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1. Introduction

Ever since the Standard Model (SM) was accepted as the toescription of
particle physics phenomena in the accessible energy rasdendamental (the-
oretical) limitations were obvious and a new quest was laaddor a more fun-
damental theory. This theory would share the low-energgesses of the SM
while it would extend its range of validity to the ultimateezgy frontier. As
GUTs suggested, this ultimate frontier must at least rehetPlanck scale and
therefore the fundamental theory should include a quanh@ary of gravity as
well. Subsequent inclusion of supersymmetry in order to agarthe hierarchy
problem only made the quest for quantum (super) gravity evere inevitable.
Such observations opened Pandora’s box as it was alrea@yyveipgpreciated
that even defining perturbative gravity theories was sorfaactable. Interest-
ingly, perturbatively well-defined quantum theories of\gtyawere known (as
superstring theories) as was first pointed out by Scherk ah@&=z [1] and in-
dependently Yoneya [2] in the mid 70s. Almost nobody paid &ev attention to
this observation until 1984, when superstring theoriesecemthe forth. The rea-
son was advocated to be anomaly cancelation [3] and unigaeidter almost
forty years of research in string theory (since the origiWeieziano paper [4]),
we know today that uniqueness is, to put it mildly, the mossiee property
of the theory. On the other hand, the fact that it containsreugeatively well-
defined quantum theory of gravity, (at least when supersytmyriseunbroken) is
non-trivial. Never the less, the theory seems incapabledfessing phenomena
close or beyond the Planck scale, unless it is defined (areenydspecific back-
grounds) via large-N gauge theories/matrix models. Theeyén a dichotomy
of point of view: is string theory a single theory with manyfeient vacua, as
probably most people hope/advocate? Or is it a collectiodiféérent theories,
defined holographically via large-N field theories as a nitgavould argue?
Whatever the answer to the previous question, the origimalenge remains:
can we construct a theory that contains a controllable peative theory of quan-
tum gravity and reduces to the standard model at low enérgigss question
was addressed in recurring waves in the context of the ha&teheories in the
80s and early 90s without a clean answer (see for exampleNgjdlel building
in the heterotic string turned out to be very difficult, atdeeompared with field
theory model building. The reasons are clear: In field theairieast in perturba-
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6 E. Kiritsis

tion theory, the input needed to construct a fundamentakthis a gauge group,
fermions and bosons in specific representations, and afiinitéder of couplings
(Yukawa and scalar), that reflect very closely the phenorogiyove want to
reproduce: the spectrum of particles and their low enertgractions.

In the heterotic string however the input needed for modéting is very
remotely connected to the spectrum and the phenomenologyaweto achieve.
In particular the input is the geometry and other backgrdigids of the internal
space, and in its most abstract form, the CFT describingdimpect part of space
and time. Therefore, producing the spectrum and gauge grneedike is very
difficult, and matching the couplings, most of the time iotedble. Although
heterotic vacua were found that come close to the SM, none ileery well.
The reasons for the difficulties advocated above can be osegtie that the SM
is probably there (maybe in more than one incarnation), wetjave a hard time
to find it.

The return of open string vacua and the advent of orientfaddthe early-
to-mid 90s [7] has created a new string arena for “model mglgearching".
Moreover, it was realized [8—10] that the natural distioctdf open and closed
string sectors, was helpful in turning the search for SM iatmodular enter-
prize, where one could put together his favorite open ssewor, generating the
SM and its extensions and postpone the stringy compagilsitinditions till the
end. This so-called "bottom-up" approach has yielded taaégr richer set of
SM-like orientifold vacua (see [12] for reviews) althougitlane of the (non-
supersymmetric) SM still remains to be found.

Building the SM spectrum using D-branes involves severalfiarities that
were realized along the way. Generically speaking we ohpairuct gauge
groups. Unified models are typically difficult to obtain (bd; and SO(10) are
not possible perturbatively). SU(5) as we will see is pdssiy various forms,
however its detailed phenomenology, especially the qua&ses, needs “fine-
tuning”. Once we move to product groups, very few of the gmesivays of
realizing the standard model have been so far explored. dmon is that prod-
uct groups are mostly “unmotivated" from the theory point/ia!fmﬂ It has been
already observed [8] that there several different ways dbentding the hyper-
charge inside a product gauge group containing the SM mbttakeover, differ-
ent hypercharge embeddings lead to different phenomenaibgr beyond the
SM regime [13].

It is therefore an important task to examine the differengysvaf embedding
successfully the SM spectrum into the Chan-Paton (CP) ggraeps of orien-
tifolds and this is what we will review in this lecture.

1There are however exceptions: the Pati-Salam SJB)(2) model or the trinification SU(3)
are in this class.
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The strategy for building orientifold vacua can be desatibs follows. One
starts from a type Il vacuum, typically based on a solvablgkaCFT. This vac-
uum describes a “compactification” of the type Il theory torfdimensions with
(or without) space-time supersymmetry. One then buildB®BET associated to
this bulk CFT. In particular this involves the constructmffboundary states, that
can be intuitively thought of as possible branes to be platéde closed string
background (if they carry non-zero CP multiplicities). Ghen chooses an ori-
entifold projection, to define the open string sector (ifatr boundary states).
At this stage, we can choose CP multiplicities of appropriatanes (bound-
ary states) in view of reproducing the SM gauge group. Thetspa is then
checked, and once we are happy with it we try to solve the tadpmmnditions.
Rarely this works without adding other branes. We must foegeadd other
branes that must generate “hidden sectors" of the theodp(i& appropriately).
We continue this until the tadpole conditions are solved.

This is the algorithm that we will use, combined with a fewrexingredi-
ents. The first is a list of rational CFTs that can be used dslibgiblocks of
the bulk type Il partition function. The second is an alduritusing simple cur-
rents to generate many more modular invariant partitioretions starting from
a left-right diagonal one [14]. The third involves genemrfiulae for bound-
ary and crosscap coefficients for such BCFTs developed iness& papers by
Schellekens and collaborators [15]. The final ingredietihét all of the above
can be algorithmized so that the search can be done nunheritails is an enor-
mous advantage as the vacua that can be searched are so nsithatanillions
of spectra can be produced that match chirally the SM spactta the first ap-
plication of this numerical algorithm to an extended sedocta concrete brane
configuration realizing the SM model 200000 different sssf@l spectra were
found in millions of copies, [17] using Gepner models [18Jasiding blockH
The kind of bottom up models considered in [17] were varigion the “Madrid"
model first proposed in [16]. They are characterized by ftagks of branes with
a Chan-Paton groug(3), x U(2)p x U(1) x U(1)q, with the standard model
generatol” embedded a¥ = Q. — Qb — 3Qc. The variations include the
possibility of choosing the second and third Chan-Patotofaeal, and allowing
the B— L abelian vector boson to be either massive or massless indocesring
theory. These models have a perturbatively unbroken bagdrepton number.

In the search that we review here the only feature assumée imost robust
part of what we presently know about the Standard Model: ttherte are three
chiral families of quarks and leptons in the familiar regresitions ofSU(3) x
SU(2)xU(1). In practice, we still have to make a few concessions. Iriqaar,

20rientifolds using Gepner models were developed in [193],[although getting chiral spectra
proved to be a difficult exercise. This was first achieved B].[2
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we will have to limit the number of participating branes awodbid non-chiral
mirror pairs of arbitrary charge. This will be discussed iarmdetail in the next
section.
The features that are allowed include
e Anti-quarks realized as anti-symmetric tensoré/g8)
e Charged leptons and neutrinos realized as anti-symmetrsots
e Non-standard embeddings of tiiecharge
e Embeddings ot” in non-abelian groups
e Strong-Weak unificationg(g.SU (5))
e Baryon-lepton unificationg.g. Pati-Salam models)
e Trinification
e Baryon and/or lepton number violation
e Family symmetries
Not all of these features are desirable, but the strategyafidw as many possi-
bilities in an early stage, and leave the final selection ¢oldist stage, so that it
will not be necessary to restart the entire search procéthee insights emerge.
Some of these options may address unsolved problems that @mcthe
Madrid realization [16] of the standard model. For examtile, perturbatively
unbroken lepton number of these models makes it hard to mpi¢ a see-saw
like mechanism to give small masses to neutrﬁloétoupling constant unifica-
tion, if it is indeed a fundamental feature of nature and ns¢mi-coincidence,
is not automatic in the standard realization, but it wouldrb&U (5) models.
This does not mean that the Madrid realization cannot acooshate the cur-
rent experimental values of the couplings constants, blyt thiat the fact that
they presently appear to converge (with gaugino contidimsttaken into account)
would be a mere coincidence. We will find some really simple alegant re-
alizations ofSU (5) models, but instantons need to be advocated to generate up-
quark masses [11, 28, 32, 35]. We will comment on this in eafii
One of our goals is to analyse which model can be built from #obo-up
point of view, and how many of them can be realized as top-dawedels. By
“bottom-up" we mean here a brane realization that produwesorrect chiral
standard model spectrum if the gauge group is reduc8@t@) x SU (2) x U (1)
(without assuming a particular mechanism for that redugti®n the “top-down"
side two types of concepts should be distinguished: stantadel brane con-
figurations and solutions to the tadpole conditions. Thegadn this lecture is on
the formerj.e. choices of boundary labfls, b, c andd such that with an appro-

SInstantons may bypass this difficulty, however, [31, 33].

4We label the complete set of boundaries of a given modulariamt partition function of a
CFT asa, b, ¢, d, . ... The specific boundaries that participate in a Standard Mamdiguration are
denoted as, b, c andd. We allow a maximum of four (plus a hidden sector), with thetftwo
corresponding t&U (3)color aNASU (2)weak -
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priate choice of the Chan-Paton gauge group and the appteminbedding of
SU(3) x SU(2) x U(1) one obtains the standard model. Here we also require
that the standard modél(1) generator does not acquire mass due to bilinear
axion couplings.

Given such a standard model configuration, there may stillitganceled
tadpoles in RR closed string one-point functions on the dist the crosscap.
Within this context, the only way to cancel them is to add &ddal hidden mat-
ter, except in a few cases where they already cancel amorgiahdard model
branes. To see if this can happen is an extremely time-cangyand ultimately
unsolvable problem. Furthermore for any given brane cordiipn there may
be many ways of canceling the tadpoles. In the continuumr$héackground
fluxes, not considered here, contribute to the tadpolespBudtaps more impor-
tantly, the set of boundary states we consider here is lihiite the choice of
rational CFT. We consider the complete set of boundariesvalll by the RCFT,
i.e. all boundaries that respect its chiral algebra. But thatathigebra is larger
than theN = 2 world-sheet algebra required to describe a geometric Calkab
compactification. Since we get tlke= 9 chiral algebra as a tensor product of
minimal N = 2 algebras, the chiral algebra also contains all differeinéd¢ke
N = 2 algebras of the factors. If we would reduce the chiral algeadditional
boundary states are allowed, and could contribute to tadgaicelation.

It is essentially impossible to conclude, with RCFT tecluaig|alone, that the
tadpoles of a certain standard model configuration cannothbeeled. Positive
results, on the other hand, imply that one has a valid superstric string vac-
uum. We see tadpole cancelation therefore mainly as aneexistproof of a
given string vacuum. Once that proof has been given, we doordinue search-
ing for additional tadpole solutions for the same chiralfeguration. This gives
an enormous cut-off in computer time. One should keep in riatfor the most
frequent chiral model considered in [17], we found a total ®fmillion tadpole
solutions (about 110000 of them distinct). We now keep omig of those so-
lutions. This also implies that we cannot provide meanihgfatistical results
regarding tadpole solutions, but only regarding brane gorditions.

We summarize briefly the results:

e We develop a detailed classification of allowed embeddifigjseoSM hyper-
charge inside the orientifold gauge group. To do this, wesifg brane stacks
according to how they contribute to the hypercharge. Theslghmrge embed-
ding is then characterized by a real variablhich is quantized in half-integral
units in genuine non-orientable vacua.

e We produce 19345 chirally distinct top-down SM spectragbefadpole can-
celation) and 1900 chirally distinct models solving thepalg conditions and
realizing the different embeddings.

e We find that ther = 1 hypercharge embedding dominates by far all other
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choices. The Madrid embedding [16] belongs to this class.

e The presence of chiral symmetric and antisymmetric tenisonsghly sup-
pressed. For some hypercharge embeddings, such tensorsceg for anomaly
cancelation and they may produce anti-quarks and other giaglets. This im-
plies the associated suppression of such embeddings.

e We produce the first examples of supersymmetric SU(5) anpgefilSU(5)
orientifold vacua, with the correct chiral spectrum (noraxjauge groups and
no exoticG¢p chiral states). However, as we argue, all such orientifobdiets,
as well as models with quarks in the antisymmetric reprediam have a serious
phenomenological problem associated with masses.

¢ We find some minimal supersymmetric Pati-Salam and trinificavacua.

e We have examples of spectra (but no tadpole solutions yei) extended
(N=4 or N=8) supersymmetry in the bulk and N=1 supersymmatrihe branes.
e We have found SM spectra solving the tadpole conditions atadive of the

quintic CY.
Most of the work that is reviewed here, has appeared in [11].

2. What we are looking for

Our goal is to search for the most general embedding of thelatd model in
the Chan-Paton gauge group of Gepner Orientifolds.

We first introduce some notation. We denote the full Cham#Patroup as
Gcp. This is the group obtained directly from the multiplicgief the branes,
without taking into account masses generated by two-poiioinagauge boson
couplings. We require that the standard model gauge gi@yg, = SU(3) x
SU(2)xU(1)y isasubgroup oficp. Furthermore we require that the generator
of U(1)y does not get a mass from axion-gauge boson couplings.

The main condition we impose on the spectrum is the presdrtbeas fam-
ilies of quarks and leptons, and the absence of chiral exot&ince chirality
can be defined with respect to various groups, and the termtiteX is used
in different senses in the literature, we will define this mprecisely. Group-
theoretically, the standard-model-like spectra we allosvdescribed as follows.
Denote the full set of massless representationS@f as Rcp. The subset of
these representations that is chiral with respedtte is denotedR:s. The
reduction of these representations to the the gi@yp are denoted aBgsy; and
REhIr respectively. By “reduction” we mean here only that we degose repre-
sentations in terms of representations of a subgroup. Novg#fons are made at
this point regarding dynamical mechanisms (like the Bientfert-Higgs mech-
anism) to achieve such a reduction. Consider now the subbséther Rsy; or
REAIr that is chiral with respect t6'sy. The result is required to be precisely the
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following set of left-handed fermions (all fermions will loeleft-handed form in
this paper)
1 2 1 1

3 % [(3,2, 6) + (3*,1,7§) + (3,1, §) + (1,2,75) +(1,1,1)] (2.2)
Any other particles must be non-chiral with respectiigy;. This may include
left-handed anti-neutrinos in the representatibr, 0) and MSSM Higgs pairs,
(1,2,3) + (1,2, —1). Anything else will be called exotic.

The foregoing describes the most general configuration onkeleceasonably
call an embedding of the standard model without chiral esptiut we will have
to impose a few additional constraints to make a searchifieaskirst of all
we require that the standard model groufis(3) and SU(2) come each from
a single stack of branes, denotacindb respectively. This forbids diagonal
embeddings of these groups in more than one CP factor. Irglemga stack
we mean a single label for a real (orthogonal or symplectejraary, or a pair
of conjugate labels for complex, unitary branes. The CRofagielding SU (3)
must beU (3), whereas the weak gauge symme#ity (2) can come from either
U(2) or Sp(2). The groupO(3) is not allowed, because one cannot get spinor
representations of orthogonal groups in perturbative gjémg constructions.

The hypercharge generafdris a linear combination of the unitary phase fac-
tors of U (3), U(2) (if available) and any other generator of one of the other fac
torsinGcp. All representation§3, 2) must necessarily come from bi-fundamentals
of thea andb stacks, but not all anti-quarks can come from those stacks. A
though there can be anti-quarks due to chiral anti-symmegdrisors ofSU (3),
they all have the same hypercharge. Hence there must bestbleaother stack
of branes, labeled

In principle there could be any number of additional stadksranes, but for
purely practical reasons we allow at most one more stackl@ald) to contribute
to the standard model representatiEZ.]AdditionaI branes may be present,
and may be required for tadpole cancellation. They will Herred to as the
“hidden sector". If stackl does not contribute t§¢{d.1) at all we regard it as part
of the hidden sector. The standard model brandsc (andd, if present) will be
called the “observable sector”. Note that left-handedaetitrinoll are not listed
in @2). We do not impose am priori constrair] on the number of left-handed
anti-neutrinos, although in some cases a certain numbeicbfstates is required

5In general we also expect that the number of exotics to riseviith the number of additional
stacks participating in the SM group.

6Since our convention is to represent all matter in terms ffhanded fermions, right-handed
neutrinos are referred to as left-handed anti-neutrinos.

7The minimum number is two in order to accommodate the exgeriai data. We will comment
further on neutrino masses in sectionl 7.4.
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by anomaly cancellation i6‘cp. They may in fact come from the hidden sector
or the observable sector, or even from strings stretchihgdsn the two sectors.
Our next condition concerns the precise definition of theddad model gen-
eratorY. We allow it to be embedded in the most general way possibthan
Chan-Paton factors of brasendd (in addition to the unitary phasesagndb).
In principle it could also have components in the hiddenaegtthout affecting
any of the foregoing, as long as all particles charged uritesg components of
Y are massive or at least non-chiral. One could even try tohiseat a mech-
anism to cancel bilinear axion coupling Bf, which would give the¥"-boson a
masl. We will not consider that possibility here. This is equaratito a restric-
tion to standard model realizations with at most four pgrtiting branes, except
for one intriguing possibility: a three brane realizatioithma fourth brane added
purely to fix the axion couplings df , without contributing to quarks or leptons.
This possibility was not included in our search. It shouldnbentioned how-
ever, that a qualitatively similar situation does indeaglearThere are orientifold
vacua where there is a U(1) arising from the SM stack of branesler which
all SM particles are neutral. In this case there is a contisfamily of possible
hypercharge embeddings. In some cases, the masslessndi&®odreaks the
degeneracy. This provides a string realization of the fiedbty models in [40].
In other cases, even the masslessness condition doed ting lifegeneracy.
The general form oY is

Y= ZﬁaQa +We + Wa, (22)

whereax runs over the valueg,b,c,d, @, is the brane charge of brane(+1 for

a complex brane;-1 for its conjugate, and O for a real brane), afd andWy
are generators from the non-abelian part of the Chan-PatupgThereforéV,
andWy are traceless. Such contributionsffooccur for example in Pati-Salam
and trinification models, and therefore we want to allow possibility.

There is one more condition we impose for practical reasnamely that
R&r may only yield representations of standard model partiwiéseir mirrors.
The main purpose of this condition (as we will see in more itlbtgow) is to
prevent an unlimited proliferation a@¥cp-chiral, butGsy non-chiral represen-
tations such aél, 1, q) + (1,1, —¢), with ¢ arbitrary. In addition, this condition
also forbids triplets 06U (2)weak, Which can be chiral with respect t6(2),.

