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Introduction

• The main advantage of string theory is that it provides a perturbative

theory of quantum gravity together with other interactions.

• The theory also provides many classes of potentially realistic vacua ,

although some of the popular ones from the days of grand unification are

so far conspicuously absent.

• Classes of vacua appearing in perturbative string theory constructions

provided novel effective field theories and new ideas on the extension of the

SM.

• Most radical departures appear in orientifold vacua. Some novel features

of these vacua are:

♣ Product groups including U(N), Sp(N) and O(N) groups but no excep-

tional groups.

Anomalies and Z → γγ, E. Kiritsis

3



♠ A very restricted set of representations, namely bi-fundamentals, symmetric,

antisymmetric and adjoint representations. Spinor representations are conspicuously absent

(perturbatively). This is due to the fact that gauge degrees of freedom arise from Chan-

Paton factors.

♦ There are many U(1) gauge symmetries that are superficially anomalous.
Their anomalies are cancelled by the Green-Schwarz-Sagnotti mechanism using couplings

to various RR forms.

♠Although there are no exact global symmetries, approximate global sym-
metries are possible (with an arbitrary degree of accuracy) emerging as
broken anomalous U(1) gauge symmetries. This is due to the fact that at the

orientifold point of the moduli space, the associated Higgs potential is quartic and spon-

taneous breakdown of the associated global symmetry does not occur. There is always a

breaking due to instantons but this can be very small depending on the case.

♥ Unlike the heterotic string, orientifold vacua allow the possibility (modulo

hierarchy questions) that the string scale is far below the four-dimensional
Planck scale. In this case many features of the vacua may be accessible to experiments.

Anomalies and Z → γγ, E. Kiritsis

4



The content of this lecture

• In orientifold vacua, with several anomalous U(1)s, 4-d anomalies are

cancelled via appropriate couplings to axions.

• If some linear combinations of U(1)s are non-anomalous (as we expect

for the hypercharge in orientifold realizations of the SM) then, there are additional

Chern-Simons-like couplings necessary for the cancellation of the anomalies.

• Such couplings can be computed by a stringy one-loop computation or

inferred from anomaly cancellation.

• In the context of Low-Scale Orientifold Models (L.O.M.) the presence

of such couplings has dramatic experimental consequences. It induces cou-

plings Z → γγ and Z′ → γγ that may be dominant at LHC potentially

masking the one-loop Higgs → γγ signal.
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• The possible presence of such couplings was guessed earlier from anomaly

cancellation arguments in the context of brane configurations, relevant for

low scale orientifold compactifications.
Antoniadis, Kiritsis, Tomaras

• They were later rediscovered independently in the context of supergravity

albeit in a different context
Ferrara et al.
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Anomalies and anomalous U(1)s

We discuss the simplest example in 4d: A U(1) gauge symmetry that has a mixed triangle
anomaly
(e.g. ζ = Tr[QT aT a] 6= 0) with a non-abelian group.

The one-loop triangle diagram is non-zero

�U(1)

Gα

Gα

It induces a non-invariance to U(1) gauge transformations

Aµ → Aµ + ∂µε , δL1−loop = ε ζ Tr[G ∧G]

This is cancelled by a non-invariance of the classical (tree-level action).

Lclass ∼ − 1

4g2
F2

µν +
1

2
(∂µa+M Aµ)

2 +
ζ

M
a Tr[G ∧G]

The axion now transforms as

a → a−Mε , Lclass → Lclass − ζ ε Tr[G ∧G]
The anomaly is cancelled.
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Comments

♣ The U(1)3 anomaly associated to ζ̃ = Tr[Q3] 6= 0 comes from the diagram

�U(1)

U(1)

U(1)

It is cancelled by an extra term δL = ζ̃
M a F ∧ F

♠ The mixed gauge-gravitational anomaly associated to ζ̂ = Tr[Q] 6= 0 is coming from
the diagram

�U(1)

gµν

gµν

It is cancelled by the extra term δL = ζ̂
M a R ∧R

♦ The axion that mixes with the gauge boson is typically a bulk axion emerging from the
twisted RR sector. Rarely, it can be an untwisted RR axion as in the case of intersecting
branes on T 6.
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Comments

♥ The
1

2
(∂µa + M Aµ)

2

term in the action , mixing the U(1) gauge boson and the axion gives mass to the
anomalous gauge-boson and breaks the U(1) gauge symmetry.

♣ The ultraviolet mass M can be computed from a string one-loop diagram and is given
by an UV contact term.

