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Introduction

♠ QCD has been a very successful theory for the strong interactions

♠ Remarkably, we do not have analytical control over most of the energy

regime. Even numerically (lattice), many aspects of the theory are still

beyond reach

3



♠ What we can calculate:

• Hard (sub) cross sections and perturbative evolution equations (pertur-
bative QCD)

• Glueball Spectra (a few glueballs), meson spectra (a dozen mesons per
tower), baryon spectra (a few low lying baryons).
“improved” lattice computations, most done in quenched approxima-
tion.

• Some weak matrix elements (twisted lattice computations, quenched)

• Topological susceptibility =
δ2EQCD

δθ2 (lattice)

• Sum Rules for various observables (perturbative QCD plus general QFT
principles)
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♠ What we cannot reliably calculate:

• Observable rates for accelerator experiments. In particular, structure

functions have to be measured. Hadronization is done by the Lund

Monte Carlo model.

• Glueball spectra for higher glueballs mesons and baryons. Decay widths

for all of the above.

• There are at least two weak matrix elements that cannot be computed

so far reliably enough by lattice computations: The ∆I = 1
2 matrix

elements of type 〈K|O∆I=1/2,3/2|ππ〉 , and the BK ∼ 〈K|O∆S=2|K̄〉.

• Data associated to the chiral symmetry breaking (like the quark con-

densate), or its restauration at higher temperatures.

• In general matrix elements with at least two particle final states.
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• Real time finite temperature correlation functions (associated to QGP

dynamics)

• Finite temperature physics at finite baryon density.

♠ Several complementary semi-phenomenological techniques have been de-

veloped to deal with the above (chiral perturbation theory, perturbation

theory resummation schemes, SD equations, bag models, etc.) with varied

success.
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AdS/CFT and holography

♠ The large Nc approximation to QCD has promised a string theory de-
scription of the color singlet sector of gauge theories.

’t Hooft

♠ The nature of this string theory became more palpable with the formu-
lation of the AdS/CFT correspondence for N = 44 sYM.

Maldacena, Witten, Gubser+Klebanov+Polyakov

The surprise involved the emergence of an extra holographic dimension.

♠ This has started a rush to extend it to theories as close to QCD as
possible.

♠ The original and most controlled approaches relied on ”perturbing” the
original AdS/CFT correspondence in ten-dimensional (critical) string the-
ory.

♠ More recent attempts dared to use a non-critical string framework.

♠ Some holographic-inspired phenomenological models also popped up
(AdS/QCD).
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Critical string theory holography

♠ Several “successful” holographic models of non-trivial gauge dynamics

• The non-supersymmetric D4 solution,due to Witten, dual to N = 45

sYM on a circle, whose supersymmetry is broken by the boundary con-

ditions of the fermions. It exhibits confinement in the IR.

• Flavor has been successfully incorporated by Sakai+Sugimoto by adding

D7 (dipole) branes.

• The Chamseddine-Volkov solution interpreted by Maldacena and Nuñes

as the dual of a confining compactified gauge theory (emerging by

wrapping NS5 branes on a two-cycle).

• The Klebanov-Strassler solution corresponding to a cascade of quiver

gauge theories, that confine in the IR.
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♠ In all of the above, confinement related quantities (string tension, glue-

ball, masses etc, finite temperature effects) can be calculated analytically.

♠ The same applies to the Sakai-Sugimoto model for flavor, except two

major drawbacks:

The absence of bare quark masses and the chiral-symmetry-breaking condensate.

♠ In all the above solutions, the scale of KK excitations is of the same

order as Λ of the confining gauge theory.

♠ None so far has managed to overcome this obstacle in critical string

theory models.
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Non-Critical holography

♠ Non-critical string theories have been explored in order to avoid the KK

problem.
Kuperstein+Sonnenschein, Klebanov+Maldacena, Bigazzi+Casero+Cotrone+Kiritsis+Paredes

♠ They are expected to involve large curvatures (due to the δc term) and

the supergravity approximation seems problematic.

♠ They may provide reliable information on some quantities despite the

strong curvature (cf. WZW CFTs).

♠ Recent progress in solving exactly for probe D-branes in non-critical

backgrounds has provided important insights for non-critical holography.
Fotopoulos+Niarchos+Prezas, Ashok+Murthy+Troost

♠ It is fair to say that non-critical holography is so far largely unexplored.
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AdS/QCD

♠ A basic phenomenological approach: use a slice of AdS5, with a UV
cutoff, and an IR cutoff.