One may distinguish three types of matter in these models:@®Dand HH,
where the two letters indicate if the endpoints of the opeingtare in the ob-
servable or hidden sector. All conditions on OO matter wéneady formulated
above. The “no chiral exotics" constraint formulated abalews HH matter to

8Anomalous U(1) masses have been calculated for generatislds in [39].
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be chiral with respect té/cp. For OH matter we impose a somewhat stronger
constraint, namely that there cannot be any bi-fundamebetiveen the stan-
dard model and the hidden sector that are chiral with respeGtp. This is a
stronger condition because the “no chiral exotics" congtadlows SM-Hidden
sector bi-fundamentals as long as they are non-chiral w#pect todGsy. For
example a mirror quark pai3, V) + (3*,V), whereV is a vector in a hidden
sectorUU (V) group, could be allowed under the more general rules. Thitires
U(N) anomalies can be cancelled in various ways.

We will allow the brane stacks, b, c, d to have identical labels, with the
exception ofc andd (if they are identical, we might as well regard them as a
single brane stack with a larger CP multiplicity). By allogiidentical labels we
are able to obtain examples of unified models, such as (flipped5) or Pati-
Salam like models. In the case of identical labels, we ccanntas follows: the
QCD and weak group count as one stack each, and the braneertiaih after
removing the QCD and weak groups count as additional staeld) that the
total does not exceed four. For example, we canlgét) models with at most
two additional CP-factors (plus any number of hidden selatanes).

We conclude this section with a summary of the kind of “ex®tifplus sin-
glets and Higgs candidates) that may occur in generic mpaeligating which
kind we do and do not allow. We splif-p into an observable and a hidden part
asGo xGy. Inall cases we combine representations into non-chita(asually,
but not always pairs) if possible. We can distinguish théofeing possibilities

1. Matter of type OO

(&) Non-chiral with respect t6/cp. This may include symmetric and anti-
symmetric tensors or adjoints 81/ (3) or of SU(2), mirror pairs of quarks
and leptons, as well as bi-fundamentals with unusual andfawacases
even irrational charges. All particles in this class arevadid by our condi-
tions.

(b) Chiral with respect t6:cp, non-chiral with respect t&'s,,. Examples are
symmetric tensors dff (2)weak, Mirror pairs of quark and lepton doublets
that are chiral with respect 0 (2)weak, mirror pairs where one member
of the pair is a rank-2 tensor and the other member a bi-fuedssh We
do allow such particles, except the symmeti2)..x tensors, and non-
chiral pairs of quarks and leptons with non-standard clearge

(c) Chiral with respect td~cp, chiral with respect tazsy, non-chiral with
respect todQED x QCD. An example of such exotics would be a fourth
family. Exotics of this type are not allowed by our conditson

(d) Chiral with respect td@-cp, chiral with respect ta7sy;, and chiral with
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respect tdQED x QCD. Clearly this is not acceptable.

A mass term for exotics of type 1a is allowed by the full gaugametry, and
hence it is possible that such a term is generated by shitteghoduli of the
model. It is an interesting question whether the appearahsech exotics
is a special feature of RCFT, or if they persist outside th@mal points.
It should be possible to get some insight in this question fglysing the
coupling of these particles to the moduli, but this is beytrascope of this
paper. Exotics of type 1b may get a mass without invoking tiaedard model
Higgs mechanism, and hence may become more massive thdastajarks
and leptons. However, this will always require some add#lalynamical
mechanism beyond perturbative string theory. Exotics pétyc require the
standard model Higgs mechanism to get a mass. This may nafffi@ent,
since the Higgs couplings themselves may be forbidden gstymmetries,
in which case additional mechanisms must be invoked. In asg it would
be hard to argue that such particles would be considerabig massive than
known quarks and leptons.

2. Matter of type HH. These are standard model singlets. Ntstcaints are
imposed on this kind of matter. One may distinguish two kinds

(a) Non-chiral with respect té:cp. These particles may get a mass from
continuous deformations of the model, as above.

(b) Chiral with respect té-cp, non-chiral with respect t6';;. These particles
may get a mass from hidden sector dynamics.

3. Matter of type OH. In many cases patrticles in this classshaalf-integer
charge. This occurs if the electromagnetic charge gets &ilotion % from
each observable brane, which turns out to be the most frégumrcurring
kind of model. There are many possibilities for the chiredit which we list
here for completeness. We use a notatiofi. , XGus XGo» XGsms XQEDxQCD )
where eacly indicates chirality, and can 3¢ (yes) orN (no).

(@) (N,N,N,N,N).
(b) (Y,N,N,N,N).
(c) (Y,Y,N,N,;N).
(d) (Y,N,Y,N,N).
(e) (Y.N,Y,Y,N).
® (Y)N,Y,Y,Y).
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(9) (YY.Y,N,N).
(h) (YY.Y,Y,N).
M V,Y,Y,Y,Y).

An example of type 3b, chiral with respect to the full CharneRagroup,
but not with respect to any of its subgroups(3s0, V) + (3*,0,V) + 3 x
(1,1, V*)+3x (1,-1,V*)inU(3) xU(1) x U(N), with the first two factors
from G and the last front7y. Of all these possibilities, only 3a is allowed by
our criteria. Types 3b, 3c and 3g might be tolerated on moneige grounds,
and types 3f and 3i are clearly unacceptable.

3. Classification of bottom-up embeddings

Here we will discuss the possible values of the coefficieptthat occur in the
brane decomposition af. We will use the following expression faf:

Y= ZxaQa ) (31)

whereQ,, is theU (1) charge of brane. In contrast to[(Z12) the sum is here not
a priori restricted to a definite number of branes. In our search wealdw
also the possibility that diagonal Lie algebra generattref SO(N), Sp(2N)
or SU(N) groups contribute td@”, but this can always be taken into account
by splitting those groups intt’ (m) factors according to th& eigenvalueg;.
For example, if there are two distinct eigenvaﬂmle get for symplectic groups
Sp(2N) a contributionW,, = diag(N x (e), N x (—e)), which can be ac-
commodated by splittingp(2.V) into conjugate brane stacks with a CP group
U(N) and a contributior@,. Geometrically, this means that tBé&’ symplec-
tic branes are moved off the orientifold plane. The sameordag applies to
O(2N) branes. If there ar@(2N + 1) stacks, the assumption of at most two dis-
tinct eigenvalues only allows the traceless generdfoe 0 in (Z2), and hence
such branes cannot contributeYoat all. Finally,U(N) branes can contribute
taQa+diag(TL1 X ey, Ny X 62), with n1+n9 = N,nje; +nqes = 0. This can be
regarded as two stack&n;) x U (nz) contributing(ts+€1)Qa, + (ta+€2)Qas,
so thatr,, = t, +e1 andx,, = t, + e2 Therefore formul&3]1 covers all cases.
The brane configurations we consider here are subject todawsti@ints: the
spectrum must match that of the standard model in the claredes with chirality

9Two is the maximum we allow. If there are more, this necelssgields unconventional quark
or lepton charges. For more details, see appendix A.
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defined with respect t6U (3) x SU(2) x U(1). Furthermore all cubic anoma-
lies in each factor of the full Chan-Paton group must cantals must be true
because we want to be able to cancel tadpoles, and tadpaelledion imposes
cubic anomaly cancellation (mixed anomalies are cancéljethe generalized
Green-Schwarz mechanism). The tadpoles are usually daddsl adding hid-
den sectors, which adds new massless states to the spedterdo not allow
these to be chiral with respect$/(3) x SU(2) x U(1), and hence they cannot
alter the cubic anomalies. The cubic anomaly cancellatiorlitions that are de-
rived from tadpole cancellation are the usual ones for threatwelian subgroups
of U(N), N > 2. Vectors contribute 1, symmetric tensa¥s+ 4 and anti-
symmetric tensord’ — 4, and conjugates contribute with opposite signs. But the
same condition emerges everNf= 1 and N = 2. This means that for example
a combination of three vectors and an anti-symmetric teissdfowed in alJ (1)
factor. This is counter-intuitive, because the anti-syrriméensor does not even
contribute massless states, so that one is left with jusetbhiral massless par-
ticles, all with charge 1. The origin of the paradox is thasitncorrect to call
this condition “anomaly cancellation" iV = 1 and N = 2 and if chiral ten-
sors are present. It is simply a consequence of tadpole katihme; the anomaly
introduced by the three charge 1 particles is factorizade, cancelled by the
Green-Schwarz mechanism.

One might entertain the thought that this peculigfl) cancellation might
have something to do with the fact that we have three faniliestandard model
particles. For example, one could assign the sé&e) charge to all quarks
or leptons of a certain type, and then cancel this anomally aiti-symmetric
tensors. This would require this particle type to appeahwitmultiplicity di-
visible by three. Because ttié(1) is anomalous, it would acquire a mass via
the Green-Schwarz term. However, although configuratiéisi® kind can in-
deed be constructed, they are complicated and unlikely¢aro®Ve did indeed
find examples ot/ (1) anomaly cancellations due to anti-symmetric tensors, but
usually with a more complicated family structure that does admit such an
interpretation.

3.1. Orientable configurations

Let us now return to our goal of determining the possibditier Y. We begin
by demonstrating that in principle all real values of thelieg coefficient:, are
allowed. Using the quark doublet charges we may witas follows

Y =(z- %)Qa + (x — %)Qb + rest (3.2)

Here we assume (without loss of generality) that the quadbbiis all come
from bi-fundamental$V, VV*) stretching between the QCD and the weak brane.
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The second entry could also bé/a but then we can conjugaté(2) to obtain
(V,V*). A mixture of V andV* is however not allowed if we want to take
all real values; neither is a chiral anti-symmetric tensoeitherU(3) or U(2),
or the option of usingSp(2) instead ofU(2). Here and in the following all
representations are in terms of left-handed spinors.

Now we need lepton doublets. They can only be bi-fundameetadling on
theU(2). The other end must be on a brane that contributés o such a way
that the total charge is either} or 1. The latter value is considered because
in addition to lepton doublets, we also allow mirrors, or M&8liggs pairs.
Again we will write these bi-fundamentals exclusively(& V*) (the first entry
corresponds t&/(2)). Mixtures of (V, V) and(V, V*) between the same branes
would fix z, and if there are no mixtures we can convert all bi-fundamerio
the form (V, V*). The multiplicities of these bi-fundamentals may be negati
in which case we interpret them &8*, V).

Since we only allowSU (2) doublets with charges 1, the possibilities for
the charge coefficients of the new branesate + — 1. We refer to branes with
these charges as “type C" and “type D" respectively (the Q@dveeak branes
are defined to be of type A and B respectively. We use smadirkedt b, c, d,

e,. .. to label different stacks, and capitals A,B,C,to label their types, with
respect to the hypercharge embedding. Branasdb are always of type A and
B, but there is no one-to-one correspondence for the otteerels). Note that
these types C and D become equivalent (up to conjugationyibaly if z = %
We are not requiring that the type C or D branes are identaradll leptons or
Higgs, or each other’s conjugate, even if their charges evalibw that.

Letn; be the net number of chiral states between bkaaed all of the C-type
branes, and, the same for type D. To be precise:

ni =Y [(N(V,V)bo, = N(V*, V)ue,)] (3.3)
where N is the absolute number of massless states with given pieperiVe
now impose anomaly cancellationlif(2) (for three families)

—94n;1+ne=0, (3.4)

because no chiral tensors are allowed for generM/e also impose the require-
ment of having three chiral lepton doublets

ny —ng = 3 (35)

which can be solved to yield; = 6 andn, = 3. Note that the anomaly con-
ditions for the Chan-Paton factors at the other end can awaysatisfied for
some of the solutions. This is because the solution allowshaltiplicities of
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N(V,V*) as well asN (V*, V) to be multiples of three. If we make three open
strings end on the sanié(1) brane, the correspondirig(1) anomalies can al-
ways be cancelled by anti-symmetric tensors.

Next we need anti-quarks. Since for generanti-symmetrid/(3) tensors
are not allowed, they must be bi-fundamentals betweef/{{3¢ stack and other
branes. If we introduce new branes for the anti-quark s$riogend on, we can
always arrange the configuration so that the anti-quarksfates form(V*, V).
Then we need a brane of type C for down anti-quarks and a brfagpeD for
up anti-quarks. One may also use one of the already presen¢diof type C
and D for this purpose, provided that only combinati¢visV*) or (V*, V') are
used. Anything else implies a condition @n Even if one uses distinct branes
for all particle types, there are many ways to cancellitfé) anomalies using
anti-symmetric tensors.

Finally we need charged lepton singlets and their mirroteeylcan occur in
four different ways for generic:

1. With both ends on an existing brane of types C and D.

2. With one end on a previous C or D brane and one end on a newTdng.
would require new branes with various possible charges.attiqular, it al-
lows the following new charges: + 1, x — 2 and their conjugates. We refer
to these as types E and F. ko % these are each other’s conjugates, and for
z = 3,1,0 and—1 some of the types C,D,E and F are equivalent.

3. With both ends on the same, new brane. This requires a raave bvitht,, =
i%. We call this type G, unless it coincides with a previous type

4. With both ends on two distinct new branes. This would imgiple allow two
new branes with contributionsand1 — y to Y. Such branes (if they do not
coincide with any previous type) will be called type H.

There are even more possibilities if one allows arbitrargnbars of additional
branes for charged leptons. For example, one can connedinaass to types E
and F with charge contributions— 2 or x + 3, connect new branes to types G
and H or add more branes of type H. By allowing mirror leptone oan build
arbitrarily long chains of branes in this manner. Howews is too baroqlﬂto
consider seriously, and can in any case not be realized wittoat four branes,

101t should be kept in mind that as the number of branes paaticig in the SM configuration
increases, the number of chiral exotics, fractionally ghdrparticles and other unwanted states in-
creases exponentially fast. It is possible that the lowecess rate may be compensated by the
potentially larger number of such configurations. It id stile however, that the effective field theory
of such vacua, will be very complicated or maybe intractable
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a restriction we will ultimately impose. Already the foudption is then impos-
sible.

Options three and four split the standard model into twoadlyidisconnected
sectorsi(e. there are no chiral strings connecting the two). This ingpliet the
Y anomaly does not cancel in each sector separately, and bent@o com-
ponents of the would-bE-boson must have Green-Schwarz couplings to axions
that give it a mass. In principle these contributions coadazl forY’, but that
seems improbable, and hence reduces the statisticahlikeliof this sort of con-
figuration in a search. Furthermore lepton Yukawa couplargsperturbatively
forbidden in such models.

The same four options exist for left-handed anti-neutribog we do not im-
pose any requirements on our construction with regard t theltiplicity. If
they come from strings not attached to any of the previousdgave regard them
as part of the hidden sedfdiEurthermore, we do not allow to have contribu-
tions from branes that do not couple to charged quarks aridrisp Otherwise
one could extend” by arbitrarily large linear combinations that only contrié
non-chiral states. This implies that we regard a brane cor#tgn as complete
(prior to tadpole cancellation) if all charged quark anddss exist chirally, and
if all cubic U (V') anomalies cancel. This configuration may already contaéwa f
candidate right-handed neutrinos, and additional onesappgar, after tadpole
cancellation, from hidden sector states, or strings batwee standard model
and the hidden sector.

Clearly this still leaves a huge number of possibilities ¢alize this kind
of configuration, but there is an obvious maximally econ@héhoice, namely
identifying all branes of equal charge with each other, drddrane with oppo-
site charge with its conjugate. This then results 1h@@) x U (2) x U(1) x U(1)
model with the following chiral spectrum

W W O W W W

Although we anticipated the possible need for anti-symimé#énsors, it turns
out that they are not needed at all in this particular conéijon. All anomalies

11In the actual search we have relaxed this condition slightig allowed a brang that just yields
anti-neutrinos.
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are already cancelled. This is a consequence of standardl madmaly cancel-
lation. The formula foy” is

Y = (@~ )Qa+ (2~ 3)Qu+4Qc + (— 1)Qu (3.6)

This model has the feature that it can be realized entirelgtims of oriented
strings, which of course implies thatis not fixed. The converse is not true
because one can allob(1) anti-symmetric tensors; they do not yield massless
particles and hence give no restriction.anBy construction, this is the minimal
realization of the standard model in terms of oriented ggirOriented configu-
rations (although more complicated than the one shown 3lvese considered
earlier in [41] [9] in the context of type-Il theories.

One can generalize these orientable models further by imlgpstackc and/or
d to consist of several type C and D branes. The most generéibooation
can be denoted d$(3) x U(2) x U(p1 + ¢1) x U(p2 + ¢2), wherep; is the
number of type C branes on stack c, etc. To achieve this spliabow non-
trivial generatord¥, and Wy in the definition ofY". This gives an infinite set
of solutions, all with at least three Higgs pairs (this falfromU(2) anomaly
cancellation). All these models have in fact precisely tme structure as the
basic four-stack model above, except for an additionalipdiég that occurs if
type C or D branes are in different positiong (have different boundary labels).
If in total three open strings are needed ending on brane CGetdhgee anti-
quarks, then if there are several type C branes the total aunftsuch strings
must be three. However, each multiplicity can be positivebraggative, and hence
cancellations are possible, that show up in the spectrurddii@al mirrors on
top of the basic configuration.

One of these cases corresponds to the “trinification” madE43]. One starts
with a gauge group’U (3)color X SU(3)1 x SU(3) g and matter in three copies
of the representatiol, V*,0) + (V*,0,V) + (0,V,V*). This configuration
fits into our construction by starting with four stacksf, c, d) with a CP group
UB) xU@2)xU1) x U(3),andY = —1Qp + 1Qc + Wa, whereWy is the
SU(3)a generatodiag(3, =, —2). The spectrum is three tim¢¥, V*,0,0) +
(V,0,V*,0) + (V*,0,0,V) + (0,V,0,V*) + (0,0,V,V*). The trinification
model is obtained by putting stacksandc on top of each other. In terms of the
foregoing discussion, this model has= £, and three branes of type C (one from
stackc and two from stackl) plus one brane of type D (from stadk The value
T = % can easily be understood as follows: in a standard trinifinahodelY’
is embedded entirely iU (3) factors, and cannot have components in the brane
charges. Therefore in particular it cannot have any compiand/(3).,.

The foregoing orientable standard model configurationshzamealized in
principle in non-orientable string theories. In theseimsdions the value of
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is often fixed by the requirement thetdoes not get a mass due to bilinear cou-
plings with axions. Sometimes this yields rather bizaraking solutions. For
example, in our set of solutions there is one with= % There are also cases
whereY remains massless for any valuexof

3.2. Charge Quantization

There are further constraints anif one considers unoriented models. First of
all, for generic values of the non-chiral part of the string spectrum contains
states of fractional or even irrational charge, fram1) bi-fundamentals or from
rank-2 tensors. Since such states are always non-chiegintlay be massive, or
become massive under perturbations of the model. They wawiever be stable
and are not confined by additional gauge interactions, [sectiney live entirely
within the standard model sector. Therefore, althoughgh&sibility cannot be
completely ruled out, it certainly seems preferable to éi

The foregoing discussion is quite general, and can be usadaiyse charge
guantization for non-standard-model states in any braalzegion of the stan-
dard model. The dependence @n and @y, in ([38) is the most general one
possible, up to an irrelevant sign choice. The completaggpectrum contains
states with charges of all sums and differences of the coemsrofY’, as well
as all values multiplied by 2. It is easy to see that just froamlesa andb, we
get the charge quantization condition

x=0 mod% , (3.7

if we require that all massive open string states from bdamentals and rank
two tensors between standard model bramasdb to have integer charges (tak-
ing into account QCD confinement). Clearly this conditiosoaimplies charge
integrality if branes of types C,D,E and F are present. Ohgharged leptons
come from a chirally decoupled sector (the third or fourtsecéisted earlier)
further conditions may be needed.

