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Introduction

♠ Finding alternative ways to compute in QCD is still a respectable goal.

♠ Our goal is to use input from both string theory and the gauge the-

ory (QCD) in order to provide an improved phenomenological holographic

model for real-world QCD.

♠ This is an exploratory adventure, and we will short-circuit several obsta-

cles on the way.

♠ As we will see, we will get an interesting perspective on the physics of

pure glue as well as on the quark sector.
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Results
♠ The input: a potential for the dilaton in five dimensions: V (Φ).

• V (Φ) is in one to one correspondence with the YM β-function, β(λ).

• The UV geometry is log-corrected AdS5 capturing asymptotic freedom.

• We classify all IR confining geometries, and show that they are singular
(and good!).

• All of them have a mass-gap and a discreet spectrum

• Only one has asymptotically-linear Regge trajectories.

• In the meson sector we use Nf flavor D4 + D̄4 probe branes, with a
tachyon and U(Nf)L × U(Nf)R vectors. We can introduce quark masses,
show that chiral symmetry is broken, and determine dynamically the chiral
condensate.

• We find that the YM θ-angle runs. It always renormalizes to zero at
low energy. This suggests a possible intrinsic resolution to the strong CP
problem.
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Motivating the effective action

♠ The starting point of pure YM: Non-critical string theory in five dimen-
sions. Shortcut: a two-derivative action in 5d involving (Modulo Bµν)

gµν ↔ Tµν , φ ↔ Tr[F2] , a ↔ Tr[F ∧ F ]

• The basic string motivated action for the 5d theory is

S5 = M3
∫

d5x
√

g

[
e−2φ

(
R + 4(∂φ)2 +

δc

`2s

)
− 1

2 · 5!
F2
5 −

1

2
(da)2

]

F5 = dC4 seeds the D3 branes that generate the U(Nc) group. (a ≡ C0, C4

and C2 are the RR states obtained from the bispinor decomposition in d=5)

• The C4 equation of motion gives

∗F5 = Nc

and the dual action in the Einstein frame gE = e
4
3φ gs

SE = M3
∫

d5x
√

g

[
R− 4

3
(∂φ)2 − e2φ

2
(∂a)2 + Vs(φ)

]
, Vs(φ) =

e
4
3φ

`2s

[
δc− N2

c

2
e2φ

]

•
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♠ Higher derivative corrections involving the F5 upon dualization provide

further terms in the dilaton potential

Vs(φ) =
e
4
3φ

`2s


δc +

∞∑

n=1

an (Nce
φ)2n




♠ This potential does not have the requisite properties for QCD.

(More info)

♠ We need a potential that in the Einstein frame asymptotes to a constant

V0 = 12
`2

as λ → 0.

♠ The constant can be generated by higher-derivative corrections. Here we

postulate it.

♠ The five form will then generate a series of (perturbative) terms in λ:

V (λ) = V0


1 +

∞∑

n=1

anλa n




we will take a = 1 for simplicity (by adjusting the kinetic term).
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♠ This matches the weak coupling expansion of perturbative QCD and will

generate the perturbative β-function expansion.

♠ We will ignore higher-derivative terms associated with R and (∂Φ)2.

(Motivated partly by the success of SVZ sum rules)

♠ The “resumed” two-derivative action reads

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
+ V (λ)

]
, λ = Nc eφ

after redefining the kinetic terms.

• We must choose the holographic energy: the natural choice is

ds2 = e2A(r)(dr2 + dxµdxµ) , E = eA

in the Einstein frame as it is monotonic and will end at zero in the IR.
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• We may now solve the equations perturbatively in λ around λ = 0 and
r = 0 (this is a weak coupling expansion) to find

1

λ
= L−b1

b0
logL+

b21
b20

logL

L
+

(
b21
b20

+
b2
b0

)
1

L
+

b31
2b30

log2 L

L2
+· · · , L ≡ −b0 log(rΛ)

with
dλ

d logE
≡ β(λ) = −b0λ2 + b1λ3 + b2λ4 + · · ·

eA =

[
1 +

4

9 log rΛ
+O

(
log log rΛ

log2 rΛ

)]
`

r

V =
12

`2


1 +

8

9
(b0λ) +

23− 36b1
b20

34
(b0λ)2 − 2

324b2
b30

+ 124 + 189b1
b20

37
(b0λ)3 +O(λ4)




♠ One-to-one correspondence with the perturbative β-function, and the
perturbative potential.