Antoniadis, Kiritsis, Rizos
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If the gauge boson belongs to a D-brane, D, and the associated axion is localized on a

orbifold plane P, the mixing term scales as

M2 ∼ M2
s

VD∩P

VP−D∩P

M2
phys = g2M2 ∼ M2

s

VD−D∩PVP−D∩P

• The D-term-like potential is of the form

V ∼

s +

∑

i
qi|φi|2



2

where s is a bulk modulus. In SUSY Theories it is the chiral partner of the axion “eaten
up” by the anomalous U(1) gauge boson. If < s >= 0, the global U(1) symmetry remains
intact. This happens at the orientifold point Poppitz
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The presence of non-anomalous U(1)s

Let us now consider another simple example that apart from the standard
anomalous U(1) involves another ”non-anomalous” U(1) Yµ. By this we
mean:

Tr[Y ] = Tr[Y 3] = Tr[Y T aT a] = 0

However, the following mixed anomalies are non-zero (I ignore the gravitational

ones ∼ Tr[Q])

Tr[Q3] = c3 , T r[Q2Y ] = c2 , T r[QY 2] = c1 , T r[QT aT a] = ξ

Under a general gauge transformation

Aµ → Aµ + ∂µε , Yµ → Yµ + ∂µζ

δL1−loop = ε

[
c3
3

FA ∧ FA + c2 FA ∧ FY + c1 FY ∧ FY + ξ Tr[G ∧G]
]
+

+ζ
[
c2 FA ∧ FA + c1 FA ∧ FY

]
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To cancel it we write the general anomaly cancelling terms as before

Lclass ∼ − 1

4g2
(FA)2 − 1

4g2
Y

(FY )2 +
1

2
(∂µa + M Aµ)

2+

+D0 a Tr[G ∧G] + D1 a FA ∧ FA + D2 a FA ∧ FY + D3 a FY ∧ FY

• There is no mixing of Yµ with an axion (unbroken Y-symmetry)

• The action above is Y-gauge invariant and therefore not enough! We

must have Y-non-invariant terms.

LCS =
1

2
εµνρσ [D4 Yµ CS(A)νρσ −D5 Aµ CS(Y )νρσ]

=
[
D4 Y ∧A ∧ FA −D5 A ∧ Y ∧ FY

]

Now we may cancel the anomalies to obtain

D0 = ξ , D1 =
c3
3

, D2 = 2c2 , D3 = 2c1 , D4 = c2 , D5 = c1
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Comments

• There are no ambiguities. The anomalies uniquely fix the CS terms in

the effective action.

Can this situation arise in string theory?

• Anomalous U(1) symmetries are generic.

• Non-anomalous linear combinations are also abundant.

• Some non-anomalous linear combinations are massive
Ibanez, Marchesano, Rabadan

Antoniadis, Kiritsis, Rizos

Anastasopoulos

• Many non-anomalous linear combinations are massless and therefore re-

alize the previous setup. This is quite generic
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• An explicit example is the Z6 orientifold

§ This orbifold has D9 and D5 branes

§ The gauge group is U(6)×U(6)×U(4) from D9 branes and a similar copy

from D5 branes.

There are therefore 6 U(1)s.

§ Out of these, three are free of four-dimensional anomalies (mixed abelian-

non-abelian, abelian, mixed gravitational).

§ Out of the three non-anomalous U(1)s, only one is massless. It is like

the Yµ gauge symmetry. The other two have non-zero masses because of

uncancelled 6d anomalies. Their mass is ∼ V as V → 0
P. Anastasopoulos

§ Therefore this situation realizes the simple situation presented previously.
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The general case

We have N U(1)s Ai
µ.

L = −
∑

i

1

4g2
i

(F i)2 − 1

2

∑

I

(∂µaI +
∑

i

BI
i Ai

µ)
2+

+
∑

I,j,k

CIjkaI F j ∧ F k +
∑

Ia

DIaaI Tr[Ga ∧Ga] + EijkSijk

Sijk ≡
∫

εµνρσAi
µAj

νF k
ρσ , Sijk = −Sjik

Under U(1) gauge transformations

δSijk =
∫

εj F i ∧ F k − εi F j ∧ F k

This implies that EijkS
ijk with Eijk completely antisymmetric is gauge invariant. By

integrating by parts we obtain that the cyclic sum vanishes Sijk + Skij + Sjki = 0
Therefore if Eijk is completely antisymmetric, EijkS

ijk vanishes since it is a boundary term.

