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Abstract

We outline some of the main results derived recently on the represen-
tation theory of universal W-algebras, which arise in two dimensional field
theory as large NV limits of Wi (extended) conformal symmetries. Certain
connections with integrable systems of non-linear differential equations,
hyper-Kéhler geometries in four spacetime dimensions and the infinitely
long chain of hermitian matrix models are also discussed.

1. Introduction and Motivations

Despite all efforts made so far, our present understanding of string theory
is far from being complete and satisfactory. Some of the main problems seem to
be related to the lack of non-perturbative methods that could capture quantum
effects characteristic of strings and stimulate new directions in the development of
the theory. Recently, considerable progress was made in the context of 2-d quan-
tum gravity using the double scaling limit of hermitian (multi)-matrix models, [1].
The non-perturbative results obtained in this area turn out to be quite appropri-
ate for the description of toy string models in which the embedding (spacetime)
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dimension is less than one. In particular the double scaling limit of the (N-1)-
chain of matrix models (with N > 2) provides a non-perturbative formulation of
2-d quantum gravity coupled to conformal matter with ¢ < 1. The value of the
central charge is zero for N=2 (corresponding to pure gravity) and tends to one
as N—s oo. For the purposes of string theory it is mostly important to understand
the physics of infinitely long matrix chains, because in this case the embedding
space is one dimensional and the toy string model becomes more realistic, [2].
Although string theory might require more sophisticated non-perturbative tech-
niques for its solutions in spacetime dimensions D > 1, at this stage one hopes
to gain a modest insight into this complicated problem by considering the D =1
theory first.

The relations found in the context of matrix models between (N-1)-hermitian
chains and the generalized KdV hierarchy of integrable non-linear differential
equations of SL(N)-type, have suggested quite strongly an alternative description
of these models using Wn-gravity, [3, 4], where Wy is Zamolodchikov’s extended
conformal symmetry algebra generated by chiral fields with spin s =2,3,.--, N,
[5]. In fact, apart from the emergence of the SL(N)-KdV equations in these mod-
els, it has been shown, [6] that the loop equations can be written as highest weight
conditions plus an eigenvalue equation using Wy generators. From this point of
view, D = 1 string theory could be formulated in more algebraic terms using W,
the large N limit of the chiral operator algebras Wy. It is our purpose to present
an account of some recent results obtained on the structure and representation
theory of W, (often called Universal W-Algebra) and discuss the relevance of
this infinite dimensional algebra to the geometry of 4-d hyper-Kéahler manifolds.
A novel synthesis of the algebraic and geometrical ideas involved in the large
N limit of W-algebras may provide the key ingredients for a non-perturbative
formulation of D = 1 strings and eventually lead to their solution.

On the other hand, universal W-algebras (UWA) might be closely related
to. operator algebras of a certain class of higher dimensional quantum field the-
ories, whose operators could be Fourier decomposed into W-generators. From
an algebraic point of view this seems plausible because UWA are generated by
an infinite collection of conserved (chiral) fields in two dimensions. Moreover, as
we will see later, W, is a deformation of the algebra of area-preserving diffeo-
morphisms, a symmetry which is certainly not intrinsic to the 2-d geometry of
conformal field theories (CFT). The possibility to reach higher dimensions using
large N limit techniques in the theory of Wy chiral operator algebras has pro-
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vided one of the main driving forces in our investigation. More specifically, one
would like to construct some physically interesting quantum field theories in d > 2
which are exactly solvable by the bootstrap (operator algebra) approach (see for
instance [7, 8]). Of course, this problem is highly non-trivial because there is
very little known about the representation theory of the infinite dimensional al-
gebras involved. In fact, the situation is more subtle than that. In generic cases,
equal-time commutation relations do not make sense. This problem motivated
Wilson to introduce the operator product expansion (which always makes sense)
as an alternative to commutation relations, [7]. The results we describe here pro-
vide a way to construct unitary highest weight representations (HWR) of W.
In particular, all the unitary HWR of W,, that we obtain are the limits of the
corresponding HWR of Wy as N — oco. However, we do not maintain that the
representations obtained by such limiting procedures exhaust all possible unitary
HWR of W,,. In this regard, the steps we have taken should be considered as
the starting point for a more ambitious investigation in this area.