• α′ corrections affect scheme dependence (More Info)
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Organizing the vacuum solutions

• The β-function can be mapped uniquely to the dilaton potential V (λ).

• A useful variable is the phase variable

X ≡ Φ′

3A′
=

β(λ)

3λ
, eΦ ≡ λ

• We can introduce a (pseudo)superpotential

W2 −
(
3

4

)2 (
∂W

∂Φ

)2
=

(
3

4

)3
V (Φ).

and write the equations in a first order form:

A′ = −4

9
W , Φ′ = dW

dΦ
, β(λ) = −9

4
λ

d logW

d logλ

♠ The equations have three integration constants: (two for Φ and one for

A) One is fixed by λ → 0 in the UV. The other is Λ. The one in A is the

choice of energy scale.

Improved Holographic QCD, E. Kiritsis

9



The IR regime

For any asymptotically AdS5 solution (eA ∼ `
r):

• The scale factor eA(r) is monotonically decreasing
Girardelo+Petrini+Porrati+Zaffaroni

• Moreover, there are only three possible, mutually exclusive IR asymp-
totics:

♠ there is another asymptotic AdS5 region, at r →∞, where expA(r) ∼ `′/r,
and `′ ≤ ` (equality holds if and only if the space is exactly AdS5 everywhere);

♠ there is a curvature singularity at some finite value of the radial coordi-
nate, r = r0;

♠ there is a curvature singularity at r →∞, where the scale factor vanishes

and the space-time shrinks to zero size.

¦ In all the singular backgrounds the ’t Hooft coupling increases without
bound in the IR.
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General criterion for confinement

• Relies on calculation of the static quark potential using the vev of the Wilson loop
calculated via an F-string world-sheet. Rey+Yee, Maldacena

T E(L) = Sminimal(X)

• the geometric version:
A geometry that shrinks to zero size in the IR is dual to a confining 4D theory if and only
if the Einstein metric in conformal coordinates vanishes as (or faster than) e−Cr as r →∞,
for some C > 0.

• It is understood here that a metric vanishing at finite r = r0 also satisfies the above
condition.

♠ the superpotential
A 5D background is dual to a confining theory if the superpotential grows as (or faster
than)

W ∼ (logλ)P/2λ2/3 as λ →∞
for some P ≥ 0.

the β-function

A 5D background is dual to a confining theory if and only if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system)

• We can determine the geometry if we specify K:
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Comments on confining backgrounds

• For all confining backgrounds with r0 = ∞, although the space-time is
singular in the Einstein frame, the string frame geometry is asymptotically
flat for large r. Therefore only λ grows indefinitely.

• String world-sheets do not probe the strong coupling region, at least
classically. The string stays away from the strong coupling region.

• Therefore: singular confining backgrounds have generically the property
that the singularity is repulsive, i.e. only highly excited states can probe it. This

will also be reflected in the analysis of the particle spectrum (to be presented later)

• The confining backgrounds must also screen magnetic color charges.
This can be checked by calculating ’t Hooft loops using D1 probes:

♠ All confining backgrounds with r0 = ∞ screen properly

♠ at finite r0 backgrounds with eA ∼ (r− r0)δ with 0 < δ < 1 do not screen. All others OK.

♠ In particular “hard-wall” AdS/QCD confines also the magnetic quarks.
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Particle Spectra: generalities

• Linearized equation:

ξ̈ + 2Ḃξ̇ + ¤4ξ = 0 , ξ(r, x) = ξ(r)ξ(4)(x), ¤ξ(4)(x) = m2ξ(4)(x)

• Can be mapped to Schrodinger problem

− d2

dr2
ψ + V (r)ψ = m2ψ , V (r) =

d2B

dr2
+

(
dB

dr

)2
, ξ(r) = e−B(r)ψ(r)

• Mass gap and discrete spectrum visible from the asymptotics of the

potential.

