.

Hence the only possibility isq = 0. Thenr = −3. The third brane does not
contribute toY , and the distinction betweenV andV ∗ on that brane is irrelevant
for all hypercharges. The conditions for getting the right number of anti-down
quarks is(n + m)p = 3, and for lepton doublets it is(k + l)p = 3. Hencep
is either 1 or 3. Anti-up quarks can only come from thet anti-symmetricU(3)
tensors. Hencet = 3. In theU(3) × U(2) subgroup we find the representation
3× (A, 0)+3× (V, V ∗)+3× (0, A∗), which of course fits precisely in3× (10)
of U(5). TheU(1) generatorsY becomes anSU(5) generator. Hence the only
possibility forx = 0 and at most three participating branes is brokenU(5). This
can be reduced to two participating branes by putting thea andb branes on top
of each other, to get unbrokenU(5). The CP group on the third brane can be
U(1) or U(3), but since this brane does not contribute toY one can also allow
O(1) orO(3). In that case there are no anomaly constraints to worry about. If the
c-brane group is unitary, the total anomaly is3(n −m) + 2(l − k). This leaves
many possible values, and this anomaly can be cancelled in many ways using
symmetric or anti-symmetric tensors. In the spectrum, these appear as standard
model singlets,i.e. candidate anti-neutrinos.

3.7. Realizations with three brane stacks forx = 1
2

Consider nowx = 1
2
. Then if p = q the third brane could be orthogonal or

symplectic, in which case there is no anomaly cancellation condition for it. Fur-
thermore the weak group can then beSp(2). This makes little difference, because
U(2) anomalies can be cancelled by means of anti-symmetric tensors, which in
this case are standard model singlets (right-handed neutrinos) which we do not
constraina priori.
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We assume that there aret chiral rank-2 tensors on branea. Then the most
general structure is as follows

n × (V ∗, 0, V )

m × (V ∗, 0, V ∗)

k × (0, V, V ∗)

l × (0, V, V )

We have to require

t+ np+mq = 3

nq +mp = 3

kp+ lq − kq − lp = 3

for getting the right anti-up, anti-down and lepton doubletcount. The first two
equations imply(n − m)(p − q) = −t, and the last one(k − l)(p − q) = 3.
Hencep 6= q, and branec cannot be real. The only allowed values forp− q are
−3,−1, 1, 3, andt must be a multiple ofp− q. Given these four values, we can
computen − m andk − l. To cancel the anomalies on branec and to provide
charged leptons we introducea anti-symmetric andb symmetric tensors. The
conditions for anomaly cancellation on branec, and a net number of 3 charged
leptons can be combined to yield

3(n−m)(p− q) − 2(k − l)(p− q) − 3(a− b)(p− q) = −6 (3.9)

which together with the previous conditions impliesa− b = n−m. The remain-
ing equations are

(n+m)(p+ q) = 6 − t (3.10)

(a+ b)(p+ q) = (n−m) + 2(k − l) =
6 − t

p− q
(3.11)

From their ratio we see that(n+m) = (p− q)(a+ b). Furthermore we see that
p+ q andp− q must both be divisors of6 − t. This allows a limited number of
values forp+q, and then(a+b) and(n+m) are determined. Hence all solutions
are specified in terms oft plus a limited number of values forp + q andp − q.
There are three more parameters that are not yet specified:k + l, the number
of anti-symmetric tensors on braneb, and the difference between the number of
(V, V ∗) and(V, V ) quark doublets. One linear relation between them is imposed
byU(2) anomaly cancellation; in theSp(2) case there is no constraint.
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3.8. Solutions with type E and F branes

Type E and F branes contribute toY with coefficientsx+1 andx−2 respectively.
They cannot contribute to to quarks or lepton doublets. We assume here that
their contribution includes at least one(V, V ∗) bi-fundamental; if they produce
valid quarks or lepton doublets (or mirrors) only as(V, V ) bi-fundamentals we
conjugate the E/F brane, and redefine its coefficients. Depending on the actual
value ofx an E or F brane then becomes a brane of type C or D, and is already
included in our foregoing discussion.

Furthermore an E/F brane must be connected, by definition, via (0, 0, V, V ∗)
bi-fundamentals to thec-brane. As discussed above, in a four-stack configuration
E or F branes can only be allowed in principle forx = 0 or x = 1

2
. As in the

rest of the paper, we allow thec andd stacks to consist of two brane types, with
eigenvalues differing by one unit. The options are thenc=(C,D), d=(E,C) or
c=(C,D),d=(D,F), where each type can occur with an arbitrary multiplicity, and
E and F have to occur at least once. However, in all cases one ofthe two branes
on stackc would give rise to a charge-2 lepton. This reduces the possibilities to
c=(C),d=(E,C) forx = 1

2
(and its conjugate,c=(D), d=(D,F)) orc=(D), d=(D,F)

for x = 0. However, the latter possibility is ruled out, since at least one C-
type brane is needed to producedc anti-quarks. The next constraint is anomaly
cancellation for stackd. Since it only shares bi-fundamentals(0, 0, V, V ∗) with
branec and nothing with any other brane, the anomalies of theV ∗’s must be
cancelled by rank-2 tensors. This forbids two distinct Y-eigenvalues on stack
d, since the sums of these eigenvalues would appears as invalid charges in the
spectrum. It also limits the multiplicity of the E or F branesto 1, and only allows
anti-symmetric tensors to cancel the anomaly. The multiplicity of (0, 0, V, V ∗)
must then be a multiple of three.

Configurations of this type can indeed be constructed. Thec-group can either
beU(1) or U(3). In the former case, there is a two-parameter series of solu-
tions labelled by the number ofSU(3)a anti-symmetric tensors, and the number
of (0, 0, V, V ∗). TheU(1)c anomalies are cancelled by anti-symmetric and/or
symmetric tensors, and the latter also contribute charged leptons. Ifc-group is
U(3), there must be three anti-symmetricconjugatetensors ofSU(3)a (yielding
three left-handed down quarks, which must be combined with six left-handed
down anti-quarks from(V ∗, 0, V, 0)), and there can be charged leptons from
(0, 0, V, V ∗) as well as anti-symmetricU(3) tensors.

Furthermore, one may use bothU(2) andSp(2) as the Chan-Paton group of
braneb.

None of these models have appeared in our top-down search.
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3.9. Solutions with type G branes

Type-G branes are defined as branes that contribute non-trivially to Y but that
contribute to the chiral spectrum only through rank-2 tensors. This implies that
their Y -coefficient must be± 1

2
. If x = 1

2
, this can be viewed as just a stan-

dard type C or D brane. These cases are taken into account in our bottom-up
construction as standardx = 1

2
models. They do indeed occur as brane configu-

rations, although rarely. For example, we have generated all brane configurations
with four unitary CP factors, at most three Higgs pairs, at most threeGCP ex-
otics and at most sixGCP chiral singlets. Of the 10820995 unitary models with
x = 1

2
, only 338 have type-G branes,i.e. a brane with only chiral tensors and no

bi-fundamentals.
A more interesting situation occurs whenx = 0 (the only other value ofx

where type-G branes might occur). In that case the type-G brane has a non-
canonical contribution± 1

2
to Y (the canonical value is 0 or±1).

However, the foregoing analysis of three brane realizations withx = 0 shows
that this possibility does not exist. The only three-brane models are (broken)
SU(5) with a set of neutral C-type branes. This result was obtainedwithout
requiring any particular value for the number of charged leptons. The latter came
out uniquely as three. Since thec stack is neutral, it cannot provide charged
leptons or mirrors either. Hence all three-stack models already have precisely
three charged leptons, and all the G-brane could still do is add mirror pairs. This
could happen even with a chirald stack, for example with three anti-symmetric
tensors and a symmetric tensor ofU(2), with Wd = diag(1

2
,− 1

2
). However,

this is not of much interest, and furthermore these models are equivalent to those
where braned does not contribute toY at all, and braned just yieldsGCP-chiral
neutrinos.

4. Statistics of bottom-up configurations

In this section we will provide an enumeration of bottom-up configurations, pro-
viding some numbers to the theoretical analysis of the previous section. We will
consider for simplicity thec andd groups to be abelian. We will also impose
(generalized) anomaly cancellation.

The associated statistics is shown and compared in table 5 ofthe next section,
where detailed definitions are also given.

4.1. Three stacks: theU(3) × U(2) × U(1) models

We first consider three-stack models. We will consider the possible realizations
of MSSM-like Higgs pairs, and the presence of baryon and lepton number sym-
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metries. We also indicate the total number of configurationsof a given type. In
our search, we can also include the right-handed neutrinoνc which may appear
as an open string with both ends on the weak or other branes.

Requiring that the particles have the proper hypercharge there are two possible
ways to embed the Standard Model in this D-brane system of three stacks, [25]:

Y = −
1

3
Qa −

1

2
Qb , Y =

1

6
Qa +

1

2
Qc . (4.1)

For the first embedding,Y = − 1
3
Qa − 1

2
Qb, we obtain the following al-

lowed spectra, (bỹR we indicate that both the representationR or the conjugate
representationR∗ can be a valid choice)

Q : (V, V, 0)

uc : (A, 0, 0)

dc : (V ∗, 0, Ṽ )

L : (0, V ∗, Ṽ ∗)

lc : (0, A, 0)

H : (0, V, Ṽ )

H ′ : (0, V ∗, Ṽ )

From the above charge assignments we can construct familiesand search for
triplets of these families which form anomaly-free models.For that embedding
(Y = − 1

3
Qa−

1
2
Qb) there are 10 different anomaly-free spectra that describethe

SM. If the anti-neutrinoνc also arises from strings stretching inside this stack, it
will be of the form(0, 0, S̃).

For the second embeddingY = 1
6
Qa + 1

2
Qc we have the following allowed

spectra

Q : (V, Ṽ , 0)

uc : (V ∗, 0, V ∗)

dc : (A, 0, 0) or (V ∗, 0, V )

L : (0, Ṽ , V ∗)

lc : (0, 0, A)

H : (0, Ṽ , V )

H ′ : (0, Ṽ , V ∗) .

There are 24 different anomaly-free models. If the anti-neutrino νc also arises
from strings stretching inside this stack, it will be of the form (0, Ã, 0). Notice
the ambiguity of the representations (with tilde) when a brane does not contribute
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to the hypercharge and also the two different possibilitiesfor the charges ofdc:
(V ∗, 0, V ) or (A, 0, 0) in the second case.

The baryon numberB = Qa/3 is a gauge symmetry only in models where
dc arises from a string with the two ends onto different branes.In none of the
models above, lepton number is a symmetry.

4.2. Four stacks:U(3) × U(2) × U(1) × U(1)′ Models

In this section, we study four-stack realizations of the Standard Model. We con-
tinue with the statistics of fours-stack models.

• HyperchargeY = (x− 1
3
)Qa + (x− 1

2
)Qb + xQc + (x− 1)Qd

Notice that in order forx to remain arbitrary, the right-handed neutrino must
necessarily arise in the hidden sector. The corresponding charge assignments are:

Q : (V, V ∗, 0, 0)

uc : (V ∗, 0, 0, V )

dc : (V ∗, 0, V, 0)

L : (0, V, V ∗, 0) or (0, V ∗, 0, V )

lc : (0, 0, V, V ∗)

H : (0, V, 0, V ∗) or (0, V ∗, V, 0)

H ′ : (0, V, V ∗, 0) or (0, V ∗, 0, V )

Following the same spirit as in the tree-stack models, we canform families from
the above charge assignments and require that triplets of them are free of irre-
ducible anomalies. For the present hypercharge embedding there is only one
anomaly-free model which can describe the SM and given by three copies of the
previous assignments; it is (3.6) shown in the previous section

• HyperchargeY = − 1
3
Qa − 1

2
Qb +Qd

The corresponding charge assignments are:

Q : (V, V ∗, 0, 0)

uc : (A, 0, 0, 0) or (V ∗, 0, 0, V )

dc : (V ∗, 0, Ṽ , 0)

L : (0, V, Ṽ , 0) or (0, V ∗, 0, V ∗)

lc : (0, A∗, 0, 0) or (0, 0, Ṽ , V ∗)

H : (0, V ∗, Ṽ , 0) or (0, V, 0, V ∗)

H ′ : (0, V ∗, 0, V ) or (0, V, Ṽ , 0) .
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If νc is coming from the hidden sector, there are 302 anomaly-freemodels which
can describe the SM particles. Among them, there are 62, 72, 96 and 72 models
with three, two, one and none chiral Higgs pairs.

On the other hand, ifνc is attached onto branes of the above stacks, it can
only be charged under theU(1)c which does not contribute to the hypercharge.
Therefore, it will transform as(0, 0, S̃, 0). In that case, there are 1208 different
anomaly-free models which can describe the SM particles (includingνc). Among
them, there are 240, 384, 288 and 248 models with tree, two, one and none chiral
Higgs pairs.

Whenuc is not described by an antisymmetric representation, the baryon num-
berB = Qa/3 is conserved.

• HyperchargeY = 2
3
Qa + 1

2
Qb +Qc

The corresponding charge assignments are:

Q : (V, V ∗, 0, 0)

uc : (V ∗, 0, 0, Ṽ )

dc : (V ∗, 0, V, 0)

L : (0, V ∗, 0, Ṽ ) or (0, V, V ∗, 0)

lc : (0, A, 0, 0) or (0, 0, V, Ṽ )

H : (0, V ∗, V, 0) or (0, V, 0, Ṽ )

H ′ : (0, V ∗, 0, Ṽ ) or (0, V, V ∗, 0)

In total, there are 6 different anomaly-free models which can describe the SM
particles with chiral Higgs-pairs.