A second type of fractional charges that may occur are thosgng from
strings with a single end on a standard model brane, andhiee @hd on a hidden
sector brane. Even if these states are non-chiral, theginBrexist as massive
excitations. In principle, such charges could be confinelitiglen sector gauge
groups, but to avoid them altogether, the following comaitmust hold

x =0mod1. (3.8)

Also this condition can be derived from just taeandb branes. If it is satis-
fied, branes of types C, D, E and F satisfy the hidden sectogelguantization
condition, but types G and H do not, in general.
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Note that the first charge quantization condition (absefié®ctional charge
within the standard model sector) is automatically satisfieoriented strings for
any z, because the strings that might violate it simply do nottexisriented
string theories. However, quantization conditions doeaiisone wishes to in-
clude hidden branes. These should not contribulé.tdhis imposes the second
charge quantization conditiom,= 0 mod 1, for oriented strings.

3.3. Non-orientable configurations

The foregoing restrictions were necessary if one wishesd@aion-chiral frac-
tionally charged matter. More severe restrictions applgoime of the quarks
and leptons themselves come from states that break thaalikty of the open
string theory.

Note first of all that in most cases both type C and type D branesieeded,
in order to get up and down anti-quarks. The only way out iseébeither all
down anti-quarks or all up anti-quarks from anti-symmelfi@3) tensors. The
former possibility requires = % and then types C and D are the same. This
possibility is realized in flipped U (5) models, of which we will give examples
later. The second option leadsito= 0. Then no type D brane is needed for the
guarks, and type C branes do not contribut&toT his possibility finds a natural
realization inSU(5) GUT models. For all other values ofat least one type C
and one type D brane is needed in addition to braresdb.

Consider now the possibility that a chiral state (a quarkeptdn, or a mirror)
breaks the orientability of the configuration. Obviouslisteort of analysis ap-
plies to each chirally decoupled subsector separatelyn@cied components of
quiver diagrams), and we will only consider the componemnezted to the
andb branes.

The possibilities for such a chiral state, and the resultasirictions onc are
as follows

¢ Chiral anti-symmetric tensors on braser = 0 oré

e Chiral anti-symmetric tensors on braer = 0, 3 or 1

e (V,V) between on branesandb; = = 3.

e Chiral tensors on a brane of type €= 0, 1 or —1

e Chiral tensors on a brane of type Bi= 2, 1 or &

e (V,V) between brane orb and a type C brane; = 0 or 1.
e (V,V) between branaorb and a type D brane; = 1 or 1
e (V,V) between type C and a type D brane;= 0, 1 or1

Note that the occurrence ¢F, V') is automatic if one of the endpoint branes is
real, and thatV, V') between two distinct type C or type D branes is equivalent to
chiral tensors on a single such brane. We can extend thfsiftsier by including
branes of types E and F, but this will just give similar nunsberodulo half-
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integers. Note that in all cases the quantization cond{fiam) is satisfied.

One important general observation can be made now. Forwalite other
thano, % and1 all quarks and lepton doublets must be realized exactly #sein
orientable four-stack model discussed above, becauseaatk weak singlets
can only come from bi-fundamentals, abid2) anomaly cancellation cannot be
fixed with anti-symmetric tensors. This only leaves someduan for the lep-
tonic weak singlets. On the other hand, fior= 0,1 and1 the U(2) anomaly
condition can always be satisfied by adding anti-symmegnsars. They con-
tribute+2 to the anomaly, but since the total number of doublets is ese@is the
chiral number of doublets (the numberdfs minus the number oF*). (Note
that is true for any/(2) because of cancellation of global anomalies).

If we limit ourselves to four stacks, the number of posdiieiti is even smaller.
For values of: other thard and% branes of both types C and D are needed. This
means that there is no room for E or F branes and the more esadties forz
they might allow. This is true even if branes C and D are “udffi@to a single
Chan-Paton group. In order to get a valuerabutside the range%, e ,% in
a non-orientable configuration, it must be the chiral sgibgtween the unified
C/D brane and E or F type branes that break the orientabiétyoth(V, V') and
(V,V*) must occur. But it is easy to see that in that case such statessarily
give rise to leptons with charges2, because they must couple to both the type
C and the type D brane.

This reduces the allowed range foto —% . % and one can read off from
the list which orientation breaking chiral states are a#ldwn each case. In
the following sections we will show how to construct fouack non-orientable
realizations of any of these, at least as “bottom up" bramégorations.

3.4. Thecases = —1orz =3

To get the largest and smallest numbers in this range, thyeooi@intation break-
ing chiral states must be chiral tensors on a type C or typeaDéhrespectively.
This implies that the first five representatiofs13.6) (thgiséding quarks and
lepton doublets) must be identical to those of the fourkstaientable model (up
to mirror pairs due to distributing type C and D branes oveious positions, as
discussed above for the orientable configuration). In paldr it means that we
can only vary the open string origin of the charged leptorise Value&% and
3 are essentially “dual” to each other under interchange angligation of the
type C and D branes.

To construct a non-orientable—= —% configuration we start with four stacks
(a, b, ¢, d) generating a CP grou(3) x U(2) x U(1) x U(1), with the latter
two are type C and D branes respectively. The only allowedatien in com-
parison to the orientable configuration &fg symmetric tensors on bramem
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bi-fundamentalgV, V*) between branesandd, A. anti-symmetric tensors on
branec and A4 on braned. Although the anti-symmetric tensor can occur only
in non-orientable strings, they do not break the orieniighii the sense of fixing
x, because they do not yield massless particles imposingredmts onz. Their
only réle is to cancel chiral anomalies.

We get the following conditions from cubic anomaly candéiaand the re-
quirement that the net number of positively charged leptoust be three:

55.+m —34. =3
—-m—34q =-3
m—S; =3

The solution isS. = —3A4q,m = 3 — 344, Ac = —6A4. Hencem andS, must
be multiples of 3, and sinc&. = 0 brings us back to an orientable configuration,
the simplest non-trivial solution iS. = —3,m =0, A = —6andAq = 1. The
analysis forz = % is analogous, interchanging the roles of branes C and D.

Another set of possibilities (far = —%) is obtained by putting three type-C
branes in stack c, with the CP multiplicity providing the tiplicities of the anti-
guarks and the lepton doublets. Now anti-symmetric tensotsranec produce
chiral particles, and fix. A simple sequence of solutions is obtained$er= 0,
m=1—Aq,Ac = —Aq. ThisisalU(3) x U(2) xU(3) x U(1) solution with one
anti-symmetric conjugate tensor on brar(@hich provides the charged leptons)
and an anti-symmetric tensor on brahgust to cancel anomalies.

One can generalize this further by allowifig, ¢1) type (C,D) branes on stack
¢, and (p2, ¢2) type (C,D) branes. This is accomplished by having CP gauge
groupsU (p1 + q1)c andU (p2 + g2)a, and splitting up their contribution t&
by means of non-trivial generat®, andWy in (Z2). Since there must be both
type C and type D branes, and they cannot come all from the statle, we may
requirep; > 0 andgs > 0. Solving the constraints then yields solutions only in
the following casesp; = 1 or3, ¢o = 0, g2 = 1 and arbitraryp,, each with a
sequence of allowed values for the representation muiiiigs. The spectra with
p2 # 0 are rather unappealing: they either h&¥gp-chiral pairs of mirror anti-
quarks, or large numbers of rank-2 tensors. The onespith 0 were already
discussed above.

3.5. Thecase =1

A simple way to obtain a configuration with = 1 is to replace the fourth CP
group in the orientable configuration I6)(1) in order to break the orientability.
In addition, there is a possibility of allowing anti-symmetric tensors df (2),
yielding & charged leptons. If branehas a Chan-Paton group(1), the most
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general structure is, with CP-grodf(3) x U(2) x U(1) x O(1) is

(V,V*,0,0)
(V7,0,V,0)
(V*,0,0,V)
(0,V,V*,0)
(0,V;0,V)
(0,0,V,V)
(0,4,0,0)
(0,0, A,0)

- ™ o~ 3 3 w ow ow

X X X X X X X X

with the conditions

m-n =
-94+m+n—-2k =0
k+1 =3

9-2m+1-3t =0

These are respectively the requirements of three leptohléts U/ (2) anomaly
cancellation, three charged leptons and biaaeomaly cancellation. This yields
a one-parameter set of solutions,= 6 + k,n = 3+ k,l = 3 — k,t = —k.
There are many more possibilities if we allow larger CPdegforc andd. It is
also possible to useld(1) CP-factor ford. This leads to an additional anomaly
constraint, but there are many ways to satisfy it by repgasimme of the vectors
by their conjugates, and adding anti-symmetric and/or sgtrimtensors. The
latter yield singlet neutrinos. The complete solution iz¢omplicated to present
here.

3.6. Realizations with three brane stacks fo& 0

The cases = 0 andx = % allow far more possibilities. We will solve them here
in general, in the special case that they are realized wstttluee branes, yielding
agroupU (3) x U(2) x U(p, q), wherep andq are the number of eigenvalues
andz — 1.

Consider firstt = 0. We assume that there arehiral rank-2 tensors on brane
a. Then the most general choice of bi-fundamentals for amtirks and lepton
doublets is as follows

n x (V*0,V)
m x (V*0,V*)
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kox (0,V,V)
L ox (0,V,V)

Furthermore we allow chiral anti-symmetrid/(2) tensor, and: and s chiral
anti-symmetric and symmetri€ (p, ¢q) tensors. The latter are allowed only if
g = 0 (since otherwise one gets charge 2 leptons), ancifl noU (p, ¢) tensors
are allowed at all. Furthermore we must requite = ¢ = 0 to prevent particles
with unacceptable charges. To get three lepton doubletseedi{p — ¢) = 3,
i.e.p — g = 3 or £1. The total number of charged leptons-is — apq.

Let us assume first thgt> 1. Thena = s = 0, andr = —3,andm = [ = 0.
U(2) anomaly cancellation then impligp + ¢)k — 2r — 9 = 0, and hence
(p + g)k = 3. But we have already seen thi&lp — ¢) = 3, and hence this is
not consistent with the assumption. Now assume 1. Also in this casen and
I must vanish. Then the condition for getting three anti-dauarks isnp = 3.
This allowsp = 1 orp = 3, but neither is consistent with— ¢ = +3 or £1.

Hence the only possibility i = 0. Thenr = —3. The third brane does not
contribute toY’, and the distinction betwedn andV* on that brane is irrelevant
for all hypercharges. The conditions for getting the righinber of anti-down
quarks is(n + m)p = 3, and for lepton doublets it ik + I)p = 3. Hencep
is either 1 or 3. Anti-up quarks can only come from thenti-symmetrid/(3)
tensors. Hence = 3. IntheU(3) x U(2) subgroup we find the representation
3x (A,0)+3x (V,V*)+3 x (0, A*), which of course fits precisely i x (10)
of U(5). TheU (1) generatory” becomes ai$U (5) generator. Hence the only
possibility forz = 0 and at most three participating branes is brokigs). This
can be reduced to two participating branes by puttingathedb branes on top
of each other, to get unbrokdn(5). The CP group on the third brane can be
U(1) or U(3), but since this brane does not contributé&tmne can also allow
O(1) or O(3). Inthat case there are no anomaly constraints to worry alfdhe
c-brane group is unitary, the total anomalBis — m) + 2(I — k). This leaves
many possible values, and this anomaly can be cancelled iy mays using
symmetric or anti-symmetric tensors. In the spectrum,dfeggpear as standard
model singletsi.e. candidate anti-neutrinos.

3.7. Realizations with three brane stacks for= 1

Consider nowr = % Then if p = ¢ the third brane could be orthogonal or
symplectic, in which case there is no anomaly cancellatandiion for it. Fur-
thermore the weak group can then$yg2). This makes little difference, because
U(2) anomalies can be cancelled by means of anti-symmetricitgnsbich in
this case are standard model singlets (right-handed negjrivhich we do not

constraira priori.
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We assume that there arehiral rank-2 tensors on brame Then the most
general structure is as follows

n
m
k
l

X X X X

We have to require

t+np+mq =3
ng+mp =3
kp+lg—kq—Ip =3

for getting the right anti-up, anti-down and lepton douldetint. The first two
equations imply(n — m)(p — q) = —t, and the last onék — )(p — q) = 3.
Hencep # ¢, and brane cannot be real. The only allowed values for ¢ are
-3,—1,1, 3, andt must be a multiple op — ¢. Given these four values, we can
computen — m andk — [. To cancel the anomalies on bramand to provide
charged leptons we introdueeanti-symmetric and symmetric tensors. The
conditions for anomaly cancellation on braneand a net number of 3 charged
leptons can be combined to yield

3(n—m)(p—q) -2k —=0)(p—q) —3a—-0)(p—q) =—6 (3.9)

which together with the previous conditions implies b = n —m. The remain-
ing equations are

(n+m)(p+q) = 6t (3.10)
(a+b)p+q) = (nfm)+2(kfl):£—; (3.11)
From their ratio we see thét + m) = (p — q)(a + b). Furthermore we see that

p + q andp — ¢ must both be divisors af — ¢. This allows a limited number of
values forp+ ¢, and ther(a+b) and(n+m) are determined. Hence all solutions
are specified in terms dfplus a limited number of values fer+ ¢ andp — q.
There are three more parameters that are not yet specifigdi, the number

of anti-symmetric tensors on brabeand the difference between the number of
(V,V*)and(V, V) quark doublets. One linear relation between them is imposed
by U(2) anomaly cancellation; in th&p(2) case there is no constraint.
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3.8. Solutions with type E and F branes

Type E and F branes contributeXowith coefficientsc+1 andz — 2 respectively.
They cannot contribute to to quarks or lepton doublets. Vérirag here that
their contribution includes at least 0¥, V*) bi-fundamental; if they produce
valid quarks or lepton doublets (or mirrors) only @ V') bi-fundamentals we
conjugate the E/F brane, and redefine its coefficients. Oipgron the actual
value ofx an E or F brane then becomes a brane of type C or D, and is already
included in our foregoing discussion.

Furthermore an E/F brane must be connected, by definitiar{pyD, V, V*)
bi-fundamentals to the-brane. As discussed above, in a four-stack configuration
E or F branes can only be allowed in principle for= 0 or x = % As in the
rest of the paper, we allow treeandd stacks to consist of two brane types, with
eigenvalues differing by one unit. The options are tlee(C,D), d=(E,C) or
c=(C,D),d=(D,F), where each type can occur with an arbitrary muttipli and
E and F have to occur at least once. However, in all cases aie ofvo branes
on stackc would give rise to a charge-2 lepton. This reduces the pilisisib to
c=(C),d=(E,C) forx = % (and its conjugate=(D), d=(D,F)) orc=(D), d=(D,F)
for x = 0. However, the latter possibility is ruled out, since at tease C-
type brane is needed to produgeanti-quarks. The next constraint is anomaly
cancellation for stackl. Since it only shares bi-fundamenté(s 0, V, V*) with
branec and nothing with any other brane, the anomalies of lthiés must be
cancelled by rank-2 tensors. This forbids two distinct Yegivalues on stack
d, since the sums of these eigenvalues would appears adimveiges in the
spectrum. It also limits the multiplicity of the E or F brartesl, and only allows
anti-symmetric tensors to cancel the anomaly. The mutiiglof (0,0,V,V*)
must then be a multiple of three.

Configurations of this type can indeed be constructed.ctgp@up can either
beU(1) or U(3). In the former case, there is a two-parameter series of solu-
tions labelled by the number &fU (3), anti-symmetric tensors, and the number
of (0,0,V,V*). TheU(1). anomalies are cancelled by anti-symmetric and/or
symmetric tensors, and the latter also contribute chargeihs. Ifc-group is
U (3), there must be three anti-symmetimnjugatetensors ofSU (3), (yielding
three left-handed down quarks, which must be combined vikhe$t-handed
down anti-quarks from{(V*,0,V,0)), and there can be charged leptons from
(0,0,V,V*) as well as anti-symmetrid (3) tensors.

Furthermore, one may use bdit{2) and Sp(2) as the Chan-Paton group of
braneb.

None of these models have appeared in our top-down search.
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3.9. Solutions with type G branes

Type-G branes are defined as branes that contribute naalirito Y but that
contribute to the chiral spectrum only through rank-2 tessd his implies that
their Y-coefficient must bet$. If z = 1, this can be viewed as just a stan-
dard type C or D brane. These cases are taken into account inottom-up
construction as standasid= % models. They do indeed occur as brane configu-
rations, although rarely. For example, we have generatbdaaie configurations
with four unitary CP factors, at most three Higgs pairs, astibreeGcp ex-
otics and at most si&cp chiral singlets. Of the 10820995 unitary models with
T = % only 338 have type-G brands. a brane with only chiral tensors and no
bi-fundamentals.

A more interesting situation occurs when= 0 (the only other value of
where type-G branes might occur). In that case the type-@ebhas a non-
canonical contributior-1 to Y (the canonical value is 0 ar1).

However, the foregoing analysis of three brane realizatioith = 0 shows
that this possibility does not exist. The only three-braredets are (broken)
SU(5) with a set of neutral C-type branes. This result was obtaimitdout
requiring any particular value for the number of chargeddap. The latter came
out uniquely as three. Since tleestack is neutral, it cannot provide charged
leptons or mirrors either. Hence all three-stack modelsaaly have precisely
three charged leptons, and all the G-brane could still dddsnairror pairs. This
could happen even with a chirdlstack, for example with three anti-symmetric
tensors and a symmetric tensor6f2), with Wy = diag(3,—1). However,
this is not of much interest, and furthermore these modelgquivalent to those
where bran& does not contribute t& at all, and brand just yieldsGp-chiral
neutrinos.

4. Statistics of bottom-up configurations

In this section we will provide an enumeration of bottom-gpfigurations, pro-
viding some numbers to the theoretical analysis of the pres/section. We will
consider for simplicity thes andd groups to be abelian. We will also impose
(generalized) anomaly cancellation.

The associated statistics is shown and compared in[fhbl¢éhe ofext section,
where detailed definitions are also given.

4.1. Three stacks: th&(3) x U(2) x U(1) models

We first consider three-stack models. We will consider thesjide realizations
of MSSM-like Higgs pairs, and the presence of baryon andkeptimber sym-
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metries. We also indicate the total number of configuratafres given type. In
our search, we can also include the right-handed neutfinehich may appear
as an open string with both ends on the weak or other branes.

Requiring that the particles have the proper hypercharyetire two possible
ways to embed the Standard Model in this D-brane system eétsilacks, [25]:

1 1 1 1
Y = 7§Qa7 §Qb ) Y = 6@a+§Qc . (41)
For the first embedding’ = —2Qa — $Qb, We obtain the following al-

lowed spectra, (by? we indicate that both the representati®mr the conjugate
representatioi®* can be a valid choice)

Q: (V,V,0)
u: (A,0,0)
de:  (V*0,V)
L:  (0,V*, V%)
Ic: (0,4,0)
H: (0,V,V)
H (0,V*, V)

From the above charge assignments we can construct farailiésearch for
triplets of these families which form anomaly-free modeétsr that embedding
(Y = —1Qa— 3Qb) there are 10 different anomaly-free spectra that desthibe
SM. If the anti-neutrina ¢ also arises from strings stretching inside this stack, it
will be of the form(0,0, S).