E ∼ ⊕
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We may therefore take

E ∼
Under gauge transformations

δL1−loop =
∑

i

εi
[
A tijkF j ∧ F k + B tiaTr[Ga ∧Ga]

]

tijk = Tr[QiQjQk] , tia = Tr[Qi(T
ATA)a]

where (T AT A)a is the quadratic Casimir of the non-abelian group Ga. The axions transform

as

aI → aI −BI
i εi

tijk is completely symmetric, CIjk is symmetric in jk. Cancelling the tree-level variation

against the one-loop anomaly we finally obtain

∑

I

BI
i CIjk + 2Eijk = A tijk ,

∑

I

BI
i DIa = B tia
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The stringy origin

The CS terms can be alternatively calculated from an appropriate one-loop

open amplitude
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(Minimal) Low string scale orientifold vacua (MLSO)

The previous discussion becomes interesting when the massive anomalous

U(1) gauge bosons are sufficiently close to experiment.

This happens when the string scale is low (∼ TeV)

Then, extra U(1) gauge bosons are the generic low energy signals of orien-

tifold models.
Anastasopoulos, Kiritsis

Ghilencea, Ibanez, Irges, Quevedo

Antoniadis, Kiritsis, Rizos, Tomaras

We take two of the six compact directions to be large. We wrap only the

U(1)’ brane around them (for the sake of getting light neutrinos)
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The charge assignments for the SM particles are parameterized as:

SM particle U(1)3 U(1)2 U(1) U(1)′

Q(3,2,+1
6) +1 w 0 0

uc(3̄,1,−2
3) −1 0 a1 a2

dc(3̄,1,+1
3) −1 0 b1 b2

L (1,2,−1
2) 0 +1 c1 c2

ec(1,1,+1) 0 0 d1 d2

Hu (1,2,+1
2) 0 −w c3 c4

Hd (1,2,−1
2) 0 −w c5 c6

νc(1,1,0) 0 0 d1 d2

18



♣ The charges are assigned using the principle that each end-point has

charges ±1

♣ Baryon number is a gauged symmetry namely, U(1)3

♣ We must require that Lepton number is also a good symmetry

♣ The hypercharge must be a linear combination of the 4 U(1) factors:

Y = k3Q3 + k2Q2 + k1Q1 + k′1Q′1

Since U(1)’ wraps large dimensions, to avoid a tiny αY we must take k′1 = 0.

After taking into account also the matching of the gauge coupling constants

there four possible configurations
Antoniadis, Kiritsis, Rizos, Tomaras
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Models mLSOA and mLSOA′

SM particle U(1)3 U(1)2 U(1) U(1)′

Q(3,2,+1
6) +1 −1 0 0

uc(3̄,1,−2
3) −1 0 −1 0

dc(3̄,1,+1
3) −1 0 0 -1

L (1,2,−1
2) 0 +1 0 -1

ec(1,1,+1) 0 0(2) 1(0) 1(0)

Hu (1,2,+1
2) 0 1 1 0

Hd (1,2,+1
2) 0 -1 0 -1

νc(1,1,0) 0 0 0 ±2

Y = −1

3
Q3 − 1

2
Q2 + Q1

Lepton Number L =
1

2
(Q3 + Q2 −Q1 −Q′

1)

Peccei−Quinn PQ = −1

2
(Q3 −Q2 − 3Q1 − 3Q′

1)
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Models mLSOB and mLSOB′

SM particle U(1)3 U(1)2 U(1) U(1)′

Q(3,2,+1
6) +1 −1 0 0

uc(3̄,1,−2
3) −1 0 0 1

dc(3̄,1,+1
3) −1 0 1 0

L (1,2,−1
2) 0 +1 0 -1

ec(1,1,+1) 0 0(2) 1(0) 1(0)

Hu (1,2,+1
2) 0 -1 0 -1

Hd (1,2,+1
2) 0 1 1 0

νc(1,1,0) 0 0 0 ±2

Y =
2

3
Q3 − 1

2
Q2 + Q1

Lepton Number L = −1

2
(Q3 −Q2 + Q1 + Q′

1)

Peccei−Quinn PQ =
1

2
(−Q3 + 3Q2 + Q1 + Q′

1)
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The anomalous U(1)s

In all four models above, we can label the fours U(1)s as:

Y= Hypercharge

B= Baryon Number

L= Lepton Number

PQ= Peccei-Quinn-like symmetry

They have a non-trivial anomaly structure as in the cases we described

earlier We will therefore have CS terms of the structure described

LCS = Eijk Ai ∧Aj ∧ F k , i, j, k ∈ (Y, B, L, PQ)
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EW Symmetry breaking

The two EW Higgses are charged under Y and PQ but not B and L.