Next, having presented our main motivations and objectives for considering
the large N limit of Wi-algebras, we outline the organization of this paper. In
section 2 we review the notion of UWA together with their operator content and
geometric interpretation. In section 3 we study unitary HWR of W, (associated
with the Lie algebra sl(o0)), using complex free bosons in 2-d that generate
representations of affine U(1) current algebras. In section 4 we discuss physical
applications of W, in the theory of integrable non-linear differential equations,
self-dual Einstein equations and the multi-matrix models describing D = 1 string
theory. Finally, section 5 contains our conclusions.

2. The Notion of Universal W-Algebras

Let us consider first the infinite dimensional (double graded) algebra
Wi WX = ((8' = )m — (s = Im)WiAe~? 2.1

where both m,n € Z and s, s’ are integers > 2. This algebra is quite interesting
from the point point of view of 2-d CFT, because it contains the Virasoro algebra,

[Wa, Wol = (m —n)W3,, (2.2)
as a subalgebra, with central charge ¢ = 0. Moreover, we have the relations

Wr Wil =((s - hm )Wy, (2.3)
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which imply that the operator content of the algebra (2.1) can be identified as
follows: W are the Fourier components (labeled by n) of primary conformal
fields with weight s. Consequently, the algebra we are considering here, viewed
as a module of the (centerless) Virasoro algebra, decomposes into a direct sum
of 2-d higher spin fields. The restriction imposed on s, s > 2, is dictated from
physical considerations. Of course, we could also include generators with s = 1,
corresponding to U(1) currents, but we postpone this possibility for later.

It is clear that a quantum version of (2.1) which allows for central terms
in the commutation relations, qualifies as a chiral operator algebra in the context
of CFT. In the realm of 2-d CFT, this algebra would be associated with models
whose stress tensor T'(z) is identified with W?(z) and which possess an infinite
collection of additional conserved currents generated by the chiral fieldst W?(2)=
Yonez W2z~™"*. For this reason it is natural to view the quantum version of (2.1)
as a large N limit of Wy algebras, [9].

Recall that W-algebras are closed operator algebra extensions of the Vira-
soro algebra with additional higher spin generators and non-linear commutation
relations in general. The latter are typically of the form

W2, Wal= X Ci, .. (nym, ki kg, ks )W WP (2.4)

1808y
{si}{ki}
where ky + k2 + -+ + kp, = m + n, W2 = & (inclusion of the identity operator
that accounts for central terms) and s; + 82+ - - + 8, < s+ s’ — 2. The structure
constants C{’j:} may depend on the central charge ¢ of the Virasoro subalgebra
and they are calculable using the Jacobi identity constraint. However, explicit
derivation of their form requires extremely long calculations. Despite the compli-
cated nature of their commutation relations, W-algebras have provided a unifying
conceptual framework for classifying and solving rational CFT that describe 2-d
critical statistical models. Moreover, it was realized that W-algebras are closely
connected with simple Lie algebras which determine their operator content (ie.
the range of values for the spin of the generating fields W*(z)) and the anomalous
dimensions of the primary W-operators in representation theory. Also, the details
of their structure as well as various field theoretic realizations of the commuta-
tion relations (2.4) (Sugawara, Feigin-Fuks, Toda) can be derived essentially from
the corresponding current algebras using the method of Hamiltonian reduction.

We are not going to present any details here, because some of these issues have

#Since we are considering chiral algebras, no distinction will be made between weight (left
dimension) and spin of conformal fields.
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been discussed in this meeting by Graeme Segal, [10]. We point out only that
the connection between W-algebras and affine current algebras provides the most
systematic way to define W-symmetries and study their properties, without ever
computing explicitly the structure constants in (2.4).

The simplest example in the class of W-type symmetries is associated with
the A series in Cartan’s classification of simple Lie algebras. For An-1 ~ sl(N)
we have NV — 1 chiral fields {W?*(2)} (as many as the vertices of the corresponding
Dynkin diagram) with integer spin s = 2,3,---, N, which generate W(An_1),
Zamolodchikov’s Wy-algebra. Different types of operator algebras W(G) are as-
sociated with other simple Lie algebras G, but these cases (see for instance [11]
and references therein) will not be considered here at all. One of the practical
difficulties in deriving explicit forms for the commutation relations of Wy is that
for any given pair of spins 2 < 3,8’ < N, the structure constants C’::} are not
universal, in the sense that many of them depend explicitly on N. However,
taking a suitable limit in which N — oo, the structure of W-algebras simplifies
considerably and the commutation relations of the resulting infinite dimensional
symmetry (when appropriately defined) are determined only by universal con-
stants. This justifies the use of the term “universal W-algebra” for characterizing
Weo.