For the second embedding = $Qa + 3Q. we have the following allowed
spectra

Q: (V,V,0)

u: (V*,0,V)

de:  (A,0,0) or (V*0,V)
L: (0,V, V¥

e (0,0, A)

H: (0,V,V)

H : (0,V,V*)

There are 24 different anomaly-free models. If the antitnea v also arises
from strings stretching inside this stack, it will be of therh (0, A, 0). Notice
the ambiguity of the representations (with tilde) when anbrdoes not contribute



Orientifolds, and the search for the Standard Model in grineory 31

to the hypercharge and also the two different possibilfiieshe charges ofi“:
(V*,0,V) or(A4,0,0) in the second case.

The baryon numbeB = Q,/3 is a gauge symmetry only in models where
d¢ arises from a string with the two ends onto different brarlesaone of the
models above, lepton number is a symmetry.

4.2. FourstacksU(3) x U(2) x U(1) x U(1)" Models

In this section, we study four-stack realizations of then8tad Model. We con-
tinue with the statistics of fours-stack models.

e Hypercharge’” = (z — §)Qa + (z — $)Qb + 2Qc + (z — 1)Qa

Notice that in order for: to remain arbitrary, the right-handed neutrino must
necessarily arise in the hidden sector. The correspontiauge assignments are:

Q:  (V,V*,0,0)
uc: (V*,0,0,V)
do: (V*,0,V,0)
L: (0,V,V*,0) or (0,V*0,V)
2 (0,0,V,V%)
H: (0,V,0,V*) or (0,V*,V,0)
H: (0,V,V*,0) or (0,V*,0,V)

Following the same spirit as in the tree-stack models, we@an families from
the above charge assignments and require that tripletseaf dre free of irre-
ducible anomalies. For the present hypercharge embeddérg is only one
anomaly-free model which can describe the SM and given lgethopies of the
previous assignments; it §{8.6) shown in the previoud@ect

e Hypercharge” = —1Qa — 3Qb + Qa
The corresponding charge assignments are:

V,V*,0,0)
ut : A,0,0,0) or (V*0,0,V)
de : ,0,V,0)

Q:
(
(v
L:  (0,V,V,0) or (0,V*,0,V*)
(
(
(

C

le 0,A%,0,0) or (0,0,V,V¥)
H: 0,V*,V,0) or (0,V,0,V*)
H': 0,V*,0,V) or (0,V,V,0) .
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If v¢is coming from the hidden sector, there are 302 anomalyrfi@gels which
can describe the SM particles. Among them, there are 62,6/2n8 72 models
with three, two, one and none chiral Higgs pairs.

On the other hand, i#© is attached onto branes of the above stacks, it can
only be charged under tHg(1). which does not contribute to the hypercharge.
Therefore, it will transform a$0, 0, S, 0). In that case, there are 1208 different
anomaly-free models which can describe the SM particlet@ing~<). Among
them, there are 240, 384, 288 and 248 models with tree, tveband none chiral
Higgs pairs.

Whenu© is not described by an antisymmetric representation, thesbaaum-
berB = Q. /3 is conserved.

o Hyperchargd” = 2Qa + 2Qb + Qc

The corresponding charge assignments are:

Q: (V,V*,0,0)
uc (V*,0,0,V)
de : (V*,0,V,0)
L: (0,V*,0,V) or (0,V,V*,0)
1°: (0,4,0,0) or (0,0,V,V)
H: (0,V*,V,0) or (0,V,0,V)
H': (0,V*0,V) or (0,V,V*0)
In total, there are 6 different anomaly-free models which dascribe the SM
particles with chiral Higgs-pairs.
A v¢ which is a string attached onto these stacks of branes waulaf the

form (0,0, 0, S). In that case, there are 24 different anomaly-free models wi
chiral Higgs-pairs (including©) and they all have baryon numbBr= Q,/3.

e Hypercharge” = 1Qa + 3Qc — $Qa
The corresponding charge assignments are:
Q : (V,V,0,0)

(V*,0,V*,0) or (V*0,0,V)

de : (A,0,0,0) or (V*0,V,0) or (V*0,0,V")
(
(
(

uc :
L: 0,V,V*,0) or (0,V,0,V)
I 0,0,5,0) or (0,0,V,V*) or (0,0,0,5%)
H: 0,V,0,V*) or (0,V,V,0)
H: (0,V,0,V) or (0,V,V*,0)

In that case, there are 8552 different anomaly-free modighsalviral Higgs pairs
which can describe the SM particles.
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Some models have lepton number. There are four independertications:
* Qr=3Qa+3Qb —3Qc — 3Qa:
3x (V,V*,0,0),
x (V*,0,V*,0),
x (V*,0,0,V*),
x (0,V,V*,0),
x (0,V,V,0),
x (0,V,0,V),
3% (0,0,5,0).

e Qr=Qa:
3 x (V,V*,0,0),

x (V*,0,V*,0),

{m x (V*,0,V,0), n x (4,0,0,0)},
x (0,V,0,V),

3 x (0,V,V,0),

3% (0,V,V*,0),

3x(0,0,V,V™)
wherem,n € [0,1,2,3] andm + n = 3. Therefored® in each family can be
either a string which is attached onto thandc stacks or a string with both ends
on thea stack.

o Qr=—CQc:
3 x (V,V*,0,0),

3 x (V*,0,0,V),

{m = (vV*,0,0,V*), nx (A,0,0,0)},
x (0,V,V*,0),
x (0,V,0,V"),

3% (0,V,0,V),

3% (0,0,V,V*)
where againn, n € [0, 1,2,3] andm +n = 3.

b QL: %Qa+%Qb %Q QQd
3% (V,V*,0,0),

x (V*,0,0,V),
x (V*,0,V,0),
% (0,V,0,V),
% (0,V,0,V*)
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X (05 Va V*)a
3% (0,0,0,5%)

If the right-handed neutrino® is attached onto the SM branes, it can be de-
scribed by(0, 4,0,0) or (0,0,V,V). Includingv¢, there are 150672 different
anomaly-free models. Among them, there are 29360, 613480)8nd 11168
models with tree, two, one and none chiral Higgs pairs.

If d is not described by an antisymmetric representation, fedrayon num-
berB = Q./3.

» Hypercharge” = $Qa + $Qc — 3Qa

The corresponding charge assignments are:

Q:
uc (
de : (
L: (0,V,V,0)
°: (
H: (
H:

In that case, there are 4 different anomaly-free models ghihal Higgs pairs
which can describe the SM.

A v¢ which is stretched between the four stacks can be of the QOWKI, 0,0).
Includingv©, the number of different charge assignments is 24 (8 of thave h
two chiral Higgs pairs and the other 16 have non chiral Higaissp. Half of
these states have baryon numiigs = @Q./3 and in none lepton number is a
symmetry. All models have one non-anomaldyg).

e Hypercharge” = —1Qa — Qb

The corresponding charge assignments are:

Q: V,V*,0,0)
u:  (4,0,0,0)
de : ,0,V,0) or (V*,0,0,V)

;. (0,A%,0,0)
H: (0,V,V,0)

(
(
( ~
L: (0,V*,V,0) or (0,V*0,V)
(
(
H: (0,V*,V,0)
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with 936 anomaly-free models. Among them, there are 256, 120 and 440
models with tree, two, one and none chiral Higgs pairs.

A v° which will be stretched between the four branes will be of fibien
(0,0,0,S) or (0,0, 5,0) or (0,0, V, V). Includingv®, there are 106792 different
anomaly-free models. Among them, there are 15072, 323322&6nd 23160
models with tree, two, one and none chiral Higgs pairs.

o Hypercharge” = —2Qa — Qb — 3Qc + 5Qa

The above hypercharge embedding is allowed only in casesavthe right-
handed neutrino is coming from the hidden sector. The cporeding charge
assignments are:

Q: (V.
u®: (v
de : (v, O V 0)
L: (0,V*,0,V) or (0,V,V*,0)
I¢: (0,0,5%,0) or (0,0,V,V*)
H: (0,V*,V,0) or (0,V,0,V*)
H (0,V*,0,V) or (0,V,V* 0)
In that case, there are 2 different anomaly-free models lwban describe the
SM:

V,V*,0,0),
V*,0,0,V),
V*,0,V,0),
0,V,V*,0),
(o V,0,V*),
{3>< (0,0,5%,0) or 3x (0,0,V,V*)}

3 x
3 %
3 X

o~~~ o~

and they have baryon numb@i; = Q./3. Lepton number is not a symmetry.
e Hypercharge” = Q. + Qb + 3Qc + 3Qa
The above hypercharge embedding is allowed only in casesavthe right-
handed neutrino is coming from the hidden sector. The cporeding charge
assignments are:

Q:
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°: (0,0,0,S) or (0,0,V,V*)
H: (0,V*,V,0) or (0,V,0,V%)
H:  (0,V,V*0) or (0,V*0,V)

In that case, there are 2 different anomaly-free models lwban describe the
SM particles:

3% (V,V*,0,0),
3% (V*,0,0,V),
3 x (V*,0,V,0),
6 x (0,V,V*,0),
3% (0,V,0,V*),
{3%(0,0,0,9) or 3x(0,0,V,V*)}

and they have baryon numb@s; = Q./3. Lepton number is not a symmetry.

5. Top-down configurations and SM spectra

5.1. Scope of the top-down search

The set of models we are able to search in principle consfsaédl three and
four-stack combinations of all boundaries of all simplereut orientifolds [15]
of all simple current MIPFs [14] of the 168 = 9 tensor products ofV = 2
minimal models. We denote these(@s, . . ., k., ), wherek; is theSU(2) level,
which ranges from 1 t@o. The total number of MIPFs is 5403, and the total
number of orientifolds 49304. Some of these have zero-@erBiplanes, which
means that there is no possibility of cancelling tadpolgs/éen D-branes and
O-planes. This leaves 33012 orientifold models. Of the 188r@r models, 5
are non-chiraK’s x T, compactifications, which need not be considered because
they can never yield a chiral spectﬂﬁ?hese non-chiral theories contribute in
total 88 MIPFs and 228 orientifolds.

The number of boundary states in a complete set can rangedifem hun-
dred to 108612 for tensor produdt 5, 82, 82). In that case the number of uni-
tary brane pairs is 53046 and 52920 for the two orientifoldicks. The number

12Note that all boundaries we consider respect the full clilgébra of the tensor product, and all
partition functions are expressed in terms of the characfthat algebra, which are space-time non-
chiral. One may also consider orbifold projections of thitsmries, which reduce the chiral algebra,
and may introduce chiral characters, but our methods do pyaly do that case. We do allow the
inverse of this: a chiral theory with a non-chiral extensiémdeed, we found some standard model
configurations for such theories.
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of combinations one needs to consider for a four-stack cordtgon grows with
the fourth power of the number of pairs. In [17] almost allgbeases were
searched. This was possible because the standard modejwatifin searched
for was more limited. For example, no chiral rank-2 tensaesanallowed, reduc-
ing the number of choices for thegb,c andd branes dramatically. Furthermore
the configuration of [16] is such that brareesandd have a different multiplicity
(3 and 1) but identical intersection numbers with the othhanbs. This can be
used to reduce the power behavior of the search algorithemgaly from four
to three.

Neither of these shortcuts help us here, and therefore adalich is practi-
cally impossible at present. Here we limit ourselves to MiRith at most 1750
boundaries. This limits us to 4557 of the 5403 MIPFS and 23#5e 33012
non-zero tension orientifolds. We can now work out how marank configura-
tions exist in total. To do this really correctly, unitaryfttogonal and symplectic
branes must be distinguished.

Table 1 Total number of three and four stack configurationsadbus types.

| Type | Total | This paper |
Uuu 125201382133502(Q 1443610298034
Uuo, UoU 99914026743414) 230651325566
uus, Usu 14370872887312 184105326662
uso 2646726101668| 74616753980
uss 1583374270144 73745220170
Uuuu 21386252936452225944 366388370537779
Uuuo 2579862977891650682 105712361839642
Uuus 187691285670685684 82606457831286|
Uuoo 148371795794926076¢ 19344849644848|
uuos 17800050631824928 26798355134612
UuUsSs 448705976951453¢q 13117152729806|
Usuu 93838457398899186 41211176252312|
USuo 17800050631824928 26798355134612
uUsus 8988490411916384 26418410786274

Table 1) lists the total number of configurations for all domations of uni-
tary, orthogonal and symplectic branes, without taking adcount the additional
freedom of assigning Chan-Paton multiplicities. The sédcosiumn gives the
grand total for all 163 chiral Gepner models and non-zersitenorientifolds. It
is the maximal number of three and four-stack configuratafrgiven type that
we have at our disposal for Standard Model searches. Thedbiumn gives the
size of the subset actually searched in this paper.

The precise counting is as follows. Denote the number obupibrane pairs
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as Ny. Then the total number of UUUU configurations with distilecandd
branes isS(2Ny)(Nu) x $Nuy(Ny — 1), etc. The choices foa, b andc are
independent, since we allow all these stacks to coincideif lmandd coincide
we regard it as a three-stack configuration. Furthermorie bojugates of the
a brane are counted, because they give rise to conju§jaté) representations,
and hence yield distinct spectra. Conjugations oftheandd branes can always
be compensated by changing the sign of the coefficients @ind hence do not
yield new possibilities.

Obviously, although we cover a substantial fraction of MéRRd orientifolds,
only a small fraction of possible brane configurations hantsearched, because
the missing MIPFs are the ones with the largest number ofdstadevertheless,
in our previous search [17], which was more extensive, thEemglwe are not
considering in the present paper produced relatively fewcekffigurations and
tadpole solutions. Part of the reason for the latter is thatbg@bly there are many
more candidate branes in the hidden sector, making the femdpaations harder
to solve.

5.2. Standard model brane configurations found

Table 2 Number of standard model configurations sorted byadhe ofz.

| =« | Total occurrences| Without SU(3) tensors |
~1/2 0 0
0 21303612 202108
1/2 124006839 115350426
1 12912 12912
3/2 0 0
* 1250080 1250080

Of the 4557 MIPFs, 1639 contained at least one standard nspeetrum,
without taking into account tadpole cancellation. In tafe we list the total
number of brane configurations with a chiral standard mguettsum sorted ac-
cording tox. In [17] only a subset of the possible=  models was considered,
but for a much larger set of MIPFs. This produced a total ofualdé® million
such configurations, whereas now we find about 124 milliorhdth cases be-
fore attempting to solve the tadpole conditions. In columa # indicates that
the value ofz is not fixed by the quark and lepton charges, as is the casé-in or
entable models. In these models, the value afay or may not be fixed by the
zero-mass condition far’. If it is fixed, it can in principle have any real value.
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In table [2) this distinction is not taken into account, batewo treat these models
as distinct in the complete list, tab[d (6), to be discusssdvia

Apart from thex = « cases, all other models are categorized with the value
of = that follows from the quark and lepton charges as well as é1e mass
condition forY'. In some cases, the quark and lepton charges alone migi allo
more than one value af even for unorientable models. For exampleSii(5)
GUT models one can get the correct spectrumufes 0 (standardSU (5)) and
T = % (flipped.SU (5)). The zero-mass condition faf always allows the former
option (sinceY is a generator of the non-abelian grotify (5)) and may or may
not allow the latter. If both are allowed, both are taken mtoount in table[{2).
Finally, if a model withz = * getsx fixed to a half-integer value by thé-mass
condition, it is counted once as an= « model, and once for the actual value of
xZ.

In the third column we list how many of the configurations hawenti-quarks
realized as anti-symmetrigU (3) tensors. As we will discuss later, it is nearly
impossible to get mass terms or Yukawa couplings for suctotsnand therefore
they should be regarded as implausible. Note that anti-sstmcb U (3) tensors
are only allowed for: = 0 andz = 1/2. In the former case, it turns out that
about99% of the configurations have such tensors, whereas for1/2 only a
few per cent have them.

Table 3: Number of standard model configurations and tadpole solu-
tions according to type. Columnrsandd indicate the type of branes
comprising the: andd stacks. Column “Top" contains the total number
of MIPFs for which spectra of given type were found.

x Config. | ¢ d cases| Total occ. Top Solved
1/2{UUUU | CD | CD| 1732| 1661111| 8011 110(1,0¥
1/2 | UUUU | C C,D | 2153| 2087667| 10394 | 145(43,5)
1/2 | UUUU | C C 358 586940 1957 64(42,5)

1/2 | UUU | CD| - 2 28 2 0
12| U0U |C |- 7 13310 74 3(3,2)
1/2 | UUUN | CD | - 2 60 2 0
1/2| UUUN | C |- 11 845 28 0

1/2 | UUUR | C,D | C,D | 1361 | 3242251| 12107 128(1,0¥
1/2 | UUUR | C C,D| 914| 3697145| 12294| 105(72,6)
1/2|USUU | CD|CD | 1760| 4138505| 14829 70(2,0y
1/2 | USUU | C C,D | 1763| 8232083| 17928| 163(47,5)
1/2 | USUU | C C 201 | 4491695| 3155 48(39,7}

Continued on next pag
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Table 3— continued from previous page
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x | Config. | c d cases| Total occ. Top Solved

1/2 | USU C,D |- 5 13515 384 5(2,0)
1/2 | USU C - 2 222 4 0
1/2 | USUN | CD | - 29 46011 338 2(2,0)
1/2 | USUN | C - 1 32 1 0
1/2| USUR | C,D | C,D| 944 | 45877435| 34233 130(4,0¥
1/2 | USUR | C C,D| 207 | 49917984| 11722| 70(54,10j
0 Uuuu | CD|C,D 20 7950 110 2(2,0)
0 Uuuu | C C,D| 164 50043 557 8(0,0)
0 Uuuu | D C,D 5 4512 40 0
0 Uuuu | C C 1459 999122| 5621| 119(40,3)
0 Uuuu | C D 26 6830 54 0
0 uuu C - 11 17795 225 3(3,3)
0 UUUN | C - 31 5989 133 0
0 UUUR |CD|C 20 195638| 702 4(4,0)
0 UUUR | C C 4411 | 7394459| 24715| 392(112,2)
0 UUUR | D C 24 50752 148 0
0 UUR C - 8 233071 1222 6(6,0)
0 UURN | C - 37 260450 654 4(4,0)
0 UURR | C C 1440| 12077001| 15029| 218(44,0)
1 Uuuu | CD|C,D 5 212 8 0
1 Uuuu | C C,D 6 7708 21 0
1 Uuuu | D C,D 4 7708 11 0
1 UUUR |C,D | D 1 1024 2 0
1 UUUR | C D 1 640 4 0
* Uuuuu |CD | CD| 109 571472| 1842 19(1,0y
* Uuuu | C C,D 32 521372| 1199 7(7,0)
* Uuuu | D C,D 8 157232 464 0
* Uuuu | C D 1 4 1 0

Table[3 summarizes all 19345 top-down distinct spectra we lvdserved
after considering all three and four stacks counted in thiedalumn of table[f1).
The spectra are distinguished on the basis of the chiral eusrdd rank-2 tensors
and bi-fundamentals, the decomposition¥af the presence and embedding of
additional massless.€. not acquiring mass from axion couplingg)1)-gauge

bosons from thea, b, ¢, d stacks and brane unification among #eb, c, d
branes. The columns contain the following data:
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e 1. The value ofc. An asterisk indicates that any value is allowed. In all othe
cases the value af is the one determined from the “ze¥omass" condition.

e 2. Number of participating branes and their property:

— U: Unitary (complex)

— S: Symplectic

— R: Real (Symplectic or Orthogonal)

— N: Neutral (see below for a definition)

e 3. Composition of stack in terms of branes of types C and D.

e 4. Composition of stacH in terms of branes of types C and D.

e 5. Total number of distinct (in the sense defined above) sp&dtthe type
specified in the first four columns.

e 6. Total number of spectra of given type. This is the grandltot all such
spectra found after scanning all the three and four brantgroations in the last
column of table[{ll), and assigning Chan-Paton multipésiiin order to get the
Standard Model gauge group and spectrum.

e 7. Total number of MIPFs for which spectra of given type wenarfd.

e 8. Number of distinct spectra for which tadpole solutionsevimund. Be-
tween parenthesis we specify how may of these solutions aaweost three
mirror pairs, three MSSM Higgs pairs and six singlet neaisirand how many
have no mirror pairs, at most one Higgs pairs, and preciseetsinglet neutri-
nos. An asterisk indicates that at least one solution wasdevithout additional
hidden branes.

