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Introduction/Motivations

There are several obstacles to string theory making contact with experi-

ment.

They are related to the explicit construction of vacua, that agree to a good

degree with what we observe experimentally at low energies (aka Standard

Model).

• Stringy vacua need at least N=1 susy for global stability. Supersymmetry

breaking can be engineered, but the back-reaction must be neglected and

perturbation theory therefore breaks down.

• The ones we know how to construct contain massless moduli coupling

with gravitational strength (or worse).

• Getting a reasonable spectrum of masses is extremely hard (because at

least solving the evaluation problem is hard)
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To this one can add several conceptual issues, like:

• Is the vacuum fitting the SM unique?

• If more than one fit the SM model, is there any (in principle vs practical)

selection mechanism?

etc.

What I will like to focus here on:

• Stabilizing the Moduli

• Getting correct masses.

and in particular a common potential ingredient to both: instantons.

Instantons and Superpotentials, E. Kiritsis
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Moduli stabilization

• String theory has no potential in maximal dimensions. In standard com-

pactifications, it has no potential either for many scalars.

• As the metrics of scalars and other forms are non-trivial including fluxes

in compactifications generates potentials for the massless scalars.

It was pointed out that in orientifold vacua:

♠A combination of closed string fluxes stabilizes complex structure moduli,

♠Kähler moduli can be stabilized by non-perturbative contributions to the

superpotential, ending in an AdS vacuum

♠The addition of anti-D branes may lift the vacua to meta-stable dS Vacua.
Kachru+Kallosh+Linde+Trivedi

But as usual there is lot hidden as the details are worked out

Instantons and Superpotentials, E. Kiritsis
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Moduli stabilization: open problems

• In orientifolds, anomalous U(1) symmetries are abundant, they gauge the

bulk axionic symmetries, and make all known non-perturbative superpoten-

tials gauge-non-invariant: Open and closed string fields mix non-trivially

here.
Binetruy+Dudas, Dudas+Vempati

• The uplifting procedure when done in supergravity via D-terms cannot

work. Anti-D-branes do not fit in the supergravity description.
Zwirner+Villadoro

• This is correlated with the fact that for RR fluxes, only supergravity is

currently the tool at hand.

Instantons and Superpotentials, E. Kiritsis
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The problem at hand

As a warmup for the harder problem (controlable moduli stabilisation) we

will pick an class of IIB vacua and calculate the non-perturbative and flux

superpotentials. This example is the Z3 orbifold and its blow ups.

We focus on orientifolds because:

♠ It seems that one can implement a complete moduli stabilization proce-

dure
Kachru+Kallosh+Linde+Trivedi

♣ Because it is possible to implement rather successfully a bottom-up

algorithm of constructing the standard model.
Antoniadis+Kiritsis+Tomaras

Aldazabal+Ibanez+Quevedo+Uranga

Dijkstra+Huiszoon+Schellekens
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♠ We chose the Z3 orientifold as it is the simplest vacuum that contains

all the complications in their simplest form (no complex structure moduli,

+anomalous U(1), +chiral matter, +knowledge of closed Kähler potential

and its blow up, existence of non-trivial instanton-induced superpotentials

)

• We assume N=1 SUSY as a starting point.

• The technology for calculating the flux superpotentials is already estab-

lished

• For the non-perturbative superpotentials it is just emerging.
Billo+Frau+Pesando+Fucito+Lerda+Liccardo, Billo+Frau+Fucito+Lerda

Blumenhagen+Cvetic+Weingand, Haack+Krefl+Lust+Van Proyen+Zagermann

Ibanez+Uranga, B. Florea+S. Kachru+Mac Greevy+Saulina

Akerblom+Blumenhagen+Lust+Plauschinn+Schmidt-Sommerfeld
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Masses: another use of (stringy) instantons

• Orientifold vacua have typically a rich collection of (anomalous) U(1)
symmetries.

• Their number constraints severely a number of important (phenomenologically) effective

couplings. They include the µ term (µH1H2), and masses for quarks and leptons: Qiq̄jH,

Li

(
εR

νR

)

j

(including Majorana neutrino masses).

• It is probably important that some terms are zero to leading order, in
order to achieve the observed hierarchies.