Polchinski+Strassler

♠ It successfully exhibits confinement (trivially via IR cutoff), and power-like
behavior in hard scattering amplitudes

♠ It may be equipped with a bifundamental scalar, T , and U(Nf)L×U(Nf)R,
gauge fields to describe mesons.

Erlich+Katz+Son+Stepanov, DaRold+Pomarol

Chiral symmetry can be broken, by IR boundary conditions. The low-lying
meson spectrum looks ”reasonable”.

♠ Shortcomings:

• The glueball spectrum fits badly the lattice calculations. It is has the wrong behavior
m2

n ∼ n2 at large n.

• Chiral symmetry breaking is input by hand.

• The meson spectrum has also the wrong UV asymptotics m2
n ∼ n2.
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Improving AdS/QCD

♠ The goal is to use input from both string theory and the gauge the-

ory (QCD) in order to provide an improved phenomenological holographic

model for real world QCD.

♠ This is an exploratory adventure, and we will short-circuit several obsta-

cles on the way.

♠ As we will see, we will get an interesting perspective on the physics of

pure glue as well as on the quark sector.
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A preview of the results: pure glue

♠ The starting point of pure QCD: a two-derivative action in 5d involving

gµν ↔ Tµν , φ ↔ Tr[F2] , a ↔ Tr[F ∧ F ]

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
− Z(λ)

2N2
c

(∂a)2 + V (λ)

]
, λ = Nc eφ

with

V (λ) = V0


1 +

∞∑

n=1

Vnλn


 = −4

3
λ2

(
dW

dλ

)2
+

64

27
W2.

• There is a one-to one-correspondence between the QCD β(λ) and W :

β(λ) = −9

4
λ2 d logW (λ)

dλ

• There is a similar statement between Z(λ) and the (non-perturbative)
β-function for the θ-angle.

Improved Holographic QCD, E. Kiritsis
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• The space is asymptotically AdS5 in the UV (r → 0) modulo log correc-

tions (in the Einstein frame):

ds2 = e2A(r)(dr2 + ηµνdxµdxµ) , E ≡ eA(r)

• There are various extra α′ corrections to the potential (∼ β-function).They

only correct the non-universal terms. Moreover, α′ corrections to E can be

set to zero in a special scheme (the ”holographic” scheme).

• ALL confining backgrounds have an IR singularity at r = r0. There are

two classes: r0=finite and r0 = ∞. The singularity is always ”good”: all

spectra are well defined without extra input.

• For regular V (λ), λ →∞ at the IR singularity.

• In the r0 = ∞ class of backgrounds, the curvature (in the string frame)

vanishes in the neighborhood of the IR singularity.

Improved Holographic QCD, E. Kiritsis
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Classification of confining superpotentials W (λ) as λ →∞ in IR:

W (λ) ∼ (logλ)
P
2 λQ , λ ∼ E−

9
4Q

(
log

1

E

) P
2Q

, E → 0.

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at finite r = r0.

eA(r) ∼
{

(r0 − r)
4

9Q2−4 Q > 2
3

exp
[
− C

(r0−r)1/(P−1)

]
Q = 2

3

• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞ The scale factor
eA vanishes there as

eA(r) ∼ exp[−Cr1/(1−P )].

• Q = 2/3, P = 1 leads to confinement but the singularity may be at a finite or infinite
value of r depending on subleading asymptotics of the superpotential.

♠ If Q < 2
√

2/3, no ad hoc boundary conditions are needed to determine the glueball spec-
trum → One-to-one correspondence with the β-function This is unlike standard AdS/QCD
and other approaches.

• when Q > 2
√

2/3, the spectrum is not well defined without extra boundary conditions in
the IR because both solutions to the mass eigenvalue equation are IR normalizable.

Improved Holographic QCD, E. Kiritsis
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• For all potentials that confine, the spectrum of 0++ and 2++ glueballs

has a mass gap and is purely discrete. For the 0+− glueballs this is the

case if

Z(λ) ∼ λd , d > 2 as λ →∞.

• In all physically interesting confining backgrounds the magnetic color

charges are screened. This is an improvement with respect to AdS/QCD

models (magnetic quarks are also confined instead) .