• Large n asymptotics of masses obtained from WKB

nπ =
∫ r2

r1

√
m2 − V (r) dr

• Spectrum depends only on initial condition for λ (∼ ΛQCD) and an overall

energy scale (eA) that must be fixed.
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• scalar glueballs

B(r) =
3

2
A(r) +

1

2
log

β(λ)2

9λ2

• tensor glueballs

B(r) =
3

2
A(r)

• pseudo-scalar glueballs

B(r) =
3

2
A(r) +

1

2
logZ(λ)

• Universality of asymptotics

m2
n→∞(0++)

m2
n→∞(2++)

→ 1 ,
m2

n→∞(0++)

m2
n→∞(1−−)

=
m2

n→∞(2++)

m2
n→∞(1−−)

=
36

25

• Only one IR background gives linear trajectories: λ ∼ eCr2 corresponding
to V (λ) ∼ λ

4
3
√

logλ.

m2
n→∞(0+−)

m2
n→∞(0++)

=
1

2
(d− 2)2 predicts d = 2 +

√
2

via m2

2πσa
= 2n + J + c,
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The meson sector (Nf << Nc)

• Flavor is introduced via the introduction of Nf pairs of space filling D4+D̄4
branes.

• The important world-volume fields are the tachyon Tij in (Nf , N̄f) and
the U(Nf)L × U(Nf)R vectors:

Casero+Kiritsis+Paredes

Tij ↔ q̄i
a
1 + γ5

2
qj
a , Aij

µ
L,R ↔ q̄i

a
1± γ5

2
γµqj

a

They generate the U(Nf)L × U(Nf)R chiral symmetry.

• The UV mass matrix mij corresponds to the source term of the Tachyon
field.

• The D-WZW sector depends nontrivial on T and realizes properly the
P and C symmetries. It generates the appropriate gauge and global flavor
anomalies.

• We can dynamically determine the chiral condensate as function of the
bare UV masses.
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.

• We have naturally the χSB breaking order parameter T , and consistency

with anomalies implies that it is non-zero and proportional to the identity

(Holographic Coleman+Witten theorem).

• The pions appear as Goldstone bosons when mq = 0.

• The correct GOR relation is obtained.

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• There is linear confinement (M2
n ∼ n) associated with the vanishing of

the tachyon potential at T →∞.

• We obtain the correct Stuckelberg coupling mixing with 0+− and the

mass for the η′.
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Tachyon dynamics

• In the vacuum the gauge fields vanish and T ∼ 1. Only DBI survives

S[τ ] = TD4

∫
drd4x

e4As(r)

λ
V (τ)

√
e2As(r) + τ̇(r)2 , V (τ) = e−

µ2

2 τ2

• We obtain the nonlinear field equation:

τ̈ +

(
3ȦS −

λ̇

λ

)
τ̇ + e2ASµ2τ + e−2AS

[
4ȦS −

λ̇

λ

]
τ̇3 + µ2τ τ̇2 = 0.

• In the UV we expect

τ = mq r + σ r3 + · · · , µ2`2 = 3

• We expect that the tachyon must diverge before or at r = r0. We find
that indeed it does so at the singularity. For the r0 = ∞ backgrounds

τ ∼ exp
[
2

a

R

`2
r

]
as r →∞
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• Generically the solutions have spurious singularities: τ(r∗) stays finite but

its derivatives diverges as:

τ ∼ τ∗ + γ
√

r∗ − r.

The condition that they are absent determines σ as a function of mq.

• The easiest spectrum to analyze is that of vector mesons. We find

(r0 = ∞)

Λglueballs =
1

R
, Λmesons =

3

`

(
α`2

2R2

)(α−1)/2

∝ 1

R

(
`

R

)α−2
.

This suggests that α = 2 is preferred also from the glue sector.
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Concrete model: I

• r0 = ∞ and a = 2:

β(λ) = − 3b0λ2

3 + 2b0λ
− 3a(2b20 + 3b21)λ

3

(1 + λ2)
(
9a +

(
2b20 + 3b21

)
log(1 + λ2)

)

is everywhere regular and has the correct UV and IR asymptotics.