• Subleading contribution may come from higher order terms (eg. (Qi q̄jH)(H2n),

with a suppression factor v2n

M2n
s

)) or from instantons.

• For example masses in SU(5) orientifold vacua (∼ 10× 10× 5) are perturbatively for-

bidden and it seems that only instantons can generate them (if at all)
Anastasopoulos+Dijkstra+Kiritsis+Schellekens

• Similar remarks apply to Majorana masses for neutrinos, via the see-saw mechanism.

Instantons and Superpotentials, E. Kiritsis
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Instantons in field theory

• In N=1 theories some non-perturbative effects are due to instantons.

The rest are due to strong IR dynamics.

• They can be used to calculate the gaugino condensate in pure SYM

theories by noting that 〈λλ(x1) · · ·λλ(xN)〉 ' Λ3N is dominated by a one

instanton background.

• Example: SQCD with M=N-1 quarks. Instantons generate the ADS

superpotential

WADS =
Λ2N+1

det(QQ̃)
, Wm = mijQ

iQ̃j

• From the Konishi anomaly:

1

4
D̄2Φ†

I egV ΦJ =
∂W

∂ΦI
ΦJ +δI

J g2

32π2
trRW2 →

∑

ij

mij〈QiQ̃j〉 = M
g2

32π2
〈λλ〉

Instantons and Superpotentials, E. Kiritsis
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• From one-instanton saturation

g2

32π2
〈λλ(x0)Q

i1Q̃j1(x1)...Q
iN−1Q̃jN−1(xN−1)〉 = Λ2N+1 εI1···IN−1 εJ1···JN−1

g2

32π2
〈λλ〉 ≡ Λ3

L =
Λ2N+1

det(QQ̃)
, 〈QiQ̃j〉 = (m−1)ijΛ

3
L

• Using decoupling arguments the analysis generalizes to M ≤ N .

(
g2

32π2

)N−M

〈λλ(y1) · · ·λλ(yN−M)Qi1Q̃j1(x1) · · ·Qi1Q̃j1(xM)〉k=1 = Λ3N−M

with 3N −M = β1 → 3`(Adj)−∑
I `(RI) in general.

Instantons and Superpotentials, E. Kiritsis
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• The rule of thump is: two zero modes θ are appropriate to generate a

correction to the superpotential → ∫
d2θ W .

• In general there are 2`(Adj) gaugino zero modes and 2
∑

I `(RI) matter

zero modes.

• Matter and gaugino zero-modes can be lifted by Yukawa interactions

g φ
†
Iψ

Iλ.

• Correction to the superpotential therefore arise when

`(Adj)−
∑

I

`(RI) = 1 , Wnp =
Λβ1

H(Φ)
, ∆H = 2

∑

I

`(RI)

♠ In our problem (Z3 orientifold) we will need this for G = SU(4) ' SO(6)

and three chiral multiplets in the antisymmetric (6) representation.

Instantons and Superpotentials, E. Kiritsis
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String Theory Instantons

• World-sheet instantons → perturbative in the string coupling

• Non-perturbative: associated to Euclidean wrapped branes
Becker2+Strominger

Initial understanding originates from non-perturbative dualities, when they can be mapped
to world-sheet instantons:

• ED−1 corrections to the hypermultiplets (on the conifold)
Ooguri+Vafa

• ED−1 (for R4) mapped to (p,q) string instantons+M-theory perturbative corrections
Green+Gutperle, Green+Vanhove, Kiritsis+Pioline

• EDp=0,1,2,3 for R4 from M-covariance and T-duality
Kiritsis+Pioline

• ENS5 for heterotic R2

Harvey+Moore

• ED1 + ED5 in type I (R4 + F 4 couplings)
Bachas+Fabre+Kiritsis+Obers+Vanhove, Hammou+Morales

• D3 + ED−1 in orientifolds.
Billo+Frau+Pesando+Fucito+Lerda+Liccardo, Billo+Frau+Fucito+Lerda

Instantons and Superpotentials, E. Kiritsis
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String Theory Instantons in IIB orientifolds

• Potential instanton branes: ED−1, ED1, ED3, ED5, ENS5.

• Survive the Ω projection: ED1, ED5 and must wrap, complex 2-cycles or

all of CY.