In column 2, “Neutral" means that this brane does not paxig to Y, and that
there are no chiral bi-fundamentals ending on it. The ld#tetrimplies that there
must be chiral rank-2 tensors in this brane (which in paldicimplies that it must
be unitary), or otherwise it would violate condition 5b o&tkearch algorithm.
Such a brane can only give singlet neutrinos. We found aédtel 1 such cases.
They are anomaly free by having (a multiple efy) N —4) symmetric tensors and
(N + 4) antisymmetric ones (faN = 4 the anti-symmetric tensors are actually
real, and should strictly speaking have been omitted.) Asr&e can always be
removed to get a valid three-stack model, which of courssfies all our search
criteria by itself. Note that branes of this kind are in angecallowed to exist in
the hidden sector, and therefore from the point of view ofgifécation it is most
natural to view these models as three-stack models with ddgi@nal hidden
sector brane. The reason we explicitly allowed them is thrglst neutrinos
from separate branes might be of interest for understarttimgeutrino mass
problem (see also sectifnl.4). In the following analysisnileomit these 111
cases.
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5.3. Bottom-up versus Top-down

In table([3) and[{b) we compare the bottom-up and top-downltsesThis can
only be done by imposing some restrictions on the spectradifition to three
families of quarks and leptons and fully non-chiral mattehich we ignore)
there can be&7 ¢ p-chiral matter that iS7s,, non-chiral. The possibilities are
mirror pairs of fermions, singlet neutrino’s and MSSM Higgsrs. Denote these
three quantities a&/, N andH. If we leave them unrestricted, there is an infinite
number of bottom up solutions. Given the current experimdatowledge, the
optimal values for getting the standard model would appebef\/ = 0, N =3
and H = 1. However, if there is a surplus of these particles, one caoms
that they get a standard-model-allowed mass above the wabk ©n the other
hand, if there is a shortagéi/(= 0 or N < 3), there still remains a possibility
that the missing particles can come fr@ia-» hon-chiral matter, or (in the case
of neutrinos) from additional branes (other therb, c or d). Note for example
that most of the models of [17] have & p-chiral Higgses, but usually a large
number of fully non-chiral Higgs candidates. Since we havarpose cuts on
M, N andH to make the comparison, we present the comparison for twescas
a loose cut (withMf < 3, N < 6,H < 3)andatightcutf{/ = 0,H <1 and
N = 3). The former comparison is in tabld (4) and the latter ingdB). In both
tables, the number of bottom-up configurations satisfyiregdriteria is listed in
column 5. In column 6, we list the number of those bottom-ugfigurations that
was encountered in our search, and in column 7 the total nuaileecurrences
of the given clagSof configurations, summed over all three or four brane com-
bination considered in the search. This is the same inféomats in column 6
of table [3), but with the limit on the numbeid, N and H imposed. In column
8 we list the number of distinct configurations for which thdpole conditions
were solved. In these tables the top-down spectra are osiiyngiished on the
basis of criteria that can be directly compared to the bottgrapproach. Brane
unification is ignored and the masseslofl1) vector bosons are not taken into
account. This means that some models that were distinceimpitévious table
are considered identical here, because they merely différénes that are not
on top of each other, or by different embeddings of an adwificnassles# (1)
factor. This affects column 6 and column 8, but not column ficlv is simply
the sum of all occurrences within the class. Note for exartipdein the class
(z = %, UUUU, c=C, d=(C,D)) there is a total number of occurrences of 521372
in both tables. This implies that all models satisfy the ¢ists on the number
of Higgs, mirrors and neutrinos. In talle 1 these modelsespond to 32 dis-
tinct cases with 7 distinct solutions, whereas in télble 4 foem only 7 distinct
models with 3 distinct solutions.

13y “class" we mean here all brane configurations that mateletiteria in the first four columns.
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Table 4: Bottom-up versus Top-down results for spectra with at most
three mirror pairs, at most three MSSM Higgs pairs, and at ihsis
singlet neutrinos. The column B-U contains the bottom-upstac-
tions while the column T-D contains the top-down constouni

x Config. | ¢ d B-U | T-D | Occurrences Solved
1/2 | UUUU | CD | CD 27 9 5194 1
1/2 | UUUU | C CD 103441 434 1056708 31
1/2 | UUUU | C C 10717308| 156 428799 24
1/2 | UUUU | C F 351 0 0 0
1/2 | UUU CD | - 4 1 24 0
1/2 | UUU C - 215 5 13310 2
1/2 | UUUR | C,D | CD 34 5 3888 1
1/2 | UUUR | C CD 185520| 221 2560681 31
/2| UsSUU | CD | CD 72 7 6473 2
1/2 | USUU | C CD 153436| 283 3420508 33
1/2 | USUU | C C 10441784| 125 4464095 27
1/2 | USUU | C F 184 0 0 0
1/2 | USU C - 104 2 222 0
1/2 | USU C,D | - 8 1 4881 1
1/2 | USUR | C CD 54274| 31 49859327 19
1/2| USUR | CD | CD 36 2 858330 2
0 Uuuu | CD | CD 5 5 4530 2
0 Uuuu | C CD 8355| 44 54102 2
0 Uuuu | D C,D 14 2 4368 0
0 Uuuu | C C 2890537| 127 666631 9
0 Uuuu | C D 36304 | 16 6687 0
0 uuu C - 222 2 15440 1
0 UUUR [CD | C 3702 39 171485 4
0 UUUR | C C 5161452| 289 4467147 32
0 UUUR | D C 8564 | 22 50748 0
0 UUR C - 58 2 233071 2
0 UURR | C C 24091| 17 8452983 17
1 Uuuu | CD | CD 4 1 1144 1
1 Uuuu | C C,D 16 5 10714 0
1 UuUuu | D CD 42 3 3328 0
1 Uuuu | C D 870 0 0 0
1 UUUR [CD | D 34 1 1024 0
1 UUUR | C D 609 1 640 0
Continued on next page
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Table 4 — continued from previous page

x | Config.| ¢ d B-U T-D | Occurrences Solved
3/2] UUUU | C D 9 0 0 0
3/2|UUUU [C,D | D 1 0 0 0
3/2|UUUU [C,D| C 10 0 0 0
3/2| UUUU | C,D | CD 2 0 0 0
* Uuuu | CD | CD 2 2 5146 1
* Uuuu | C C,D 10 7 521372 3
* Uuuu | D C,D 1 1 116 0
* Uuuu | C D 3 1 4 0

Some bottom-up solutions can exist for more than one valug.ofThe most
obvious example is the clagss = %, which can exist for all values of. In
making the comparison we have used the actual massless ¢ioeéoination of
Y allowed by the axion-gauge boson couplings in the top-dowpr@r model.
Only for thex = x case we have ignored the precise formYgfbecause this
would split this class into an indefinite number of subclas$towever, in those
cases wher¥ was of the form correspondingio= 0, % or 1, we have compared
those top-down models twice: once in the= * class, and once in the class given
by Y. This explains the tadpole solution indicated in the lasiiicm of table [(1)
foranz = 1 model. Actually, this model has = «, butz is fixed to 1 by the
Y-mass condition.

The bottom-up numbers in these tables cannot be directlpaosd with those
in sectior % because here we allow several branes of typesl © @m the same
stack, whereas in sectifh 4 we assumed that staoksists only of a single type-
C brane, and staakof a single type-D brane. Furthermore in secfibn 4 ldge
chiral andGp non-chiral Higgses are counted. We do not do that here becaus
the top-down searc¥cp non-chiral Higgses were ignored.

Table 5:Bottom-up versus Top-down results for spectra withoutanirr
pairs, at most one MSSM Higgs pair, and precisely three singgtutri-
nos. Only cases that have been found in the top-dow searcdharen.

x Config.| ¢ | d B-U | T-D | Occurrenceg Solved
1/2 | UUU C |- 8 2 13242 1
1/2{UUUU | C | C 10670| 16 81985 4
1/2{UUUU | C | CD 148 8 378418 3
Continued on next page
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Table 5— continued from previous page

x | Config.| ¢ d| B-U | T-D | Occurrenceg Solved
1/2{ UUUR | C | CD 495| 13 641485 3
1/2{UsSUU | C|CD 314 6 2757164 3
1/2{USUU | C | C 10816 6 4037872 4
1/2| USUR | C | CD 434 3 47689675 3
0 Uuuu | C | CD 23 1 6 0
0 UUuuU | C | C 1996 5 17301 2
0 UUuuU | C | D 91 4 4227 0
0 uUuu C |- 9 1 15282 1
0 UUUR |C | C 5136| 15 63051 1

Table [®) contains all 19345 distinct models we found. Unifioately the full
table would be more than 500 pages, and is too long to inckale/e have only
displayed the top and some entries of intef8sthe table is ordered according
to the total number of occurrences (listed in column 2) ofvegispectrum. Col-
umn 3 gives the number of MIPFs for which it occurs. This giseme more
indication how rare a certain spectrum is. In column 4 we ¢feeChan-Paton
group, with factors combined if some of the branes are ondhgegosition. In
column 5 we give a rough indication of the spectrum. Here “\Bams that a
CP-factor only contributes bi-fundamentals, “S"(“A") ththere is at least one
(anti)-symmetric tensor and “T" that both occur. Column ¥egithe value of,
and the last column indicates if a solution to the tadpoleddé@ms was found
(“Y"), and if a solution was found without additional brang¥!").

Table 6: The list of 19345 models sorted according to frequency.
The column “occ." tabulates the total number of occurrenoetumn
“mipf"' tabulates the number of MIPFs at which they were fouoal-
umn “spec."” tabulates the type of spectrum they carry, ardroo “S"
indicates whether a tadpole solution was found.

nr occ. mipf Chan-Paton Group spec. | X S

1 9801844 | 648 | U(3) x Sp(2) x Sp(6) x U(1) | VVWV [ 12| Y!

2 8479808 | 675 | U(3) x Sp(2) x Sp(2) x U(1) | VVVV | 1/2 | Y!

3 5775296 | 821 | U(4) x Sp(2) x Sp(6) VWV | 1/2 | Y!

4 4810698 | 868 | U(4) x Sp(2) x Sp(2) VWV | 1/2 | Y!
Continued on next page

I4However, the full list is available on request.
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Table 6 — continued from previous page

nr occ. mipf Chan-Paton Group Spec. | X S
5 4751603 | 554 | U(3) x Sp(2) x O(6) x U(1) | VVVV | 1/2 | Y!
6 4584392 | 751 | U(4) x Sp(2) x O(6) VWV | 1/2|Y
7 4509752 | 513 | U(3) x Sp(2) x O(2) x U(1) | VVVV | 1/2 | Y!
8 3744864 | 690 | U(4) x Sp(2) x O(2) VVV | 1/2 | Y!
9 3606292 | 467 | U(3) x Sp(2) x Sp(6) x U(3) | VVVV | 1/2|Y
10 3093933 | 623 | U(6) x Sp(2) x Sp(6) VWV | 1/2|Y
11 2717632 | 461 | U(3) x Sp(2) x Sp(2) x U(3) | VVVV | 1/2 | Y!
12 2384626 | 560 | U(6) x Sp(2) x O(6) VW | 12| Y
13 2253928 | 669 | U(6) x Sp(2) x Sp(2) VVV | 1/2 | Y!
14 1803909 | 519 | U(6) x Sp(2) x O(2) VVV | 1/2 | Y!
15 1676493 | 517 | U(8) x Sp(2) x Sp(6) VW | 12| Y
16 1674416 | 384 | U(3) x Sp(2) x O(6) x U(3) | VWVWV | 1/2|Y
17 1654086 | 340 | U(3) x Sp(2) x U(3) x U(1) | VVVWV | 1/2|Y
18 1654086 | 340 | U(3) x Sp(2) x U(3) x U(1) | VVWVWV [ 1/2|Y
19 1642669 | 360 | U(3) x Sp(2) x Sp(6) x U(5) | VWVWV | 1/2|Y
20 1486664 | 346 | U(3) x Sp(2) x O(2) x U(3) | VVVWV | 1/2 | Y!
21 1323363 | 476 | U(8) x Sp(2) x O(6) VWV | 1/2|Y
22 1135702 | 350 | U(3) x Sp(2) x Sp(2) x U(5) | VVWV | 1/2 | Y!
23 1050764 | 532 | U(8) x Sp(2) x Sp(2) VWV | 1/2|Y
24 956980 | 421 | U(8) x Sp(2) x O(2) VWV | 1/2|Y
25 950003 | 449 | U(10) x Sp(2) x Sp(6 VWV | 1/2|Y
26 910132 | 51 UB) xU(2) x Sp(2) x O(1) | AAVV | 0 Y
34 869428 | 246 | U(3) x Sp(2) x U(1) x U(1) | VVVV | 1/2 | Y!
153 115466 | 335 | U(4) x U(2) x U(2) VWV | 1/2|Y
225 71328 167 | UB) x U(3) x U(3) VVV | 1/3
303 47664 18 U@B) xU(2) x U(1) x U(1) AAVA | 1/2|Y
304 | 47664 |18 | U3)xU(2) x U(1) x U(1) AAVA |0 |Y
343 40922 63 U3) x Sp(2) x U(1) x U(1) | VVVV | 1/2 | Y!
411 31000 17 UB)xU((2) x U(1) x U(1) AAVA | O Y
417 30396 26 UB)xU((2) xU(1) x U(1) AAVS | O Y
495 23544 14 UB)xU(2) x U(1) x U(1) AAVS | O
509 | 22156 | 17 | U3) x U(2) x U(1) x U(1) AAVS |0 | Y
519 21468 13 U@B)xU((2) x U(1) x U(1) AAVA | O Y
543 20176(*) | 38 UB)xU((2) x U(1) x U(1) VVVWV | 1/2| Y
617 16845 296 | U(5) x O(1) AV | O Y
671 14744(*%) | 29 UB)xU((2) xU(1) x U(1) VVVV | 1/2
761 12067 26 U(3) x U(2) x U(1) AAS | 1/2 | Y!

Continued on next pag
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Table 6 — continued from previous page
nr occ. mipf Chan-Paton Group Spec. | X S
762 12067 26 U(3) x U(2) x U(1) AAS | O Y!
1024 | 7466 7 UB) xU(2) x U(2) x U(1) VAAV | 1
1125 | 6432 87 U(3) x U(3) x U(3) VWV | * Y
1201 | 5764(*) | 20 UB)xU((2) x U(1) x U(1) VVVV | 1/2
1356 | 5856(*) | 10 UB)xU(2) x U(1) x U(1) VVVWV | 1/2| Y
1725 | 2864 14 U@3)xU(2) xU(1) x U(1) VVVWV | 1/2| Y
1886 | 2381 115 | U(6) x Sp(2) AV | 1/2 | Y!
1887 | 2381 115 | U(6) x Sp(2) AV | O Y!
1888 | 2381 115 | U(6) x Sp(2) AV | 1/2 | Y!
2624 | 1248 3 UB) x U(2) x U(2) x U(3) VAAV | 1
2880 | 1049 34 U(5) x U(1) AS | 1/2 | Y!
2881 | 1049 34 U(5) x U(1) AS | O Y!
2807 | 1096(*) | 8 UB) xU(2) xU(1) xU(1) VVVWV | 1/2
2919 | 1024 2 U(3) x U(2) x U(2) x O(3) VAAV | 1
4485 | 400(*) 2 UB)xU((2) x U(1) x U(1) VVVV | 1/2
4727 | 352 3 U@3)xU(2) xU(1) x U(1) VVVV | 1/2
4825 | 332 20 U4) x U(2) x U(2) VAS | 1/2 | Y!
4902 | 320(*) 1 UB) xU(2) xU(1) xU(1) VVWV | 1/2|Y
4996 | 304 30 U(3) x Sp(2) x U(1) x U(1 VVVWV | 1/2| Y
6993 | 128(**) | 1 UB)xU(2) x U(2) x U(1) VVVV | 1/2
7053 | 124 4 U3) xU(2) x U(2) x U(1) VASV | 1/2 | Y!
7241 | 116(**) | 4 UB)xU(2) x U(2) x U(1) VVVV | 1/2
7280 | 114 3 U(3) x Sp(2) x U(1) AVS | 1/2
7464 | 108 1 U(3) x Sp(2) x U(1) VVT | 1/2
7905 | 96(*) 1 UB)xU((2) x U(1) x U(1) VVVV | 1/2
8747 | 68(**) 3 UB) xU(2) xU(1) xU(1) VVVWV | 1/2
8773 | 68 4 U@B) xU(2) x U(1) x U(1) VVVV | 1/2
11347 32(**) 1 U@3)xU(2) xU(1) x U(1) VVVV | 1/2
11462 | 32(*) 1 UB)xU(2) x U(1) x U(1) VVVV | 1/2
12327 24 1 U3) x U(3) x U(3) VVV | 1/2
15824 | 8 1 UB)xU@2)xU1) xU@) | VWWW | 0
15846| 8 1 UB)xU(2) x U(1) x U(1) VVVV | 1/2
16674 | 6 1 U(3) x U(2) x U(1) AVT | 1/2 | Y!
17055| 4 1 U@B)xU((2) x U(1) x U(1) VVVV | *
19345| 1 1 U(5) x U(2) x O(3) ATV | O
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The first 25 models are all relatives of thg3) x Sp(2) x U (1) x U (1) models
that dominated the search results of [17]. The variatioohige replacing the
third factor byO(2) or Sp(2), absorbing the family multiplicity of some of the
guarks or leptons in the Chan-Paton multiplicities of ¢teandd branes, unifying
the baryon and lepton brane to get a Pati-Salam-like streicand other brane
unifications. Models 17 and 18 occur with the same frequeecgabse they are
closely related. They only differ by a traceless generdtag(s, 3, —2) from
the U (3) factor contributing taY’, changing the distribution of some quarks and
leptons. There are several other cases of closely relateiavith identical
frequencies, and one such set, &6 . . . 1888 will be discussed in more detail
in sectiof&b. In the bottom part of the table we display smEines of special
interest, which will be discussed in more detail below.