W = (3 + 2b0λ)2/3
[
9a +

(
2b20 + 3b1

)
log(1 + λ2)

]2a/3
,

5 10 15 20 25
r

0.05

0.1

0.15

0.2

0.25

0.3

eA

2.5 5 7.5 10 12.5 15
r

2

4

6

8

Λ

The scale factor and ’t Hooft coupling that follow from β. b0 = 4.2, λ0 = 0.05, A0 = 0.

The units are such that ` = 0.5. The dashed line represents the scale factor for pure AdS.
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Dependence of absolute mass scale on λ0

0.05 0.1 0.15 0.2 0.25
Λ0

-40

-30

-20

-10

Log@M0D

Dependence on initial condition λ0 of the absolute scale of the lowest

lying glueball (shown in Logarithmic scale)
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Dependence of mass ratios on λ0

0.05 0.1 0.15 0.2 0.25
Λ0

1.2

1.3

1.4

1.5

1.6

1.7

1.8

R0 R20

The mass ratios R00 (squares) and R20 (triangles).

R00 =
m0∗++

m0++
, R20 =

m2++

m0++
.
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Linearity of the glueball spectrum

10 20 30 40 50 60 70
n

20

40

60

80

100

M2

2 4 6 8
n

2

4

6

8

M2

(a) (b)

(a) Linear pattern in the spectrum for the first 40 0++ glueball states. M2

is shown units of 0.015`−2.

(b) The first 8 0++ (squares) and the 2++ (triangles) glueballs. These

spectra are obtained in the background I with b0 = 4.2, λ0 = 0.05.
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Comparison with lattice data: Ref I

n

3000

4000

5000

6000

M

n

3000

4000

5000

6000

M

(a) (b)

Comparison of glueball spectra from our model with b0 = 4.2, λ0 = 0.05
(boxes), with the lattice QCD data from Ref. I (crosses) and the AdS/QCD
computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The
masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. I.

`AdS = 6.57 `s , `2s R = −0.46
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Comparison with lattice data: Ref II

n

3000

4000

5000

6000

M

n

3000

4000

5000

6000

M

(a) (b)

Comparison of glueball spectra from our model with b0 = 2.55, λ0 = 0.05

(boxes), with the lattice QCD data from Ref. II (crosses) and the AdS/QCD

computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The

masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. II.
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α-dependence of scalar spectrum

λ(E) ∼ E−
3
2 (log(E))

3
4

α−1
α

2 3 4 5
n

2000

4000

6000

8000

10000

M

2

5
10
20

*

The 0++ spectra for varying values of α that are shown at the right end
of the plot. The symbol * denotes the AdS/QCD result.
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Confining background II:r0 =finite

• We choose a regular β-function with appropriate asymptotics:

β(λ) = − 3b0λ2

3 + 2b0λ
− 3η(2b20 + 3b21)λ

3

9η + 2
(
2b20 + 3b21

)
λ2

, η ≡
√

1 + δ−1 − 1

• Confining backgrounds with r0 =finite have a hard time to match the

lattice results, even for the first few glueballs.
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The QCD axion background

• The kinetic term of the axion is suppressed by 1/N2
c . (it is an angle in

the gauge theory, it is RR in string theory)

Saxion =
M3

2N2
c

∫
d5x

√
g Z(λ) (∂a)2 , ȧ =

C e−3A

Z(λ)

with Z(λ) = λ2 + · · · as λ → 0. It can be interpreted as the flow equation
of the effective θ-angle.

a(r) = θUV + C
∫ r

0
r
e−3A

Z(λ)
, C = 〈Tr[F ∧ F ]〉

• The vacuum energy is

E(θUV ) =
M3

2N2
c

∫
d5x

√
gZ(λ)(∂a)2 =

M3

2N2
c

Ca(r)
∣∣∣∣
r=r0

r=0

• Consistency requires to impose that a(r0) = 0. This determines C and

E(θUV ) = − M3

2N2
c

∫ r0
0

dr
e3AZ(λ)

θ2
UV , a(r) =

θUV∫ r0
0

dr
e3AZ(λ)

∫ r0

r

dr

e3AZ(λ)

Improved Holographic QCD, E. Kiritsis
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A minimal solution to the strong CP problem?

• The IR effective θ-angle vanishes, independent of θUV !