• From the point of view of D9 branes:

ED5 have 4 ND directions → standard gauge instantons.

ED1 have 8 ND directions → stringy (octonionic?) instantons.

• For D5 branes:

ED5 have 8 ND directions → stringy (octonionic?) instantons.

ED1 have 4 ND directions → standard gauge instantons.

The general case involves a magnetized D9 brane and a magnetized ED5 brane

Instantons and Superpotentials, E. Kiritsis
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Stringy gauge theory instantons

• N Dp branes and k EDp−4 instanton branes, precisely reproduce the

(gauge) k-instanton action, the ADHM data, the instanton profile, and

the associated zero modes and amplitudes.

• The ADHM data are associated with ED-ED strings or D-ED strings.

The ED-ED zero mode bosonic vertex operators are of the form

Va ∼ aµe−ϕψµ TK×K , Vχ ∼ χie
−ϕψi TK×K

The D-ED zero mode bosonic vertex operators are of the form

Vw ∼
√

gs

vp−3
wα e−ϕ

∏
µ

σµ Sα TK×K

• The instanton action coincides with the holomorphic gauge coupling

Sinst = f(S, T, U, Z) , fD9,orb = S + BIZ
I + ∆1−loop(T, U)

For the Z3 orientifold, ∆1−loop(T, U) is constant.

Instantons and Superpotentials, E. Kiritsis
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New (ED1) instantons

• Prototype: N D9-k ED1 pair.
Bachas+Fabre+Kiritsis+Obers+Vanhove

• The structure of zero modes closely resembles the D9-D1 system : re-

produces the heterotic zero modes in the type I theory (32 chiral left 2d fermions from

D9 −D1 strings and 8 bosons+8 right fermions from D1 −D1 strings)

• From the ED1 − ED1 strings we get the two massless Θ-zero modes

VΘ = ΘαSαΣ+3/2 e−ϕ/2 , Va = aµe−ϕ ψµ

Sa → 4d spinor, Σ+3/2 → internal spinor, Va → spacetime translation 0-modes. Extra

massless bosonic modes may appear if the two-cycle is not rigid.

• From the D9−ED1 strings we get a number of massless fermionic modes

Vλ =
√

gs λR e−ϕ/2 S−
∏
µ

σµ
∏

I

σI

S− → 2d R-handed spinor, σµ,I → ND twist fields. The number of λ-modes depends on N,

k and the ”intersections” Integrating out the zero modes we obtain W-corrections, that

are not similar to gauge-instanton ones. (Sinstanton 6= f)

Instantons and Superpotentials, E. Kiritsis
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The diagrams

♠The relevant diagrams are disks ( 1
gs
× (

√
gs)2) or χ = 0 surfaces (annu-

lus/Möbius) with insertions of VΘ and Vλ, with or without insertions of the

physical massless fields VΦi
.

• Summation over disks without VΦi
generate the instanton action (including “λ-interactions”)

• Summation over disks with one VΦi
generate the classical profile of the instanton.

• Summation over disks with more VΦi
implement higher order corrections.

• The summation over one-loop diagrams provides the one-loop determinants around the
instanton.

• Around a supersymmetric instanton there are two Θ zero modes, and 2n λ zero modes.
An F-term is obtained as: n disks with 2n λ insertions, (n-2) with Vφ and 2 with Vψ, or
n-1 with Vφ and one with VF (VΦ = Vφ + ΘVψ + Θ2VF)

• Integrating Θ’s and λ’s yields superpotential terms of the form:

W = e
−TEDp VEDp(Z) (Φi)

n

Instantons and Superpotentials, E. Kiritsis
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Compatibility of bulk isometries and instantons

• Isometries of (bulk) chiral fields Z, are gauged by anomalous U(1) sym-

metries: ζ = ImZ → ζ + ε. (Also by bulk fluxes)

• Z can only appear in “dressed” (gauge invariant) combinations in the

superpotential.

• Instantons cannot spoil the isometry associated to Z (as it is protected

by gauge invariance).