When EW breaking happens, both Y and PQ are spontaneously broken.

• There must be PQ violating terms in the potential otherwise a massless Goldstone
boson (axion) remains with couplings that cannot be made small. This can be achieved
by moving off the orientifold point.

There are in general two origins for the mass of the various gauge bosons:

♣ The UV mass-matrix of the anomalous U(1)s coming from

∑

I
(∂µaI + BI

i Ai
µ)

2 , M2
ij =

∑

I
BI

i BI
j

It can be obtained from a string calculation. Its eigenvalues are typically a half– a tenth

of the string scale.

♠ The Higgs expectation value v ' 100− 200 GeV
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Z-Z’ mixing

After the Higgs mechanism, the three mass eigenstates, the photon A, the
Z0, and the PQ-related Z’-boson, are specific linear combinations of W3,
Y and PQ gauge bosons. Inversely




W3

Y

PQ


 =




c11 c12 c13

c21 c22 c23

c31 c32 c33







A

Z0

Z′




We have

c11, c12, c21, c22, c33 ∼ O(1) , c13, c23, c31, c32 ∼ O
(

MZ

Ms

)
< 10−4

The ρ-parameter, ρ =
M2

W
M2

Z sin θW
, is no more equal to the standard model

value
∆ρ

ρ0
∼ MZ

Ms
< 6× 10−4

and there are small modifications of the Z0 couplings to the fermions.
Ghilencea, Ibanez, Irges, Quevedo
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On the other hand the B and L gauge bosons are not affected by the Higgs

mechanism. They give two extra massive Z’ gauge bosons with masses

∼ Ms.

Consider now the various anomaly cancelling Chern-Simons-like terms.

PQ∧ Y ∧ dY −→





Z0 ∧A ∧ dA ⇒ Z0 → γγ ∼ O
(

MZ
Ms

)
,

A ∧ Z0 ∧ dZ0 ⇒ Z0 → Z0γ ∼ O
(

MZ
Ms

)
,

Z′ ∧A ∧ dA ⇒ Z′ → γγ ∼ O (1) ,

Z′ ∧ Z0 ∧ dZ0 ⇒ Z′ → Z0Z0 ∼ O (1) ,

Z′ ∧ Z0 ∧ dA ⇒ Z′ → Z0γ ∼ O (1)

Similarly for the other relevant CS term Y ∧ PQ ∧ dPQ.
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Signals at colliders

• The three massive Z′ associated to PQ, B, L have the standard Z′ related
couplings to the fermions.

• They can be seen in LHC if their masses are lower than 5 TeV in

pp → Z′ → `+`−. More detailed info can be obtained from the Forward-

Backward asymmetry for masses up to 2 TeV.
Dittmar, Nicollerat, Djouadi

• The current experimental limit Γ(Z0 → γγ)/M0
Z ≤ 5× 10−7 puts a (mild)

lower bound on Ms from the anomaly-induced Z0 → γγ vertex. It will be

interesting if this signal can be seen directly. (This vertex avoids the Landau-

Yamg theorem because it is not gauge invariant!)

• There is also a new vertex that will give two Z0s in the DY channel

pp → γ → Z0Z0 For LHC energies this of the same order of magnitude as

the pp → Z0 → γγ process.
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The Z′ gauge bosons have also non-standard anomaly
related couplings that distinguish them from other Z′
models.

• There are O(1) couplings that provide new production channels apart

from DY, namely

pp → Z′→ γγ , pp → Z′→ γZ0 , pp → Z′→ Z0Z0

• Moreover, the first signal is expected to be stronger than the Higgs → γγ

signal, that is one of the main channels for the discovery of the Higgs
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Conclusions

♣ Anomalous U(1) gauge bosons are a generic prediction of orientifold

vacua.

♣ If the string scale is low (few TeV region) such gauge bosons become

the tell-tale signals of such vacua.

♣ The charge structure of such vacua is essentially fixed. This fixes all the

minimal couplings of Z′s

♣ Anomaly related CS-like couplings produce new signals that distinguish

such models from any other Z’-model.

♣ Such signals may be visible in LHC.
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