• For Z(λ) ∼ λd as λ →∞

a(E) ∼ E
3
2(d−2) (logE)a as E → 0

• The presence of a discrete gapped 0+− spectrum implies that d > 2.

Universality of the adjoint string tension gives d = 2 +
√

2.

• We know that θ < 10−8 from electric dipole of the neutron dn. This

assumes that θ does not run.

• It is an interesting possibility that dn is very small because a(E) vanishes

fast in the IR.
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0.15 0.2 0.25 0.3 0.35 0.4
ΑQCD@mZD

-8

-7

-6

-5

-4

LogA Θ@mΠD����������������
ΘUV

E

θ(100 MeV) (in logarithmic scale) vs. the strong coupling constant at 90

GeV.
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Open ends

• This phenomenological approach towards an improved holographic QCD
model is preliminary but seems promising. Several open paths:

♠ Determine the finite temperature solutions and the resulting deconfining
transitions. The shear viscosity ratio is still 1/4π.

♠ Calculate the meson spectrum and compare with data.

♠ Explore the baryon spectrum

♠ Diagonalize the η′ − 0+− system and compare with data.

♠ Recalculate the dipole moment of the neutron in connection with the
strong CP problem.

♠ Turn on finite baryon and isospin chemical potential and study the asso-
ciated phase diagram.

♠ Calculate RHIC/LHC finite T observables.

Improved Holographic QCD, E. Kiritsis
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.

Thank you for your patience!
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A preview of the results: pure glue

♠ The starting point of pure QCD: a two-derivative action in 5d involving

gµν ↔ Tµν , φ ↔ Tr[F2] , a ↔ Tr[F ∧ F ]

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
− Z(λ)

2N2
c

(∂a)2 + V (λ)

]
, λ = Nc eφ

with

V (λ) = V0


1 +

∞∑

n=1

Vnλn


 = −4

3
λ2

(
dW

dλ

)2
+

64

27
W2.

• There is a one-to one-correspondence between the QCD β(λ) and W :

β(λ) = −9

4
λ2 d logW (λ)

dλ

• There is a similar statement between Z(λ) and the (non-perturbative)
β-function for the θ-angle.
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• The space is asymptotically AdS5 in the UV (r → 0) modulo log correc-

tions (in the Einstein frame):

ds2 = e2A(r)(dr2 + ηµνdxµdxν) , E ≡ eA(r)

• There are various extra α′ corrections to the potential (∼ β-function).They

only correct the non-universal terms. Moreover, α′ corrections to E can be

set to zero in a special scheme (the ”holographic” scheme).

• ALL confining backgrounds have an IR singularity at r = r0. There are

two classes: r0=finite and r0 = ∞. The singularity is always ”good”: all

spectra are well defined without extra input.

• For regular V (λ), λ →∞ at the IR singularity.

• In the r0 = ∞ class of backgrounds, the curvature (in the string frame)

vanishes in the neighborhood of the IR singularity.
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Classification of confining superpotentials W (λ) as λ →∞ in IR:

W (λ) ∼ (logλ)
P
2 λQ , λ ∼ E−

9
4Q

(
log

1

E

) P
2Q

, E → 0.

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at finite r = r0.

eA(r) ∼
{

(r0 − r)
4

9Q2−4 Q > 2
3

exp
[
− C

(r0−r)1/(P−1)

]
Q = 2

3

• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞ The scale factor
eA vanishes there as

eA(r) ∼ exp[−Cr1/(1−P )].

• Q = 2/3, P = 1 leads to confinement but the singularity may be at a finite or infinite
value of r depending on subleading asymptotics of the superpotential.

♠ If Q < 2
√

2/3, no ad hoc boundary conditions are needed to determine the glueball spec-
trum → One-to-one correspondence with the β-function This is unlike standard AdS/QCD
and other approaches.

• when Q > 2
√

2/3, the spectrum is not well defined without extra boundary conditions in
the IR because both solutions to the mass eigenvalue equation are IR normalizable.
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• For all potentials that confine, the spectrum of 0++ and 2++ glueballs

has a mass gap and is purely discrete. For the 0+− glueballs this is the

case if

Z(λ) ∼ λd , d > 2 as λ →∞.

