Non-perturbative and flux superpotentials on the Z_{3} orientifold

Elias Kiritsis

Ecole Polytechnique
and
University of Crete

Bibliography and credits

- Work done in collaboration with:

Massimo Bianchi hep-th/0702015

Work in progress with Massimo Bianchi, Giovanni Villadoro, Fabio Zwirner

Plan of the talk

- Introduction/Motivation
- Instantons in field theory
- Instantons in string theory
- The (blown-up) Z_{3} orientifold
- Non-perturbative superpotentials from $E D_{3}$ and $E D_{1}$ instantons
- Superpotentials from fluxes
- Outlook

Introduction/Motivations

There are several obstacles to string theory making contact with experiment.

They are related to the explicit construction of vacua, that agree to a good degree with what we observe experimentally at low energies (aka Standard Model).

- Stringy vacua need at least $N=1$ susy for global stability. Supersymmetry breaking can be engineered, but the back-reaction must be neglected and perturbation theory therefore breaks down.
- The ones we know how to construct contain massless moduli coupling with gravitational strength (or worse).
- Getting a reasonable spectrum of masses is extremely hard (because at least solving the evaluation problem is hard)

To this one can add several conceptual issues, like:

- Is the vacuum fitting the SM unique?
- If more than one fit the SM model, is there any (in principle vs practical) selection mechanism?
etc.

What I will like to focus here on:

- Stabilizing the Moduli
- Getting correct masses.
and in particular a common potential ingredient to both: instantons.

Moduli stabilization

- String theory has no potential in maximal dimensions. In standard compactifications, it has no potential either for many scalars.
- As the metrics of scalars and other forms are non-trivial including fluxes in compactifications generates potentials for the massless scalars.

It was pointed out that in orientifold vacua:

AA combination of closed string fluxes stabilizes complex structure moduli,
©Kähler moduli can be stabilized by non-perturbative contributions to the superpotential, ending in an AdS vacuum
$\boldsymbol{\phi}$ The addition of anti-D branes may lift the vacua to meta-stable dS Vacua.
Kachru+Kallosh+Linde+Trivedi

But as usual there is lot hidden as the details are worked out

Moduli stabilization: open problems

- In orientifolds, anomalous $U(1)$ symmetries are abundant, they gauge the bulk axionic symmetries, and make all known non-perturbative superpotentials gauge-non-invariant: Open and closed string fields mix non-trivially here.

Binetruy+Dudas, Dudas+Vempati

- The uplifting procedure when done in supergravity via D-terms cannot work. Anti-D-branes do not fit in the supergravity description.

Zwirner + Villadoro

- This is correlated with the fact that for RR fluxes, only supergravity is currently the tool at hand.

The problem at hand

As a warmup for the harder problem (controlable moduli stabilisation) we will pick an class of IIB vacua and calculate the non-perturbative and flux superpotentials. This example is the Z_{3} orbifold and its blow ups.

We focus on orientifolds because:
© It seems that one can implement a complete moduli stabilization procedure
\& Because it is possible to implement rather successfully a bottom-up algorithm of constructing the standard model.

Antoniadis+Kiritsis+Tomaras
Aldazabal+Ibanez+Quevedo+Uranga
Dijkstra+Huiszoon+Schellekens

A We chose the Z_{3} orientifold as it is the simplest vacuum that contains all the complications in their simplest form (no complex structure moduli, +anomalous U(1), +chiral matter, +knowledge of closed Kähler potential and its blow up, existence of non-trivial instanton-induced superpotentials)

- We assume $N=1$ SUSY as a starting point.
- The technology for calculating the flux superpotentials is already established
- For the non-perturbative superpotentials it is just emerging.

> Billo+Frau+Pesando+Fucito+Lerda+Liccardo, Billo+Frau+Fucito+Lerda Blumenhagen+Cvetic+Weingand, Haack+Krefl+Lust+Van Proyen+Zagermann
> Ibanez+Uranga, B. Florea + S. Kachru + Mac Greevy + Saulina Akerblom+Blumenhagen +Lust+Plauschinn + Schmidt-Sommerfeld