• Of all the possible confining asymptotics, there is a unique one that

guarantees “linear confinement” for all glueballs. It corresponds to the

case Q = 2/3, P = 1/2, i.e.

W (λ) ∼ (logλ)
1
4 λ

2
3 , β(λ) = −3

2
λ

[
1 +

3

8 logλ
+ · · ·

]
, λ ∼ E−

3
2

(
log

1

E

)3
8

This choice also seems to be preferred from considerations of the meson

sector as discussed below.

Improved Holographic QCD, E. Kiritsis
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• Numerical calculation of the 0++ and 2++ glueball spectra and compar-

ison with lattice data gives a clear preference for the r0 = ∞ asymptotics.

• We can find the background solution for the axion:

a(r) = θUV

∫ r0

r

dr

e3AZ(λ)

/ ∫ r0

0

dr

e3AZ(λ)

written in terms of the axion coupling function Z(λ). This provides the

“running” of the effective QCD θ angle.

It gives E(θUV ) ∼ θ2
UV .

• Note that always a(E = 0) = 0. This suggests a possible intrinsic resolu-

tion of the strong CP problem.

Improved Holographic QCD, E. Kiritsis
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Preview: quarks (Nf ¿ Nc) and mesons

• Flavor is introduced by Nf D4 + D̄4 branes pairs inside the bulk back-

ground. Their back-reaction on the bulk geometry is suppressed by Nf/Nc.

• The important world-volume fields are

Tij ↔ q̄i
a
1 + γ5

2
qj
a , Aij

µ
L,R ↔ q̄i

a
1± γ5

2
γµqj

a

Generating the U(Nf)L × U(Nf)R chiral symmetry.

• The UV mass matrix mij corresponds to the source term of the

Tachyon field. It breaks the chiral (gauge) symmetry. The normalizable

mode corresponds to the vev 〈q̄i
a
1+γ5

2 q
j
a〉.

• We show that the expectation value of the tachyon is non-zero and T ∼ 1,
breaking chiral symmetry SU(Nf)L × SU(Nf)R → SU(Nf)V . The anomaly
plays an important role in this (holographic Coleman-Witten)

Improved Holographic QCD, E. Kiritsis
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• The fact that the tachyon diverges in the IR (fusing D with D̄) constraints the UV

asymptotics and determines the quark condensate 〈q̄q〉 in terms of mq. A GOR relation is

satisfied (for an asymptotic AdS5 space)

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• We can derive formulae for the anomalous divergences of flavor currents, when they are
coupled to an external source.

• When mq = 0, the meson spectrum contains N2
f massless pseudoscalars, the U(Nf)A

Goldstone bosons.

• The WZ part of the flavor brane action gives the Adler-Bell-Jackiw U(1)A axial anomaly

and an associated Stuckelberg mechanism gives an O
(

Nf

Nc

)
mass to the would-be Goldstone

boson η′, in accordance with the Veneziano-Witten formula.

• Studying the spectrum of highly excited mesons, we find the expected property of linear

confinement: m2
n ∼ n.

Improved Holographic QCD, E. Kiritsis
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Motivating the effective action

• The basic string motivated action for the 5d theory is

S5 = M3
∫

d5x
√

g

[
e−2φ

(
R + 4(∂φ)2 +

δc

`2s

)
− 1

2 · 5!
F2
5 −

1

2
(da)2

]

F5 = dC4 seeds the D3 branes that generate the U(Nc) group.

• The C4 equation of motion gives

∗F5 = Nc

and the dual action in the Einstein frame gE = e
4
3φ gs

SE = M3
∫

d5x
√

g

[
R− 4

3
(∂φ)2 − e2φ

2
(∂a)2 + Vs(φ)

]
, Vs(φ) =

e
4
3φ

`2s

[
δc− N2

c

2
e2φ

]

• Higher derivative corrections involving the F5 upon dualization provide
further terms in the dilaton potential

Vs(φ) =
e
4
3φ

`2s


δc +

∞∑

n=1

an (Nce
φ)2n
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• In QCD we expect that

1

λ
=

1

Nceφ
∼ 1

log r
, ds2 ∼ 1

r2
(dr2 + dxµdxµ) as r → 0

• Any potential with V (λ) ∼ λa when λ ¿ 1 gives a power different that
of AdS5

• There is an AdS5 minimum at a finite value λ∗. This cannot be the UV
of QCD as dimensions do not match.