• This means that in practice instanton branes that could do this, are

disallowed:

♠ Either because the wrapped ED brane is anomalous
Freed+Witten

♠ Or because its wrapping is destabilized because of flux
Kashani-Poor+Tomasiello
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Such constraints can be obtained from the Bianchi identities:

DG = Π[branes] ∧ eF , D ≡ d + H + T +Q+R
Expanding

dG1 + T G1 = Tr[F2] ∧Π0(D9) + Π2(D7)

dG3 + T G3 + H3 ∧G1 =
Tr[F2

2 ]

2
∧Π0(D9) + Tr[F2] ∧Π2(D7) + Π4(D5)

In the absence of Scherk-Schwarz torsion

dG1 = Tr[F2] ,
∫

ED1

Tr[F2] =
∫

ED1

dG1 = 0

• We cannot wrap an ED1 on cycles C such that
∫
C Tr[F2] 6= 0

because this will break the U(1) gauge symmetry.

• This remains true even if G1 and F2 are odd under Ω.

• For the Z3 orientifold C is a democratic linear combination of the excep-
tional (twisted) cycles.

• Similar remarks apply to when closed string fluxes are turned on
Kashani-Poor+Tomasiello

Instantons and Superpotentials, E. Kiritsis
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The Z3 orbifold

It can be obtained by modding out T 6 by Z3 as

zI → α zI , α = e
2πi

3

This constraints the metric and B fields to be of the form

ds2 = GIĪ dzIdz̄Ī , B2 = BIĪ dzI ∧ dz̄Ī

M = G + B is an arbitrary 3× 3 complex matrix (huntwisted
1,1 = 9 untwisted Kähler moduli).

• There are no (untwisted) complex structure moduli as the Z3 action completely fixes
the complex structure.

Muntwisted
1,1 =

SU(3,3)

SU(3)× SU(3)× U(1)

• It is a special Kähler manifold with prepotential

Funtwisted = det(X) =
1

3!
εI1I2I3εJ1J2J3 XI1J1

XI2J2
XI3J3

, K = − log[det[Re[X]]]

• Z3 has 27 fixed points associated to 27 exceptional (rigid) divisors Ei → htwisted
1,1 = 27,

htwisted
2,1 = 0 The blown-up CY has h1,1 = 36, h1,2 = 0.

Instantons and Superpotentials, E. Kiritsis
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The Z3 orientifold

Tadpole cancellation implies that (discrete magnetic flux through the col-

lapsed cycles)

Tr[1] = 32 , T r[γ3] = −4

Angelantonj+Bianchi+Sagnotti+Pradisi+Stanev

Together with γ3
3 = 1, γ3 → unitary, it implies

γ3 = (1N×N , α1M×M , ᾱ1M̄×M̄)

with

N + M + M̄ = 32 , M = M̄ , N + αM + ᾱM̄ = −4

leading to

N = 8, M = M̄ = 12 → G = SO(8)× U(12)

when all branes are at the origin.

Instantons and Superpotentials, E. Kiritsis
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• Spectrum=3 copies of (8, 12)+1 ⊕ (1, 66∗)−2 of SO(8)× U(12)

• The U(1) of U(12) is anomalous: t3 ≡ Tr[QT aT a] 6= 0.

• The U(1) mixes with the democratic combination of twisted chiral mul-

tiplets Z =
∑

i Zi: Z + Z̄ → Z + Z̄ + M V (with M = 1
23

5
4π−

3
4)

Antoniadis+Kiritsis+Rizos

V → V + i(ε− ε̄) , Z → Z + iMε

♠ Anomaly cancellation : fa = S + CaZ + · · · , M Ca = t3,a

• There are two T-dual versions related by six T-dualities. One has O9

planes while the other O3 planes.

Instantons and Superpotentials, E. Kiritsis
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The perturbative superpotential and phase structure

There is a disk-generated superpotential:

W =
1

2!3!
Y (T, S, Z) εIJKδij CIr

i CJs
j AK

[rs]

where: C ↔ (8, 12)+1, A ↔ (1, 66∗)−2,

i, j = SO(8) index, r, s = SU(12) index, I, J, K = 1,2,3 → family index

• Y depends on dilaton only at tree level.

• Higher polynomials in (CCA) are allowed to appear (U(1) neutral), but

not of Pf(A) (Q=12) in perturbation theory.