Masses: another use of (stringy) instantons

- Orientifold vacua have typically a rich collection of (anomalous) $U(1)$ symmetries.
- Their number constraints severely a number of important (phenomenologically) effective couplings. They include the μ term $\left(\mu H_{1} H_{2}\right)$, and masses for quarks and leptons: $Q^{i} \bar{q}_{j} H$, $L^{i}\binom{\epsilon_{R}}{\nu_{R}}_{j}$ (including Majorana neutrino masses).
- It is probably important that some terms are zero to leading order, in order to achieve the observed hierarchies.
- Subleading contribution may come from higher order terms (eg. ($\left.Q^{i} \bar{q}_{j} H\right)\left(H^{2 n}\right)$, with a suppression factor $\left.\frac{v^{2 n}}{M_{s}^{2 n}}\right)$) or from instantons.
- For example masses in SU(5) orientifold vacua ($\sim 10 \times 10 \times 5$) are perturbatively forbidden and it seems that only instantons can generate them (if at all)

Anastasopoulos+Dijkstra+Kiritsis+Schellekens

- Similar remarks apply to Majorana masses for neutrinos, via the see-saw mechanism.

Instantons in field theory

- In $N=1$ theories some non-perturbative effects are due to instantons. The rest are due to strong IR dynamics.
- They can be used to calculate the gaugino condensate in pure SYM theories by noting that $\left\langle\lambda \lambda\left(x_{1}\right) \cdots \lambda \lambda\left(x_{N}\right)\right\rangle \simeq \Lambda^{3 N}$ is dominated by a one instanton background.
- Example: SQCD with $\mathrm{M}=\mathrm{N}-1$ quarks. Instantons generate the ADS superpotential

$$
W_{A D S}=\frac{\Lambda^{2 N+1}}{\operatorname{det}(Q \widetilde{Q})} \quad, \quad W_{m}=m_{i j} Q^{i} \widetilde{Q}^{j}
$$

- From the Konishi anomaly:
$\frac{1}{4} \bar{D}^{2} \Phi_{I}^{\dagger} e^{g V} \Phi^{J}=\frac{\partial W}{\partial \Phi_{I}} \Phi^{J}+\delta_{I}^{J} \frac{g^{2}}{32 \pi^{2}} \operatorname{tr}_{R} W^{2} \quad \rightarrow \quad \sum_{i j} m_{i j}\left\langle Q^{i} \widetilde{Q}^{j}\right\rangle=M \frac{g^{2}}{32 \pi^{2}}\langle\lambda \lambda\rangle$
- From one-instanton saturation

$$
\begin{gathered}
\frac{g^{2}}{32 \pi^{2}}\left\langle\lambda \lambda\left(x_{0}\right) Q^{i_{1}} \widetilde{Q}^{j_{1}}\left(x_{1}\right) \ldots Q^{i_{N-1}} \widetilde{Q}^{j_{N-1}}\left(x_{N-1}\right)\right\rangle=\Lambda^{2 N+1} \epsilon^{I_{1} \cdots I_{N-1}} \epsilon^{J_{1} \cdots J_{N-1}} \\
\frac{g^{2}}{32 \pi^{2}}\langle\lambda \lambda\rangle \equiv \Lambda_{L}^{3}=\frac{\Lambda^{2 N+1}}{\operatorname{det}(Q \widetilde{Q})} \quad, \quad\left\langle Q^{i} \widetilde{Q}^{j}\right\rangle=\left(m^{-1}\right)_{i j} \Lambda_{L}^{3}
\end{gathered}
$$

- Using decoupling arguments the analysis generalizes to $M \leq N$.

$$
\left(\frac{g^{2}}{32 \pi^{2}}\right)^{N-M}\left\langle\lambda \lambda\left(y_{1}\right) \cdots \lambda \lambda\left(y_{N-M}\right) Q^{i_{1}} \widetilde{Q}^{j_{1}}\left(x_{1}\right) \cdots Q^{i_{1}} \widetilde{Q}^{j_{1}}\left(x_{M}\right)\right\rangle_{k=1}=\wedge^{3 N-M}
$$

$$
\text { with } 3 N-M=\beta_{1} \rightarrow 3 \ell(A d j)-\sum_{I} \ell\left(R_{I}\right) \text { in general. }
$$

- The rule of thump is: two zero modes θ are appropriate to generate a correction to the superpotential $\rightarrow \int d^{2} \theta W$.
- In general there are $2 \ell(A d j)$ gaugino zero modes and $2 \sum_{I} \ell\left(R_{I}\right)$ matter zero modes.
- Matter and gaugino zero-modes can be lifted by Yukawa interactions $g \phi_{I}^{\dagger} \psi^{I} \lambda$.
- Correction to the superpotential therefore arise when

$$
\ell(\operatorname{Adj})-\sum_{I} \ell\left(R_{I}\right)=1 \quad, \quad W_{n p}=\frac{\Lambda^{\beta_{1}}}{\mathcal{H}(\Phi)} \quad, \quad \Delta_{\mathcal{H}}=2 \sum_{I} \ell\left(R_{I}\right)
$$

a In our problem (Z_{3} orientifold) we will need this for $G=S U(4) \simeq S O(6)$ and three chiral multiplets in the antisymmetric (6) representation.