A νc which is a string attached onto these stacks of branes would be of the
form (0, 0, 0, S̃). In that case, there are 24 different anomaly-free models with
chiral Higgs-pairs (includingνc) and they all have baryon numberB = Qa/3.

• HyperchargeY = 1
6
Qa + 1

2
Qc −

1
2
Qd

The corresponding charge assignments are:

Q : (V, Ṽ , 0, 0)

uc : (V ∗, 0, V ∗, 0) or (V ∗, 0, 0, V )

dc : (A, 0, 0, 0) or (V ∗, 0, V, 0) or (V ∗, 0, 0, V ∗)

L : (0, Ṽ , V ∗, 0) or (0, Ṽ , 0, V )

lc : (0, 0, S, 0) or (0, 0, V, V ∗) or (0, 0, 0, S∗)

H : (0, Ṽ , 0, V ∗) or (0, Ṽ , V, 0)

H ′ : (0, Ṽ , 0, V ) or (0, Ṽ , V ∗, 0)

In that case, there are 8552 different anomaly-free models with chiral Higgs pairs
which can describe the SM particles.
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Some models have lepton number. There are four independent combinations:

• QL = 1
2
Qa + 1

2
Qb − 1

2
Qc −

1
2
Qd :

3 × (V, V ∗, 0, 0),

3 × (V ∗, 0, V ∗, 0),

3 × (V ∗, 0, 0, V ∗),

3 × (0, V, V ∗, 0),

3 × (0, V, V, 0),

3 × (0, V, 0, V ),

3 × (0, 0, S, 0).
• QL = Qd :

3 × (V, V ∗, 0, 0),

3 × (V ∗, 0, V ∗, 0),
{

m× (V ∗, 0, V, 0), n× (A, 0, 0, 0)
}

,

3 × (0, V, 0, V ),

3 × (0, V, V, 0),

3 × (0, V, V ∗, 0),

3 × (0, 0, V, V ∗)
wherem,n ∈ [0, 1, 2, 3] andm + n = 3. Therefore,dc in each family can be
either a string which is attached onto thea andc stacks or a string with both ends
on thea stack.
• QL = −Qc :

3 × (V, V ∗, 0, 0),

3 × (V ∗, 0, 0, V ),
{

m× (V ∗, 0, 0, V ∗), n× (A, 0, 0, 0)
}

,

3 × (0, V, V ∗, 0),

3 × (0, V, 0, V ∗),

3 × (0, V, 0, V ),

3 × (0, 0, V, V ∗)
where againm,n ∈ [0, 1, 2, 3] andm+ n = 3.
• QL = 1

2
Qa + 1

2
Qb + 1

2
Qc + 1

2
Qd

3 × (V, V ∗, 0, 0),

3 × (V ∗, 0, 0, V ),

3 × (V ∗, 0, V, 0),

3 × (0, V, 0, V ),

3 × (0, V, 0, V ∗),
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3 × (0, V, V ∗),

3 × (0, 0, 0, S∗)
.

If the right-handed neutrinoνc is attached onto the SM branes, it can be de-
scribed by(0, Ã, 0, 0) or (0, 0, Ṽ , Ṽ ). Includingνc, there are 150672 different
anomaly-free models. Among them, there are 29360, 61344, 48800 and 11168
models with tree, two, one and none chiral Higgs pairs.

If dc is not described by an antisymmetric representation, thereis baryon num-
berB = Qa/3.

• HyperchargeY = 1
6
Qa + 1

2
Qc −

3
2
Qd

The corresponding charge assignments are:

Q : (V, Ṽ , 0, 0)

uc : (V ∗, 0, V ∗, 0)

dc : (V ∗, 0, V, 0) or (A, 0, 0, 0)

L : (0, Ṽ , V, 0)

lc : (0, 0, V ∗, V ) or (0, 0, S, 0)

H : (0, Ṽ , V, 0)

H ′ : (0, Ṽ , V ∗, 0)

In that case, there are 4 different anomaly-free models withchiral Higgs pairs
which can describe the SM.

A νc which is stretched between the four stacks can be of the form(0, Ã, 0, 0).
Includingνc, the number of different charge assignments is 24 (8 of them have
two chiral Higgs pairs and the other 16 have non chiral Higgs pairs). Half of
these states have baryon numberQB = Qa/3 and in none lepton number is a
symmetry. All models have one non-anomalousU(1).

• HyperchargeY = − 1
3
Qa − 1

2
Qb

The corresponding charge assignments are:

Q : (V, V ∗, 0, 0)

uc : (A, 0, 0, 0)

dc : (V ∗, 0, Ṽ , 0) or (V ∗, 0, 0, Ṽ )

L : (0, V ∗, Ṽ , 0) or (0, V ∗, 0, Ṽ )

lc : (0, A∗, 0, 0)

H : (0, V, Ṽ , 0)

H ′ : (0, V ∗, Ṽ , 0)
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with 936 anomaly-free models. Among them, there are 256, 120, 120 and 440
models with tree, two, one and none chiral Higgs pairs.

A νc which will be stretched between the four branes will be of theform
(0, 0, 0, S̃) or (0, 0, S̃, 0) or (0, 0, Ṽ , Ṽ ). Includingνc, there are 106792 different
anomaly-free models. Among them, there are 15072, 32332, 36228 and 23160
models with tree, two, one and none chiral Higgs pairs.

• HyperchargeY = − 5
6
Qa −Qb − 1

2
Qc + 3

2
Qd

The above hypercharge embedding is allowed only in cases where the right-
handed neutrino is coming from the hidden sector. The corresponding charge
assignments are:

Q : (V, V ∗, 0, 0)

uc : (V ∗, 0, 0, V )

dc : (V ∗, 0, V, 0)

L : (0, V ∗, 0, V ) or (0, V, V ∗, 0)

lc : (0, 0, S∗, 0) or (0, 0, V, V ∗)

H : (0, V ∗, V, 0) or (0, V, 0, V ∗)

H ′ : (0, V ∗, 0, V ) or (0, V, V ∗, 0)

In that case, there are 2 different anomaly-free models which can describe the
SM:

3 × (V, V ∗, 0, 0),

3 × (V ∗, 0, 0, V ),

3 × (V ∗, 0, V, 0),

6 × (0, V, V ∗, 0),

3 × (0, V, 0, V ∗),
{

3 × (0, 0, S∗, 0) or 3 × (0, 0, V, V ∗)
}

and they have baryon numberQB = Qa/3. Lepton number is not a symmetry.
• HyperchargeY = 7

6
Qa +Qb + 3

2
Qc + 1

2
Qd

The above hypercharge embedding is allowed only in cases where the right-
handed neutrino is coming from the hidden sector. The corresponding charge
assignments are:

Q : (V, V ∗, 0, 0)

uc : (V ∗, 0, 0, V )

dc : (V ∗, 0, V, 0)

L : (0, V, V ∗, 0) or (0, V ∗, 0, V )
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lc : (0, 0, 0, S) or (0, 0, V, V ∗)

H : (0, V ∗, V, 0) or (0, V, 0, V ∗)

H ′ : (0, V, V ∗, 0) or (0, V ∗, 0, V )

In that case, there are 2 different anomaly-free models which can describe the
SM particles:

3 × (V, V ∗, 0, 0),

3 × (V ∗, 0, 0, V ),

3 × (V ∗, 0, V, 0),

6 × (0, V, V ∗, 0),

3 × (0, V, 0, V ∗),
{

3 × (0, 0, 0, S) or 3 × (0, 0, V, V ∗)
}

and they have baryon numberQB = Qa/3. Lepton number is not a symmetry.

5. Top-down configurations and SM spectra

5.1. Scope of the top-down search

The set of models we are able to search in principle consists of all three and
four-stack combinations of all boundaries of all simple current orientifolds [15]
of all simple current MIPFs [14] of the 168c = 9 tensor products ofN = 2
minimal models. We denote these as(k1, . . . , km), whereki is theSU(2) level,
which ranges from 1 to∞. The total number of MIPFs is 5403, and the total
number of orientifolds 49304. Some of these have zero-tension O-planes, which
means that there is no possibility of cancelling tadpoles between D-branes and
O-planes. This leaves 33012 orientifold models. Of the 168 Gepner models, 5
are non-chiralK3×T2 compactifications, which need not be considered because
they can never yield a chiral spectrum.12 These non-chiral theories contribute in
total 88 MIPFs and 228 orientifolds.

The number of boundary states in a complete set can range froma few hun-
dred to 108612 for tensor product(1, 5, 82, 82). In that case the number of uni-
tary brane pairs is 53046 and 52920 for the two orientifold choices. The number

12Note that all boundaries we consider respect the full chiralalgebra of the tensor product, and all
partition functions are expressed in terms of the characters of that algebra, which are space-time non-
chiral. One may also consider orbifold projections of thesetheories, which reduce the chiral algebra,
and may introduce chiral characters, but our methods do not apply to that case. We do allow the
inverse of this: a chiral theory with a non-chiral extension. Indeed, we found some standard model
configurations for such theories.
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of combinations one needs to consider for a four-stack configuration grows with
the fourth power of the number of pairs. In [17] almost all these cases were
searched. This was possible because the standard model configuration searched
for was more limited. For example, no chiral rank-2 tensors were allowed, reduc-
ing the number of choices for thea,b,c andd branes dramatically. Furthermore
the configuration of [16] is such that branesa andd have a different multiplicity
(3 and 1) but identical intersection numbers with the other branes. This can be
used to reduce the power behavior of the search algorithm essentially from four
to three.

Neither of these shortcuts help us here, and therefore a fullsearch is practi-
cally impossible at present. Here we limit ourselves to MIPFs with at most 1750
boundaries. This limits us to 4557 of the 5403 MIPFS and 29257of the 33012
non-zero tension orientifolds. We can now work out how many brane configura-
tions exist in total. To do this really correctly, unitary, orthogonal and symplectic
branes must be distinguished.

Table 1 Total number of three and four stack configurations ofvarious types.

Type Total This paper

UUU 1252013821335020 1443610298034
UUO, UOU 99914026743414 230651325566
UUS, USU 14370872887312 184105326662
USO 2646726101668 74616753980
USS 1583374270144 73745220170
UUUU 21386252936452225944 366388370537778
UUUO 2579862977891650682 105712361839642
UUUS 187691285670685684 82606457831286
UUOO 148371795794926076 19344849644848
UUOS 17800050631824928 26798355134612
UUSS 4487059769514536 13117152729806
USUU 93838457398899186 41211176252312
USUO 17800050631824928 26798355134612
USUS 8988490411916384 26418410786274

Table (1) lists the total number of configurations for all combinations of uni-
tary, orthogonal and symplectic branes, without taking into account the additional
freedom of assigning Chan-Paton multiplicities. The second column gives the
grand total for all 163 chiral Gepner models and non-zero tension orientifolds. It
is the maximal number of three and four-stack configurationsof given type that
we have at our disposal for Standard Model searches. The third column gives the
size of the subset actually searched in this paper.

The precise counting is as follows. Denote the number of unitary brane pairs
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asNU . Then the total number of UUUU configurations with distinctc andd
branes is(2NU )(NU ) × 1

2
NU (NU − 1), etc. The choices fora, b andc are

independent, since we allow all these stacks to coincide, but if c andd coincide
we regard it as a three-stack configuration. Furthermore both conjugates of the
a brane are counted, because they give rise to conjugateSU(3) representations,
and hence yield distinct spectra. Conjugations of theb, c andd branes can always
be compensated by changing the sign of the coefficients ofY , and hence do not
yield new possibilities.

Obviously, although we cover a substantial fraction of MIPFs and orientifolds,
only a small fraction of possible brane configurations has been searched, because
the missing MIPFs are the ones with the largest number of branes. Nevertheless,
in our previous search [17], which was more extensive, the MIPFs we are not
considering in the present paper produced relatively few SM-configurations and
tadpole solutions. Part of the reason for the latter is that probably there are many
more candidate branes in the hidden sector, making the tadpole equations harder
to solve.

5.2. Standard model brane configurations found

Table 2 Number of standard model configurations sorted by thevalue ofx.

x Total occurrences WithoutSU(3) tensors

−1/2 0 0
0 21303612 202108

1/2 124006839 115350426
1 12912 12912

3/2 0 0
∗ 1250080 1250080

Of the 4557 MIPFs, 1639 contained at least one standard modelspectrum,
without taking into account tadpole cancellation. In table(2) we list the total
number of brane configurations with a chiral standard model spectrum sorted ac-
cording tox. In [17] only a subset of the possiblex = 1

2
models was considered,

but for a much larger set of MIPFs. This produced a total of about 45 million
such configurations, whereas now we find about 124 million, inboth cases be-
fore attempting to solve the tadpole conditions. In column 1, a ∗ indicates that
the value ofx is not fixed by the quark and lepton charges, as is the case in ori-
entable models. In these models, the value ofx may or may not be fixed by the
zero-mass condition forY . If it is fixed, it can in principle have any real value.
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In table (2) this distinction is not taken into account, but we do treat these models
as distinct in the complete list, table (6), to be discussed below.

Apart from thex = ∗ cases, all other models are categorized with the value
of x that follows from the quark and lepton charges as well as the zero mass
condition forY . In some cases, the quark and lepton charges alone might allow
more than one value ofx even for unorientable models. For example, inSU(5)
GUT models one can get the correct spectrum forx = 0 (standardSU(5)) and
x = 1

2
(flippedSU(5)). The zero-mass condition forY always allows the former

option (sinceY is a generator of the non-abelian groupSU(5)) and may or may
not allow the latter. If both are allowed, both are taken intoaccount in table (2).
Finally, if a model withx = ∗ getsx fixed to a half-integer value by theY -mass
condition, it is counted once as anx = ∗ model, and once for the actual value of
x.