Instantons and Superpotentials, E. Kiritsis
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• Turning on general Wilson lines breaks G to SO(8−2n)×U(12−2n)×U(n)3

• For n = 4: G = U(4)fp×U(4)3 with U(4)3 a bulk N = 4 conformal gauge

theory with 4 branes and their 6 copies under Z3 and Ω

• 3 generation of chiral mater in (6−2; 10, 10, 10) plus

(10; 4+1, 4∗−1, 10) , (10; 10, 4+1, 4∗−1) , (10; 4
∗−1, 10, 4+1)

• Turning-on VEVs in bi-fundamentals U(4)3 → U(4)diagonal a standard

N = 4 conformal gauge theory, which in the Coulomb branch breaks further

to U(1)4.

• The non-trivial dynamic of the superpotential is therefore associated to

the U(4)fp

Instantons and Superpotentials, E. Kiritsis
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Wrapped ED5 instantons

• When G = U(4)fp × U(4)diagonal with 3 × 6−2, instanton calculus is
reliable: we can turn on vevs of the A’s so that the surviving group is SO(3), with
no light charged matter → pure N = 1 sQCD → gaugino condensation with W = Λ3

L.
Matching between low and high energy we get

W = Λ3
L =

Λ9

detIJ(δabAI
aA

J
b )

, AI
a =

1

2
Γrs

a AI
[rs] , a = 1,2 · · · ,6 , I = 1,2,3

This is one of the “classic” ADS-like case with `A −
∑

C `C = 1, as `A = 4, `C = 1.

• In string theory:

W (S, T, Z) =
exp[f(S, T, Z)]

H(A)

where

f(S, T, Z) = ftree(S, Z) + f1−loop(T, Z) , ftree(S, Z) = S + CZ , f1−loop(T, Z = 0) = f1

• This is invariant under the anomalous U(1) transformations, as t144 = Tr[QT aT a] = −12
and

Z → Z − 12i

C
ε , A → e−2iεA

• This parallels the derivations of the ADS superpotential in a local (oriented) brane
configuration with bifundamentals.Akerblom+Blumenhagen+Lust+Plauschinn+Schmidt-Sommerfeld

Instantons and Superpotentials, E. Kiritsis

23



Wrapped ED1 instantons

• Similar to the calculation of ED1−D9 in the T6-compactified type-I string
Bachas+Fabre+Kiritsis+Obers+Vanhove

• We must wrap ED1 on non-trivial two cycles C, and count λ zero modes
between ED1 and D9.

• There are two Θ zero modes, but the Θ̄ are projected out.

• The λ-modes depend on the cycle C and the restriction of the D9 gauge
bundle on C. They transform as 4+1. At the disk level we get:

L = mI(C) AI
[rs] λr

C λs
C

• We must interpret A, λ as sections of holomorphic line bundles.

• We also have

m(C) ∼ e−Sinstanton
Pfaff(∂̄V (−1))

det[∂̄O(−1)]
2 det′[∂̄O]2

Instantons and Superpotentials, E. Kiritsis
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V |CP1 =
16∑

i=1

[O(ki)⊕O(−ki)] , O(−1)⊗V |CP1 =
16∑

i=1

[O(ki−1)⊕O(−ki−1)]

Witten

dimKer(∂̄V (−1)) =
∑

i
ki

.

• There is the further constraint c2(T ) = c2(V ) which amounts to dG3 = 0,

as there are no D5 branes, which selects the orientifold gauge group.

• The minimal case corresponds to rigid two-cycles with
∑

i ki = 4. Inte-

grating the Θs and λ’s we obtain supersymmetric mass terms

Wm =
∑

C
mI(C) mJ(C) εrspq AI

[rs] AJ
[pq]

Instantons and Superpotentials, E. Kiritsis
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• U(1) invariance indicates that the instanton action must behave as e−
C
3Z.

This is a fractional instanton.

• Indeed in the T-dual picture, we have D7 branes wrapping one collapsed

(twisted) 4-cycle, and ED3 instantons wrapping the same cycle. Because of

the B = 1
3 trapped flux and the

∫
C2∧B coupling, the instanton is fractional.

• The general expected behavior is

∑
na,n

g(na, n) exp


−

∑

na

Z′a −
n

3
Z




where n is correlated with the power of A2n multiplets.