MORE INFO
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♠ Therefore we need a potential that in the Einstein frame asymptotes to
a constant V0 = 12

`2
as λ → 0.

♠ This can be generated by higher-derivative corrections. We postulate it.

♠ The five form will then generate a series of (perturbative) terms in λ:

V (λ) = V0


1 +

∞∑

n=1

anλa n




we will take a = 1 for simplicity (by adjusting the kinetic term).

♠ This matches the weak coupling expansion of perturbative QCD and will

give the perturbative β-function expansion.

♠ We will ignore higher-derivative terms associated with R and (∂Φ)2.
Motivated partly by the success of SVZ sum rules

♠ The “resumed” two-derivative action reads

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
+ V (λ)

]
, λ = Nc eφ

after redefining the kinetic terms.

Improved Holographic QCD, E. Kiritsis
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• We must choose the holographic energy: the natural choice is E = eAE

frame as it is monotonic and end at zero in the IR singularity.

• We may now solve the equations perturbatively in λ around λ = 0 and
r = 0 (this is a weak coupling expansion) to find

1

λ
= L−b1

b0
logL+

b21
b20

logL

L
+

(
b21
b20

+
b2
b0

)
1

L
+

b31
2b30

log2 L

L2
+· · · , L ≡ −b0 log(rΛ)

with
dλ

d logE
≡ β(λ) = −b0λ2 + b1λ3 + b2λ4 + · · ·

e2A =


1 +

8

32 log rΛ
+

4
(
26 + 9b1

b20
− 18b1

b20
log(b0 log 1

rΛ)
)

34 log2 rΛ
+O

(
log2 log rΛ

log3 rΛ

)



`2

r2

V =
12

`2


1 +

8

9
(b0λ) +

23− 36b1
b20

34
(b0λ)2 − 2

324b2
b30

+ 124 + 189b1
b20

37
(b0λ)3 +O(λ4)




♠ One-to-one correspondence with the perturbative β-function, and the
perturbative potential.

Improved Holographic QCD, E. Kiritsis
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Further α′ corrections

There are further dilaton terms generated by the 5-form in:

• The kinetic terms of the graviton and the dilaton ∼ λ2n.

• The kinetic terms on probe D3 branes that affect the identification of

the gauge-coupling constant, ∼ λ2n+1. There is also a multiplicative factor

relating gY M2 to eφ, (not known). Can be traded for b0.

• Corrections to the identification of the energy. At r = 0, E = 1/r. There

can be log corrections to our identification E = eA, and these are a power

series in ∼ λ2n.

• It is a remarkable fact that all such corrections affect the higher that the

first two terms in the β-function (or equivalently the potential), that are

known to be non-universal!

the metric is also insensitive to the change of b0 by changing Λ.

Improved Holographic QCD, E. Kiritsis
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Organizing the vacuum solutions

A useful variable is the phase variable

X ≡ Φ′

3A′
=

β(λ)

3λ
, eΦ ≡ λ

and a superpotential

W2 −
(
3

4

)2 (
∂W

∂Φ

)2
=

(
3

4

)3
V (Φ).

with

A′ = −4

9
W , Φ′ = dW

dΦ

X = −3

4

d logW

d logλ
, β(λ) = −9

4
λ

d logW

d logλ

♠ The equations have three integration constants: (two for Φ and one for
A) One is fixed by λ → 0 in the UV. The other is Λ. The one in A is the
choice of energy scale.

Improved Holographic QCD, E. Kiritsis
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The IR regime

For any asymptotically AdS5 solution (eA ∼ `
r):

• The scale factor eA(r) is monotonically decreasing
Freedman+Gubser+Pilch+Warner

• Moreover, there are only three possible, mutually exclusive IR asymp-

totics:

♠ there is another asymptotic AdS5 region, at r →∞, where expA(r) ∼ `′/r,

and `′ ≤ ` (equality holds if and only if the space is exactly AdS5 everywhere);

♠ there is a curvature singularity at some finite value of the radial coordi-

nate, r = r0;

♠ there is a curvature singularity at r →∞, where the scale factor vanishes

and the space-time shrinks to zero size.

Improved Holographic QCD, E. Kiritsis
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Wilson-Loops and confinement

• Calculation of the static quark potential using the vev of the Wilson loop
calculated via an F-string worldsheet.