String Theory Instantons

- World-sheet instantons \rightarrow perturbative in the string coupling
- Non-perturbative: associated to Euclidean wrapped branes

Initial understanding originates from non-perturbative dualities, when they can be mapped to world-sheet instantons:

- $E D_{-1}$ corrections to the hypermultiplets (on the conifold)
- $E D_{-1}$ (for R^{4}) mapped to (p, q) string instantons+M-theory perturbative corrections
- $E D_{p=0,1,2,3}$ for R^{4} from M-covariance and T-duality

Kiritsis+Pioline

- $E N S_{5}$ for heterotic R^{2}

Harvey+Moore

- $E D_{1}+E D_{5}$ in type $I\left(R^{4}+F^{4}\right.$ couplings $)$

Bachas+Fabre+Kiritsis+Obers+Vanhove, Hammou+Morales

- $D_{3}+E D_{-1}$ in orientifolds.

Billo+Frau+Pesando+Fucito+Lerda+Liccardo, Billo+Frau+Fucito+Lerda

String Theory Instantons in IIB orientifolds

- Potential instanton branes: $E D_{-1}, E D_{1}, E D_{3}, E D_{5}, E N S_{5}$.
- Survive the Ω projection: $E D_{1}, E D_{5}$ and must wrap, complex 2-cycles or all of CY.
- From the point of view of D_{9} branes:
$E D_{5}$ have 4 ND directions \rightarrow standard gauge instantons.
$E D_{1}$ have 8 ND directions \rightarrow stringy (octonionic?) instantons.
- For D_{5} branes:
$E D_{5}$ have 8 ND directions \rightarrow stringy (octonionic?) instantons.
$E D_{1}$ have 4 ND directions \rightarrow standard gauge instantons.
The general case involves a magnetized D_{9} brane and a magnetized $E D_{5}$ brane

Stringy gauge theory instantons

- N D_{p} branes and $k E D_{p-4}$ instanton branes, precisely reproduce the (gauge) k-instanton action, the ADHM data, the instanton profile, and the associated zero modes and amplitudes.
- The ADHM data are associated with ED-ED strings or D-ED strings.

The ED-ED zero mode bosonic vertex operators are of the form

$$
V_{a} \sim a_{\mu} e^{-\varphi} \psi^{\mu} T_{K \times K} \quad, \quad V_{\chi} \sim \chi_{i} e^{-\varphi} \psi^{i} T_{K \times K}
$$

The D-ED zero mode bosonic vertex operators are of the form

$$
V_{w} \sim \sqrt{\frac{g_{s}}{v_{p-3}}} w_{\alpha} e^{-\varphi} \prod_{\mu} \sigma_{\mu} S^{\alpha} T_{K \times K}
$$

- The instanton action coincides with the holomorphic gauge coupling

$$
S_{\mathrm{inst}}=f(S, T, U, Z) \quad, \quad f_{D_{9}, \mathrm{orb}}=S+B_{I} Z^{I}+\Delta_{1-\mathrm{loop}}(T, U)
$$

For the Z_{3} orientifold, $\Delta_{1 \text {-loop }}(T, U)$ is constant.

New (ED ${ }_{1}$) instantons

- Prototype: N $D_{9}-\mathrm{k} E D_{1}$ pair.
- The structure of zero modes closely resembles the $D_{9}-D_{1}$ system : reproduces the heterotic zero modes in the type I theory (32 chiral left 2d fermions from $D_{9}-D_{1}$ strings and 8 bosons+8 right fermions from $D_{1}-D_{1}$ strings)
- From the $E D_{1}-E D_{1}$ strings we get the two massless Θ-zero modes

$$
V_{\Theta}=\Theta_{\alpha} S^{\alpha} \Sigma_{+3 / 2} e^{-\varphi / 2} \quad, \quad V_{a}=a_{\mu} e^{-\varphi} \psi^{\mu}
$$

$S^{a} \rightarrow 4 \mathrm{~d}$ spinor, $\Sigma_{+3 / 2} \rightarrow$ internal spinor, $V_{a} \rightarrow$ spacetime translation 0-modes. Extra massless bosonic modes may appear if the two-cycle is not rigid.