Entry nr. 26 in the table is the first one that cannot be viewsed eelative of
the “Madrid model". It hag: = 0 and three anti-symmetric tensors on the QCD
and the weak brane. It can be viewed as a brak&1(5) model.

There exist several infinite series of models. In the top eflist one can
observe the beginning of the seriéé2n) x Sp(2) x G,n > 2, whereG can be
0(2), O(6), Sp(2) or Sp(6), with a chiral spectrum consisting ﬁ (V,0,V)+
3(V,V,0).

In column 2 we indicate between parentheses if a certainafpeodel was
searched for in [17], and how often it was found. It is intéresto compare
this with table[[ll). Observe that the number of four-stadkfigurations we con-
sider in the present paper is considerably smaller thanih fut nevertheless
we recover a large fraction of the standard model configematof that paper.
For example, in [17]2.8 x 10'® configurations of type USUS were examined, in
the present paper on}6 x 10'4, ten times less. Nevertheless, we have already
found about half of the standard model configurations. Thiseicause the num-
ber of brane configurations is dominated by cases with a lamgeber of branes,
but very few standard model spectra. This in particular farghe charge con-
jugation invariant (the simplest case, for which the boupdmaefficients were
derived by Cardy [44]) which in essentially all cases hasdntlie largest num-
ber of boundaries. The explanation may be that a non-til&F tends to fold
over a Calabi-Yau manifold several times, thus increadiegdypical intersection
numbers, and causing the number three to occur more frdguent

There are in total three cases with 8 (3) x Sp(2) x U(1) x U(1) Chan-
Paton group and only bi-fundamentals, namely nr. 30, nr.a&8%Bnr. 4996. The
first two were also searched for in [17], and we find most of tiack. They are
distinguished by having a massless (nr. 30) or massive é48) B — L gauge
boson. The third one differs in the way quarks and leptonsoendranes and
d. It does not have a lepton number symmetry, and was not cenesidn [17].
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We show this case in more detail in the next section, as asityio

The remaining models considered in [17] havé/&),, group instead of
Sp(2)p. Here a direct comparison is harder, because this splibsnirasiny sub-
classes, which differ in the way the doublets are divided (@) and (2*) rep-
resentations o/ (2). The cases indicated by a single are models considered
in [17] that have a massled$ — L boson. In total 131704 such configurations
were found in that paper. For three of them we found tadpdigtisos; they
correspond to the three “type-1" models in table 4 of [17]e ©hes indicated by
(*x) have a massiv& — L boson. Only 1306 of these were found in [17], and in
no case the tadpole conditions could be solved.

Perhaps the most standard Chan-Paton group for standarel neatizations
isU(3) x U(2) x U(1) x U(1). The total number of spectra with that CP-group
on the complete list is 281. Of these, 19 have a purely bi-dnmehtal spectrum,
and among these 19 there are 17 with= % one withz = 0 and one with
x = x. Ofthe 17z = % models, 13 are variations on the “Madrid" model,
discussed above. The fourth= % model with a tadpole solution is discussed
below in sectiol €15. All these 19 purely bi-fundamental elscare shown in
table [6). In addition we show alf (3) x U(2) x U(1) x U(1) configurations
that occur more frequently than the first purely bi-fundataemodel, nr. 543.
These are models with anti-symmetti¢3) tensors. Note that they occur more
frequently despite the fact that models with rank-2 tenacgsuppressed, as will
be discussed below. All of them are brok&t (5) models, except nr. 303, which
is a broken flipped' U (5) variation of nr. 304.

5.4. Standard model brane configurations not found

Note that only a very small fraction of the allowed bottomrgpdels is actually
realized as top-down configurati@ﬁ'.his can be explained in part by the fact
that the bottom up models can have several chiral tensaisaithof chiral bi-
fundamentals. In figurdd1) we plot the distribution of themher of standard
model top-down configurations we have found versus the totaiber of chiral
tensors in the spectrum. This distribution is sharply pdakezero. This implies
that models in which some quarks and leptons are realizegh&s2 tensors are
considerably harder to find in the part of the landscape wexpring here. In
itself, this does not mean much for the actual realizatiothefstandard model
in our universe. After all, the suppression of models withsta's is by several
factors of ten only, and this does not seem very significagbimparison to the
total number of models in the landscape.

A partial understanding of this strong chiral tensor supgi@n can be gained
as follows. In fig. [2) we plot for all branes of a sample of 18@dientifolds the

15Al1 results in this section concern brane configurationsimid tadpole cancellation.
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Fig. 1. Chiral tensor distribution for all standard modehfigurations.
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distribution of chiral bi-fundamentals and chiral tensa@ the horizontal axis
is the absolute value of the chirality, and on the verticas dlxe total number
of occurrences. Clearly — and not unexpectedly — the numisiemblamentals
is much greater than the number of chiral tensors. This cainthé&ively un-
derstood by realizing that a brane has a much bigger chateesécting with
any brane yielding a bi-fundamental than intersecting with gpecific brane
(namely itself), yielding a chiral tensor.

One can also make an interesting observation regardingthem@nce of chi-
ral tensors in comparison to non-chiral ones. In fig. (3) wefbr all branes in
all 33012 non-zero tension orientifolds the distributidrchiral and non-chiral
tensors (separately for adjoints and the other rank-2 tehsblote that this in-
cludesall branes in all Gepner orientifolds with non-zero-tensiopl@aes, not
just those considered in the present paper. Clearly thalatistribution falls off
much faster than the non-chiral ones.

Although some other qualitative observations can be madejawnot have a
good understanding of the absence of certain models. Hyaaye embeddings
with z = —1/2, 3/2 were not found at all. The full list of 19345 configurations
does contain some genuime= 1 models, withz fixed to that value by the quark
and lepton charges. There is a total of 17 distinct ones (éoerof these we
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Fig. 2. Number of chiral tensors and bi-fundamentals folectien of branes.
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found a solution to the tadpole conditions). Only one of ¢hew. 2919, has
an orthogonal group on thé-stack, but it is not identical to one of the simple
models written down in sectidn_3.5. It has a Chan-Paton gio(®) x U(2) x
U(2) x O(3), with both a C and a D brane on stackThis model was found a
total of 1024 times for just two MIPFs. The purely unitary= 1 models 1024
and 2624 occur more frequently. Another noteworthy absanties class is the
type B,B’ model introduced in [8,10]. These models have arGRaton group
U(3) x U(2) x U(1) x U(1), and the type-B model only has bifundamentals,
whereas type-B’ has anti-symmetric tensold(2),. However, al: = 1 models

we found have &/ (2) group on brane, and all have anti-symmetric tensors both
on braned andc. Some of these are similar to the models of [8, 10], but not
identical. Note that the type B,B’ models of [8,10], in to erdo be free of cubic
anomalies in the twd/ (1) factors and thé/(2), needU (2)y-chiral Higgs pairs
and anti-symmetrié/ (1) tensors, as discussed in sectiof 3.5. This suppresses
their statistical likelihood.

Another model proposed in the literature that did not emérgrir search is
model C of [25]. Thisis &/(3) x U(2) x U (1) model with thre€Zcp-chiral neu-
trinos appearing as anti-symmetric tensoré/¢2). However, model nr 7464 in
table [®) is similar to it. It has exactly the same structiweadel C of [25], after
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Fig. 3. Number of chiral and non-chiral tensors for all sengtanes.
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replacingU (2) by Sp(2). Then such neutrinos necessarily become non-chiral,
and the anomaly cancellation condition for #i¢2) factor becomes irrelevant,
increasing the chances of finding an example. Model nr. 7484roed only
108 times (and without tadpole solutions). Its presencgeasig that there is no
fundamental obstacle to finding model C, but that it is singiBtistically dis-
favored. In other situtations, replaciig2) by Sp(2) increases the number of
occurrences by factors of about 40 to 80, and hence we wouldotx@t most a
few examples of model C. This is consistent with finding none.

On the full list of 19345 models there are 150 of the class . All of them
are truly orientable, e the possibility of having anti-symmetri¢(1) tensors that
do not contribute massless states does not occur. Only arelen-Paton group
U(3) x U(2) x U(1) x U(1). Itis indeed precisely the mod¢[{B.6) shown in
sectiorB. Amazingly this simple model occurs only four tinger. 17055), and
just for one MIPF (and without any tadpole solution to tadpzancellation). This
is especially surprising since there are many othg}) x U(2) x U(1) x U(1)
configurations with only bi-fundamentals that do occur mongre frequently, as
discussed above. For example nr. 543 in talle (6) occurs@txbés. This is a
standard “Madrid"-type configuration.
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5.5. Higgs, neutrino and mirror distributions

Fig. 4. Higgs pair distribution for all standard model configtions.
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Figures [(#),[b) and6) and show the distribution in termshef number of
Higgs, right-handed neutrinos and mirror pairs. On thelegraixis we show the
total number of three and four-brane configurations thaeteechiral standard
model spectrum, plus the number of Higgses/neutrinosénsiindicated on the
horizontal axis. Just as all data in this section, these mustefer to brane
configurations prior to tadpole cancellation. The Higgesfrinos/mirrors are
Gcp chiral but of courseGsy nhon-chiral. In addition to these particles, the
massless spectrum may contélap-non-chiral particles with the same standard
model transformation properties. Since we classify modsdsiulo full non-
chiral matter, we have no general information about sucligkes. The mirror
count is the total of all mirror pairs of quark and chargeddaepwveak singlets,
as well as quark doublets (in this case mirrors can occur famly = 1). The
Higgs count refers tél, 2, %) + (1,2, —%) pairs; for example the MSSM has one
such pair. Note that these pairs could also be viewed asrejgablet mirror
pairs. The distinction can be made in models with a well-@efilepton number,
but since we are not insisting on that we simply count all quaihs as candidate

Higgs. Once one (or more) of these candidates acquiresvaae may discuss
if lepton number violation is absent or acceptably small.

53
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Fig. 5. Right-handed neutrino distribution for all stardlarodel configurations.
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Finally fig. (@) shows the distribution of the total numberstdndard model
singlets in theZ ¢p-chiral spectrum.

In all three plots two lines are visible. The top line corrasgs to multiplic-
ities that are) mod 3, and the lower to multiplicities that are ndimod 3. The
former occur more frequently due to anomaly cancellatiahtae fact that we re-
quire the presence of three chiral families. In some clast@®dels this imposes
a mod 3 constraint on the multiplicities of Higgses, mirroneutrinos. This fea-
ture is clearest in the Higgs plot, because the Higgs is iffiaitis and non-trivial
standard model representation with fé&i: p realizations. It is less clear in the
neutrino plot, because there are often many ways of makiagines. The mod-
els with huge numbers of (right-handed) neutrino cand&lasially contain a
large factorG. or G4, with neutrinos coming from rank-2 tensors.

6. Solutions to the tadpole conditions

In this section we present some examples of solutions to mpet of tadpole
solutions that we have found. All solutions that we presésu aatisfy the probe
brane constraints for the absence of global anomalies §5iliscussed in [46]
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Fig. 6. Mirror distribution for all standard model configticas.
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for this class of models. We emphasize that we have collettedst two tadpole
solutions for each chiral model, one with additional bratesl one without ad-
ditional branes. This means, for example, that as soon asajaton was found
for one of the 97855380 (3) x SU(2) x Sp(6) x U(1) models that appears as
nr. 1 in table[[), no further attempt was made for any of theat with the same
chiral spectrum. This is a very different strategy than the of [17], where all
tadpole solutions were collected for models with distinot-chiral spectra. In
the examples below we present the full massless spectruneafdtual tadpole
solution, including non-chiral states. The non-chiratesteare however specific
to the example we present, and solutions with different doinal multiplicities
for a given chiral multiplicity certainly exist. Indeed,rfgpectrum nr 2 in ta-
ble @), which was included in the search presented in [18fenthan 100000
non-chirally distinct samples with tadpole solutions wienend.

We only present a small selection of the 1900 tadpole salutie have col-
lected. They should be viewed merely as existence proofsceftain type of
model, and not as a statement that one of these is likely tdoveufurther phe-
nomenological constraints. Whenever possible, we presesmnples without
hidden branes, not because we believe these are more viateed, hidden
sector branes may be required for a variety of phenomersdbggasons), but
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simply because they can be written down more easily.

6.1. Hypercharge embeddings of the tadpole solutions

Let us first make a few more comments on the models that do orotoa
cur in the list of 1900 tadpole solutions. We have seen in tlegipus section
that most bottom-up models of sectidn 3 &hd 4 do not occur efighof brane
configuratios, and it is therefore clear that most are alsetfrom the list of
tadpole solutions (see sectibnl5.4). Furthermore, in mapydbwn tadpole so-
lutions, the hypercharge appears to be a combination of thame one of the
hypercharge embeddings of the bottom-up models in sellioRirét consider
the “pure” models

e 762 top-down configurations have hypercharge of the form- —%Qa —
%Qb. This is related to a small subclass of bottom-up modelsdticadZ2. In
table[3 these models hawve= 0 and bothe, d branes are of the C type (or are
real, or absent).

e 1095 top-down configurations have hypercharge of the form f%Qa +
%Qc — % 4 Which is related to a subclass of the bottom-up models in@ect

The rest of the configurations appear with the hypercharge ttescribed by two
different embeddings. This is due to the contribution ofétass generators in
the hypercharge. These “mixed" models are distributed lasfe :

e 17 top-down configurations have a combined hyperchargesofythe: Y =
—3Qa— Qb+ Qa (sectio’ZP and corresponding to models A,A'in [8,10,47])
andY = —3Qa — 5Q (sectiolZP). These are hypercharges witk 0 butc
andd branes are of the type C and D, C respectively.

e 2 top-down configurations appear with a combined hyperehaith x = 1
(sectioZP and corresponding to models B,B’ in [8, 10, A}jc andd branes
are of the type C, D and D respectively.

Here we used the hypercharge values as determined from ¢k guod lep-
ton charges as well as thié-mass condition. The two mixed = 1 models
mentioned above actually haxe= x, with x fixed to 1 by theY’-mass condition.
One of those appears i (4); the other has too many neutmubies outside the
limits used for that table. A total of 20 out of the 1900 tadpsblutions have
x = %, butz fixed to a non-canonical value by thémass condition. Finally
there are 4 withe completely unfixed by any condition.

6.2. Notation

The notation of the examples is as follows. Minimal modektarproducts are
denoted agk, ..., k), wherek; is the SU(2) level. Their modular invariant
partition functions are labelled by an integer, which isigresd sequentially as
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they are computed. This labelling can be resolved in terrmare precise data:
the simple current subgroup and the rational makixdefining the MIPF (as
defined in [14]). We omit these data here, but they are aJailab request. To
help identify the MIPF we will provide the Hodge numbers of torresponding
Calabi-Yau manifold, and the number of singlets that ocouthe spectrum of
heterotic strings compactified on such a manifold. Orietds are also labelled
by a sequential integer assigned by the computer program.

Representations are denoted®@s ...rq4, ...), where each entry refers to one of
the branesq, b, ¢, d and hidden), and can beV for vector,A for anti-symmetric
tensor,S for symmetric tensor anddj for Adjoint. An asterisk indicates com-
plex conjugation. All representations refer to left-hathtermions. Multiplicities
of complex representations are denoted as

N x (Ta, ----)ILI

whereN is the total number of times a representation plus its caipigppears,
andM is the chirality, the difference of the multiplicity of thepresentation that
is listed, and its conjugate. The subscript is omitted fan-ohiral representa-
tions.

6.3. U(3) x U(2) x U(1) models

Here we list all tadpole solutions we found with a Chan-Pajoyup which is
exactlyU(3) x U(2) x U(1) (or less, if some combinations of the unitary phase
factors — other thal” — get a mass from axion couplings).

The first two examples are nr. 761 and 762 from the list. Theyespectively
broken versions ofU (5) and flippedSU (5) x U(1) unifications, withSU (5)
broken by splitting the stack of five branes into three plus.tWhese models
occurred for MIPF 31 of1,1,1,1,7,16) (there is just one orientifold choice).
TheU(3) x U(2) x U(1) spectrum is

3 % (4,0,0);
3 x (0,4,0)
5 x (V,V,0)3
25 x (0,0,9)3
9 x (V,0,V)_3
3 % (0,V,V)_3
4 x (Ad,0,0)
x (0, Ad,0)
16 x (0,0, Ad)
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x (0,0,A4)
x  (S,0,0)
14 x (V,0,V¥)
4 x (0,V,V")
The possible choices fdar are theSU( ) embeddingr = ——Qa + Qb and

the flipped embeddiny” = %Qa 2QC for nr. 562 and 561 respectlvely In
both cases an addition&l(1), the independent linear combination of these two,
also remains massless.

There is a second, far less standard examplelof3 x U(2) x U(1) model,
which occurred for invariant 28 of 441010, orientifold 0. iFls nr 16674 on
the list, which occurred only six times in total (and only fiis MIPF), but
against all odds a tadpole solution was found for at leastadribe six occur-
rences. The embedding ®f is as for the flippedbU (5) model above, but only
two of the three down quarks are due to anti-symmetric tensord there are
no anti-symmetric tensors it (2). Furthermore there are three candidates for
Higgs bosons, but unfortunately no symmetry like lepton banto distinguish
them from the lepton doublets. This implies that there areinglet neutrino
candidates from the standard model branes, and that wittedkuHiggs boson
chosen from the three candidates mentioned above, all uxgjaad one of the
down quarks can acquire a mass. The exact spectrum is asgollo

9 x (0,V,V*)_3
3 x (0,0,5);
6 x (A,0,0)
3 x (0,0,4)
6 x (0,V,V)_g
7 x (V,V,0)3
7 x (V,0,V*)_;
3 x (V,0,V)_3
3 x (Ad,0,0)
6 x (0,4,0)
7 x (0,Ad,0)
8 x (050
8 x (V,V*0
4 x (OOAd)

The gauge group is exactU (3) x SU(2) x U(1), because all abelian gauge
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bosons other thal acquire a mass.

Somewhat surprisingly, there were no tadpole solutiond/f@) x Sp(2) x
U (1) models, even though usually replacitig2) by Sp(2) greatly increases the
frequency of a model.

6.4. Unification

In general we can speak of (partial) unification if some ofstaeksa, b, c and
d coincide. One can distinguish the following possibilities

1. a=Db. In this case the bi-fundamentals that yield quark doubteist neces-
sarily come from anti-symmetric tensors on the combineckst@here must
therefore be three anti-symmetric tensors, and the cordlgjaege group is
U(5). Hence this leads t6U (5) GUT models. TheSU(3) anti-symmetric
tensors can be® or d° quarks. The first case corresponds to standa@rds),
the second to flippedU (5). There must be at least one more brane stack to
accommodate the anti-quarks of the other charge. Hence thedels can be
realized with just two stacks.