In the third column we list how many of the configurations haveno anti-quarks
realized as anti-symmetricSU(3) tensors. As we will discuss later, it is nearly
impossible to get mass terms or Yukawa couplings for such tensors, and therefore
they should be regarded as implausible. Note that anti-symmetricSU(3) tensors
are only allowed forx = 0 andx = 1/2. In the former case, it turns out that
about99% of the configurations have such tensors, whereas forx = 1/2 only a
few per cent have them.

Table 3: Number of standard model configurations and tadpole solu-
tions according to type. Columnsc andd indicate the type of branes
comprising thec andd stacks. Column “Top" contains the total number
of MIPFs for which spectra of given type were found.

x Config. c d cases Total occ. Top Solved
1/2 UUUU C,D C,D 1732 1661111 8011 110(1,0)∗

1/2 UUUU C C,D 2153 2087667 10394 145(43,5)∗

1/2 UUUU C C 358 586940 1957 64(42,5)∗

1/2 UUU C,D - 2 28 2 0
1/2 UUU C - 7 13310 74 3(3,2)∗

1/2 UUUN C,D - 2 60 2 0
1/2 UUUN C - 11 845 28 0
1/2 UUUR C,D C,D 1361 3242251 12107 128(1,0)∗

1/2 UUUR C C,D 914 3697145 12294 105(72,6)∗

1/2 USUU C,D C,D 1760 4138505 14829 70(2,0)∗

1/2 USUU C C,D 1763 8232083 17928 163(47,5)∗

1/2 USUU C C 201 4491695 3155 48(39,7)∗

Continued on next page
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Table 3 – continued from previous page
x Config. c d cases Total occ. Top Solved

1/2 USU C,D - 5 13515 384 5(2,0)
1/2 USU C - 2 222 4 0
1/2 USUN C,D - 29 46011 338 2(2,0)
1/2 USUN C - 1 32 1 0
1/2 USUR C,D C,D 944 45877435 34233 130(4,0)∗

1/2 USUR C C,D 207 49917984 11722 70(54,10)∗

0 UUUU C,D C,D 20 7950 110 2(2,0)
0 UUUU C C,D 164 50043 557 8(0,0)
0 UUUU D C,D 5 4512 40 0
0 UUUU C C 1459 999122 5621 119(40,3)∗

0 UUUU C D 26 6830 54 0
0 UUU C - 11 17795 225 3(3,3)∗

0 UUUN C - 31 5989 133 0
0 UUUR C,D C 90 195638 702 4(4,0)
0 UUUR C C 4411 7394459 24715 392(112,2)∗

0 UUUR D C 24 50752 148 0
0 UUR C - 8 233071 1222 6(6,0)
0 UURN C - 37 260450 654 4(4,0)
0 UURR C C 1440 12077001 15029 218(44,0)
1 UUUU C,D C,D 5 212 8 0
1 UUUU C C,D 6 7708 21 0
1 UUUU D C,D 4 7708 11 0
1 UUUR C,D D 1 1024 2 0
1 UUUR C D 1 640 4 0
∗ UUUU C,D C,D 109 571472 1842 19(1,0)∗

∗ UUUU C C,D 32 521372 1199 7(7,0)
∗ UUUU D C,D 8 157232 464 0
∗ UUUU C D 1 4 1 0

Table 3 summarizes all 19345 top-down distinct spectra we have observed
after considering all three and four stacks counted in the last column of table (1).
The spectra are distinguished on the basis of the chiral numbers of rank-2 tensors
and bi-fundamentals, the decomposition ofY , the presence and embedding of
additional massless (i.e. not acquiring mass from axion couplings)U(1)-gauge
bosons from thea, b, c, d stacks and brane unification among thea, b, c, d
branes. The columns contain the following data:
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• 1. The value ofx. An asterisk indicates that any value is allowed. In all other
cases the value ofx is the one determined from the “zeroY -mass" condition.
• 2. Number of participating branes and their property:
– U: Unitary (complex)
– S: Symplectic
– R: Real (Symplectic or Orthogonal)
– N: Neutral (see below for a definition)
• 3. Composition of stackc in terms of branes of types C and D.
• 4. Composition of stackd in terms of branes of types C and D.
• 5. Total number of distinct (in the sense defined above) spectra of the type

specified in the first four columns.
• 6. Total number of spectra of given type. This is the grand total of all such

spectra found after scanning all the three and four brane configurations in the last
column of table (1), and assigning Chan-Paton multiplicities in order to get the
Standard Model gauge group and spectrum.
• 7. Total number of MIPFs for which spectra of given type were found.
• 8. Number of distinct spectra for which tadpole solutions were found. Be-

tween parenthesis we specify how may of these solutions haveat most three
mirror pairs, three MSSM Higgs pairs and six singlet neutrinos, and how many
have no mirror pairs, at most one Higgs pairs, and precisely three singlet neutri-
nos. An asterisk indicates that at least one solution was found without additional
hidden branes.

In column 2, “Neutral" means that this brane does not participate to Y, and that
there are no chiral bi-fundamentals ending on it. The latterfact implies that there
must be chiral rank-2 tensors in this brane (which in particular implies that it must
be unitary), or otherwise it would violate condition 5b of the search algorithm.
Such a brane can only give singlet neutrinos. We found a totalof 111 such cases.
They are anomaly free by having (a multiple of)−(N−4) symmetric tensors and
(N + 4) antisymmetric ones (forN = 4 the anti-symmetric tensors are actually
real, and should strictly speaking have been omitted.) An N-brane can always be
removed to get a valid three-stack model, which of course satisfies all our search
criteria by itself. Note that branes of this kind are in any case allowed to exist in
the hidden sector, and therefore from the point of view of classification it is most
natural to view these models as three-stack models with one additional hidden
sector brane. The reason we explicitly allowed them is that singlet neutrinos
from separate branes might be of interest for understandingthe neutrino mass
problem (see also section 7.4). In the following analysis wewill omit these 111
cases.
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5.3. Bottom-up versus Top-down

In table( 4) and (5) we compare the bottom-up and top-down results. This can
only be done by imposing some restrictions on the spectra. Inaddition to three
families of quarks and leptons and fully non-chiral matter (which we ignore)
there can beGCP -chiral matter that isGSM non-chiral. The possibilities are
mirror pairs of fermions, singlet neutrino’s and MSSM Higgspairs. Denote these
three quantities asM ,N andH . If we leave them unrestricted, there is an infinite
number of bottom up solutions. Given the current experimental knowledge, the
optimal values for getting the standard model would appear to beM = 0,N = 3
andH = 1. However, if there is a surplus of these particles, one can assume
that they get a standard-model-allowed mass above the weak scale. On the other
hand, if there is a shortage (H = 0 or N < 3), there still remains a possibility
that the missing particles can come fromGCP non-chiral matter, or (in the case
of neutrinos) from additional branes (other thana, b, c or d). Note for example
that most of the models of [17] have noGCP -chiral Higgses, but usually a large
number of fully non-chiral Higgs candidates. Since we have to impose cuts on
M,N andH to make the comparison, we present the comparison for two cases:
a loose cut (withM ≤ 3, N ≤ 6, H ≤ 3) and a tight cut (M = 0, H ≤ 1 and
N = 3). The former comparison is in table (4) and the latter in table (5). In both
tables, the number of bottom-up configurations satisfying the criteria is listed in
column 5. In column 6, we list the number of those bottom-up configurations that
was encountered in our search, and in column 7 the total number of occurrences
of the given class13of configurations, summed over all three or four brane com-
bination considered in the search. This is the same information as in column 6
of table (3), but with the limit on the numbersM,N andH imposed. In column
8 we list the number of distinct configurations for which the tadpole conditions
were solved. In these tables the top-down spectra are only distinguished on the
basis of criteria that can be directly compared to the bottom-up approach. Brane
unification is ignored and the masses ofU(1) vector bosons are not taken into
account. This means that some models that were distinct in the previous table
are considered identical here, because they merely differ by branes that are not
on top of each other, or by different embeddings of an additional masslessU(1)
factor. This affects column 6 and column 8, but not column 7, which is simply
the sum of all occurrences within the class. Note for examplethe in the class
(x = ∗, UUUU, c=C, d=(C,D)) there is a total number of occurrences of 521372
in both tables. This implies that all models satisfy the constraints on the number
of Higgs, mirrors and neutrinos. In table 1 these models correspond to 32 dis-
tinct cases with 7 distinct solutions, whereas in table 4 they form only 7 distinct
models with 3 distinct solutions.

13By “class" we mean here all brane configurations that match the criteria in the first four columns.
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Table 4: Bottom-up versus Top-down results for spectra with at most
three mirror pairs, at most three MSSM Higgs pairs, and at most six
singlet neutrinos. The column B-U contains the bottom-up construc-
tions while the column T-D contains the top-down constructions

x Config. c d B-U T-D Occurrences Solved
1/2 UUUU C,D C,D 27 9 5194 1
1/2 UUUU C C,D 103441 434 1056708 31
1/2 UUUU C C 10717308 156 428799 24
1/2 UUUU C F 351 0 0 0
1/2 UUU C,D - 4 1 24 0
1/2 UUU C - 215 5 13310 2
1/2 UUUR C,D C,D 34 5 3888 1
1/2 UUUR C C,D 185520 221 2560681 31
1/2 USUU C,D C,D 72 7 6473 2
1/2 USUU C C,D 153436 283 3420508 33
1/2 USUU C C 10441784 125 4464095 27
1/2 USUU C F 184 0 0 0
1/2 USU C - 104 2 222 0
1/2 USU C,D - 8 1 4881 1
1/2 USUR C C,D 54274 31 49859327 19
1/2 USUR C,D C,D 36 2 858330 2
0 UUUU C,D C,D 5 5 4530 2
0 UUUU C C,D 8355 44 54102 2
0 UUUU D C,D 14 2 4368 0
0 UUUU C C 2890537 127 666631 9
0 UUUU C D 36304 16 6687 0
0 UUU C - 222 2 15440 1
0 UUUR C,D C 3702 39 171485 4
0 UUUR C C 5161452 289 4467147 32
0 UUUR D C 8564 22 50748 0
0 UUR C - 58 2 233071 2
0 UURR C C 24091 17 8452983 17
1 UUUU C,D C,D 4 1 1144 1
1 UUUU C C,D 16 5 10714 0
1 UUUU D C,D 42 3 3328 0
1 UUUU C D 870 0 0 0
1 UUUR C,D D 34 1 1024 0
1 UUUR C D 609 1 640 0

Continued on next page
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Table 4 – continued from previous page
x Config. c d B-U T-D Occurrences Solved

3/2 UUUU C D 9 0 0 0
3/2 UUUU C,D D 1 0 0 0
3/2 UUUU C, D C 10 0 0 0
3/2 UUUU C,D C,D 2 0 0 0
∗ UUUU C,D C,D 2 2 5146 1
∗ UUUU C C,D 10 7 521372 3
∗ UUUU D C,D 1 1 116 0
∗ UUUU C D 3 1 4 0

Some bottom-up solutions can exist for more than one value ofY . The most
obvious example is the classx = ∗, which can exist for all values ofY . In
making the comparison we have used the actual massless linear combination of
Y allowed by the axion-gauge boson couplings in the top-down Gepner model.
Only for thex = ∗ case we have ignored the precise form ofY , because this
would split this class into an indefinite number of subclasses. However, in those
cases whereY was of the form corresponding tox = 0, 1

2
or 1, we have compared

those top-down models twice: once in thex = ∗ class, and once in the class given
by Y . This explains the tadpole solution indicated in the last column of table (4)
for anx = 1 model. Actually, this model hasx = ∗, butx is fixed to 1 by the
Y -mass condition.

The bottom-up numbers in these tables cannot be directly compared with those
in section 4 because here we allow several branes of types C and D on the same
stack, whereas in section 4 we assumed that stackc consists only of a single type-
C brane, and stackd of a single type-D brane. Furthermore in section 4 bothGCP

chiral andGCP non-chiral Higgses are counted. We do not do that here because
the top-down searchGCP non-chiral Higgses were ignored.

Table 5:Bottom-up versus Top-down results for spectra without mirror
pairs, at most one MSSM Higgs pair, and precisely three singlet neutri-
nos. Only cases that have been found in the top-dow search areshown.

x Config. c d B-U T-D Occurrences Solved
1/2 UUU C - 8 2 13242 1
1/2 UUUU C C 10670 16 81985 4
1/2 UUUU C C,D 148 8 378418 3

Continued on next page
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Table 5 – continued from previous page
x Config. c d B-U T-D Occurrences Solved

1/2 UUUR C C,D 495 13 641485 3
1/2 USUU C C,D 314 6 2757164 3
1/2 USUU C C 10816 6 4037872 4
1/2 USUR C C,D 434 3 47689675 3
0 UUUU C C,D 23 1 6 0
0 UUUU C C 1996 5 17301 2
0 UUUU C D 91 4 4227 0
0 UUU C - 9 1 15282 1
0 UUUR C C 5136 15 63051 1

Table (6) contains all 19345 distinct models we found. Unfortunately the full
table would be more than 500 pages, and is too long to include,so we have only
displayed the top and some entries of interest.14 The table is ordered according
to the total number of occurrences (listed in column 2) of a given spectrum. Col-
umn 3 gives the number of MIPFs for which it occurs. This givessome more
indication how rare a certain spectrum is. In column 4 we givethe Chan-Paton
group, with factors combined if some of the branes are on the same position. In
column 5 we give a rough indication of the spectrum. Here “V" means that a
CP-factor only contributes bi-fundamentals, “S"(“A") that there is at least one
(anti)-symmetric tensor and “T" that both occur. Column 6 gives the value ofx,
and the last column indicates if a solution to the tadpole conditions was found
(“Y"), and if a solution was found without additional branes(“Y!").