- From the $D_{9}-E D_{1}$ strings we get a number of massless fermionic modes

$$
V_{\lambda}=\sqrt{g_{s}} \lambda_{R} e^{-\varphi / 2} S^{-} \prod_{\mu} \sigma_{\mu} \prod_{I} \sigma_{I}
$$

$S^{-} \rightarrow 2 \mathrm{~d} \mathrm{R}$-handed spinor, $\sigma_{\mu, I} \rightarrow \mathrm{ND}$ twist fields. The number of λ-modes depends on N , k and the "intersections" Integrating out the zero modes we obtain W -corrections, that are not similar to gauge-instanton ones. $\left(S_{\text {instanton }} \neq f\right)$

The diagrams

$\boldsymbol{\phi}$ The relevant diagrams are disks $\left(\frac{1}{g_{s}} \times\left(\sqrt{g_{s}}\right)^{2}\right)$ or $\chi=0$ surfaces (annulus/Möbius) with insertions of V_{Θ} and V_{λ}, with or without insertions of the physical massless fields $V_{\Phi_{i}}$.

- Summation over disks without $V_{\Phi_{i}}$ generate the instanton action (including " λ-interactions")
- Summation over disks with one $V_{\Phi_{i}}$ generate the classical profile of the instanton.
- Summation over disks with more $V_{\Phi_{i}}$ implement higher order corrections.
- The summation over one-loop diagrams provides the one-loop determinants around the instanton.
- Around a supersymmetric instanton there are two Θ zero modes, and $2 n \lambda$ zero modes. An F-term is obtained as: n disks with $2 n \lambda$ insertions, ($\mathrm{n}-2$) with V_{ϕ} and 2 with V_{ψ}, or n -1 with V_{ϕ} and one with $V_{F}\left(V_{\Phi}=V_{\phi}+\Theta V_{\psi}+\Theta^{2} V_{F}\right)$
- Integrating Θ 's and λ 's yields superpotential terms of the form:

$$
W=e^{-T_{E D_{p}} V_{E D_{p}}(Z)}\left(\Phi_{i}\right)^{n}
$$

Compatibility of bulk isometries and instantons

- Isometries of (bulk) chiral fields Z, are gauged by anomalous $U(1)$ symmetries: $\zeta=\operatorname{Im} Z \rightarrow \zeta+\epsilon$. (Also by bulk fluxes)
- Z can only appear in "dressed" (gauge invariant) combinations in the superpotential.
- Instantons cannot spoil the isometry associated to Z (as it is protected by gauge invariance).
- This means that in practice instanton branes that could do this, are disallowed:
© Either because the wrapped ED brane is anomalous

A Or because its wrapping is destabilized because of flux

Such constraints can be obtained from the Bianchi identities:

$$
D G=\Pi[\text { branes }] \wedge e^{F} \quad, \quad D \equiv d+H+\mathcal{T}+\mathcal{Q}+\mathcal{R}
$$

Expanding

$$
\begin{gathered}
d G_{1}+\mathcal{T} G_{1}=\operatorname{Tr}\left[F_{2}\right] \wedge \Pi_{0}\left(D_{9}\right)+\Pi_{2}\left(D_{7}\right) \\
d G_{3}+\mathcal{T} G_{3}+H_{3} \wedge G_{1}=\frac{\operatorname{Tr}\left[F_{2}^{2}\right]}{2} \wedge \Pi_{0}\left(D_{9}\right)+\operatorname{Tr}\left[F_{2}\right] \wedge \Pi_{2}\left(D_{7}\right)+\Pi_{4}\left(D_{5}\right)
\end{gathered}
$$

In the absence of Scherk-Schwarz torsion

$$
d G_{1}=\operatorname{Tr}\left[F_{2}\right] \quad, \quad \int_{E D_{1}} \operatorname{Tr}\left[F_{2}\right]=\int_{E D_{1}} d G_{1}=0
$$

- We cannot wrap an $E D_{1}$ on cycles \mathcal{C} such that $\int_{\mathcal{C}} \operatorname{Tr}\left[F_{2}\right] \neq 0$ because this will break the $U(1)$ gauge symmetry.
- This remains true even if G_{1} and F_{2} are odd under Ω.
- For the Z_{3} orientifold \mathcal{C} is a democratic linear combination of the exceptional (twisted) cycles.
- Similar remarks apply to when closed string fluxes are turned on Kashani-Poor + Tomasiello