It has been established that the leading (highest spin) linear contribution
to the commutation rélations of Wy at large N is fully described by (2.1), [9].
This is interesting because the infinite dimensional algebra (2.1), which captures
the universal features of the higher spin transformations in two dimensions, has
a natural geometric interpretation as area preserving diffeomorphisms. Indeed, if
we consider a 2-d plane with (canonical) coordinates z,y, such that

{z,y}=1, (25)

the Poisson bracket algebra of the functions W2 = z"t*~1y*~1 coincides with
(2.1). Alternatively, in order to avoid singularities when z = 0, one may use the
smooth functions €™y*~! on a cylinder S* x R to represent the generators W2.

The complete structure of Wy can be described as a deformation of the
symmetry algebra (2.1). In particular, the results of ref. [9] imply that for any
given s and s, the commutation relations of the area preserving diffeomorphism
algebra and W, differ from each other by local functionals of the generating fields
with spin less than s 4 s’ — 2. Since both algebras satisfy the Jacobi identity (as-
sociativity) the deformation terms cannot be arbitrary; they are 2-cocycles of the
algebra (2.1) with non-trivial coefficients in general. The existence of consistent
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gauge interactions among higher spin fields with all integer values s > 2, imposes
physical restrictions on the form of the deformation terms that differentiate Weo
from the algebra of area preserving diffeomorphisms. It is natural to expect that
these terms are central or linear but not quadratic (or higher polynomial) in the
W-fields. However, their direct computation is highly non-trivial and the results
obtained so far using the Feigin-Fuks (free-field) realization of W-algebras, seem
to depend on the way that the value of the background charge cp behaves for
large N, [9, 12]. As a starting point, it is practically more advantageous to make
an ansitz for the form of the deformation terms and then try to justify them by
appealing to the representation theory of Wy algebras at large N. A two param-
eter deformation of the algebra (2.1) was constructed recently by Pope, Romans
and Shen (PRS), which allows for central terms in the commutation relations of
all higher spin fields, [13]. We adopt their result in the sequel and study (some)
of the unitary representations of W, from the point of view of 2-d CFT. In fact,
the constructions we will present next are motivated by the behavior of the Wx
series of minimal models in the limit N — oo. This way we will demonstrate
that the PRS algebra is identical to W, and obtain unitary HWR of it, in terms
of free bosons.

Finally, we point out that it is possible to extend W, to W}, by including
a U(1) field (with s = 1) in the algebra (2.1), [14]. Using W, and Wy, an
N=2 extended supersymmetric analog of W, has been constructed in ref. [15]. It
might be also interesting to investigate the large N limit of W-algebras associated
with other series of classical Lie algebras. However, we reserve the discussion of

these investigations to a future occasion.
3. Realization and Representations of W,

Next we introduce the linear PRS deformation of the commutation rela-
tions (2.1). For this purpose we need the following combinatorial expressions

ss’ 1 33’ arss’
gar (myn) = 2@ T N3 (m,n) (3.1)

where

- (- )k( k(= r—-—)k(—r)k
= kz—%k'("s'*' 2k(—~‘3' +k(s+s—2r—3)’ (3.2)

2r41

N () = 3 (-0 oo = 2 = 2l = k= s

[ = 1+ mlopgpr-k[s’ — 1 + nlk (3.3)
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and
(ak=ala+1)(a+2):---(a+k—-1), (3.4a)
[ek=a(a—1)(a—2)---(a—k+1) . (3.4b)
We also set (a)o=[a]o = 1 for all values of a. Then, the commutation relations of
the PRS algebra are

Wi, W1 = (s = Dm — (s = Dn)Weks ™ + ¢~y (m)bs,sbmmo+

+4°5" (m, n) W3t 4 ¢*g3” (m,n)Wata S + ... | (3.5)

m-+n
where the coeflicients of the central terms are
22e-3) g)(5 — 2)!
2s — 1)!1(2s — 3)!!

ca(m) = gm(m? — 1)(m® — 4) - (m? — (s - 1)) ( (3.6)

and the sequence of - - - terms in (3.5) terminates with W2, for s + s’ even and

m+n
with W3, for s + &' odd. The value of ¢ depends on the underlying theory,
while the second deformation parameter ¢ can be normalized to 1 by rescaling
the generators W2 by ¢°~2. From now on we choose to work with ¢ = 1 without
loss of generality.