Table 6: The list of 19345 models sorted according to frequency.
The column “occ." tabulates the total number of occurrences, column
“mipf" tabulates the number of MIPFs at which they were found, col-
umn “spec." tabulates the type of spectrum they carry, and column “S"
indicates whether a tadpole solution was found.

nr occ. mipf Chan-Paton Group spec. x S
1 9801844 648 U(3) × Sp(2)× Sp(6)× U(1) VVVV 1/2 Y!
2 8479808 675 U(3) × Sp(2)× Sp(2)× U(1) VVVV 1/2 Y!
3 5775296 821 U(4) × Sp(2)× Sp(6) VVV 1/2 Y!
4 4810698 868 U(4) × Sp(2)× Sp(2) VVV 1/2 Y!

Continued on next page
14However, the full list is available on request.
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Table 6 – continued from previous page
nr occ. mipf Chan-Paton Group Spec. x S

5 4751603 554 U(3) × Sp(2)×O(6) × U(1) VVVV 1/2 Y!
6 4584392 751 U(4) × Sp(2)×O(6) VVV 1/2 Y
7 4509752 513 U(3) × Sp(2)×O(2) × U(1) VVVV 1/2 Y!
8 3744864 690 U(4) × Sp(2)×O(2) VVV 1/2 Y!
9 3606292 467 U(3) × Sp(2)× Sp(6)× U(3) VVVV 1/2 Y
10 3093933 623 U(6) × Sp(2)× Sp(6) VVV 1/2 Y
11 2717632 461 U(3) × Sp(2)× Sp(2)× U(3) VVVV 1/2 Y!
12 2384626 560 U(6) × Sp(2)×O(6) VVV 1/2 Y
13 2253928 669 U(6) × Sp(2)× Sp(2) VVV 1/2 Y!
14 1803909 519 U(6) × Sp(2)×O(2) VVV 1/2 Y!
15 1676493 517 U(8) × Sp(2)× Sp(6) VVV 1/2 Y
16 1674416 384 U(3) × Sp(2)×O(6) × U(3) VVVV 1/2 Y
17 1654086 340 U(3) × Sp(2)× U(3) × U(1) VVVV 1/2 Y
18 1654086 340 U(3) × Sp(2)× U(3) × U(1) VVVV 1/2 Y
19 1642669 360 U(3) × Sp(2)× Sp(6)× U(5) VVVV 1/2 Y
20 1486664 346 U(3) × Sp(2)×O(2) × U(3) VVVV 1/2 Y!
21 1323363 476 U(8) × Sp(2)×O(6) VVV 1/2 Y
22 1135702 350 U(3) × Sp(2)× Sp(2)× U(5) VVVV 1/2 Y!
23 1050764 532 U(8) × Sp(2)× Sp(2) VVV 1/2 Y
24 956980 421 U(8) × Sp(2)×O(2) VVV 1/2 Y
25 950003 449 U(10) × Sp(2)× Sp(6) VVV 1/2 Y
26 910132 51 U(3) × U(2) × Sp(2)×O(1) AAVV 0 Y
. . .
34 869428 246 U(3) × Sp(2)× U(1) × U(1) VVVV 1/2 Y!
153 115466 335 U(4) × U(2) × U(2) VVV 1/2 Y
225 71328 167 U(3) × U(3) × U(3) VVV 1/3
303 47664 18 U(3) × U(2) × U(1)× U(1) AAVA 1/2 Y
304 47664 18 U(3) × U(2) × U(1)× U(1) AAVA 0 Y
343 40922 63 U(3) × Sp(2)× U(1) × U(1) VVVV 1/2 Y!
411 31000 17 U(3) × U(2) × U(1)× U(1) AAVA 0 Y
417 30396 26 U(3) × U(2) × U(1)× U(1) AAVS 0 Y
495 23544 14 U(3) × U(2) × U(1)× U(1) AAVS 0
509 22156 17 U(3) × U(2) × U(1)× U(1) AAVS 0 Y
519 21468 13 U(3) × U(2) × U(1)× U(1) AAVA 0 Y
543 20176(*) 38 U(3) × U(2) × U(1)× U(1) VVVV 1/2 Y
617 16845 296 U(5) ×O(1) AV 0 Y
671 14744(*) 29 U(3) × U(2) × U(1)× U(1) VVVV 1/2
761 12067 26 U(3) × U(2) × U(1) AAS 1/2 Y!

Continued on next page
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Table 6 – continued from previous page
nr occ. mipf Chan-Paton Group Spec. x S

762 12067 26 U(3) × U(2) × U(1) AAS 0 Y!
1024 7466 7 U(3) × U(2) × U(2)× U(1) VAAV 1
1125 6432 87 U(3) × U(3) × U(3) VVV * Y
1201 5764(*) 20 U(3) × U(2) × U(1)× U(1) VVVV 1/2
1356 5856(*) 10 U(3) × U(2) × U(1)× U(1) VVVV 1/2 Y
1725 2864 14 U(3) × U(2) × U(1)× U(1) VVVV 1/2 Y
1886 2381 115 U(6) × Sp(2) AV 1/2 Y!
1887 2381 115 U(6) × Sp(2) AV 0 Y!
1888 2381 115 U(6) × Sp(2) AV 1/2 Y!
2624 1248 3 U(3) × U(2) × U(2)× U(3) VAAV 1
2880 1049 34 U(5) × U(1) AS 1/2 Y!
2881 1049 34 U(5) × U(1) AS 0 Y!
2807 1096(*) 8 U(3) × U(2) × U(1)× U(1) VVVV 1/2
2919 1024 2 U(3) × U(2) × U(2)×O(3) VAAV 1
4485 400(*) 2 U(3) × U(2) × U(1)× U(1) VVVV 1/2
4727 352 3 U(3) × U(2) × U(1)× U(1) VVVV 1/2
4825 332 20 U(4) × U(2) × U(2) VAS 1/2 Y!
4902 320(*) 1 U(3) × U(2) × U(1)× U(1) VVVV 1/2 Y
4996 304 30 U(3) × Sp(2)× U(1) × U(1) VVVV 1/2 Y
6993 128(**) 1 U(3) × U(2) × U(2)× U(1) VVVV 1/2
7053 124 4 U(3) × U(2) × U(2)× U(1) VASV 1/2 Y!
7241 116(**) 4 U(3) × U(2) × U(2)× U(1) VVVV 1/2
7280 114 3 U(3) × Sp(2)× U(1) AVS 1/2
7464 108 1 U(3) × Sp(2)× U(1) VVT 1/2
7905 96(*) 1 U(3) × U(2) × U(1)× U(1) VVVV 1/2
8747 68(**) 3 U(3) × U(2) × U(1)× U(1) VVVV 1/2
8773 68 4 U(3) × U(2) × U(1)× U(1) VVVV 1/2
11347 32(**) 1 U(3) × U(2) × U(1)× U(1) VVVV 1/2
11462 32(*) 1 U(3) × U(2) × U(1)× U(1) VVVV 1/2
12327 24 1 U(3) × U(3) × U(3) VVV 1/2
15824 8 1 U(3) × U(2) × U(1)× U(1) VVVV 0
15846 8 1 U(3) × U(2) × U(1)× U(1) VVVV 1/2
16674 6 1 U(3) × U(2) × U(1) AVT 1/2 Y!
17055 4 1 U(3) × U(2) × U(1)× U(1) VVVV *
19345 1 1 U(5) × U(2) ×O(3) ATV 0
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The first 25 models are all relatives of theU(3)×Sp(2)×U(1)×U(1) models
that dominated the search results of [17]. The variations include replacing the
third factor byO(2) or Sp(2), absorbing the family multiplicity of some of the
quarks or leptons in the Chan-Paton multiplicities of thec andd branes, unifying
the baryon and lepton brane to get a Pati-Salam-like structure, and other brane
unifications. Models 17 and 18 occur with the same frequency because they are
closely related. They only differ by a traceless generatordiag(1

3
, 1

3
,− 2

3
) from

theU(3) factor contributing toY , changing the distribution of some quarks and
leptons. There are several other cases of closely related models with identical
frequencies, and one such set, nrs.1886 . . .1888 will be discussed in more detail
in section 6.5. In the bottom part of the table we display several lines of special
interest, which will be discussed in more detail below.

Entry nr. 26 in the table is the first one that cannot be viewed as a relative of
the “Madrid model". It hasx = 0 and three anti-symmetric tensors on the QCD
and the weak brane. It can be viewed as a brokenSU(5) model.

There exist several infinite series of models. In the top of the list one can
observe the beginning of the seriesU(2n)× Sp(2) ×G,n > 2, whereG can be
O(2),O(6), Sp(2) orSp(6), with a chiral spectrum consisting of6

Nc
(V, 0, V ) +

3(V, V, 0).

In column 2 we indicate between parentheses if a certain typeof model was
searched for in [17], and how often it was found. It is interesting to compare
this with table (1). Observe that the number of four-stack configurations we con-
sider in the present paper is considerably smaller than in [17], but nevertheless
we recover a large fraction of the standard model configurations of that paper.
For example, in [17],2.8× 1015 configurations of type USUS were examined, in
the present paper only26 × 1014, ten times less. Nevertheless, we have already
found about half of the standard model configurations. This is because the num-
ber of brane configurations is dominated by cases with a largenumber of branes,
but very few standard model spectra. This in particular truefor the charge con-
jugation invariant (the simplest case, for which the boundary coefficients were
derived by Cardy [44]) which in essentially all cases has by far the largest num-
ber of boundaries. The explanation may be that a non-trivialMIPF tends to fold
over a Calabi-Yau manifold several times, thus increasing the typical intersection
numbers, and causing the number three to occur more frequently.

There are in total three cases with anSU(3) × Sp(2) × U(1) × U(1) Chan-
Paton group and only bi-fundamentals, namely nr. 30, nr. 343and nr. 4996. The
first two were also searched for in [17], and we find most of themback. They are
distinguished by having a massless (nr. 30) or massive (nr. 343)B − L gauge
boson. The third one differs in the way quarks and leptons endon branesc and
d. It does not have a lepton number symmetry, and was not considered in [17].



Orientifolds, and the search for the Standard Model in string theory 49

We show this case in more detail in the next section, as a curiosity.
The remaining models considered in [17] have aU(2)b group instead of

Sp(2)b. Here a direct comparison is harder, because this splits into many sub-
classes, which differ in the way the doublets are divided into (2) and(2∗) rep-
resentations ofU(2). The cases indicated by a single(∗) are models considered
in [17] that have a masslessB − L boson. In total 131704 such configurations
were found in that paper. For three of them we found tadpole solutions; they
correspond to the three “type-1" models in table 4 of [17]. The ones indicated by
(∗∗) have a massiveB−L boson. Only 1306 of these were found in [17], and in
no case the tadpole conditions could be solved.

Perhaps the most standard Chan-Paton group for standard model realizations
isU(3)×U(2)×U(1)×U(1). The total number of spectra with that CP-group
on the complete list is 281. Of these, 19 have a purely bi-fundamental spectrum,
and among these 19 there are 17 withx = 1

2
, one withx = 0 and one with

x = ∗. Of the 17x = 1
2

models, 13 are variations on the “Madrid" model,
discussed above. The fourthx = 1

2
model with a tadpole solution is discussed

below in section 6.5. All these 19 purely bi-fundamental models are shown in
table (6). In addition we show allU(3) × U(2) × U(1) × U(1) configurations
that occur more frequently than the first purely bi-fundamental model, nr. 543.
These are models with anti-symmetricU(3) tensors. Note that they occur more
frequently despite the fact that models with rank-2 tensorsare suppressed, as will
be discussed below. All of them are brokenSU(5) models, except nr. 303, which
is a broken flippedSU(5) variation of nr. 304.

5.4. Standard model brane configurations not found

Note that only a very small fraction of the allowed bottom-upmodels is actually
realized as top-down configurations.15 This can be explained in part by the fact
that the bottom up models can have several chiral tensors instead of chiral bi-
fundamentals. In figure (1) we plot the distribution of the number of standard
model top-down configurations we have found versus the totalnumber of chiral
tensors in the spectrum. This distribution is sharply peaked at zero. This implies
that models in which some quarks and leptons are realized as rank-2 tensors are
considerably harder to find in the part of the landscape we areexploring here. In
itself, this does not mean much for the actual realization ofthe standard model
in our universe. After all, the suppression of models with tensors is by several
factors of ten only, and this does not seem very significant incomparison to the
total number of models in the landscape.

A partial understanding of this strong chiral tensor suppression can be gained
as follows. In fig. (2) we plot for all branes of a sample of 18001 orientifolds the

15All results in this section concern brane configurations prior to tadpole cancellation.
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Fig. 1. Chiral tensor distribution for all standard model configurations.
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distribution of chiral bi-fundamentals and chiral tensors. On the horizontal axis
is the absolute value of the chirality, and on the vertical axis the total number
of occurrences. Clearly – and not unexpectedly – the number bi-fundamentals
is much greater than the number of chiral tensors. This can beintuitively un-
derstood by realizing that a brane has a much bigger chance intersecting with
any brane yielding a bi-fundamental than intersecting with onespecific brane
(namely itself), yielding a chiral tensor.

One can also make an interesting observation regarding the occurrence of chi-
ral tensors in comparison to non-chiral ones. In fig. (3) we list for all branes in
all 33012 non-zero tension orientifolds the distribution of chiral and non-chiral
tensors (separately for adjoints and the other rank-2 tensors). Note that this in-
cludesall branes in all Gepner orientifolds with non-zero-tension O-planes, not
just those considered in the present paper. Clearly the chiral distribution falls off
much faster than the non-chiral ones.