The Z_{3} orbifold

It can be obtained by modding out T^{6} by Z_{3} as

$$
z^{I} \rightarrow \alpha z^{I} \quad, \quad \alpha=e^{\frac{2 \pi i}{3}}
$$

This constraints the metric and B fields to be of the form

$$
d s^{2}=G_{I \bar{I}} d z^{I} d \bar{z}^{\bar{I}} \quad, \quad B_{2}=B_{I \bar{I}} d z^{I} \wedge d \bar{z}^{\bar{I}}
$$

$M=G+B$ is an arbitrary 3×3 complex matrix ($h_{1,1}^{\text {untwisted }}=9$ untwisted Kähler moduli). - There are no (untwisted) complex structure moduli as the Z_{3} action completely fixes the complex structure.

$$
\mathcal{M}_{1,1}^{\text {untwisted }}=\frac{S U(3,3)}{S U(3) \times S U(3) \times U(1)}
$$

- It is a special Kähler manifold with prepotential

$$
\mathcal{F}_{\text {untwisted }}=\operatorname{det}(X)=\frac{1}{3!} \epsilon^{I_{1} I_{2} I_{3}} \epsilon^{J_{1} J_{2} J_{3}} X_{I_{1} J_{1}} X_{I_{2} J_{2}} X_{I_{3} J_{3}} \quad, \quad K=-\log [\operatorname{det}[\operatorname{Re}[X]]]
$$

- Z_{3} has 27 fixed points associated to 27 exceptional (rigid) divisors $E_{i} \rightarrow h_{1,1}^{\mathrm{twisted}}=27$, $h_{2,1}^{\mathrm{twisted}}=0$ The blown-up CY has $h_{1,1}=36, h_{1,2}=0$.

The Z_{3} orientifold

Tadpole cancellation implies that (discrete magnetic flux through the collapsed cycles)

$$
\operatorname{Tr}[1]=32 \quad, \quad \operatorname{Tr}\left[\gamma_{3}\right]=-4
$$

Angelantonj+Bianchi+Sagnotti+Pradisi+Stanev

Together with $\gamma_{3}^{3}=1, \gamma_{3} \rightarrow$ unitary, it implies

$$
\gamma_{3}=\left(\mathbf{1}_{N \times N}, \alpha \mathbf{1}_{M \times M}, \bar{\alpha} \mathbf{1}_{\bar{M} \times \bar{M}}\right)
$$

with

$$
N+M+\bar{M}=32 \quad, \quad M=\bar{M} \quad, \quad N+\alpha M+\bar{\alpha} \bar{M}=-4
$$

leading to

$$
N=8, M=\bar{M}=12 \quad \rightarrow \quad G=S O(8) \times U(12)
$$

when all branes are at the origin.

- Spectrum $=3$ copies of $(8,12)_{+1} \oplus\left(1,66^{*}\right)_{-2}$ of $S O(8) \times U(12)$
- The $\mathbf{U}(1)$ of $\mathrm{U}(12)$ is anomalous: $t_{3} \equiv \operatorname{Tr}\left[Q T^{a} T^{a}\right] \neq 0$.
- The $\mathrm{U}(1)$ mixes with the democratic combination of twisted chiral multiplets $Z=\sum_{i} Z_{i}: Z+\bar{Z} \rightarrow Z+\bar{Z}+M V$ (with $\left.M=\frac{1}{2} 3^{\frac{5}{4}} \pi^{-\frac{3}{4}}\right)$

Antoniadis + Kiritsis + Rizos

$$
V \rightarrow V+i(\epsilon-\bar{\epsilon}) \quad, \quad Z \rightarrow Z+i M \epsilon
$$

↔ Anomaly cancellation: $f_{a}=S+C_{a} Z+\cdots \quad, \quad M C_{a}=t_{3, a}$

- There are two T-dual versions related by six T-dualities. One has O_{9} planes while the other O_{3} planes.