We are in a position now to present our results on the representation
theory of the algebra (3.5). Our exposition follows closely that of ref. [16]. Let
us consider first a free complex scalar field in 2-d with two-point function given
by,

(B(2)8(w) = (B(2)d(w) =0, ($Fw) = —log(z—w) . (3.7)

The standard stress tensor of the theory
W3(z) = T(z) = —0,¢0.é (3.8)

has the operator product expansion (OPE)
1 2T (w) 0, T (w)

(z-w)t " (z-w)? (z-w)’

T(2)T(w) = (3.9)

which leads to the Virasoro algebra with central charge ¢ = 2. It is possible to
extend this representation to the full PRS algebra by introducing the ansitz

W(2) = B(s) S (—1)* ALoRe0:*3 | (3.10)
k=1

for all s > 2. Normal orderings are implicitly assumed throughout this paper.
The prescription for choosing appropriate numerical coefficients B(s) and A$ will
be given shortly.
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We point out that the ansitz (3.10) is motivated by the linear structure of
the commutation relations (3.5), which seem to require only bilinear expressions
in the U(1)®U(1) currents 8¢, 8¢ (and their derivatives) for a bosonic realization
of all higher spin generators. A proper field theoretic motivation can be obtained
by viewing Wy ( and its large N limit, W, ) as the symmetry algebra of the
parafermion theory. The dimension of the ¥4, parafermions is 1 for N = co and
they can be identified as ; = i0¢ and _; = 4. Since we know that all W-
generators appear in the operator product of ¢; with ¢, it is not difficult to see
that only terms of the form (3.10) can appear in this OPE. Thus, if we manage
to find a basis which reproduces the PRS algebra, we will prove automatically
that the PRS algebra and W, are identical.

With these explanations in mind we proceed to calculate the coefficients
Az. Notice that there are no centrals terms in eq. ( 3.5) for s # &', which means
that W* are quasiprimary operators. Since we assume that the W-symmetry is
unbroken, ie. (W?(2)) = 0 for all s, we have

63,3’

(z —w)+s

(W (2)W* (w)) ~ (3.11)
This equation alone is sufficient to determine the form of A} uniquely up to an

overall normalization constant, which we denote by B(s) in (3.10). The solution

" () () 612

and enjoys the property A = A2_,. We also reach agreement with the standard

normalization of the central terms in (3.6) provided that

243!

(3.13)
We point out that the ansatz (3.10) with the choices (3.12) and (3.13) for its
numerical coefficients, yields an infinite tower of quasiprimary conformal fields
with integer spin s > 2. These fields are not necessarily primary; in fact, only
W3(z) is primary, as can be readily verified.8 Introducing Fourier modes, it is
possible to show (with the help of symbolic manipulation) that the OPE of the
operators W*(z) given by (3.10), reproduces not only the central terms but the
entire PRS algebra (3.5). For further details we refer the reader to ref. [16].

$0Of course we can define primary fields for all 5 > 3 at the cost of the algebra becoming
non-linear.



Universal W-Algebras... 2879

It is obvious from the preceding that W, is realized as a subalgebra in
the enveloping algebra of the U(1) ® U(1) current algebra generated by :0¢ and
i86. Consequently, we can use highest weight (hw) representations of the latter
to construct representations of the W, algebra with ¢ = 2. A state |Q) will be a
hw state of W, if the following conditions are satisfied:

WisolQ) =0, WglQ) = Q.|Q) - (3.14)

In the quasiprimary basis (3.10), the standard hermiticity condition of the U{1)®
U(1) current algebra translates into (W,‘:)Jr = W2,. Thus, any representation
that we obtain from decomposing a unitary hw representation of the U(1) ® U(1)
current algebra is automatically a unitary representation of the W, algebra. To
be more precise, let us consider a hw representation of the U(1) ® U(1) current
algebra generated from the SL(2,C) invariant vacuum, |0) by the vertex operator

Vaa = exp(iad + iag) . (3.15)

It is straightforward to show that V, 5(0)|0) = |Q) is a hw state of the W,,, algebra,

with charges
L 2 (e = Dl(s — )
Q,’ = Ial [1+(_1) ] (23__3)"

The rest of the representation is generated from |@Q) by acting with the W-lowering

(3.16)

operators. V;; gives rise to a unitary hw representation iff ¢* = a.

The (reduced) character of W-representations with ¢ = 2 can be computed
by taking a suitable limit of the parafermionic characters. The answer turns out
to be, [16]

() — Lo—o& qlalz_ﬁ-
Xa(q) = Trlg~ %) = 2. 0=
and coincides with the U(1) ® U(1) character. This proves directly that any
U(1) ® U(1) representation decomposes into a single W, representation.Y In
fact, these are all the unitary irreducible HWR of the W, algebra with ¢ = 2,
which arise as large N limits of CFT representations.