Although some other qualitative observations can be made, we do not have a
good understanding of the absence of certain models. Hypercharge embeddings
with x = −1/2, 3/2 were not found at all. The full list of 19345 configurations
does contain some genuinex = 1 models, withx fixed to that value by the quark
and lepton charges. There is a total of 17 distinct ones (for none of these we
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Fig. 2. Number of chiral tensors and bi-fundamentals for a selection of branes.
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found a solution to the tadpole conditions). Only one of these, nr. 2919, has
an orthogonal group on thed-stack, but it is not identical to one of the simple
models written down in section 3.5. It has a Chan-Paton groupU(3) × U(2) ×
U(2) × O(3), with both a C and a D brane on stackc. This model was found a
total of 1024 times for just two MIPFs. The purely unitaryx = 1 models 1024
and 2624 occur more frequently. Another noteworthy absencein this class is the
type B,B’ model introduced in [8, 10]. These models have a Chan-Paton group
U(3) × U(2) × U(1) × U(1), and the type-B model only has bifundamentals,
whereas type-B’ has anti-symmetric tensor onU(2)b. However, allx = 1 models
we found have aU(2) group on branec, and all have anti-symmetric tensors both
on branesb andc. Some of these are similar to the models of [8, 10], but not
identical. Note that the type B,B’ models of [8,10], in to order to be free of cubic
anomalies in the twoU(1) factors and theU(2), needU(2)b-chiral Higgs pairs
and anti-symmetricU(1) tensors, as discussed in section 3.5. This suppresses
their statistical likelihood.

Another model proposed in the literature that did not emergein our search is
model C of [25]. This is aU(3)×U(2)×U(1) model with threeGCP-chiral neu-
trinos appearing as anti-symmetric tensors ofU(2). However, model nr 7464 in
table (6) is similar to it. It has exactly the same structure as model C of [25], after
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Fig. 3. Number of chiral and non-chiral tensors for all single branes.
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replacingU(2) by Sp(2). Then such neutrinos necessarily become non-chiral,
and the anomaly cancellation condition for theU(2) factor becomes irrelevant,
increasing the chances of finding an example. Model nr. 7464 occurred only
108 times (and without tadpole solutions). Its presence suggests that there is no
fundamental obstacle to finding model C, but that it is simplystatistically dis-
favored. In other situtations, replacingU(2) by Sp(2) increases the number of
occurrences by factors of about 40 to 80, and hence we would expect at most a
few examples of model C. This is consistent with finding none.

On the full list of 19345 models there are 150 of the classx = ∗. All of them
are truly orientable,i.e the possibility of having anti-symmetricU(1) tensors that
do not contribute massless states does not occur. Only one has Chan-Paton group
U(3) × U(2) × U(1) × U(1). It is indeed precisely the model (3.6) shown in
section 3. Amazingly this simple model occurs only four times (nr. 17055), and
just for one MIPF (and without any tadpole solution to tadpole cancellation). This
is especially surprising since there are many otherU(3) × U(2) × U(1) × U(1)
configurations with only bi-fundamentals that do occur muchmore frequently, as
discussed above. For example nr. 543 in table (6) occurs 20176 times. This is a
standard “Madrid"-type configuration.
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5.5. Higgs, neutrino and mirror distributions

Fig. 4. Higgs pair distribution for all standard model configurations.
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Figures (4), (5) and (6) and show the distribution in terms ofthe number of
Higgs, right-handed neutrinos and mirror pairs. On the vertical axis we show the
total number of three and four-brane configurations that have a chiral standard
model spectrum, plus the number of Higgses/neutrinos/mirrors indicated on the
horizontal axis. Just as all data in this section, these numbers refer to brane
configurations prior to tadpole cancellation. The Higges/neutrinos/mirrors are
GCP chiral but of courseGSM non-chiral. In addition to these particles, the
massless spectrum may containGCP-non-chiral particles with the same standard
model transformation properties. Since we classify modelsmodulo full non-
chiral matter, we have no general information about such particles. The mirror
count is the total of all mirror pairs of quark and charged lepton weak singlets,
as well as quark doublets (in this case mirrors can occur onlyfor x = 1

2
). The

Higgs count refers to(1, 2, 1
2
)+(1, 2,− 1

2
) pairs; for example the MSSM has one

such pair. Note that these pairs could also be viewed as lepton doublet mirror
pairs. The distinction can be made in models with a well-defined lepton number,
but since we are not insisting on that we simply count all suchpairs as candidate
Higgs. Once one (or more) of these candidates acquires a v.e.v, one may discuss
if lepton number violation is absent or acceptably small.
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Fig. 5. Right-handed neutrino distribution for all standard model configurations.
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Finally fig. (5) shows the distribution of the total number ofstandard model
singlets in theGCP-chiral spectrum.

In all three plots two lines are visible. The top line corresponds to multiplic-
ities that are0 mod 3, and the lower to multiplicities that are not0 mod 3. The
former occur more frequently due to anomaly cancellation and the fact that we re-
quire the presence of three chiral families. In some classesof models this imposes
a mod 3 constraint on the multiplicities of Higgses, mirror or neutrinos. This fea-
ture is clearest in the Higgs plot, because the Higgs is in a definite, and non-trivial
standard model representation with fewGCP realizations. It is less clear in the
neutrino plot, because there are often many ways of making neutrinos. The mod-
els with huge numbers of (right-handed) neutrino candidates usually contain a
large factorGc orGd, with neutrinos coming from rank-2 tensors.

6. Solutions to the tadpole conditions

In this section we present some examples of solutions to complete set of tadpole
solutions that we have found. All solutions that we present also satisfy the probe
brane constraints for the absence of global anomalies [45],as discussed in [46]
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Fig. 6. Mirror distribution for all standard model configurations.
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for this class of models. We emphasize that we have collectedat most two tadpole
solutions for each chiral model, one with additional branes, and one without ad-
ditional branes. This means, for example, that as soon as onesolution was found
for one of the 9785532SU(3)× SU(2)× Sp(6)×U(1) models that appears as
nr. 1 in table (6), no further attempt was made for any of the others with the same
chiral spectrum. This is a very different strategy than the one of [17], where all
tadpole solutions were collected for models with distinctnon-chiral spectra. In
the examples below we present the full massless spectrum of the actual tadpole
solution, including non-chiral states. The non-chiral states are however specific
to the example we present, and solutions with different non-chiral multiplicities
for a given chiral multiplicity certainly exist. Indeed, for spectrum nr 2 in ta-
ble (6), which was included in the search presented in [17], more than 100000
non-chirally distinct samples with tadpole solutions werefound.

We only present a small selection of the 1900 tadpole solution we have col-
lected. They should be viewed merely as existence proofs of acertain type of
model, and not as a statement that one of these is likely to survive further phe-
nomenological constraints. Whenever possible, we presentexamples without
hidden branes, not because we believe these are more viable (indeed, hidden
sector branes may be required for a variety of phenomenological reasons), but
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simply because they can be written down more easily.

6.1. Hypercharge embeddings of the tadpole solutions

Let us first make a few more comments on the models that do or do not oc-
cur in the list of 1900 tadpole solutions. We have seen in the previous section
that most bottom-up models of section 3 and 4 do not occur on the list of brane
configuratios, and it is therefore clear that most are also absent from the list of
tadpole solutions (see section 5.4). Furthermore, in many top-down tadpole so-
lutions, the hypercharge appears to be a combination of morethan one of the
hypercharge embeddings of the bottom-up models in section 4. First consider
the “pure" models
• 762 top-down configurations have hypercharge of the formY = − 1

3
Qa −

1
2
Qb. This is related to a small subclass of bottom-up models in section 4.2. In

table 4 these models havex = 0 and bothc, d branes are of the C type (or are
real, or absent).
• 1095 top-down configurations have hypercharge of the formY = − 1

6
Qa +

1
2
Qc − 1

2
Qd which is related to a subclass of the bottom-up models in section

4.2.
The rest of the configurations appear with the hypercharge tobe described by two
different embeddings. This is due to the contribution of traceless generators in
the hypercharge. These “mixed" models are distributed as follows :
• 17 top-down configurations have a combined hypercharge of the type:Y =
− 1

3
Qa−

1
2
Qb +Qd (section 4.2 and corresponding to models A,A’ in [8,10,47])

andY = − 1
3
Qa − 1

2
Qb (section 4.2). These are hypercharges withx = 0 butc

andd branes are of the type C and D, C respectively.
• 2 top-down configurations appear with a combined hypercharge with x = 1

(section 4.2 and corresponding to models B,B’ in [8,10,47]), butc andd branes
are of the type C, D and D respectively.

Here we used the hypercharge values as determined from the quark and lep-
ton charges as well as theY -mass condition. The two mixedx = 1 models
mentioned above actually havex = ∗, with x fixed to 1 by theY -mass condition.
One of those appears in (4); the other has too many neutrinos and lies outside the
limits used for that table. A total of 20 out of the 1900 tadpole solutions have
x = ∗, but x fixed to a non-canonical value by theY -mass condition. Finally
there are 4 withx completely unfixed by any condition.

6.2. Notation

The notation of the examples is as follows. Minimal model tensor products are
denoted as(k1, . . . , km), whereki is theSU(2) level. Their modular invariant
partition functions are labelled by an integer, which is assigned sequentially as
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they are computed. This labelling can be resolved in terms ofmore precise data:
the simple current subgroup and the rational matrixX defining the MIPF (as
defined in [14]). We omit these data here, but they are available on request. To
help identify the MIPF we will provide the Hodge numbers of the corresponding
Calabi-Yau manifold, and the number of singlets that occur in the spectrum of
heterotic strings compactified on such a manifold. Orientifolds are also labelled
by a sequential integer assigned by the computer program.

Representations are denoted as(ra, ...rd, ...), where each entry refers to one of
the branes (a, b, c, d and hidden), andr can beV for vector,A for anti-symmetric
tensor,S for symmetric tensor andAdj for Adjoint. An asterisk indicates com-
plex conjugation. All representations refer to left-handed fermions. Multiplicities
of complex representations are denoted as

N × (ra, ....)M

whereN is the total number of times a representation plus its conjugate appears,
andM is the chirality, the difference of the multiplicity of the representation that
is listed, and its conjugate. The subscript is omitted for non-chiral representa-
tions.

6.3. U(3) × U(2) × U(1) models

Here we list all tadpole solutions we found with a Chan-Patongroup which is
exactlyU(3)× U(2) × U(1) (or less, if some combinations of the unitary phase
factors – other thanY – get a mass from axion couplings).

The first two examples are nr. 761 and 762 from the list. They are respectively
broken versions ofSU(5) and flippedSU(5) × U(1) unifications, withSU(5)
broken by splitting the stack of five branes into three plus two. These models
occurred for MIPF 31 of(1, 1, 1, 1, 7, 16) (there is just one orientifold choice).
TheU(3) × U(2) × U(1) spectrum is

3 × (A, 0, 0)3

3 × (0, A, 0)3

5 × (V, V, 0)3

25 × (0, 0, S)3

9 × (V, 0, V )−3

3 × (0, V, V )−3

4 × (Ad, 0, 0)

1 × (0, Ad, 0)

16 × (0, 0, Ad)
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6 × (0, 0, A)

8 × (S, 0, 0)

14 × (V, 0, V ∗)

4 × (0, V, V ∗)

The possible choices forY are theSU(5) embeddingY = − 1
3
Qa + 1

2
Qb and

the flipped embeddingY = 1
6
Qa + 1

2
Qc for nr. 562 and 561 respectively. In

both cases an additionalU(1), the independent linear combination of these two,
also remains massless.

There is a second, far less standard example of aU(3)×U(2)×U(1) model,
which occurred for invariant 28 of 441010, orientifold 0. This is nr 16674 on
the list, which occurred only six times in total (and only forthis MIPF), but
against all odds a tadpole solution was found for at least oneof the six occur-
rences. The embedding ofY is as for the flippedSU(5) model above, but only
two of the three down quarks are due to anti-symmetric tensors, and there are
no anti-symmetric tensors inU(2). Furthermore there are three candidates for
Higgs bosons, but unfortunately no symmetry like lepton number to distinguish
them from the lepton doublets. This implies that there are nosinglet neutrino
candidates from the standard model branes, and that with a suitable Higgs boson
chosen from the three candidates mentioned above, all up quarks and one of the
down quarks can acquire a mass. The exact spectrum is as follows

9 × (0, V, V ∗)−3

3 × (0, 0, S)3

6 × (A, 0, 0)2

3 × (0, 0, A)1

6 × (0, V, V )−6

7 × (V, V, 0)3

7 × (V, 0, V ∗)−1

3 × (V, 0, V )−3

3 × (Ad, 0, 0)

6 × (0, A, 0)

7 × (0, Ad, 0)

8 × (0, S, 0)

8 × (V, V ∗, 0)

4 × (0, 0, Ad)

The gauge group is exactlySU(3) × SU(2) × U(1), because all abelian gauge
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bosons other thanY acquire a mass.
Somewhat surprisingly, there were no tadpole solutions forU(3) × Sp(2) ×

U(1) models, even though usually replacingU(2) bySp(2) greatly increases the
frequency of a model.

6.4. Unification

In general we can speak of (partial) unification if some of thestacksa, b, c and
d coincide. One can distinguish the following possibilities

1. a = b. In this case the bi-fundamentals that yield quark doubletsmust neces-
sarily come from anti-symmetric tensors on the combined stack. There must
therefore be three anti-symmetric tensors, and the combined gauge group is
U(5). Hence this leads toSU(5) GUT models. TheSU(3) anti-symmetric
tensors can beuc or dc quarks. The first case corresponds to standardSU(5),
the second to flippedSU(5). There must be at least one more brane stack to
accommodate the anti-quarks of the other charge. Hence these models can be
realized with just two stacks.