• In all physically interesting confining backgrounds the magnetic color

charges are screened. This is an improvement with respect to AdS/QCD

models (magnetic quarks are also confined instead) .

• Of all the possible confining asymptotics, there is a unique one that

guarantees “linear confinement” for all glueballs. It corresponds to the

case Q = 2/3, P = 1/2, i.e.

W (λ) ∼ (logλ)
1
4 λ

2
3 , β(λ) = −3

2
λ

[
1 +

3

8 logλ
+ · · ·

]
, λ ∼ E−

3
2

(
log

1

E

)3
8

This choice also seems to be preferred from considerations of the meson

sector as discussed below.
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.

• Numerical calculation of the 0++ and 2++ glueball spectra and compar-

ison with lattice data gives a clear preference for the r0 = ∞ asymptotics.

• We can find the background solution for the axion:

a(r) = θUV

∫ r0

r

dr

e3AZ(λ)

/ ∫ r0

0

dr

e3AZ(λ)

written in terms of the axion coupling function Z(λ). This provides the

“running” of the effective QCD θ angle.

It gives E(θUV ) ∼ θ2
UV .

• Note that always a(E = 0) = 0. This suggests a possible intrinsic resolu-

tion of the strong CP problem.
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Preview: quarks (Nf ¿ Nc) and mesons

• Flavor is introduced by Nf D4 + D̄4 branes pairs inside the bulk back-

ground. Their back-reaction on the bulk geometry is suppressed by Nf/Nc.

• The important world-volume fields are

Tij ↔ q̄i
a
1 + γ5

2
qj
a , Aij

µ
L,R ↔ q̄i

a
1± γ5

2
γµqj

a

Generating the U(Nf)L × U(Nf)R chiral symmetry.

• The UV mass matrix mij corresponds to the source term of the

Tachyon field. It breaks the chiral (gauge) symmetry. The normalizable

mode corresponds to the vev 〈q̄i
a
1+γ5

2 q
j
a〉.

• We show that the expectation value of the tachyon is non-zero and T ∼ 1,
breaking chiral symmetry SU(Nf)L × SU(Nf)R → SU(Nf)V . The anomaly
plays an important role in this (holographic Coleman-Witten)
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Non-supersymmetric backgrounds with abelian flavor branes

• D7 brane in deformed AdS5.

• Only abelian axial symmetry U(1)A realized geometrically as an isometry.

• A quark mass can be introduced, and a quark condensate can be calcu-

lated.

• U(1)A is spontaneously broken du to the embedding.

• Correct GOR relation

• Qualitatively correct η′ mass.

• No non-abelian flavor symmetry (due to N=2 Yukawas)
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• The fact that the tachyon diverges in the IR (fusing D with D̄) constraints the UV

asymptotics and determines the quark condensate 〈q̄q〉 in terms of mq. A GOR relation is

satisfied (for an asymptotic AdS5 space)

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• We can derive formulae for the anomalous divergences of flavor currents, when they are
coupled to an external source.

• When mq = 0, the meson spectrum contains N2
f massless pseudoscalars, the U(Nf)A

Goldstone bosons.

• The WZ part of the flavor brane action gives the Adler-Bell-Jackiw U(1)A axial anomaly

and an associated Stuckelberg mechanism gives an O
(

Nf

Nc

)
mass to the would-be Goldstone

boson η′, in accordance with the Veneziano-Witten formula.

• Studying the spectrum of highly excited mesons, we find the expected property of linear

confinement: m2
n ∼ n.
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The Sakai-Sugimoto model

• D4 on non-susy S1 plus D8 branes.

• The flavor symmetry is realized on world-volume

• Full U(Nf)L × U(Nf)R symmetry broken to U(Nf)V .

• Chiral symmetry breaking as brane-antibrane recombination.

• Quark constituent mass

• Qualitatively correct η′ mass

• No quark mass parameter, nor chiral condensate.
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Non-Critical holography

♠ Non-critical string theories have been explored in order to avoid the KK
problem. Kuperstein+Sonnenschein,

Klebanov+Maldacena,

Bigazzi+Casero+Cotrone+Kiritsis+Paredes

♠ They are expected to involve large curvatures (due to the δc term) and
the supergravity approximation seems problematic.