(3.17)

A few remarks are in order concerning the theory of Zy parafermions in
the limit N — co. Recall that the series of minimal models associated with the
Wi algebra have central charges given by, [5]

B N(N +1)
(N+p)(N+p+1)

¥From (3.16) it is also obvious that these Weo representations are highly degenerate, as
expected.

&= (V-1

5 p=1,2,--- . (3.18)
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These theories can be identified with the coset models
SU(N), ® SU(N),

3.19
SUMN ) (319
or equivalently with the Grassmannian coset models,
SU(p+ 1)~
G =, 3.20
) = UGN e U (320

We adopt the second picture here in order to avoid unnecessary complications
dealing with the large N limit of SU(N). The Zy parafermions, (%), occur in
the simplest model of the series (3.18), p=1 and have central charge ¢}’ = 2%—3,
[17]. As such they generalize ordinary Weyl fermions in 2-d for N > 2. However,
the spin of the parafermions v, is fractional in general, given by Ax = k(N—k)/N
for 0 < k < N — 1. Local fields are obtained only for N =2 or N — o0. In the
first case the chiral algebra is generated by W5, which is the Virasoro algebra and
the corresponding CFT is the Ising model. In the second case we have W, and an
infinite collection of parafermion fields ¢ (and their conjugates 1) with integer
spin, Ay = k € Z*. The fields %, and ¢;" are identified with the U(1) currents
i0¢ and 10¢ respectively, which parametrize the coset Gn(1) = SU(2)n/U(1)
in the limit N — oo. It is trivial to see that in that limit the SU(2)n current
algebra “flattens” becoming an abelian U(1)? algebra. Going to the coset, one
of the U(1) currents is factored out and we are left with two U(1) currents only.
The rest of the Z,, parafermions are given by 1 ~ (8¢)*, z/)I ~ (0¢)* and in
this case, the parafermion algebra coincides with the enveloping algebra of the
U(1) @ U(1) current algebra. This argument provides a solid justification for the

bosonic realization of W,, we presented earlier.

More generally, unitary HWR of W, with central charge ¢ = 2p = 2,4, - --
will be generated from the Grassmannian coset models Gn(p), as N — co. As
before, and for all values of p, the SU(p)ny current algebra abelianizes at N =
00, becoming a U(1)”~! current algebra. Therefore, the Grassmannian coset
models Gu,(p) are parametrized by U(1)?" affine currents which can be identified
with a collection of p independent free complex scalar fields, 8¢* and 8¢', (i =
1,2,---,p). Then, W, is a subalgebra of the parafermionic algebra of these
models, or equivalently it is a subalgebra of the enveloping algebra of the U(1)%
current algebra. It is immediate and obvious (thanks to the linear structure of

the commutation relations of the PRS algebra) that the tower of quasiprimary
fields

We(z) = B Y S (1) Ao gior+a (3.21)

i=1 k=1
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with s > 2 and B(s), A} given by (3.12) and (3.13), provides a realization of
W, with ¢ = 2p. In analogy with the simplest case p = 1, U(1)* hw unitary
irreducible representations decompose into representations of the W, algebra
with ¢ = 2p. In particular, hw states generated by vertex operators are also
W hw states. However, for p > 1 a U(1)? hw representation decomposes into
more than one W, representations. The precise decomposition law, although
straightforward to derive in principle, is rather involved and we do not have a
concrete answer at the moment.

4. Diverse Applications or a Synthesis of Ideas?

The need to investigate the structure of Wy algebras as N — oo arises not
only in problems of 2-d CFT, but also in other areas of mathematical physics. In
particular, the KP hierarchy of integrable non-linear differential equations, the
continual Toda field equations, the theory of stationary gravitational instantons
and the infinitely long chain of hermitian matrix models, all seem to be related
(in one way or another) in this limit. Although many questions raised in our
discussion will remain unanswered, the sole purpose of this section is to show
that the concept of UWA could be useful for bringing together some (otherwise
unrelated) ideas in the formulation of D = 1 string theory.