The perturbative superpotential and phase structure

There is a disk-generated superpotential:

$$
W=\frac{1}{2!3!} Y(T, S, Z) \epsilon_{I J K} \delta^{i j} C_{i}^{I r} C_{j}^{J s} A_{[r s]}^{K}
$$

where: $C \leftrightarrow(8,12)_{+1}, \quad A \leftrightarrow\left(1,66^{*}\right)_{-2}$,
$i, j=S O(8)$ index, $r, s=S U(12)$ index, $I, J, K=1,2,3 \rightarrow$ family index

- Y depends on dilaton only at tree level.
- Higher polynomials in (CCA) are allowed to appear (U(1) neutral), but not of $\operatorname{Pf}(A)(Q=12)$ in perturbation theory.
- Turning on general Wilson lines breaks G to $S O(8-2 n) \times U(12-2 n) \times U(n)^{3}$
- For $n=4: G=U(4)_{f_{p}} \times U(4)^{3}$ with $U(4)^{3}$ a bulk $\mathcal{N}=4$ conformal gauge theory with 4 branes and their 6 copies under Z_{3} and Ω
- 3 generation of chiral mater in $\left(6_{-2} ; \mathbf{1}_{0}, \mathbf{1}_{0}, 1_{0}\right)$ plus

$$
\left(1_{0} ; 4_{+1}, 4^{*}{ }_{-1}, 1_{0}\right) \quad, \quad\left(1_{0} ; 1_{0}, 4_{+1}, 4_{-1}^{*}\right) \quad, \quad\left(1_{0} ; 4_{-1}^{*}, 1_{0}, 4_{+1}\right)
$$

- Turning-on VEVs in bi-fundamentals $U(4)^{3} \rightarrow U(4)_{\text {diagonal }}$ a standard $\mathcal{N}=4$ conformal gauge theory, which in the Coulomb branch breaks further to $U(1)^{4}$.
- The non-trivial dynamic of the superpotential is therefore associated to the $U(4)_{f p}$

Wrapped $E D_{5}$ instantons

- When $G=U(4)_{f p} \times U(4)_{\text {diagonal }}$ with $3 \times 6_{-2}$, instanton calculus is reliable: we can turn on vevs of the A's so that the surviving group is $\mathrm{SO}(3)$, with no light charged matter \rightarrow pure $\mathcal{N}=1$ sQCD \rightarrow gaugino condensation with $W=\wedge_{L}^{3}$. Matching between low and high energy we get

$$
W=\wedge_{L}^{3}=\frac{\wedge^{9}}{\operatorname{det}_{I J}\left(\delta^{a b} A_{a}^{I} A_{b}^{J}\right)} \quad, \quad A_{a}^{I}=\frac{1}{2} \Gamma_{a}^{r s} A_{[r s]}^{I} \quad, \quad a=1,2 \cdots, 6 \quad, \quad I=1,2,3
$$

This is one of the "classic" ADS-like case with $\ell_{A}-\sum_{C} \ell_{C}=1$, as $\ell_{A}=4, \ell_{C}=1$.

- In string theory:

$$
W(S, T, Z)=\frac{\exp [f(S, T, Z)]}{\mathcal{H}(A)}
$$

where
$f(S, T, Z)=f_{\text {tree }}(S, Z)+f_{1-\text { loop }}(T, Z) \quad, \quad f_{\text {tree }}(S, Z)=S+C Z \quad, \quad f_{1-\text { loop }}(T, Z=0)=f_{1}$

- This is invariant under the anomalous $\mathrm{U}(1)$ transformations, as $t_{144}=\operatorname{Tr}\left[Q T^{a} T^{a}\right]=-12$ and

$$
Z \rightarrow Z-\frac{12 i}{C} \epsilon \quad, \quad A \rightarrow e^{-2 i \epsilon} A
$$

- This parallels the derivations of the ADS superpotential in a local (oriented) brane configuration with bifundamentals, Akerblom $^{\text {Alumenhagen }+ \text { Lust+Plauschinn }+ \text { Schmidt-Sommerfeld }}$

Wrapped $E D_{1}$ instantons

- Similar to the calculation of $E D_{1}-D_{9}$ in the T^{6}-compactified type-I string Bachas+Fabre+Kiritsis+Obers+Vanhove
- We must wrap $E D_{1}$ on non-trivial two cycles \mathcal{C}, and count λ zero modes between $E D_{1}$ and D_{9}.
- There are two Θ zero modes, but the $\bar{\Theta}$ are projected out.
- The λ-modes depend on the cycle \mathcal{C} and the restriction of the D_{9} gauge bundle on \mathcal{C}. They transform as 4_{+1}. At the disk level we get:

$$
L=m_{I}(\mathcal{C}) A_{[r s]}^{I} \lambda_{\mathcal{C}}^{r} \lambda_{\mathcal{C}}^{s}
$$