2. a = c. In this case the weak brane remains separate, but the QCD brane is
extended. The best-known example is the Pati-Salam model, whereU(3)a
is extended with a lepton-numberU(1). The Pati-Salam model requires three
stacks, but it is possible to realize unifications of this type with just two stacks.
An example is (one of the variations of) theU(6) × Sp(2) discussed below.

3. b = d. In this case the weak brane is part of a larger group. An example is
trinification: hereU(2)b is embedded in aU(3). Without loss of generality,
we may choose stackd as the one that merges with the weak brane. The
trinification model then needs one additional brane stack,U(3)c. All models
in this class must in fact have a third brane stack, in order toget anti-quarks as
bi-fundamentals; at least one of the two anti-quarks charges must be realized
as a bi-fundamental.

4. a = b = d. An example will be given below.

Here it is assumed that no more branes coincide than those indicated. Ifc andd
coincide this would be regarded as a single stack denotedc. If c coincides with
a or b we switch the rôles ofc andd. This limits the possibilities to those listed
here.

SU(5) models

The following is an example of anSU(5) model. It is item 617 in table (6) and
despite having a hidden sector, this model has as its gauge group preciselySU(5)
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and nothing more! The standard model part consists of anU(5) complex stack
and a single realO(1) brane. This is needed for the endpoints of the strings yield-
ing the representation(5∗). In addition this example has one extraO(1) brane
that serves as a hidden sector. The example occurs for tensorproduct (1,4,4,4,4)
and MIPF nr. 63 in our classification, which is characterizedby Hodge numbers
(h21, h11) = (7, 31), and yields 237 singlets if one uses this MIPF to construct
a heterotic string. The total number of boundaries is 246. The orientifold is the
one with maximal O-plane tension. The precise spectrum is asfollows

3 × (A, 0, 0)3

11 × (V, V, 0)−3

8 × (S, 0, 0)

3 × (Ad, 0, 0)

1 × (0, A, 0)

3 × (0, V, V )

8 × (V, 0, V )

2 × (0, S, 0)

4 × (0, 0, S)

4 × (0, 0, A)

We emphasize that this just one sample of many such models. There are 16845
configurations of this kind (i.e. with the same first two CP-factorsU(5) × O(1)
and the same chiral spectrum). The other 16844 configurations may differ from
the one shown here by having, for example, different numbersof U(5) adjoints
or (V, V ) mirror pairs. Some of these 16845 configurations are identical to the
one shown here, because of surviving discrete symmetries ofthe (1, 4, 4, 4, 4)
tensor product. But the fact that this chiral spectrum was found for 296 different
MIPFs essentially guarantees that many different versionsexist.

This model has one hidden sector brane. According to our strategy, outlined
in the beginning of this section, none of the remaining models of this type was
checked for tadpole cancellationwith hidden branes after this tadpole solution
was found. All 16845 configurations were checked for tadpolecancellation
without hidden branes, and no solutions were found. It is straightforward to
re-examine all these 16845 model and check for further possibilities of tadpole
cancellation, in order to obtain different non-chiral spectra or different hidden
sectors. But there are many other models of potential interest, including many
moreSU(5) models.

Flipped SU(5) models
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The simplest flippedSU(5) we found occurs for for invariant 52 of (1,4,4,4,4),
orientifold 0, with characteristics (3,51,253). It solvesall tadpole equations with
just two brane stacks, the minimal number needed to realize flippedSU(5). The
full Chan-Paton group isU(5) × U(1), and the spectrum is

11 × (0, S)3

3 × (A, 0)3

5 × (V, V )−3

8 × (S, 0)

9 × (Ad, 0)

5 × (0, Ad)

4 × (0, A)

12 × (V, V ∗)

In terms of (a, b, c, d) branes this model is of the formU(3)a × U(2)b × U(1)c

with a = b and nod brane, andY = 1
6
(1, 0, 3). The way theU(1) anomalies

cancel is noteworthy. Per family, there are fiveU(1) anti-vector representations,
contribution -5 to the cubic anomaly. This anomaly is cancelled by a symmetric
tensor, which contributes+5 in aU(1) theory. The chiral part of the spectrum
yields exactly the standard model spectrum, with 3 right-handed neutrinos from
the three chiral symmetric tensors. There are noGCP-chiral Higgs candidates.

This is model nr. 2880 in table (6). As explained earlier, such a flippedSU(5)
model always has a standardSU(5) counterpart, because the masslessness of the
extraU(1) of flippedSU(5) is an additional constraint not needed for standard
SU(5). This is model nr 2881 in table (6).

To the best of our knowledge, these are the first exact chiral,supersymmet-
ric SU(5) and flippedSU(5) models in the literature. Their chiral spectrum,
directly obtained in string theory, without postulating further Higgs effects or
non-perturbative physics, is exactly3× (10)+ 3× (5∗). By contrast, the models
found in [48] contain additional(15)’s of SU(5). The models found recently
in [49] haveGCP mirror pairs of(5) and(5∗), which must be made massive by
postulating an additional Higgs mechanism breaking part ofthe additional gauge
symmetry. We emphasize that the mirror pairs shown above in the explicit spec-
trum are non-chiral with respect to the full Chan-Paton group, and hence require
no gauge symmetry breaking to acquire a mass.

In addition, the model shown above is obviously the simplestone possible,
apart from theU(5) × O(1) of the previous subsection, if one could find a real-
ization without hidden sector.

However, both the standard and the flippedSU(5) model have a serious prob-
lem with either the(u, c, t) or (d, s, b) Yukawa coupling. We will discuss this in
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detail in section 7.2.
For other work discussing aspects of (flipped)SU(5) model building along

similar lines, see [50] [51] [52], [48] [53] [49]. For other issues inSU(5) model
building with branes and the associated problems see [54], [28].

Pati-Salam models

The simplest Pati-Salam model is nr. 4 on the list, and is therefore one
of the most frequent ones. A tadpole solution was found for invariant 57 of
(2,10,10,10), orientifold 3. The gauge group isU(4) × Sp(2) × Sp(2), and the
spectrum is as follows

5 × (V, 0, V )−3

3 × (V, V, 0)3

2 × (Ad, 0, 0)

2 × (0, A, 0)

7 × (0, 0, A)

4 × (A, 0, 0)

2 × (0, S, 0)

5 × (0, 0, S)

7 × (0, V, V )

The embedding ofY is asY = 1
6
Qa − 1

2
Qd +Wc, whereWc = 1

2
σ3. Branea

andd are unified toU(4).
The following model is of interest because it is aU(4) × U(2) × U(2) Pati-

Salam model that satisfies all tadpole conditions without hidden branes, because
it has some chiral rank-2 tensors in its spectrum, and because it occurs for a MIPF
related to the “quintic" Calabi-Yau, namely MIPF 6 of (3,3,3,3,3), the trivial
orientifold (the only one possible). It is nr. 4825 on the list (6). It has precisely
oneGCP chiral MSSM Higgs pair, plus aGCP-chiral charged lepton mirror pair,
and four right-handed neutrinos. There is one masslessU(1) in addition toY ,
namely the diagonal combination of the phase factors of theU(2)’s. The Chan-
Paton group isU(4) × U(2) × U(2), and the representations are

3 × (V, 0, V ∗)−1

2 × (V, 0, V )−2

1 × (0, 0, S)1

5 × (0, A, 0)1

5 × (V, V ∗, 0)1
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6 × (V, V, 0)2

3 × (0, V, V )−1

4 × (0, S, 0)

4 × (S, 0, 0)

3 × (Ad, 0, 0)

5 × (0, Ad, 0)

1 × (0, 0, Ad)

2 × (0, V, V ∗)

There also exist a broken version of this model, withU(4) split intoU(3)×U(1)
already in the exact string theory. This is nr. 7053 in (6).

There is also aU(4) × U(2) × U(2) Pati-Salam model (nr. 153) which has
a standard, purely bi-fundamental spectrum. For this modelwe only found a
tadpole solution with hidden branes, which is a bit too complicate to display
here. It has a hidden sector groupU(6) × U(2)3 ×O(2)2 × Sp(2).

Orientifolds exhibiting a Pati-Salam realization of the SMhave been consid-
ered before, [55–57]. Bottom-up configurations, investigating also gauge cou-
plings and the issue of masses, have been also considered, [58,59].

Trinification models

Trinification models are built out of three factorsSU(3) with purely bi-funda-
mental matter. At first sight this would seem to be an ideal configuration for
intersecting brane models, but in fact it is surprisingly rare.

In a genuine trinification model the generatorY is embedded inSU(3)a ×

SU(3)b × SU(3)d asY = 1
6
Wb − 1

3
Wd, whereWb = Wd = diag(1, 1,−2).

However, a trinification model is in our classification a model with x = ∗, which
allows arbitrary shifts in the choices ofY . For any other choice ofY this implies
that a combination of the unitary phases contributes toY . The canonical choice
of Y has no contribution fromU(3)a and hence would correspond tox = 1

3
, a

non-standard choice. Although the quark and lepton chargesdo not fix x, this
may be done by the zeroY -mass condition.

In table (6) three distinct models with this characteristicappear. The most
frequent one, nr. 225, has a fixed value ofY of the canonical trinification type,
with x = 1

3
. However, we did not find solutions to the tadpole conditionsfor any

of these 71328 models. The second one, nr. 1125, has a completely freeY ; even
the zero mass condition forY does not fix it. This type of model occurred 6432
times and for at least one of these we found a solution to all tadpole conditions.
The third one, nr. 12327, occurred only 24 times, and for noneof them the
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tadpoles were solved. It hasY fixed to a value which does not correspond to
standard trinification (x = 1

2
).

The aforementioned tadpole solution occurred for invariant 11 of tensor prod-
uct (1, 16, 16, 16), orientifold 0 (with (h21, h11, S) = (9, 111, 481)). It has a
rather large hidden sector gauge groupU(3) × U(3) × U(3) × O(4) × O(2) ×
U(6) × U(12) ×O(12) × U(12) ×O(4), with respect to which the spectrum is
as follows:

3 × (V, V, 0, 0, 0, 0, 0, 0, 0, 0)3

3 × (V, 0, V, 0, 0, 0, 0, 0, 0, 0)−3

3 × (0, V, V ∗, 0, 0, 0, 0, 0, 0, 0)−3

1 × (0, 0, 0, V, 0, V, 0, 0, 0, 0)−1

1 × (0, 0, 0, 0, 0, S, 0, 0, 0, 0)1

5 × (0, 0, 0, 0, 0, 0, 0, V, V, 0)1

3 × (0, 0, 0, 0, 0, 0, 0, 0, S, 0)1

1 × (0, 0, 0, 0, 0, A, 0, 0, 0, 0)−1

2 × (0, 0, 0, 0, 0, 0, 0, 0, A, 0)−2

1 × (0, 0, 0, V, 0, 0, 0, 0, V, 0)1

1 × (0, 0, 0, 0, V, 0, 0, 0, V, 0)1

1 × (0, 0, 0, 0, 0, V, 0, V, 0, 0)1

1 × (0, 0, 0, 0, 0, V, 0, 0, V, 0)−1

1 × (0, 0, 0, 0, 0, 0, V, V, 0, 0)1

1 × (0, 0, 0, 0, 0, 0, V, 0, V, 0)−1

1 × (0, 0, 0, 0, 0, V, 0, 0, 0, V )−1

1 × (0, 0, 0, V, V, 0, 0, 0, 0, 0)

1 × (0, 0, 0, 0, S, 0, 0, 0, 0, 0)

1 × (0, 0, 0, 0, 0, Ad, 0, 0, 0, 0)

1 × (0, 0, 0, 0, 0, 0, Ad, 0, 0, 0)

3 × (0, 0, 0, 0, 0, 0, 0, S, 0, 0)

3 × (0, 0, 0, 0, 0, 0, 0, 0, Ad, 0)

1 × (0, 0, 0, 0, 0, 0, 0, 0, 0, S)

2 × (0, 0, 0, 0, V, V, 0, 0, 0, 0)

1 × (0, 0, 0, 0, V, 0, 0, V, 0, 0)

2 × (0, 0, 0, 0, 0, V, 0, 0, V ∗, 0)
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2 × (0, 0, 0, 0, 0, 0, V, 0, V ∗, 0)

1 × (0, 0, 0, 0, V, 0, 0, 0, 0, V )

1 × (0, 0, 0, 0, 0, 0, 0, V, 0, V )

Bottom-up trinification models and their phenomenology hasbeen discussed
in [43].

6.5. Curiosities

A non-standardU(3) × Sp(2) × U(1) × U(1) model

The following spectrum was found for 17, orientifold 2 of thetensor product
(2, 2, 2, 6, 6). It has a hidden sector groupU(2) which is completely decoupled
from all massless matter: both OH as HH matter is absent. The main reason for
listing it here is however that it is an alternative to the standard lepton-number
conserving configurations. This is nr. 4996 in (6).

The full Chan-Paton group isU(3)× Sp(2)×U(1)×U(1)×U(2), with the
following spectrum

3 × (V, V, 0, 0, 0)3

3 × (0, 0, V, V, 0)−3

1 × (V, 0, 0, V ∗, 0)−1

2 × (V, 0, V, 0, 0)−2

2 × (0, V, 0, V, 0)2

3 × (V, 0, 0, V, 0)−1

3 × (0, V, V, 0, 0)1

2 × (V, 0, V ∗, 0, 0)−2

1 × (0, 0, V, V ∗, 0)1

4 × (A, 0, 0, 0, 0)

2 × (0, 0, 0, S, 0)

TheY -embedding isY = 1
6
Qa − 1

2
Qc −

1
2
Qd. There is no additional massless

U(1) factor from the standard model branes (we did not compute themass of the
abelian factor ofU(2)). Note that the endpoints of the quarks and lepton doublet
bi-fundamentals are distributed over thec andd branes, making it impossible to
assign a lepton number. Indeed, there are perturbatively allowed lepton-number
violating couplings of the type(Q,L, dc) or (L,L, lc), but further CFT com-
putations would be needed to verify if these couplings do indeed occur. The
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GCP-chiral spectrum has no Higgs candidates and just one right-handed neutrino
candidate.