Rey+Yee, Maldacena

T E(L) = Sminimal(X)

We calculate

L = 2
∫ r0

0
dr

1√
e4AS(r)−4AS(r0) − 1

.

It diverges when eAs has a minimum (at r = r∗). Then

E(L) ∼ Tf e2AS(r∗) L

• Confinement → As(r∗) is finite. This is a more general condition that
considered before as AS is not monotonic in general.

• Effective string tension

Tstring = Tf e2AS(r∗)

Improved Holographic QCD, E. Kiritsis
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General criterion for confinement

• the geometric version:

A geometry that shrinks to zero size in the IR is dual to a confining 4D

theory if and only if the Einstein metric in conformal coordinates vanishes

as (or faster than) e−Cr as r →∞, for some C > 0.

• It is understood here that a metric vanishing at finite r = r0 also satisfies

the above condition.

♠ the superpotential

A 5D background is dual to a confining theory if the superpotential grows

as (or faster than)

W ∼ (logλ)P/2λ2/3 as λ →∞
for some P ≥ 0.

Improved Holographic QCD, E. Kiritsis
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the β-function

A 5D background is dual to a confining theory if and only if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system)

• We can determine the geometry if we specify K:

• K = −∞: the scale factor goes to zero at some finite r0, not faster than a power-law.

• −∞ < K < −3/8: the scale factor goes to zero at some finite r0 faster than any power-
law.

• −3/8 < K < 0: the scale factor goes to zero as r →∞ faster than e−Cr1+ε

for some ε > 0.

• K = 0: the scale factor goes to zero as r →∞ as e−Cr (or faster), but slower than e−Cr1+ε

for any ε > 0.

The borderline case, K = −3/8, is certainly confining (by continuity), but whether or not

the singularity is at finite r depends on the subleading terms.

Improved Holographic QCD, E. Kiritsis
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Comments on confining backgrounds

• For all confining backgrounds with r0 = ∞, although the space-time is
singular in the Einstein frame, the string frame geometry is asymptotically
flat for large r. Therefore only λ grows indefinitely.

• String world-sheets do not probe the strong coupling region, at least
classically. The string stays away from the strong coupling region.

• Therefore: singular confining backgrounds have generically the property
that the singularity is repulsive, i.e. only highly excited states can probe it. This

will also be reflected in the analysis of the particle spectrum (to be presented later)

• The confining backgrounds must also screen magnetic color charges.
This can be checked by calculating ’t Hooft loops using D1 probes:

♠ All confining backgrounds with r0 = ∞ screen properly

♠ at finite r0 backgrounds with eA ∼ (r− r0)δ with 0 < δ < 1 do not screen. All others OK.

♠ In particular “hard-wall” AdS/QCD confines also the magnetic quarks.

Improved Holographic QCD, E. Kiritsis

27



Particle Spectra: generalities

• Linearized equation:

ξ̈ + 2Ḃξ̇ + ¤4ξ = 0 , ξ(r, x) = ξ(r)ξ(4)(x), ¤ξ(4)(x) = m2ξ(4)(x)

• Can be mapped to Schrodinger problem

− d2

dr2
ψ + V (r)ψ = m2ψ , V (r) =

d2B

dr2
+

(
dB

dr

)2
, ξ(r) = e−B(r)ψ(r)

• Mass gap and discrete spectrum visible from the asymptotics of the

potential.

• Large n asymptotics of masses obtained from WKB

nπ =
∫ r2

r1

√
m2 − V (r) dr

• Spectrum depends only on initial condition for λ (∼ ΛQCD) and an overall

energy scale (eA) that must be fixed.

Improved Holographic QCD, E. Kiritsis
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• scalar glueballs

B(r) =
3

2
A(r) +

1

2
log

β(λ)2

9λ2

• tensor glueballs

B(r) =
3

2
A(r)

• pseudo-scalar glueballs

B(r) =
3

2
A(r) +

1

2
logZ(Φ)

• Universality of asymptotics

m2
n→∞(0++)

m2
n→∞(2++)

→ 1 ,
m2

n→∞(0+−)

m2
n→∞(0++)

=
1

2
(d− 2)2

m2
n→∞(0++)

m2
n→∞(1−−)

=
m2

n→∞(2++)

m2
n→∞(1−−)

=
36

25

predicts d = 2 +
√

2 via
m2

2πσa
= 2n + J + c,

Improved Holographic QCD, E. Kiritsis
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The meson sector (Nf << Nc)

• Flavor is introduced via the introduction of Nf pairs of space filling D4+D̄4

branes.