Instantons and Superpotentials, E. Kiritsis
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Closed string fluxes

• Apart from Z2 bulk fluxes and open string magnetic fields the fluxes that

are compatible with the orientifold are:

RR 3-form flux G3, Scherk-Schwarz torsion T , the non-geometric flux R.

• T maps p-forms to p + 1-forms while R maps p-forms to (p− 3)-forms

T ◦Ap = Ap+1 , R •Ap = Ap−3

• The flux superpotential reads

Wflux =
∫
[G3 − iT ◦ JC +R • (∗S)] ∧Ω3

Instantons and Superpotentials, E. Kiritsis
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What next?

• It seems that we have more or less control over non-perturbative super-

potentials for the special case of the (blown-up) Z3 orbifold. Several results

generalize to more complex cases.

• Numerical coefficients in front of the various terms need to be calculated

carefully.

• There are still some points that need to be clarified in the absence of

bulk fluxes, like the one-loop corrections to gauge couplings for non-zero

twist fields as well as some open string instanton corrections to the super-

potential.

• One can attempt to turn on the bulk fluxes and attempt a complete

analysis of moduli stabilisation. It has been argued by Lust, Reffert, Scheidegger,

Schulgin, Stieberger, that in orbifolds like Z3 although the moduli can be stabilized in AdS,

no uplift is possible to dS. This rests on T = R = 0, and neglecting the non-perturbative

open string superpotentials presented here.

Instantons and Superpotentials, E. Kiritsis
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• An re-analysis of the instanton effects in the presence of fluxes is neces-

sary. This has simplifications (and complications)

• A good control of the Kähler potential is necessary. The one-loop de-

pendence on the open string fields needs to be calculated.

• An improved analysis of the D-terms is also needed and is under way.

• The hope is that this will give a completely controlled example of suc-

cessful moduli stabilisation with positive vacuum energy. That remains to

be seen.

Instantons and Superpotentials, E. Kiritsis

29



What’s new?

• A clear classification of all relevant instanton effects.

• The precise form of the vertex operators of the instanton fluctuations

(including zero modes).

• Inclusion of the effect of orientifold projections and A-S representations.

• Rigid cycles are explicitly identified (do not exist in toroidal examples

studied so far)

• Precise identification of consistency conditions (Bianchi identities), that

constrain ED-instanton wrappings.

• Complete incorporation of anomalous U(1) symmetries and checks, via

zero mode counting and anomaly calculations.

Instantons and Superpotentials, E. Kiritsis
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The Bianchi identities

Introducing the bulk “covariant” exterior derivative, we have NS identities:

D = (d + T ) +R , D ·D = 0

For dT = dR = 0 T ◦ T = 0 and T ◦ R = 0

These can be solved as:

T ◦ωi = −αi Ω+αi Ω , T ◦Ω = −αi ω̃i , T ◦ Ω = −αi ω̃i , T ◦ω̃i = 0

Action of non-geometrical fluxes:

R • Ω = κ , R • Ω = κ , R • ω̃i = 0 , R • V = κ Ω− κ Ω

• The RR identities

D G = Tr[eF ] ADp [Dp] + AOp [Op] ,

where F = F + B and

Instantons and Superpotentials, E. Kiritsis
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ADp = 1− [p1(RT )− p1(RN)]+ . . . , AOp = 1+
1

2
[p1(RT )− p1(RN)]+ . . .

Expanding in our case:

R •G3 = [D9] + [O9] , c1(F9) [D9] = 0 ,

T ◦G3 = c2(F9)− p1(R9) [D9] +
1

2
p1(R9) [O9] + [D5] + [O5]

c3(F9) [D9] + c1(F5) [D5] = 0

• General form of the localized Bianchi identities, for each brane stack:

D
(
eFp [Dp]

)
= 0

that translate into:
(
T ◦ F9 +R • (F9)

3
)

[D9] = 0 , R • (F5 [D5]) = 0

Instantons and Superpotentials, E. Kiritsis
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Detailed plan of the presentation

• Title page 1 minutes

• Bibliography 2 minutes

• Plan 3 minutes

• Introduction/Motivations 6 minutes

• Moduli stabilisation 7 minutes

• Moduli stabilisation:open problems 9 minutes
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