We have also found a similar model withU(2)b instead ofSp(2)b, and a
slightly more complicated hidden sector. It combines two features not encoun-
tered together in [17]: a groupU(3)×U(2)×U(1)×U(1) of which onlyU(1)Y

survives as an abelian vector boson. Unfortunately this is achieved at a price that
is presumably to high: the reason is that lepton number cannot be written in terms
of the brane charges. As a result, no linear combination ofB andL is anomaly
free. Model nr. 1725 is of the same kind, but withSp(2) replaced byU(2). A
tadpole solution exists for that model with anO(2) ×O(2) hidden sector.

A U(6) model

The following examples were found for invariant 79 of (1,4,4,4,4), orientifold
0, corresponding to an orientifold with Calabi-Yau characteristics (6,60,288).
These are exact standard model realizations with just two branes stacks, a com-
plex and a real one. In fact, this single model can accommodate the standard
model spectrum in three distinct ways. The unified gauge group isU(6)×Sp(2).
The spectrum is as follows

9 × (A, 0)3

9 × (V, V )−3

8 × (Ad, 0)

1 × (0, A)

7 × (0, S)

The first standard model realization is obtained by splitting U(6) so that the
full (a,b,c,d) configuration becomesU(3)a ×U(2)b × Sp(2)c ×U(1)d, with a,
b andd belonging to the same stack. The choice ofY is 1

6
(1, 0, 0,−3) + Wc,

whereWc is the diagonal Pauli matrix1
2
σ3 in Sp(2)c. The first term ofY is

part of the non-abelian groupSU(4) formed by thea andd branes, and hence
automatically massless. If the breaking pattern is interpreted asU(6) → U(5)×
U(1) → U(3)a × U(2)b × U(1)c the second step is a flippedSU(5) model; if
the breaking is interpreted asU(6) → U(4)×U(2) → U(3)a ×U(2)b ×U(1)c
the intermediate stage is Pati-Salam-like.

The second realization appears if we splitU(6) in the same way asU(3)a ×

U(2)b × Sp(2)c × U(1)d, but now withY is (− 1
3
, 1

2
, 0, 0). This amounts to a

standardSU(5) embedding of the standard model. TheSp(2) group does not
contribute toY in this case.

Finally there is the possibility of usingSp(2) as ab-type stack for the weak
interactions. To achieve this we splitU(6) asU(3)a × U(3)c, and writeY as
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1
6
(1, 0,−1) +Wc, whereWc is theSU(3)-generator(2

3
,− 1

3
,− 1

3
). There is no

d-stack.
All three models have three candidate Higgs pairs an three down quarks mir-

ror pairs, as well as six right-handed neutrino candidates,which are chiral with
respect toU(6). The first two are nrs. 1886 and 1887 in table (6), and the third
one is nr. 1888.

7. Phenomenological implications and the problem of masses

In this section we will address, in a rather general fashion,some phenomenologi-
cal aspects of SM brane configurations. In particular, we aregoing to discuss the
problem of masses in theories with anti-quarks in the antisymmetric representa-
tion of SU(3), as well as the nature of potential family symmetries and neutrino
masses.

7.1. Antisymmetric anti-quarks and the problem of quark masses

There is a generic potential phenomenological problem, when one of the anti-
quarks originate from anti-symmetrized strings starting and ending on the color
branes. Although for SU(3), = , the antisymmetric representation has charge

2, under the U(1)a instead of the -1 for .
We are using the language of left-handed fermions where

ψ̄c
R ≡ ψT

L C , C−1γµC = −(γµ)T (7.1)

whereC is the charge conjugation matrix.̄ψc
R is a right-handed Weyl fermion

transforming in the same representation of the gauge group as ψL. The mass
terms can be therefore be written in terms of fermion bilinears

ψ̄c
R χL + h.c. (7.2)

Consider the (color singlet) quark mass operator16 (Q̄c)I
aq

J , whereQ denotes
the quarks (3,2) andq stands for the anti-quarks in the of SU(3). I, J indices
from now on will collectively indicate any other index except color and weak
indices. a is a weak doublet index.(Q̄c)IqJ transforms as a weak doublet,
and has charge 3 under U(1)a. Therefore it must be coupled to a weak Higgs
doublet that should also carry charge -3. However a single field in orientifolds
cannot carry charge -3. Therefore, a product of scalar fieldsmust be involved.
The minimal case involves scalarsHI

a transforming as (̄3,2,-1) underSU(3) ×

16We work with left-handed spinors only.̄Qc is the proper conjugate of a left-handed spinor.
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SU(2)×U(1)a andAK transforming as ( ,1,-2). The putative mass term would
then be

δL1 = hI,J,K,L ((Q̄c)I
aQ

J)(HKaAL) (7.3)

where the parentheses indicate the color contractions. Non-minimal couplings
would include

δL2 = h̃I,J,K,L ((Q̄c)I
aQ

J)Ga(FKAL) (7.4)

δL2 = ĥI,J,K,L,M ((Q̄c)I
aQ

J)Ga(FKFLFM ) (7.5)

whereGa is a standard Higgs (weak doublet),F I transforms as (̄3,1,-1) and in
the last case an antisymmetric color coupling of three triplets is implied. There
might also be additional constraints, due to the fact that theFI scalars come from
strings that have one end point in thec, d branes.

The crucial point is that in order to generate the quark mass terms, the scalar
combinations in (7.3) and (7.5) must acquire expectation values. This necessarily
implies that the scalarsHIa or F I or AI must have vevs, and this necessarily
breaks the color symmetry to SU(2)color (along withU(1)a of course). This
seems incompatible with current data. Moreover, this conclusion is robust, and
is valid independent of the presence or not of supersymmetry.17

There are two a priori possibilities in order to avoid the previous impasse.
The first is that non-perturbative effects break the associated global symmetry.
It is well known that anomalous U(1)’s have always mixed anomalies with non-
abelian groups. Therefore, there are always gauge instantons and their string
theory generalization, that violate the global symmetry non-perturbatively (see
[60]). There are two distinct possibilities, but only one isrelevant here: the case
when the non-abelian gauge group is unbroken at low energy18. This is indeed
the case with the color group. In this case only terms involving a minimum
number of fermions can be generated. This minimum number is required in
order to soak up the zero modes of instantons. It is always larger than two in
realistic situations. Therefore, it is not relevant for generating mass terms for the
fermions.

The other option is to start from a higher gauge-group, that is eventually
broken to the color SU(3), giving masses to the standard quarks. Let us en-
tertain first the case of SU(4). We should use the following facts, [61]: A

17A related fact is that a U(N) D-brane on a CY manifold is generically expected to have it gauge
symmetry broken to U(N-1) because of the D-terms. The gauge symmetry may be enhanced back to
U(N) at orbifold points.

18The other case concerns a spontaneously broken group. This is qualitatively distinct since more
terms in the effective action can be generated.
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scalar in the adjoint of SU(4) obtaining a vev may break the gauge symmetry
SU(4) → SU(2)×U(2) orSU(3) depending on the type of vev. A scalar in the

, breaks the gauge symmetry asSU(4) → O(4) or SU(3) depending on the
type of vev. A scalar in the breaks the gauge symmetry asU(4) → Sp(4) or
SU(4) → SU(2) depending on the type of vev. Finally a scalar transforming in
the (4,2) ofSU(4)×SU(2) breaks the symmetry asSU(4)×SU(2) → SU(3),
or SU(2) × SU(2) depending on the type of vev. Although this may be ac-
ceptable from the color point of view, the breaking of the weak SU(2) group is
acceptable only if the bi-fundamental scalar carries the correct SM hypercharge.

Therefore the scalar vevs that preserve an SU(3) color subgroup SU(4) trans-
formations are19

adjoint ∼ Φα
β ∼







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






∼ φαβ ∼ (7.6)

∼ Fα ∼







1
0
0
0






, (4, 2) ∼ Ha

α ∼

(

1 0 0 0
0 1 0 0

)

(7.7)

The last operator breaks also to the SU(2). and they must be aligned. This poses
strong constraints on the appropriate scalar potentials. In particular, no antisym-
metric vev is allowed.

We may now go through the potential mass terms and show that none is ac-
ceptable. We suppress all other indices but SU(4) color and write

O1 = (Q̄c)αqβγF
αF β

I F
γ
J , O2 = (Q̄c)αqβγφ

αβF γ (7.8)

O3 = ǫαβγδ(Q̄c)αqβγFδ ǫα′β′γ′δ′Fα′

I F β′

J F γ′

K F δ′

L (7.9)

where a lower SU(4) index transforms asand an upper one as. The operators
Oi moreover transform as weak doublets and haveU(1)a charge zero. There are
also operators which involve adjoint scalars but they have no new features. It is
straightforward to check that operatorsO1,2 fail to provide mass operators for
any of the fermions after the breakingSU(4) → SU(3) by the vevs in (7.6)
and (7.7). OperatorO3 gives masses to the standard SU(3) quarks, but leaves
the rest massless. One of the fundamentals inOi can be substituted with the
Ha

α scalar. This will provide a weak singlet. Moreover as we haveseen this vev
breaksSU(4) × SU(2) → SU(3), and if the hypercharge of the scalar is 1/2,

19We use greek indices from the beginning of the alphabet for color.
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then it will provide at the same time the proper, electroweaksymmetry breaking.
However, the same considerations as above indicate than no reasonable mass
terms are generated.

The final case to be considered is the possibility to include ascalar vev in the
antisymmetric representation,Rαβ . In this case we must start from SU(5), which
the vev will break to SU(3). Upon choosing a convenient basisthis vev is

∼ Rαβ ∼











0 1 0 0 0
−1 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











(7.10)

We also assume that there are fundamentalsFα with a vev in the 4 and 5 direc-
tions, so that it does not break SU(3) further. Then we may write the following
operators

O4 = (Q̄c)αqβγF
αRβγ (7.11)

O5 = ǫαβγδǫ(Q̄c)αqβγρδǫ ǫα′β′γ′δ′ǫ′F
α′

Rβ′γ′

Rδ′ǫ′ (7.12)

The operatorO4 provides masses for the various singlets after the breaking. Op-
eratorO5 provides masses for the standard quarks. However the two extra triplets
emerging from the of SU(5) will remain massless.

It therefore seems that orientifold models with anti-quarks in antisymmetric
representations are phenomenologically untenable.

7.2. Masses in SU(5) and flipped SU(5) vacua and instanton effects

The case of standard U(5) group deserves special attention20. The SM particles
are in the antisymmetric representationψαβ as well as the anti-fundamental,ψα.
The minimal set of scalar needed for symmetry breaking is an adjointΦα

β whose
expectation valuediag(2V, 2V, 2V,−3V,−3V,−3V ) breaksSU(5) → SU(3)×
SU(2) × U(1)Y and a fundamental,Hα whose expectation value(0, 0, 0, 0, v)
breaksSU(2) × U(1)Y → U(1)em The standard mass terms

O1 ∼ (ψ̄c)αψ
αβHβ , O2 ∼ ǫαβγδǫ(ψ̄

c)αβψγδHǫ (7.13)

give masses to all SM fermions. However here,O2 which gives masses to up-
type quarks is not allowed, since it carries charge +5 under the overall U(1) of the
U(5). This charge can be cancelled by multiplication byǫαβγδǫHI

αH
J
βH

K
γ H

K
δ H

L
ǫ ,

which however requires the presence of 5 fundamental Higgs scalars with vevs

20Several of the remarks below were independently put forwardrecently in [28].
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that are aligned, and of the order of the electroweak scale. However, such a
mass is suppressed by a factor

∏5

I=1
vI

Ms
. Since allvI . MZ , we obtain an

unacceptable suppression factor of10−50. The other possibility is the presence
of symmetric or antisymmetric scalars that acquire vevs. Anantisymmetric vev
cannot preserve theSU(3)×U(1)em group of low energy physics. A symmetric
one,Rαβ is fine provided it is aligned as in (7.6). Its veṽV must be smaller
than the EW vev as it contributes to the W,Z masses. Again, althoughO2 can be
neutralized, it gives too small a contribution to up quark masses. There are new
operators we may write now like

O3 ∼ (ψ̄c)αβψγδR
αγRβδ (7.14)

However, such an operator does not contribute to fermion masses.
We can imagine of two non-perturbative loopholes to the previous arguments.

A first non-perturbative possibility is based on breaking the offending U(1) sym-
metry by a vacuum condensate. An example will be a Chan-Patongroup that
contains U(5)× SO(5)× SO(5), and we have extra scalars (denoted QA

α ) in the
representation (V,V,0)+(V∗,0,V), so that the U(5) anomalies cancel. If the dy-
namics is favorable, we may imagine that one of the SO(5)’s creates a composite
out of five scalars, of the form

ǫαβγδǫǫABCDEQ
A
αQ

B
β · · ·QE

ǫ , (7.15)

whereα, β, · · · are SU(5) indices andA,B, · · · SO(5) indices. If the condensate
gets a vev at the GUT scale, but not the individual fieldsQA

α , it breaks the U(1)
of U(5), and upon coupling to the U(5) quarks and leptons can generate the ap-
propriate masses. It should be however mentioned that such adynamical setup
seems unlikely.