• The crucial world volume fields are the tachyon Tij in (Nf , N̄f) and the

U(Nf)L × U(Nf)R vectors.

• The D-WZW sector depends nontrivial on T and realizes properly the

P and C symmetries. It generates the appropriate gauge and global flavor

anomalies.

• We can introduce explicitly mass matrices for the quarks, and we can

dynamically determine the chiral condensate.

Improved Holographic QCD, E. Kiritsis
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• We have naturally the χSB breaking order parameter T , and consistency

with anomalies implies that it is non-zero and proportional to the identity

(Holographic Coleman+Witten theorem).

• The pions appear as Goldstone bosons when mq = 0.

• The correct GOR relation is obtained.

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

• There is linear confinement (M2
n ∼ n) associated with the vanishing of

the tachyon potential at T →∞.

• We obtain the correct Stuckelberg coupling mixing with 0+− and and

mass for the η′.

Improved Holographic QCD, E. Kiritsis
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Tachyon dynamics

• In the vacuum the gauge fields vanish and T ∼ 1. Only DBI survives

S[τ ] = TD4

∫
drd4x

e4As(r)

λ
V (τ)

√
e2As(r) + τ̇(r)2 , V (τ) = e−

µ2

2 τ2

• We obtain the nonlinear field equation:

τ̈ +

(
3ȦS −

λ̇

λ

)
τ̇ + e2ASµ2τ + e−2AS

[
4ȦS −

λ̇

λ

]
τ̇3 + µ2τ τ̇2 = 0.

• In the UV we expect

τ = mq r + σ r3 + · · · , µ2`2 = 3

• We expect that the tachyon must diverge before or at r = r0. We find
that indeed it does at the singularity. For the r0 = ∞ backgrounds

τ ∼ exp
[
2

a

R

`2
r

]
as r →∞
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• Generically the solutions have spurious singularities: τ(r∗) stays finite but

its derivatives diverges as:

τ ∼ τ∗ + γ
√

r∗ − r.

The condition that they are absent determines σ as a function of mq.

• The easiest spectrum to analyze is that of vector mesons. We find

(r0 = ∞)

Λglueballs =
1

R
, Λmesons =

3

`

(
α`2

2R2

)(α−1)/2

∝ 1

R

(
`

R

)α−2
.

This suggests that α = 2. preferred also from the glue sector.
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Concrete models: I

• r0 = ∞ and a = 2:

β(λ) = − 3b0λ2

3 + 2b0λ
− 3a(2b20 + 3b21)λ

3

(1 + λ2)
(
9a +

(
2b20 + 3b21

)
log(1 + λ2)

)

is everywhere regular and has the correct UV and IR asymptotics.

W = (3 + 2b0λ)2/3
[
9a +

(
2b20 + 3b1

)
log(1 + λ2)

]2a/3
,

5 10 15 20 25
r

0.05

0.1

0.15

0.2

0.25

0.3

eA

2.5 5 7.5 10 12.5 15
r

2

4

6

8

Λ

The scale factor and ’t Hooft coupling that follow from β. b0 = 4.2, λ0 = 0.05, A0 = 0.

The units are such that ` = 0.5. The dashed line represents the scale factor for pure AdS.
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Dependence of absolute mass scale on λ0

0.05 0.1 0.15 0.2 0.25
Λ0

-40

-30

-20

-10

Log@M0D

Dependence on initial condition λ0 of the absolute scale of the lowest

lying glueball (shown in Logarithmic scale)
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Dependence of mass ratios on λ0

0.05 0.1 0.15 0.2 0.25
Λ0

1.2

1.3

1.4

1.5

1.6

1.7

1.8

R0 R20

The mass ratios R00 (squares) and R20 (triangles).

R00 =
m0∗++

m0++
, R20 =

m2++

m0++
.
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Comparison of scalar and tensor potential

5 10 15 20
r

0.5

1

1.5

2

V@rD

Effective Schrödinger potentials for scalar (solid line) and tensor (dashed

line) glueballs. The units are chosen such that ` = 0.5.
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Linearity of the glueball spectrum

10 20 30 40 50 60 70
n

20
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M2
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n
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8

M2

(a) (b)

(a) Linear pattern in the spectrum for the first 40 0++ glueball states. M2

is shown units of 0.015`−2.