- We must interpret A, λ as sections of holomorphic line bundles.
- We also have

$$
m(\mathcal{C}) \sim e^{-S_{\text {instanton }}} \frac{\operatorname{Pfaff}\left(\bar{\partial}_{V(-1)}\right)}{\operatorname{det}\left[\bar{\partial}_{\mathcal{O}(-1)}\right]^{2} \operatorname{det}^{\prime}\left[\bar{\partial}_{\mathcal{O}}\right]^{2}}
$$

$$
\left.V\right|_{C P^{1}}=\sum_{i=1}^{16}\left[\mathcal{O}\left(k_{i}\right) \oplus \mathcal{O}\left(-k_{i}\right)\right] \quad,\left.\quad \mathcal{O}(-1) \otimes V\right|_{C P^{1}}=\sum_{i=1}^{16}\left[\mathcal{O}\left(k_{i}-1\right) \oplus \mathcal{O}\left(-k_{i}-1\right)\right]
$$

$$
\operatorname{dimKer}\left(\bar{\partial}_{V(-1)}\right)=\sum_{i} k_{i}
$$

- There is the further constraint $c_{2}(T)=c_{2}(V)$ which amounts to $d G_{3}=0$, as there are no D_{5} branes, which selects the orientifold gauge group.
- The minimal case corresponds to rigid two-cycles with $\sum_{i} k_{i}=4$. Integrating the Θ s and λ 's we obtain supersymmetric mass terms

$$
W_{m}=\sum_{\mathcal{C}} m_{I}(\mathcal{C}) m_{J}(\mathcal{C}) \epsilon^{r s p q} A_{[r s]}^{I} A_{[p q]}^{J}
$$

- $U(1)$ invariance indicates that the instanton action must behave as $e^{-\frac{C}{3} Z}$. This is a fractional instanton.
- Indeed in the T-dual picture, we have D_{7} branes wrapping one collapsed (twisted) 4-cycle, and $E D_{3}$ instantons wrapping the same cycle. Because of the $B=\frac{1}{3}$ trapped flux and the $\int C_{2} \wedge B$ coupling, the instanton is fractional.
- The general expected behavior is

$$
\sum_{n_{a}, n} g\left(n_{a}, n\right) \exp \left[-\sum_{n^{a}} Z_{a}^{\prime}-\frac{n}{3} Z\right]
$$

where n is correlated with the power of $A^{2 n}$ multiplets.

Closed string fluxes

- Apart from Z_{2} bulk fluxes and open string magnetic fields the fluxes that are compatible with the orientifold are:
RR 3-form flux G_{3}, Scherk-Schwarz torsion \mathcal{T}, the non-geometric flux \mathcal{R}.
- \mathcal{T} maps p-forms to $p+1$-forms while \mathcal{R} maps p-forms to ($p-3$)-forms

$$
\mathcal{T} \circ A_{p}=A_{p+1} \quad, \quad \mathcal{R} \bullet A_{p}=A_{p-3}
$$

- The flux superpotential reads

$$
W_{\text {flux }}=\int\left[G_{3}-i \mathcal{T} \circ J_{C}+\mathcal{R} \bullet(* S)\right] \wedge \Omega_{3}
$$

What next?

- It seems that we have more or less control over non-perturbative superpotentials for the special case of the (blown-up) Z_{3} orbifold. Several results generalize to more complex cases.
- Numerical coefficients in front of the various terms need to be calculated carefully.
- There are still some points that need to be clarified in the absence of bulk fluxes, like the one-loop corrections to gauge couplings for non-zero twist fields as well as some open string instanton corrections to the superpotential.
- One can attempt to turn on the bulk fluxes and attempt a complete analysis of moduli stabilisation. It has been argued by Lust, Reffert, Scheidegger, Schulgin, Stieberger, that in orbifolds like Z_{3} although the moduli can be stabilized in AdS, no uplift is possible to dS. This rests on $\mathcal{T}=\mathcal{R}=0$, and neglecting the non-perturbative open string superpotentials presented here.
- An re-analysis of the instanton effects in the presence of fluxes is necessary. This has simplifications (and complications)
- A good control of the Kähler potential is necessary. The one-loop dependence on the open string fields needs to be calculated.
- An improved analysis of the D-terms is also needed and is under way.
- The hope is that this will give a completely controlled example of successful moduli stabilisation with positive vacuum energy. That remains to be seen.

What's new?