♠ They may provide reliable information on some quantities despite the
strong curvature (cf. WZW CFTs).

♠ Recent progress in solving exactly for probe D-branes in non-critical
backgrounds has provided important insights for non-critical holography.

Fotopoulos+Niarchos+Prezas,

Ashok+Murthy+Troost

♠ It is fair to say that non-critical holography is so far largely unexplored.
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AdS/QCD

• Crude model: AdS5 with a UV and IR cutoff.

• Addition of U(Nf)L × U(Nf)R vectors and a (Nf , N̄f) scalar T.

• Chiral symmetry broken by hand via IR boundary conditions.

• Vector meson dominance and GOR relation incorporated.

• Chiral condensate not determined.

• Gluon sector problematic.
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AdS/QCD-II

♠ A basic phenomenological approach: use a slice of AdS5, with a UV
cutoff, and an IR cutoff.

Polchinski+Strassler

♠ It successfully exhibits confinement (trivially via IR cutoff), and power-like
behavior in hard scattering amplitudes

♠ It may be equipped with a bifundamental scalar, T , and U(Nf)L×U(Nf)R,
gauge fields to describe mesons.

Erlich+Katz+Son+Stepanov, DaRold+Pomarol

Chiral symmetry can be broken, by IR boundary conditions. The low-lying
meson spectrum looks ”reasonable”.

♠ Shortcomings:

• The glueball spectrum fits badly the lattice calculations. It is has the wrong behavior
m2

n ∼ n2 at large n.

• Chiral symmetry breaking is input by hand.

• The meson spectrum has also the wrong UV asymptotics m2
n ∼ n2.
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The “bare” string theory potential

0.2 0.4 0.6 0.8 1
Λ

-0.4

-0.2

0.2

0.4

0.6

0.8

V

• In QCD we expect that

1

λ
=

1

Nceφ
∼ 1

log r
, ds2 ∼ 1

r2
(dr2 + dxµdxµ) as r → 0

• Any potential with V (λ) ∼ λa when λ ¿ 1 gives a power different that of AdS5

• There is an AdS5 minimum at a finite value λ∗. This cannot be the UV of QCD as

dimensions do not match.

RETURN MORE INFO
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Fluctuations around the AdS5 extremum

Near an AdS extremum

V =
12

`2
− 16ξ

3`2
φ2 +O(φ3) ,

18

`
δA′ = δφ′2 − 4

`2
φ2 = O(δφ2) , δφ′′ − 4

`
δφ′ − 4ξ

`2
δφ = 0

where φ << 1. The general solution of the second equation is

δφ = C+e
(2+2

√
1+ξ)u

` + C−e
(2−2

√
1+ξ)u

`

For the potential in question

V (φ) =
e

4

3
φ

`2s

[
5− N2

c

2
e2φ −Nf eφ

]
, λ0 ≡ Nce

φ0 =
−7x +

√
49x2 + 400

10
, x ≡ Nf

Nc

ξ =
5

4

[
400 + 49x2 − 7x

√
49x2 + 400

100 + 7x2 − x
√

49x2 + 400

]
,

`2s
`2

= e
4

3
φ0

[
100 + 7x2 − x

√
49x2 + 400

400

]

The associated dimension is ∆ = 2 + 2
√

1 + ξ and satisfies

2 + 3
√

2 < ∆ < 2 + 2
√

6 or equivalently 6.24 < ∆ < 6.90

It corresponds to an irrelevant operator. It is probably relevant for the Banks-Zaks fixed
points.

Bigazzi+Casero+Cotrone+Kiritsis+Paredes

RETURN
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Further α′ corrections

There are further dilaton terms generated by the 5-form in:

• The kinetic terms of the graviton and the dilaton ∼ λ2n.

• The kinetic terms on probe D3 branes that affect the identification of

the gauge-coupling constant, ∼ λ2n+1. There is also a multiplicative factor

relating g2
Y M to eφ, (not known). Can be traded for b0.

• Corrections to the identification of the energy. At r = 0, E = 1/r. There

can be log corrections to our identification E = eA, and these are a power

series in ∼ λ2n.