The final possibility, is a non-perturbative breaking of theoverall (anomalous)
U(1) symmetry because of spacetime instantons. This seems arealistic possi-
bility as stringy instantons are reasonably well understood by now. They first
appeared in string theory along with the duality conjectures, and a lot has been
learned about them from their correspondence with perturbative effects (namely
world-sheet instantons) in dual string theories (see [29] for a review). The in-
stanton calculus associated with D-branes was developed eventually from first
principles [30, 31]. In supersymmetric orientifold vacua,the relevant instanton
effects can be two-fold. One is a stringy version of the standard gauge instantons
of field theory. The other is a stringy instanton that has no counterpart in field
theory, and resembles octonionic instantons [32]. In one ofits incarnations it is a
EuclideanD1-instanton, [37]. A stringy instanton for a given gauge group, may
be a gauge instanton for another gauge group.
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Such instantons can give corrections to the superpotentialthat can include
Yukawa couplings necessary for masses. Generic instantonsdo not contribute to
the superpotential as they have 4 zero modes, [33]. Orientifold projections can
reduce the zero modes to two, and then the instanton (called an O(1) instanton)
can contribute to the superpotential. The first nontrivial example of this, with
full tadpole cancellation was described in [32]. Moreover in this example, in one
region of the moduli space of vacua, the relevant gauge groupis SU(5) with three
10’ and 35̄, plus other non-chiral particles. The stringy instantons in that vacuum
generate a non-perturbative mass matrix for the 10s. Moreover at the minimum
of the open string superpotential, the vacum energy is non-zero and if closed
moduli are already stabilized that would break supersymmetry [34, 36]. This is
an incarnation of gaugino condensation, driven by stringy instantons. Further
examples were described in [35,36].

It is therefore possible to generate masses in SU(5) orientifolds by stringy
instantons.

7.3. Family symmetries

We have allowed extra non-abelian groups to participate in the local SM col-
lection of branes. In particular standard model particles are charged under such
groups. This setup is very reminiscent of the idea of family symmetries. The pur-
pose of the introduction of family symmetry in the past was toexplain/organize
the existence of three generations and the hierarchy of masses of the SM particles.
There are two relevant questions in this context:

(a) Can such symmetries play the role of family symmetries? Can they help
achieve realistic mass matrices for the SM particles?

(b) Are there cases where the presence of such symmetries forbids realistic
mass matrices?

In following we will make some comments on these two questions. Although
our setup is reminiscent of family symmetries, it incorporates a radical departure
from that idea as well. The reason is that the quark (3,2) states, cannot be charged
under any other gauge symmetry. This is unlike any other family symmetry intro-
duced in the literature. Since the quarks are necessarily not-charged under such
symmetries, there are non-trivial considerations concerning the potential mass
matrices and the existence of realistic patterns.

At this stage, we are not fully prepared to calculate three and higher point cou-
plings in the superpotential. We can however derive some selection rules on cou-
plings, especially renormalizable ones (three-point couplings) that are allowed
by the gauge symmetries. Such selection rules can have non-trivial consequences
because
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(i) Extra non-abelian symmetries, although broken, may be more or less con-
straining, due to the possible symmetry breaking vevs

(ii) The presence of several (anomalous) U(1)s provides further constraints,
especially if the corresponding global symmetries remain intact in perturbation
theory.

From now on we will call for concreteness the non-abelian groupG distinct
from SU(2) and S(3), the family symmetry group. Let us consider the case where
the anti-quarksqi transform in a non-trivial representationR of the groupG.
Then the potential mass term(Q̄c)I,aqi transform as a doublet of SU(2) and as
R ofG (I is a extra index labeling the three quark generations, while a is a weak
doublet index). At the cubic level the existence of a scalarΦi

a transforming in
the (2,R) ofSU(2) ×G, gives rise to the Yukawa coupling

(Q̄c)I,aqi Φi
a (7.16)

Up to base change there are two types of vevs forΦ, [61]. The first type breaks
the symmetrySU(2) × G → G′, with G′ = O(N − 1) if G = O(N) and
G′ = SU(N − 1) if G = SU(N). Therefore, the electroweak symmetry is
broken while the family symmetry is not fully broken. For this to be realistic,
further vev’s should break both theU(1)Y symmetry and the leftover family
symmetry. The pattern then becomes complicated and deserves a detailed study.
The second type breaksSU(2) × G → SU(2) × G′ with G′ = O(N − 2) if
G = O(N) andG′ = SU(N − 2) if G = SU(N). Here the family symmetry is
completely broken ifN = 2. This is the case for example of a Pati-Salam group.
If there is a leftover family symmetry, further symmetry breaking is necessary.
TheΦ vev identifies the weak and the G index and provides a mass matrix for
quarks that is degenerate. The existence of several copies of Φ does not improve
the situation.

We can contemplate higher dimension terms involving a weak doubleHa and
a scalarΦi in the fundamental ofG

(Q̄c)I,aqi H
aΦi (7.17)

In such a case a vev ofΦ of the order ofMs will give a mass matrix of order
of the electroweak scale but it will be degenerate. MoreovertheG symmetry is
partly broken. Several scalarsHI

i with couplings

gIJ

Ms

(Q̄c)I,aqi H
aΦi

J (7.18)

could fare better. First non-aligned expectation values can break a larger portion
or all of the G group. Second, for generic couplingsgIJ the mass matrix after
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electroweak breaking will be non-degenerate. Therefore, in this case, a reason-
able non-zero mass matrix is viable.

There are more complicated possibilities of the occurrenceof quasi-family
symmetries and the charge assignments of SM particles underthem. We have
studied in some indicative examples, the relevant issues present. A full study of
all possibilities is a major task and it will not be undertaken here.

7.4. Neutrino masses

In our search we have not explicitly constrained the presence of anti-neutrinos. A
priori, any SM singlet fermion can play that role. Of course,for a realistic pattern
of masses to emerge, important constraints on the interactions are appropriate.

There are two mechanisms that so far have been successful in producing neu-
trino masses of acceptable magnitude. The first, relies on the see-saw mechanism
and is appropriate for vacua with high values of the string scale. An important
ingredient for its operations is that lepton number is not conserved. Moreover
at least two (and typically three) antineutrinos are necessary for accommodating
present data. As we have discussed earlier, the presence of lepton number cannot
be directly tracked until a formal separation of doublets into leptons and Higgses
is possible. Therefore in this context, the question of neutrino masses remains a
question to be addressed in concrete string ground states.

The second mechanism involves a brane wrapping one (or several) large di-
mensions and is necessarily operative in string vacua with alow string scale. In
this context the neutrinos mix with antineutrinos emergingfrom the “bulk" brane
, and the masses are suppressed by the volume of large dimensions. For this
mechanism to succeed large Majorana masses should be forbidden. Therefore it
is important that lepton number is a good symmetry. Moreover, the minimal im-
plementation involves a single antineutrino and its KK tower of states and leads
to predictions marginally compatible with current data [10]. More comfortable
constructions involve at least two antineutrinos.

8. Dependence of the results on the Calabi-Yau topology

Table 7 lists the MIPFs for which the standard model spectrumwas found, and
how often it occurred. The table is ordered according to standard model fre-
quency, that is the total number of standard model configurations divided by the
total number of three and four brane configurations. Note that this does not take
into account tadpole cancellation, since we have not systematically solved the
tadpole conditions for all standard model configurations. Column 2 gives the
MIPF id-number using the same sequential labeling used in [17]. We can provide
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further details on these MIPFs on request. To help identifying them, we list in
columns 3,4 and 5 the resulting heterotic Calabi-Yau spectrum (Hodge numbers
and the number ofE6 singlets). In columns 6,7 and 8 we list the total number of
configurations for each value ofx. The last column gives the frequency.

Table 7:Standard model success rate for various MIPFs.

Tensor product mipf h11 h12 Scal x = 0 x =
1

2
x = ∗ rate

(1,1,1,1,7,16) 30 11 35 207 1698 388 0 2.1 · 10
−3

(1,1,1,1,7,16) 31 5 29 207 890 451 0 1.35 × 10
−3

(1,4,4,4,4) 53 20 20 150 2386746 250776 0 4.27 × 10
−4

(1,4,4,4,4) 54 3 51 213 5400 5328 4248 3.92 × 10
−4

(6,6,6,6) 37 3 59 223 0 946432 0 2.79 × 10
−4

(1,1,1,1,10,10) 50 12 24 183 1504 508 36 2.63 × 10
−4

(1,1,1,1,10,10) 56 4 40 219 244 82 0 2.01 × 10
−4

(1,1,1,1,8,13) 5 20 20 140 328 27 0 1.93 × 10
−4

(1,1,1,1,7,16) 26 20 20 140 157 14 0 1.72 × 10
−4

(1,1,7,7,7) 9 7 55 276 7163 860 0 1.59 × 10
−4

(1,1,1,1,7,16) 32 23 23 217 135 20 0 1.56 × 10
−4

(1,4,4,4,4) 52 3 51 253 110493 8303 0 1.02 × 10
−4

(1,4,4,4,4) 13 3 51 250 238464 168156 0 1.01 × 10
−4

(1,1,1,2,4,10) 44 12 24 225 704 248 0 1.01 × 10
−4

(1,1,1,1,1,2,10) 21 20 20 142 2 1 0 1.00 × 10
−4

(1,1,1,1,1,4,4) 124 0 0 78 729 0 0 9.8 × 10
−5

(4,4,10,10) 79 7 43 215 0 57924 0 9.39 × 10
−5

(4,4,10,10) 77 5 53 232 0 1068926 0 8.29 × 10
−5

(1,4,4,4,4) 77 3 63 248 0 1024 0 8.12 × 10
−5

(4,4,10,10) 74 9 57 249 0 1480812 0 8.06 × 10
−5

(1,1,1,1,1,2,10) 24 20 20 142 0 0 6 7.87 × 10
−5

(1,2,4,4,10) 67 11 35 213 0 14088 1008 7 × 10
−5

(1,1,1,1,5,40) 5 20 20 140 303 36 0 6.73 × 10
−5

(2,8,8,18) 8 13 49 249 0 1506776 0 6.03 × 10
−5

(1,1,7,7,7) 7 22 34 256 2700 68 0 5.5 × 10
−5

(1,4,4,4,4) 78 15 15 186 20270 6792 0 5.39 × 10
−5

(2,8,8,18) 28 13 49 249 0 670276 0 5.25 × 10
−5

(1,2,4,4,10) 75 5 41 212 304 580 244 4.87 × 10
−5

(1,1,7,7,7) 17 10 46 220 1662 624 108 4.76 × 10
−5

(2,2,2,6,6) 106 3 51 235 0 201728 0 4.74 × 10
−5

(1,1,1,16,22) 7 20 20 140 244 19 0 4.67 × 10
−5

(1,2,4,4,10) 65 6 30 196 0 1386 0 4.41 × 10
−5

(4,4,10,10) 66 6 48 223 0 61568 0 4.33 × 10
−5

(1,4,4,4,4) 57 4 40 252 0 266328 58320 4.19 × 10
−5

(1,4,4,4,4) 80 7 37 200 0 1968 1408 4.15 × 10
−5

(6,6,6,6) 58 3 43 207 0 190464 0 3.93 × 10
−5

(1,1,1,1,10,10) 36 20 20 140 266 26 6 3.82 × 10
−5

(1,1,1,4,4,4) 125 12 24 214 351 0 0 3.62 × 10
−5

(4,4,10,10) 14 4 46 219 0 114702 0 3.3 × 10
−5

(1,1,1,1,10,10) 33 20 20 140 47 5 0 3.21 × 10
−5

. . . . . .

(3,3,3,3,3) 6 21 17 234 0 192 0 6.54 × 10
−6

. . . . . .

(3,3,3,3,3) 4 5 49 258 0 24 0 8.17 × 10
−7

. . . . . .

(3,3,3,3,3) 2 49 5 258 6 27 6 1.65 × 10
−9

. . . . . .

The complete table has 1639 cases with non-zero frequency. Therefore we
only present the top of the table here, which starts with a frequency as high as
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.2%. The last three entries are modular invariants of the tensor(3, 3, 3, 3, 3), cor-
responding to the quintic. They occur much further down the list, but are shown
here because the quintic is a well-studied Calabi-Yau manifold. The lowest non-
zero frequency we encountered is3.5 × 10−12 (for a total of 4 configurations
found).

In column 2 an asterisk indicates that at least one tadpole solution was found
for that MIPF in [17]. Note that we did not perform an exhaustive search for tad-
pole solutions in the present work. Indeed, if all brane configurations occurring
for a given MIPF are of a type for which the tadpoles have already been solved
before (for a different MIPF), no further attempts are made to solve them. There-
fore we cannot make definitive conclusions about the non-existence of tadpole
solutions for a given MIPF from our present results.

Note the presence of models with Hodge numbers(20, 20). The correspond-
ing Calabi-Yau manifolds are in fact of the formK3 × T2. There is also a case
with h11 = h12 = 0, which is in fact a torus compactification. The fact that these
are (partly) torus compactifications is not in contradiction with the fact that the
spectrum is chiral. Each MIPF can be thought of as a an extension of the chiral
algebra of the original tensor product, modified by an automorphism. This ex-
tension may lead to a non-chiral torus compactification. However the boundary
states that are admitted are a complete set with respect to the original unextended
chiral algebra, which always corresponds to a chiral compactification (except for
five non-chiral tensor products that we do not consider). Hence a non-chiral bulk
extension may have chiral boundary states. It is possible that theK3×T2 models
are related to models discussed in ( [62]); this will requirefurther investigation.
In any case we did not find tadpole solutions for any of these torus orK3 × T2

models (but again with the caveat that we did not search for them exhaustively).
We did find tadpole solutions for one of the MIPFs of the quintic, namely

MIPF nr. 6. These solutions are the broken and unbroken Pati-SalamU(4) ×
U(2) × U(2) models discussed above.
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