2. a =c. Inthis case the weak brane remains separate, but the QCi2 kzra
extended. The best-known example is the Pati-Salam modedred/ (3)a
is extended with a lepton-numbg&i(1). The Pati-Salam model requires three
stacks, but it is possible to realize unifications of thistyyth just two stacks.
An example is (one of the variations of) th&6) x Sp(2) discussed below.

3. b =d. In this case the weak brane is part of a larger group. An el@aimp
trinification: herelU (2)p, is embedded in & (3). Without loss of generality,
we may choose stact as the one that merges with the weak brane. The
trinification model then needs one additional brane stégB,).. All models
in this class must in fact have a third brane stack, in ordget@nti-quarks as
bi-fundamentals; at least one of the two anti-quarks creangest be realized
as a bi-fundamental.

4. a=b=d. An example will be given below.

Here it is assumed that no more branes coincide than thogmiad. Ifc andd
coincide this would be regarded as a single stack derotédc coincides with
a or b we switch the réles of andd. This limits the possibilities to those listed
here.

SU(5) models

The following is an example of afi/ (5) model. Itis item 617 in tabl€]6) and
despite having a hidden sector, this model has as its gaoge grecisely5U (5)
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and nothing more! The standard model part consists df @) complex stack
and a single reaD(1) brane. This is needed for the endpoints of the strings yield-
ing the representatiofb*). In addition this example has one extdl) brane
that serves as a hidden sector. The example occurs for teresuict (1,4,4,4,4)
and MIPF nr. 63 in our classification, which is characteriggdHodge numbers
(h21,h11) = (7,31), and yields 237 singlets if one uses this MIPF to construct
a heterotic string. The total number of boundaries is 24& dieentifold is the
one with maximal O-plane tension. The precise spectrumfisliasvs

3

—
—

=R N 0 W = W
X X X X X X X X X X

We emphasize that this just one sample of many such modedse Bine 16845
configurations of this kindife. with the same first two CP-factots(5) x O(1)
and the same chiral spectrum). The other 16844 configusatiay differ from
the one shown here by having, for example, different numbkts(5) adjoints
or (V, V) mirror pairs. Some of these 16845 configurations are idekticthe
one shown here, because of surviving discrete symmetritisedfl, 4, 4,4, 4)
tensor product. But the fact that this chiral spectrum wasébfor 296 different
MIPFs essentially guarantees that many different versiaist.

This model has one hidden sector brane. According to outeglyaoutlined
in the beginning of this section, none of the remaining meadélthis type was
checked for tadpole cancellatiavith hidden branes after this tadpole solution
was found. All 16845 configurations were checked for tadpaacellation
without hidden branes, and no solutions were found. It is straigivdied to
re-examine all these 16845 model and check for further pititigis of tadpole
cancellation, in order to obtain different non-chiral gpaor different hidden
sectors. But there are many other models of potential istenmgcluding many
moreSU (5) models.

Flipped SU(5) models



Orientifolds, and the search for the Standard Model in grineory 61

The simplest flippedU (5) we found occurs for for invariant 52 of (1,4,4,4,4),
orientifold 0, with characteristics (3,51,253). It sohadktadpole equations with
just two brane stacks, the minimal number needed to realppefi SU(5). The
full Chan-Paton group i& (5) x U(1), and the spectrum is

11

= Ot © 0o Ut W
X X X X X X X X

12

In terms of &, b, ¢, d) branes this model is of the forfi(3), x U(2), x U(1).
with a = b and nod brane, and” = #(1,0,3). The way thel/(1) anomalies
cancel is noteworthy. Per family, there are fivé€l) anti-vector representations,
contribution -5 to the cubic anomaly. This anomaly is caleckby a symmetric
tensor, which contributes5 in a U (1) theory. The chiral part of the spectrum
yields exactly the standard model spectrum, with 3 rightetea neutrinos from
the three chiral symmetric tensors. There ar&ihe-chiral Higgs candidates.

This is model nr. 2880 in tablEl(6). As explained earlierfsadlippedSU (5)
model always has a standa8@ (5) counterpart, because the masslessness of the
extraU (1) of flipped SU(5) is an additional constraint not needed for standard
SU(5). This is model nr 2881 in tablEl(6).

To the best of our knowledge, these are the first exact clagersymmet-
ric SU(5) and flippedSU(5) models in the literature. Their chiral spectrum,
directly obtained in string theory, without postulatingther Higgs effects or
non-perturbative physics, is exac8y (10) + 3 x (5*). By contrast, the models
found in [48] contain additiona]15)’s of SU(5). The models found recently
in [49] haveGcp mirror pairs of(5) and(5*), which must be made massive by
postulating an additional Higgs mechanism breaking pati@fdditional gauge
symmetry. We emphasize that the mirror pairs shown aboveeimxplicit spec-
trum are non-chiral with respect to the full Chan-Paton gr@nd hence require
no gauge symmetry breaking to acquire a mass.

In addition, the model shown above is obviously the simptest possible,
apart from the/(5) x O(1) of the previous subsection, if one could find a real-
ization without hidden sector.

However, both the standard and the flipg#d(5) model have a serious prob-
lem with either thg(u, ¢, t) or (d, s, b) Yukawa coupling. We will discuss this in
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detail in sectiofi.7]2.

For other work discussing aspects of (flippetly (5) model building along
similar lines, see [50] [51] [52], [48] [53] [49]. For othessues inSU (5) model
building with branes and the associated problems see [B4],

Pati-Salam models

The simplest Pati-Salam model is nr. 4 on the list, and isefloee one
of the most frequent ones. A tadpole solution was found feariant 57 of
(2,10,10,10), orientifold 3. The gauge groudi$4) x Sp(2) x Sp(2), and the
spectrum is as follows

5 x (V,0,V)_3
3 x (V,V,0)3
2 x (Ad,0,0)
2 x (0,4,0)

7 x (0,0,A4)

4 x (A0,0)

2 x (0,5,0)

5 x (0,0,8)

7 % (0,V,V)

The embedding of is asY’ = $Qa — $Qa + We, whereW, = 10s. Branea
andd are unified taJ(4).

The following model is of interest because it i¥/&4) x U(2) x U(2) Pati-
Salam model that satisfies all tadpole conditions withodtiah branes, because
it has some chiral rank-2 tensors in its spectrum, and bedtaoscurs for a MIPF
related to the “quintic" Calabi-Yau, namely MIPF 6 of (3,33), the trivial
orientifold (the only one possible). Itis nr. 4825 on the {@). It has precisely
oneGcp chiral MSSM Higgs pair, plus & cp-chiral charged lepton mirror pair,
and four right-handed neutrinos. There is one masglg4s in addition toY,
namely the diagonal combination of the phase factors oftt®’s. The Chan-
Paton group i§/(4) x U(2) x U(2), and the representations are

3 x (V,0,V)_,
2 x (V,0,V)_s
1 x (0,0,9)
5 x (OAO)
5 x (V,V*0
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(V,V,0),
0,V V)4
0,,0)

(S,0,0)

(Ad,0,0)
(0, Ad, 0)
(0,0, Ad)
(0,V,V7)

N = Ot W o =W D

X X X X X X X X

There also exist a broken version of this model, vitfit) splitintoU (3) x U(1)
already in the exact string theory. This is nr. 705d1n (6).

There is also &/(4) x U(2) x U(2) Pati-Salam model (nr. 153) which has
a standard, purely bi-fundamental spectrum. For this madebnly found a
tadpole solution with hidden branes, which is a bit too caogpé to display
here. It has a hidden sector grolijg6) x U(2)? x O(2)? x Sp(2).

Orientifolds exhibiting a Pati-Salam realization of the Blslve been consid-
ered before, [55-57]. Bottom-up configurations, invesiigpalso gauge cou-
plings and the issue of masses, have been also consideBeB9[5

Trinification models

Trinification models are built out of three facta##/(3) with purely bi-funda-
mental matter. At first sight this would seem to be an ideaffigonation for
intersecting brane models, but in fact it is surprisinghera

In a genuine trinification model the generalodris embedded ibU (3)a X
SU3)b x SU(3)q asY = ¢ Wp, — :Wq, WhereWy, = Wq = diag(1,1, —2).
However, a trinification model is in our classification a moaith = = *, which
allows arbitrary shifts in the choices ®f. For any other choice df this implies
that a combination of the unitary phases contributes td’he canonical choice
of Y has no contribution frond/(3), and hence would correspondto= % a
non-standard choice. Although the quark and lepton chatgea®ot fix z, this
may be done by the zedd-mass condition.

In table [®) three distinct models with this characterisppear. The most
frequent one, nr. 225, has a fixed valueYobf the canonical trinification type,
with z = % However, we did not find solutions to the tadpole conditifamany
of these 71328 models. The second one, nr. 1125, has a cetlyfieeY’; even
the zero mass condition faf does not fix it. This type of model occurred 6432
times and for at least one of these we found a solution to dfidke conditions.
The third one, nr. 12327, occurred only 24 times, and for nohthem the
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tadpoles were solved. It has fixed to a value which does not correspond to
standard trinificationZ = 1).

The aforementioned tadpole solution occurred for invarddrof tensor prod-
uct (1, 16,16, 16), orientifold O (with (ha1, h11,5) = (9,111,481)). It has a
rather large hidden sector gauge gr@i3) x U(3) x U(3) x O(4) x O(2) x
U(6) x U(12) x O(12) x U(12) x O(4), with respect to which the spectrum is
as follows:

V,V,0,0,0,0,0,0,0,0)3
V,0,V,0,0,0,0,0,0,0)_3
0,V,v*,0,0,0,0,0,0,0)_3
0,0,0,V,0,V,0,0,0,0)_4
0,0,0,0,0,5,0,0,0,0);
0,0,0,0,0,0,0,V,V,0),
0,0,0,0,0,0,0,0,5,0);
0,0,0,0,0,A4,0,0,0,0)
0,0,0,0,0,0,0,0, A,0)
0,0,0,V,0,0,0,0,V,0);
0,0,0,0,V,0,0,0,V,0);
)
)
)
)

-1

2

0,0,0,0,0,V,0,V,0,0);
0,0,0,0,0,V,0,0,V,0)_;
0,0,0,0,0,0,V,V,0,0);
0,0,0,0,0,0,V,0,V,0)_1
0,0,0,0,0,V,0,0,0,V)_;
0,0,0,V,V,0,0,0,0,0)
0,0,0,0,5,0,0,0,0,0)
0,0,0,0,0, Ad, 0,0,0,0)
0,0,0,0,0,0, Ad, 0,0,0)
0,0,0,0,0,0,0,5,0,0)
0,0,0,0,0,0,0,0, Ad, 0)
0,0,0,0,0,0,0,0,0,5)
0,0,0,0,V,V,0,0,0,0)
0,0,0,0,V,0,0,V,0,0)
0,0,0,0,0,V,0,0,V*,0)

O = RN W W b e e e e e e e R WO = = W W W
X X X X X X X X X X X X X X X X X X X X X X X X x X

AN N N N N N N N N N N N N N N N N N N N N N N N N
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2 x (0,0,0,0,0,0,V,0,V*,0)
1 x (0,0,0,0,V,0,0,0,0,V)
1 x (0,0,0,0,0,0,0,V,0,V)

Bottom-up trinification models and their phenomenology besn discussed
in [43].

6.5. Curiosities

A non-standard U (3) x Sp(2) x U(1) x U(1) model

The following spectrum was found for 17, orientifold 2 of ttensor product
(2,2,2,6,6). It has a hidden sector grodp(2) which is completely decoupled
from all massless matter: both OH as HH matter is absent. Tdie reason for
listing it here is however that it is an alternative to thenstard lepton-number
conserving configurations. This is nr. 4996[ih (6).

The full Chan-Paton group i$(3) x Sp(2) x U(1) x U(1) x U(2), with the
following spectrum

(V,V,0,0,0)3
(0,0,V,V,0)_3
(V,0,0,V*,0)_,
(V,0,V,0,0)_2
(0,V,0,V;0)s
(V,0,0,V,0)_1
(0,V,V,0,0),
(V,0,V*,0,0)_s
(0,0,V,V*,0),
(4,0,0,0,0)

3
3
1
P
P
3
3
P
1
4
P (0,0,0, 5, 0)

X X X X X X X X X X X

TheY-embedding i = :Qa — $Qc — 3Qa. There is no additional massless
U (1) factor from the standard model branes (we did not computentiss of the
abelian factor of/(2)). Note that the endpoints of the quarks and lepton doublet
bi-fundamentals are distributed over thandd branes, making it impossible to
assign a lepton number. Indeed, there are perturbativielyed lepton-number
violating couplings of the typéQ, L, d¢) or (L, L,1¢), but further CFT com-
putations would be needed to verify if these couplings deé@wloccur. The
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Gcp-chiral spectrum has no Higgs candidates and just one hightted neutrino
candidate.

We have also found a similar model with(2)y, instead ofSp(2),, and a
slightly more complicated hidden sector. It combines twatdees not encoun-
tered togetherin [17]: agroup(3) x U(2) x U(1) x U(1) of which onlyU (1)y
survives as an abelian vector boson. Unfortunately thishisezted at a price that
is presumably to high: the reason is that lepton number ddoenaritten in terms
of the brane charges. As a result, no linear combinatioB ahd . is anomaly
free. Model nr. 1725 is of the same kind, but wilp(2) replaced byl (2). A
tadpole solution exists for that model with &{2) x O(2) hidden sector.

A U(6) model

The following examples were found for invariant 79 of (1,4,4), orientifold
0, corresponding to an orientifold with Calabi-Yau chaesistics (6,60,288).
These are exact standard model realizations with just taods stacks, a com-
plex and a real one. In fact, this single model can accomneoithat standard
model spectrum in three distinct ways. The unified gaugemi®l (6) x Sp(2).
The spectrum is as follows

9 x (A,0)3
9 x (V,V)_3
8 x (Ad,0)
1 x (0,4)

7 x (0,9)

The first standard model realization is obtained by spttlif6) so that the
full (a,b,c,d) configuration becomeg(3), x U(2)p X Sp(2)c x U(1)q, with a,

b andd belonging to the same stack. The choicerofs %(1, 0,0, —3) + W,
whereW, is the diagonal Pauli matri%og in Sp(2)c. The first term ofY is
part of the non-abelian groupl/ (4) formed by thea andd branes, and hence
automatically massless. If the breaking pattern is inttgatad/ (6) — U(5) x
U(1l) = U@3)a x U(2)p x U(1) the second step is a flippetl/ (5) model; if
the breaking is interpreted 856) — U(4) x U(2) — U(3)a X U(2)p x U(1)c
the intermediate stage is Pati-Salam-like.

The second realization appears if we split6) in the same way a& (3), x
U(2)b x Sp(2)c x U(1)a, but now withY is (-3, 3,0,0). This amounts to a
standardSU (5) embedding of the standard model. ThHg(2) group does not
contribute taY” in this case.

Finally there is the possibility of usingp(2) as ab-type stack for the weak
interactions. To achieve this we split(6) asU(3)a x U(3)., and writeY as
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£(1,0,—1) + We, whereWV, is the SU(3)-generato 2, —3, —1). There is no
d-stack.

All three models have three candidate Higgs pairs an threa dmarks mir-
ror pairs, as well as six right-handed neutrino candidat®s;h are chiral with
respect tdJ(6). The first two are nrs. 1886 and 1887 in talfle (6), and the third
one is nr. 1888.

7. Phenomenological implications and the problem of masses

In this section we will address, in a rather general fastdome phenomenologi-
cal aspects of SM brane configurations. In particular, weyaneg to discuss the
problem of masses in theories with anti-quarks in the amtisgtric representa-
tion of SU(3), as well as the nature of potential family syntmes and neutrino
masses.

7.1. Antisymmetric anti-quarks and the problem of quarkseas

There is a generic potential phenomenological problemmdree of the anti-
guarks originate from anti-symmetrized strings startind anding on the color
branes. Although for SU(3E =[], the antisymmetric representation has charge
2, under the U(J) instead of the -1 for .

We are using the language of left-handed fermions where

b=yl C , CT'AHC=—(v")" (7.1)

whereC is the charge conjugation matrixy, is a right-handed Wey! fermion
transforming in the same representation of the gauge grsufy,a The mass
terms can be therefore be written in terms of fermion bilisea

0% XL + hec. (7.2)

Consider the (color singlet) quark mass ope@t@c)gq{ where() denotes
the quarks (3,2) and stands for the anti-quarks in t@ of SU(3). I, J indices
from now on will collectively indicate any other index ex¢amlor and weak
indices. a is a weak doublet index.(Q¢)! ¢’ transforms as a weak doublet,
and has charge 3 under Ug1)Therefore it must be coupled to a weak Higgs
doublet that should also carry charge -3. However a singlie ffitreorientifolds
cannot carry charge -3. Therefore, a product of scalar fieldst be involved.
The minimal case involves scalafg! transforming as3;2,-1) underSU (3) x

16We work with left-handed spinors onlg< is the proper conjugate of a left-handed spinor.
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SU(2) x U(1), andA¥ transforming as@l,—Z). The putative mass term would
then be

8L1 = hr g (Q),Q7)(HAF) (7.3)

where the parentheses indicate the color contractions.-hfiaimal couplings
would include

6Ly = hr sk (Q9)EQ7G(FXAY) (7.4)
0Ly = hrxrm (Q)LQ7G(FKFEFM) (7.5)

whereG* is a standard Higgs (weak doublef)! transforms as3;1,-1) and in
the last case an antisymmetric color coupling of threedtspis implied. There
might also be additional constraints, due to the fact thafthscalars come from
strings that have one end point in thel branes.

The crucial point is that in order to generate the quark merssg, the scalar
combinations in[{713) an@{d.5) must acquire expectatiduimeg This necessarily
implies that the scalar&/’® or '/ or AT must have vevs, and this necessarily
breaks the color symmetry to SU(Q),. (along with U (1), of course). This
seems incompatible with current data. Moreover, this agich is robust, and
is valid independent of the presence or not of supersymrE]atry

There are two a priori possibilities in order to avoid theviwas impasse.
The first is that non-perturbative effects break the assettiglobal symmetry.
It is well known that anomalous U(1)’s have always mixed aal@s with non-
abelian groups. Therefore, there are always gauge instar@od their string
theory generalization, that violate the global symmetrp-perturbatively (see
[60]). There are two distinct possibilities, but only oneésevant here: the case
when the non-abelian gauge group is unbroken at low eErg'yhis is indeed
the case with the color group. In this case only terms invgva minimum
number of fermions can be generated. This minimum numbeedsired in
order to soak up the zero modes of instantons. It is alwagetahan two in
realistic situations. Therefore, it is not relevant for geating mass terms for the
fermions.

The other option is to start from a higher gauge-group, thatventually
broken to the color SU(3), giving masses to the standardkguaket us en-
tertain first the case of SU(4). We should use the followingda[61]: A

17A related fact is that a U(N) D-brane on a CY manifold is gecsdly expected to have it gauge
symmetry broken to U(N-1) because of the D-terms. The gaygeretry may be enhanced back to
U(N) at orbifold points.