(b) The first 8 0++ (squares) and the 2++ (triangles) glueballs. These

spectra are obtained in the background I with b0 = 4.2, λ0 = 0.05.
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The lattice glueball data

Available lattice data for the scalar and the tensor glueballs. Ref. I =H. B. Meyer, [arXiv:hep-lat/0508002].

and Ref. II = C. J. Morningstar and M. J. Peardon, [arXiv:hep-lat/9901004] + Y. Chen et al., [arXiv:hep-

lat/0510074]. The first error corresponds to the statistical error from the the continuum extrapolation. The

second error in Ref.I is due to the uncertainty in the string tension
√

σ. (Note that this does not affect

the mass ratios). The second error in the Ref. II is the estimated uncertainty from the anisotropy. In the

last column we present the available large Nc estimates according to B. Lucini and M. Teper, [arXiv:hep-

lat/0103027]. The parenthesis in this column shows the total possible error following by the estimations in

the same reference.
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Comparison with lattice data: Ref I

n
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n
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M

(a) (b)

Comparison of glueball spectra from our model with b0 = 4.2, λ0 = 0.05

(boxes), with the lattice QCD data from Ref. I (crosses) and the AdS/QCD

computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The

masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. I.

`2eff = 6.88 `2
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Comparison with lattice data: Ref II
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Comparison of glueball spectra from our model with b0 = 2.55, λ0 = 0.05

(boxes), with the lattice QCD data from Ref. II (crosses) and the AdS/QCD

computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The

masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. II.
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α-dependence of scalar spectrum
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The 0++ spectra for varying values of α that are shown at the right end

of the plot. The symbol * denotes the AdS/QCD result.
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Confining background II:r0 =finite

• We choose a regular β-function with appropriate asymptotics:

β(λ) = − 3b0λ2

3 + 2b0λ
− 3η(2b20 + 3b21)λ

3

9η + 2
(
2b20 + 3b21

)
λ2

, η ≡
√

1 + δ−1 − 1

• Confining backgrounds with r0 =finite have a hard time to match the

lattice results, even for the first few glueballs.

Improved Holographic QCD, E. Kiritsis

42



Estimating the importance of logarithmic scaling

We keep the IR asymptotics of background II,but change the UV to power asymptoting
AdS5, with a small λ∗.

eA(r) =
`

r
e−(r/R)2

, Φ(r) = Φ0 +
3

2

r2

R2

√
1 + 3

R2

r2
+

9

4
log

2 r
R

+ 2
√

r2

R2 + 3
2√

6
.

Wconf = W0

(
9 + 4b20(λ− λ∗)2)1/3

) (
9a + (2b20 + 3b1) log

[
1 + (λ− λ2

∗)
])2a/3

.

We fix parameters so that the physical QCD scale is the same (as determined from

asymptotic slope of Regge trajectories.

5 10 15 20 25 30
n

10

20

30

40

M2

The stars correspond to the asymptotically free background I with b0 = 4.2 and λ0 = 0.05; the squares

correspond the results obtained in the first background with R = 11.4`; the triangles denote the spectrum in

the second background with b0 = 4.2, li = 0.071 and l∗ = 0.01. These values are chosen so that the slopes

coincide asymptotically for large n.
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Open ends

• This phenomenological approach towards an improved holographic QCD
model is preliminary but seems promising

• Several immediate problems:

♠ Determine the finite temperature solutions and the resulting deconfining
transitions

♠ Calculate the meson spectrum and compare with data.

♠ Explore the baryon spectrum

♠ Calculate the ∆I = 1/2 and Bk data.

♠ Diagonalize the η′ − 0+− system and compare with data.

♠ Recalculate the dipole moment of the neutron in connection with the
strong CP problem.

♠ Calculate RHIC/LHC finite T observables

Improved Holographic QCD, E. Kiritsis
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.