- A clear classification of all relevant instanton effects.
- The precise form of the vertex operators of the instanton fluctuations (including zero modes).
- Inclusion of the effect of orientifold projections and A-S representations.
- Rigid cycles are explicitly identified (do not exist in toroidal examples studied so far)
- Precise identification of consistency conditions (Bianchi identities), that constrain ED-instanton wrappings.
- Complete incorporation of anomalous $\cup(1)$ symmetries and checks, via zero mode counting and anomaly calculations.

The Bianchi identities

Introducing the bulk "covariant" exterior derivative, we have NS identities:

$$
D=(d+\mathcal{T})+\mathcal{R} \quad, \quad D \cdot D=0
$$

$$
\text { For } \quad d \mathcal{T}=d \mathcal{R}=0 \quad \mathcal{T} \circ \mathcal{T}=0 \quad \text { and } \quad \mathcal{T} \circ \mathcal{R}=0
$$

These can be solved as:
$\mathcal{T} \circ \omega_{i}=-\alpha_{i} \Omega+\bar{\alpha}_{i} \bar{\Omega} \quad, \quad \mathcal{T} \circ \Omega=-\bar{\alpha}_{i} \widetilde{\omega}_{i} \quad, \quad \mathcal{T} \circ \bar{\Omega}=-\alpha_{i} \widetilde{\omega}_{i} \quad, \quad \mathcal{T} \circ \widetilde{\omega}_{i}=0$
Action of non-geometrical fluxes:

$$
\mathcal{R} \bullet \Omega=\kappa \quad, \quad \mathcal{R} \bullet \bar{\Omega}=\bar{\kappa} \quad, \quad \mathcal{R} \bullet \widetilde{\omega}_{i}=0 \quad, \quad \mathcal{R} \bullet V=\bar{\kappa} \Omega-\kappa \bar{\Omega}
$$

- The RR identities

$$
D G=\operatorname{Tr}\left[e^{\mathcal{F}}\right] A_{D p}[D p]+A_{\mathrm{O} p}[\mathrm{Op}]
$$

where $\mathcal{F}=F+B$ and

$$
A_{D p}=1-\left[p_{1}\left(R_{T}\right)-p_{1}\left(R_{N}\right)\right]+\ldots \quad, \quad A_{O p}=1+\frac{1}{2}\left[p_{1}\left(R_{T}\right)-p_{1}\left(R_{N}\right)\right]+\ldots
$$

Expanding in our case:

$$
\begin{gathered}
\mathcal{R} \bullet G_{3}=[D 9]+[O 9] \quad, \quad c_{1}\left(F_{9}\right)[D 9]=0 \\
\mathcal{T} \circ G_{3}=c_{2}\left(F_{9}\right)-p_{1}\left(R_{9}\right)[D 9]+\frac{1}{2} p_{1}\left(R_{9}\right)[O 9]+[D 5]+[O 5] \\
c_{3}\left(F_{9}\right)[D 9]+c_{1}\left(F_{5}\right)[D 5]=0
\end{gathered}
$$

- General form of the localized Bianchi identities, for each brane stack:

$$
D\left(e^{F_{p}}\left[D_{p}\right]\right)=0
$$

that translate into:

$$
\left(\mathcal{T} \circ F_{9}+\mathcal{R} \bullet\left(F_{9}\right)^{3}\right)[D 9]=0 \quad, \quad \mathcal{R} \bullet\left(F_{5}[D 5]\right)=0
$$

Detailed plan of the presentation

- Title page 1 minutes
- Bibliography 2 minutes
- Plan 3 minutes
- Introduction/Motivations 6 minutes
- Moduli stabilisation 7 minutes
- Moduli stabilisation:open problems 9 minutes
- The problem at hand 10 minutes
- Masses: another use of (stringy) instantons 12 minutes
- Instantons in Field Theory 15 minutes
- String Theory Instantons 17 minutes
- String Theory Instantons in IIB orientifolds 19 minutes
- Stringy gauge theory Instantons 22 minutes
- New (ED $)$ instantons 24 minutes
- The diagrams 26 minutes
- Compatibility of bulk isometries and instantons 30 minutes
- The Z_{3} orbifold 32 minutes
- The Z_{3} orientifold 35 minutes
- The perturbative superpotential and phase structure 38 minutes
- Wrapped $E D_{5}$ instantons 41 minutes
- Wrapped $E D_{1}$ instantons 45 minutes
- Closed string fluxes 46 minutes
- What next? 49 minutes
- What's new? 51 minutes
- The Bianchi identities 55 minutes