18The other case concerns a spontaneously broken group.sTduslitatively distinct since more
terms in the effective action can be generated.
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scalar in the adjoint of SU(4) obtaining a vev may break theggasymmetry
SU(4) — SU(2) x U(2) or SU(3) depending on the type of vev. A scalar in the
[T ], breaks the gauge symmetry 85 (4) — O(4) or SU(3) depending on the
type of vev. A scalar in th% breaks the gauge symmetry&@$4) — Sp(4) or
SU(4) — SU(2) depending on the type of vev. Finally a scalar transforming i
the (4,2) ofSU(4) x SU(2) breaks the symmetry &/ (4) x SU(2) — SU(3),
or SU(2) x SU(2) depending on the type of vev. Although this may be ac-
ceptable from the color point of view, the breaking of the Ww&&J(2) group is
acceptable only if the bi-fundamental scalar carries thieecd SM hypercharge.
Therefore the scalar vevs that preserve an SU(3) color supdgsU(4) trans-
formations af&]

100 0
adjoint ~ @, ~ 8 8 8 8 ~ bog ~ [T (7.6)
0000
1
O~Fam o] (4,2)~H§~<(1) D 8) (7.7)
0

The last operator breaks also to the SU(2). and they musidreedl This poses
strong constraints on the appropriate scalar potentialpatticular, no antisym-
metric vev is allowed.

We may now go through the potential mass terms and show timet iscac-
ceptable. We suppress all other indices but SU(4) color aitd w

O1 = (Q%)ags FOFJF] , O = (Q%)aqs ¢ F? (7.8)
O3 = 7% (Q)atsy Fs €y Y Fy) FLFY 7.9
3 € (Q)a‘]ﬁ'y § €a/pryrsr 'y L'y Lpe I'p ()

where a lower SU(4) index transformg@snd an upper one &s. The operators

O, moreover transform as weak doublets and Have), charge zero. There are
also operators which involve adjoint scalars but they havaew features. It is
straightforward to check that operatda?s » fail to provide mass operators for
any of the fermions after the breakiff/(4) — SU(3) by the vevs in[[716)
and [ZF¥). Operato®s gives masses to the standard SU(3) quarks, but leaves
the rest massless. One of the fundamental® jrcan be substituted with the
H¢ scalar. This will provide a weak singlet. Moreover as we hseen this vev
breaksSU(4) x SU(2) — SU(3), and if the hypercharge of the scalar is 1/2,

19e use greek indices from the beginning of the alphabet florco
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then it will provide at the same time the proper, electrowgakmetry breaking.
However, the same considerations as above indicate thapasmmable mass
terms are generated.

The final case to be considered is the possibility to includesdar vev in the
antisymmetric representatioR®”. In this case we must start from SU(5), which
the vev will break to SU(3). Upon choosing a convenient bsgsveyv is

0 0
-1
HNRaﬁN 0
0
0000 0

(7.10)

o O O =
o O OO
o O O

o O OO

We also assume that there are fundamedt&lsvith a vev in the 4 and 5 direc-
tions, so that it does not break SU(3) further. Then we mayewrie following
operators

O4 = (Q)aqp  F*R™ (7.11)
Os = Eaﬁ’ﬂse(QC)aqﬁ’szse Ea/ﬁ”v/zs/e’Fa/Rﬁ/'leyE, (712)

The operato®, provides masses for the various singlets after the breakipg
eratorOQs provides masses for the standard quarks. However the twateipiets
emerging from th% of SU(5) will remain massless.

It therefore seems that orientifold models with anti-qsark antisymmetric
representations are phenomenologically untenable.

7.2. Masses in SU(5) and flipped SU(5) vacua and instantenteff

The case of standard U(5) group deserves special attBhtishe SMm particles
are in the antisymmetric representatiot’ as well as the anti-fundamentat,..
The minimal set of scalar needed for symmetry breaking islgoiret & s whose
expectation valudiag(2V, 2V, 2V, —3V, —3V, —3V) breaksSU (5) — SU(3) x
SU(2) x U(1)y and a fundamentaF/ © whose expectation valu@, 0, 0,0, v)
breaksSU (2) x U(1)y — U(1)em The standard mass terms

Or ~ (0)at®Hp , Oz ~ €apysc(P)* 1 H (7.13)

give masses to all SM fermions. However hef®, which gives masses to up-
type quarks is not allowed, since it carries charge +5 urdeoterall U(1) of the
U(5). This charge can be cancelled by multiplicationt§"*H! HJ HX H{* HE,
which however requires the presence of 5 fundamental Higalsus with vevs

20geveral of the remarks below were independently put forweeently in [28].
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that are aligned, and of the order of the electroweak scaleweder, such a
mass is suppressed by a faclfjil?:1 77+ Since allu; < Mz, we obtain an
unacceptable suppression factorl6f 5. The other possibility is the presence
of symmetric or antisymmetric scalars that acquire vevs.aAtisymmetric vev
cannot preserve thgU (3) x U (1), group of low energy physics. A symmetric
one, R*? is fine provided it is aligned as ifiL{I.6). Its v&7 must be smaller
than the EW vev as it contributes to the W,Z masses. AgaimpagthO- can be
neutralized, it gives too small a contribution to up quarkse&s. There are new
operators we may write now like

O3 ~ (V%) apths R*Y RP (7.14)

However, such an operator does not contribute to fermiorsesas

We can imagine of two non-perturbative loopholes to theiprearguments.
A first non-perturbative possibility is based on breaking dffending U(1) sym-
metry by a vacuum condensate. An example will be a Chan-Ratoup that
contains U(5x SO(5)x SO(5), and we have extra scalars (denoteld @ the
representation (V,V,0)+(¥0,V), so that the U(5) anomalies cancel. If the dy-
namics is favorable, we may imagine that one of the SO(5¢aterss a composite
out of five scalars, of the form

e apeppQiQE - QF, (7.15)

whereq, 3, - - - are SU(5) indices and, B, - - - SO(5) indices. If the condensate
gets a vev at the GUT scale, but not the individual figlg$ it breaks the U(1)
of U(5), and upon coupling to the U(5) quarks and leptons caregate the ap-
propriate masses. It should be however mentioned that sdghamical setup
seems unlikely.

The final possibility, is a non-perturbative breaking of tiverall (anomalous)
U(1) symmetry because of spacetime instantons. This seaewslistic possi-
bility as stringy instantons are reasonably well underdtop now. They first
appeared in string theory along with the duality conjectueand a lot has been
learned about them from their correspondence with pertinbaffects (namely
world-sheet instantons) in dual string theories (see [2®]af review). The in-
stanton calculus associated with D-branes was developateally from first
principles [30, 31]. In supersymmetric orientifold vactize relevant instanton
effects can be two-fold. One is a stringy version of the staaddauge instantons
of field theory. The other is a stringy instanton that has nanterpart in field
theory, and resembles octonionic instantons [32]. In oris@ficarnations it is a
EuclideanD; -instanton, [37]. A stringy instanton for a given gauge gromay
be a gauge instanton for another gauge group.
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Such instantons can give corrections to the superpotahtidlcan include
Yukawa couplings necessary for masses. Generic instadtonet contribute to
the superpotential as they have 4 zero modes, [33]. Oridaifrojections can
reduce the zero modes to two, and then the instanton (call€{ ) instanton)
can contribute to the superpotential. The first nontrividmaple of this, with
full tadpole cancellation was described in [32]. Moreovethis example, in one
region of the moduli space of vacua, the relevant gauge gsosp(5) with three
10’ and 35, plus other non-chiral particles. The stringy instantonhiat vacuum
generate a non-perturbative mass matrix for the 10s. Mereatvthe minimum
of the open string superpotential, the vacum energy is moa-and if closed
moduli are already stabilized that would break supersymnja4, 36]. This is
an incarnation of gaugino condensation, driven by strimggtaintons. Further
examples were described in [35, 36].

It is therefore possible to generate masses in SU(5) oiwdadi by stringy
instantons.

7.3. Family symmetries

We have allowed extra non-abelian groups to participatdénldcal SM col-
lection of branes. In particular standard model partictescharged under such
groups. This setup is very reminiscent of the idea of famjlpmetries. The pur-
pose of the introduction of family symmetry in the past wasstplain/organize
the existence of three generations and the hierarchy ofesa$¢he SM particles.
There are two relevant questions in this context:

(a) Can such symmetries play the role of family symmetriea® tbey help
achieve realistic mass matrices for the SM particles?

(b) Are there cases where the presence of such symmetrigsisaealistic
mass matrices?

In following we will make some comments on these two questidithough
our setup is reminiscent of family symmetries, it incorgesaa radical departure
from that idea as well. The reason is that the quark (3,2statinnot be charged
under any other gauge symmetry. This is unlike any otherlfesgimmetry intro-
duced in the literature. Since the quarks are necessaittgharged under such
symmetries, there are non-trivial considerations coringrthe potential mass
matrices and the existence of realistic patterns.

At this stage, we are not fully prepared to calculate threkhagher point cou-
plings in the superpotential. We can however derive somez8eh rules on cou-
plings, especially renormalizable ones (three-point tiagp) that are allowed
by the gauge symmetries. Such selection rules can haven@itonsequences
because
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(i) Extra non-abelian symmetries, although broken, may beeror less con-
straining, due to the possible symmetry breaking vevs

(i) The presence of several (anomalous) U(1)s providethéurconstraints,
especially if the corresponding global symmetries remiafadt in perturbation
theory.

From now on we will call for concreteness the non-abeliarugr@ distinct
from SU(2) and S(3), the family symmetry group. Let us coesttie case where
the anti-quarksy; transform in a non-trivial representatidn of the groupG.
Then the potential mass ter(@<)!?¢; transform as a doublet of SU(2) and as
R of G (I is a extra index labeling the three quark generationslaxhis a weak
doublet index). At the cubic level the existence of a scéfatransforming in
the (2,R) ofSU(2) x G, gives rise to the Yukawa coupling

(Q°)heq; @1 (7.16)

Up to base change there are two types of vevabfdi61]. The first type breaks
the symmetrySU(2) x G — G, with G’ = O(N — 1) if G = O(N) and
G' = SU(N —1)if G = SU(N). Therefore, the electroweak symmetry is
broken while the family symmetry is not fully broken. Forghb be realistic,
further vev’s should break both thé(1)y symmetry and the leftover family
symmetry. The pattern then becomes complicated and dasaietailed study.
The second type breal&/(2) x G — SU(2) x G’ with G = O(N — 2) if
G =O(N)andG’' = SU(N —2)if G = SU(N). Here the family symmetry is
completely broken ifV = 2. This is the case for example of a Pati-Salam group.
If there is a leftover family symmetry, further symmetry kéng is necessary.
The ® vev identifies the weak and the G index and provides a massxnfiaitr
guarks that is degenerate. The existence of several copiesloes not improve
the situation.

We can contemplate higher dimension terms involving a wealbte H* and
a scalam®; in the fundamental o7

(Q°)q H @' (7.17)

In such a case a vev df of the order of M, will give a mass matrix of order
of the electroweak scale but it will be degenerate. Moretivetz symmetry is
partly broken. Several scalafg’ with couplings

91J AevI,a ami
O (@) g H @) (7.18)

could fare better. First non-aligned expectation valuestraak a larger portion
or all of the G group. Second, for generic couplings the mass matrix after
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electroweak breaking will be non-degenerate. Thereforéhis case, a reason-
able non-zero mass matrix is viable.

There are more complicated possibilities of the occurrexfocguasi-family
symmetries and the charge assignments of SM particles uheer. We have
studied in some indicative examples, the relevant issuesept. A full study of
all possibilities is a major task and it will not be undertakesre.

7.4. Neutrino masses

In our search we have not explicitly constrained the presefanti-neutrinos. A
priori, any SM singlet fermion can play that role. Of courfee a realistic pattern
of masses to emerge, important constraints on the interecéire appropriate.

There are two mechanisms that so far have been successfoldaging neu-
trino masses of acceptable magnitude. The first, reliesegdh-saw mechanism
and is appropriate for vacua with high values of the strirejescAn important
ingredient for its operations is that lepton number is natssoved. Moreover
at least two (and typically three) antineutrinos are neagsS®r accommodating
present data. As we have discussed earlier, the preserggofinumber cannot
be directly tracked until a formal separation of doublets ieptons and Higgses
is possible. Therefore in this context, the question of rieaimasses remains a
guestion to be addressed in concrete string ground states.

The second mechanism involves a brane wrapping one (oradglenge di-
mensions and is necessarily operative in string vacua withvatring scale. In
this context the neutrinos mix with antineutrinos emerdnog the “bulk” brane
, and the masses are suppressed by the volume of large dansndror this
mechanism to succeed large Majorana masses should bederbi@herefore it
is important that lepton number is a good symmetry. Moredherminimal im-
plementation involves a single antineutrino and its KK towkstates and leads
to predictions marginally compatible with current data][1®lore comfortable
constructions involve at least two antineutrinos.

8. Dependence of the results on the Calabi-Yau topology

Table[T lists the MIPFs for which the standard model spectuas found, and
how often it occurred. The table is ordered according todstesh model fre-
guency, that is the total number of standard model configamadivided by the
total number of three and four brane configurations. Notettlia does not take
into account tadpole cancellation, since we have not syaieally solved the
tadpole conditions for all standard model configurationglu@in 2 gives the
MIPF id-number using the same sequential labeling usedrih Jife can provide
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further details on these MIPFs on request. To help idemiifythem, we list in
columns 3,4 and 5 the resulting heterotic Calabi-Yau spet{Hodge numbers
and the number of’s singlets). In columns 6,7 and 8 we list the total number of
configurations for each value of The last column gives the frequency.

Table 7.Standard model success rate for various MIPFs

Tensor product | mipf hi1 higo Scal x =0 T = % T = * rate

(1,1,1,1,7,16) 30 11 35 207 1698 388 0 2.1-10 3
(1,1,1,1,7,16) 31 5 29 207 890 451 0 1.35 x 1073
(1,4,4,4,4) 53 20 20 150 2386746 250776 0 4.27 X 10—4
(1.4,4,4,4) 54 3 51 213 5400 5328 4248 3.92 x 1074
(6,6,6,6) 37 3 59 223 0 946432 0 2.79 x 1074
(1,1,1,1,10,10) 50 12 24 183 1504 508 36 2.63 x 10—4
(1,1,1,1,10,10) 56 4 40 219 244 82 0 2.01 x 10—4
(1,1,1,1,8,13) 5 20 20 140 328 27 0 1.93 x 10—4
(1,1,1,1,7,16) 26 20 20 140 157 14 0 1.72 x 10—4
(1,1,7,7,7) 9 7 55 276 7163 860 0 1.59 x 10—4
(1,1,1,1,7,16) 32 23 23 217 135 20 0 1.56 x 10~4
(1,4,4,4,4) 52 3 51 253 110493 8303 0 1.02 x 10—4
(1,4,4,4,4) 13 3 51 250 238464 168156 0 1.01 x 10—4
(1,1,1,2,4,10) 44 12 24 225 704 248 0 1.01 x 10—%
(1,1,1,1,1,2,10) 21 20 20 142 2 1 0 1.00 x 104
(1,1,1,1,14,4) 124 0 0 78 729 0 0 9.8 x 10~°
(4,4,10,10) 79 7 43 215 0 57924 0 9.39 x 1075
(4,4,10,10) 77 5 53 232 0 1068926 0o | 8.20x 1075
(1,4,4,4,4) 7 3 63 248 0 1024 0 8.12 x 10~°
(4,4,10,10) 74 9 57 249 0 1480812 0 8.06 x 1075
(1,1,1,1,1,2,10) 24 20 20 142 0 0 6 7.87 x 1072
(1,2,4,4,10) 67 11 35 213 0 14088 1008 7 x 1075
(1,1,1,1,5,40) 5 20 20 140 303 36 0 6.73 x 1072
(2,8,8,18) 8 13 49 249 0 1506776 0 6.03 x 1072
11,7,7,7) 7 22 34 256 2700 68 0 5.5 x 102
(1.4,4,4,4) 78 15 15 186 20270 6792 0 5.39 x 1070
(2,8,8,18) 28 13 49 249 0 670276 0 5.25 x 1072
(1,2,4,4,10) 75 5 41 212 304 580 244 4.87 x 1075
11,7,7.7) 17 10 46 220 1662 624 108 4.76 x 1075
(2,2,2,6,6) 106 3 51 235 0 201728 0 4.74 x 1075
(1,1,1,16,22) 7 20 20 140 244 19 0 4.67 x 1079
(1,2,4,4,10) 65 6 30 196 0 1386 0 4.41 x 10~°
(4,4,10,10) 66 6 48 223 0 61568 0 4.33 x 107°
(1,4,4,4,4) 57 4 40 252 0 266328 58320 4.19 x 1075
(1,4,4,4,4) 80 7 37 200 0 1968 1408 4.15 x 10~°
(6,6,6,6) 58 3 43 207 0 190464 0 3.93 x 1072
(1,1,1,1,10,10) 36 20 20 140 266 26 6 3.82 x 1075
(1,1,1,444) 125 12 24 214 351 0 0 3.62 x 109
(4,4,10,10) 14 4 46 219 0 114702 0 3.3 x 1075
(1,1,1,1,10,10) 33 20 20 140 47 5 0 3.21 x 1075
(3,3,3,3.3) 6 21 17 234 0 192 0 6.54 x 10~6
(33.333) 4 5 49 258 0 24 o | 817x1077
(3,3,3,3.3) 2 49 5 258 6 27 6 1.65 x 1079

The complete table has 1639 cases with non-zero frequertogrefore we
only present the top of the table here, which starts with guescy as high as




76 E. Kiritsis

.2%. The last three entries are modular invariants of the tef3s8r 3, 3, 3), cor-
responding to the quintic. They occur much further down ite but are shown
here because the quintic is a well-studied Calabi-Yau ro&hifThe lowest non-
zero frequency we encounteredsi$ x 10~'2 (for a total of 4 configurations
found).

In column 2 an asterisk indicates that at least one tadpt¢@o was found
for that MIPF in [17]. Note that we did not perform an exhaustgearch for tad-
pole solutions in the present work. Indeed, if all brane @pfitions occurring
for a given MIPF are of a type for which the tadpoles have dlydzeen solved
before (for a different MIPF), no further attempts are madedive them. There-
fore we cannot make definitive conclusions about the nostence of tadpole
solutions for a given MIPF from our present results.

Note the presence of models with Hodge numi§eés20). The correspond-
ing Calabi-Yau manifolds are in fact of the foriy; x T,. There is also a case
with h1; = h1o = 0, which is in fact a torus compactification. The fact that thes
are (partly) torus compactifications is not in contradictith the fact that the
spectrum is chiral. Each MIPF can be thought of as a an extermdithe chiral
algebra of the original tensor product, modified by an autqism. This ex-
tension may lead to a non-chiral torus compactification. elmv the boundary
states that are admitted are a complete set with respee twitfinal unextended
chiral algebra, which always corresponds to a chiral conifigation (except for
five non-chiral tensor products that we do not consider).ddennon-chiral bulk
extension may have chiral boundary states. Itis possiblghie X' x 75 models
are related to models discussed in ( [62]); this will reqdiingher investigation.
In any case we did not find tadpole solutions for any of thesastor K5 x T5
models (but again with the caveat that we did not search Eantaxhaustively).

We did find tadpole solutions for one of the MIPFs of the qaintiamely
MIPF nr. 6. These solutions are the broken and unbrokenS2damU (4) x
U(2) x U(2) models discussed above.
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