Thank you for your patience!
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Fluctuations around the AdS5 extremum

Near an AdS extremum

V =
12

`2
− 16ξ

3`2
φ2 +O(φ3) ,

18

`
δA′ = δφ′2 − 4

`2
φ2 = O(δφ2) , δφ′′ − 4

`
δφ′ − 4ξ

`2
δφ = 0

where φ << 1. The general solution of the second equation is

δφ = C+e
(2+2

√
1+ξ)u

` + C−e
(2−2

√
1+ξ)u

`

For the potential in question

V (φ) =
e

4

3
φ

`2s

[
5− N2

c

2
e2φ −Nf eφ

]
, λ0 ≡ Nce

φ0 =
−7x +

√
49x2 + 400

10
, x ≡ Nf

Nc

ξ =
5

4

[
400 + 49x2 − 7x

√
49x2 + 400

100 + 7x2 − x
√

49x2 + 400

]
,

`2s
`2

= e
4

3
φ0

[
100 + 7x2 − x

√
49x2 + 400

400

]

The associated dimension is ∆ = 2 + 2
√

1 + ξ and satisfies

2 + 3
√

2 < ∆ < 2 + 2
√

6 or equivalently 6.24 < ∆ < 6.90

It corresponds to an irrelevant operator. It is probably relevant for the Banks-Zaks fixed
points.

Bigazzi+Casero+Cotrone+Kiritsis+Paredes

RETURN
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Holographic meson dynamics: the models

• Flavor is obtained by adding Nf << NC D+D̄ pairs

• There are several working models of flavor:

♠ Non-supersymmetric backgrounds with abelian D7flavor brane.
Babington+Erdmenger+Evans+Guralnic+Kirsch

Kruczenski+Mateos+Myers+Winters

♠ Non-supersymmetric D4+ D8 + D̄8
Sakai+Sugimoto

♠ Hard-wall AdS/QCD plus a scalar, plus U(Nf)L × U(Nf)R vectors
Erlich+Katz+son+Stephanov, DaRold+Pomarol
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The axion background

• The kinetic term of the axion is suppressed by 1/N2
c . (it is an angle in

the gauge theory, it is RR in string theory)

ä +

(
3Ȧ +

Ż(λ)

Z(λ)

)
ȧ = 0 → ȧ =

C e−3A

Z(λ)

It can be interpreted as the flow equation of the effective θ-angle.
• The full solution is

a(r) = θUV + C
∫ r

0
r
e−3A

Z(λ)
, C = 〈Tr[F ∧ F ]〉

• The vacuum energy is

E(θUV ) =
M3

2N2
c

∫
d5x

√
gZ(λ)(∂a)2 =

M3

2N2
c

Ca(r)
∣∣∣∣
r=r0

r=0

• Consistency requires to impose that a(r0) = 0. This determines C and

E(θUV ) = − M3

2N2
c

θ2
UV∫ r0

0
dr

e3AZ(λ)

, a(r) = θUV

∫ r0
r

dr
e3AZ(λ)∫ r0

0
dr

e3AZ(λ)
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A minimal solution to the strong CP problem?

• The IR effective θ-angle vanishes, independent of θUV !

• For Z(λ) ∼ λd as λ →∞

a(E) ∼ E
3
2(d−2) (logE)a as E → 0

• The presence of a discrete gapped 0+− spectrum implies that d > 2.

• We know that θ < 10−8 from electric dipole of the neutron dn. This

assumes that θ does not run.

• It is an interesting possibility that dn is very small because a(E) vanishes

fast in the IR.
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Non-supersymmetric backgrounds with abelian flavor branes

• D7 brane in deformed AdS5.

• Only abelian axial symmetry U(1)A realized geometrically as an isometry.

• A quark mass can be introduced, and a quark condensate can be calcu-

lated.

• U(1)A is spontaneously broken du to the embedding.

• Correct GOR relation

• Qualitatively correct η′ mass.

• No non-abelian flavor symmetry (due to N=2 Yukawas)
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The Sakai-Sugimoto model

• D4 on non-susy S1 plus D8 branes.

• The flavor symmetry is realized on world-volume

• Full U(Nf)L × U(Nf)R symmetry broken to U(Nf)V .

• Chiral symmetry breaking as brane-antibrane recombination.

• Quark constituent mass

• Qualitatively correct η′ mass

• No quark mass parameter, nor chiral condensate.
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AdS/QCD

• Crude model: AdS5 with a UV and IR cutoff.

• Addition of U(Nf)L × U(Nf)R vectors and a (Nf , N̄f) scalar T.

• Chiral symmetry broken by hand via IR boundary conditions.

• Vector meson dominance and GOR relation incorporated.

• Chiral condensate not determined.

• Gluon sector problematic.

Improved Holographic QCD, E. Kiritsis
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