• It is a remarkable fact that all such corrections affect the higher that the

first two terms in the β-function (or equivalently the potential), that are

known to be non-universal!

the metric is also insensitive to the change of b0 by changing Λ.

RETURN
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Holographic meson dynamics: the models

• Flavor is obtained by adding Nf << NC D+D̄ pairs

• There are several working models of flavor:

♠ Non-supersymmetric backgrounds with abelian D7flavor brane.
Babington+Erdmenger+Evans+Guralnic+Kirsch

Kruczenski+Mateos+Myers+Winters

♠ Non-supersymmetric D4+ D8 + D̄8
Sakai+Sugimoto

♠ Hard-wall AdS/QCD plus a scalar, plus U(Nf)L × U(Nf)R vectors
Erlich+Katz+son+Stephanov, DaRold+Pomarol
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Wilson-Loops and confinement

• Calculation of the static quark potential using the vev of the Wilson loop
calculated via an F-string world-sheet.

Rey+Yee, Maldacena

T E(L) = Sminimal(X)

We calculate

L = 2
∫ r0

0
dr

1√
e4AS(r)−4AS(r0) − 1

.

It diverges when eAs has a minimum (at r = r∗). Then

E(L) ∼ Tf e2AS(r∗) L

• Confinement → As(r∗) is finite. This is a more general condition that
considered before as AS is not monotonic in general.

• Effective string tension

Tstring = Tf e2AS(r∗)
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β-function versus IR geometry

• K = −∞: the scale factor goes to zero at some finite r0, not faster than a power-law.

• −∞ < K < −3/8: the scale factor goes to zero at some finite r0 faster than any power-
law.

• −3/8 < K < 0: the scale factor goes to zero as r →∞ faster than e−Cr1+ε

for some ε > 0.

• K = 0: the scale factor goes to zero as r →∞ as e−Cr (or faster), but slower than e−Cr1+ε

for any ε > 0.

The borderline case, K = −3/8, is certainly confining (by continuity), but whether or not

the singularity is at finite r depends on the subleading terms.

RETURN
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Comparison of scalar and tensor potential

5 10 15 20
r

0.5

1

1.5

2

V@rD

Effective Schrödinger potentials for scalar (solid line) and tensor (dashed

line) glueballs. The units are chosen such that ` = 0.5.
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The lattice glueball data

Available lattice data for the scalar and the tensor glueballs. Ref. I =H. B. Meyer, [arXiv:hep-lat/0508002].

and Ref. II = C. J. Morningstar and M. J. Peardon, [arXiv:hep-lat/9901004] + Y. Chen et al., [arXiv:hep-

lat/0510074]. The first error corresponds to the statistical error from the the continuum extrapolation. The

second error in Ref.I is due to the uncertainty in the string tension
√

σ. (Note that this does not affect

the mass ratios). The second error in the Ref. II is the estimated uncertainty from the anisotropy. In the

last column we present the available large Nc estimates according to B. Lucini and M. Teper, [arXiv:hep-

lat/0103027]. The parenthesis in this column shows the total possible error following by the estimations in

the same reference. Return to comparison with Ref I or Ref II
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Estimating the importance of logarithmic scaling

We keep the IR asymptotics of background II,but change the UV to power asymptoting
AdS5, with a small λ∗.

eA(r) =
`

r
e−(r/R)2

, Φ(r) = Φ0 +
3

2

r2

R2

√
1 + 3

R2

r2
+

9

4
log

2 r
R

+ 2
√

r2

R2 + 3
2√

6
.

Wconf = W0

(
9 + 4b20(λ− λ∗)2)1/3

) (
9a + (2b20 + 3b1) log

[
1 + (λ− λ2

∗)
])2a/3

.

We fix parameters so that the physical QCD scale is the same (as determined from

asymptotic slope of Regge trajectories.

5 10 15 20 25 30
n

10

20

30

40

M2

The stars correspond to the asymptotically free background I with b0 = 4.2 and λ0 = 0.05; the squares

correspond the results obtained in the first background with R = 11.4`; the triangles denote the spectrum in

the second background with b0 = 4.2, li = 0.071 and l∗ = 0.01. These values are chosen so that the slopes

coincide asymptotically for large n.
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