4.1 Non-linear differential equations: Let us consider first the KP

hierarchy of integrable non-linear differential equations (see for instance [18] and
references therein) described by the evolution

2~ (@l (a.)

where @ is a formal pseudo-differential operator
Q=0 +q(zt)0 "+ quz,t)0;2 + - -+ (4.2)

and (Q")+ denotes the purely differential part of Q™. Then, for every fixed positive
integer r, we obtain a system of infinitely many coupled non-linear equations of
the form

9g;
ot,
where F,-(’") are certain polynomials in the g-variables and their derivatives deter-
mined by eq. (4.1). It is known that all KdV systems of SL(N)-type hierarchies
(whose members are parametrized by r) are special cases of (4.1). For each value

=Fq,q.q",--); i€ 2%, (4.3)
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of r, their embedding in the KP hierarchy is described simply by the requirement
that Q is the (unique) N-th root of a differential operator Ly,

Q¥ =Ly =08Y +un_a(2)8V 2+ - +uo(2) . (4.4)

Then, the equations (4.3) reduce to a system of N-1 independent differential
equations and the rest are functionally related to them.

At this point recall that the Hamiltonian structure of the KdV systems
can be formulated using the commutation relations of the Gelfand-Dickey alge-
bra GD(SL(N)). For N = 2, this reduces to the standard description of the
KdV equations in terms of the Virasoro algebra. On the other hand, it has been
established that Gelfand-Dickey algebras provide a classical Hamiltonian frame-
work for all Wy symmetry algebras with N > 2 (for details see Segal’s talk,
[10] and references therein). Therefore, it is natural to view the full unrestricted
KP hierarchy as a universal KdV system associated with the large N limit of
Wy algebras. This observation alone suggests an interesting reformulation of the
problem (4.1) and its integrability properties. In fact, we suspect that there is
a deeper connection between the (classical and/or quantum) KP hierarchy and
the algebra of area preserving diffeomorphisms, but the precise details need to be
worked out.

Another interesting system of integrable non-linear differential equations
is provided by the Toda theory, (see [19, 20] and references therein). In this case
we have a collection of scalar fields {¢i(z,2) ;¢ = 1,2,---,N — 1}, which are
coupled through the Cartan matrix K of a simple Lie algebra (here it is taken to
be sl(/N)) and satisfy the following system of equations

N-1
6,6;¢,~ = exrp (Z K,'j(ﬁj) . (45)
i=t

It is known that the Toda theory (4.5) possesses a number of (mutually inde-
pendent) conserved currents {W?(z) ; s = 2,3,---, N}, which generate the chiral
operator algebra Wy, [20], provided that the fields ¢;(z,2) satisfy the equal z
commutation relations

[04i(2,2),0¢;(w, 2)] = (K™1);;6'(z — w) . (4.6)

In the limit N — oo, the Cartan matrix K of s/(N) becomes infinite dimensional
and it is appropriate to replace it with a distribution K (t—t) = —§"(t—t'), where
t is a continuous variable which labels the roots of sl(co). Introducing a “master”
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field ®(z, Z,t), it is straightforward to show that in this limit the associated system

of Toda field equations assumes the form of a non-linear differential equation

in three dimensions (z, Z,t). Differentiating twice with respect to ¢ and letting
= —0?®, we obtain

0:0:V(z,z,t) + Y™ =0 . (4.7)

In this approach the large N limit of sl(V) algebras is treated as a continual
algebra, in the sense that the corresponding set of roots becomes continuous,
[21], rather than an infinitely long discrete chain of vertices, [22]. It is also
quite amusing that sl(oco) can be identified with the algebra of area preserving
diffeomorphisms of the torus, [21, 23], which a priori has nothing to do with the
relation of W, to the algebra of area preserving diffeomorphisms (2.1) we have
been discussing so far. It is natural to expect that (at least formally) there is
an infinite collection of chiral currents associated with the continual Toda field
equations (4.7), which quantum mechanically satisfy the commutation relations of
Weo. Although further work is required to establish and understand the meaning
of such results, the 3-d interpretation of si(/N) Toda field equations at large N
is quite curious and suggestive. Also, it is interesting to note that like in the
theory of Zy parafermions the values N = 2 and oo are singled out uniquely by
the requirement of locality, si(NV) Toda field theories have a natural geometric
interpretation only for NV = 2 or co. The first case corresponds to the Liouville
equation, which is the condition satisfied by the conformal factor ¢(z, %) of a 2-d
metric ds? = e®dzdz with constant negative curvature. The importance of the
second case was appreciated only more recently in the context of hyper-Kahler
geometry in four dimensions [9, 21, 24, 25].

4.2. Self-dual Einstein equations: Consider a metric in 4-d Euclidean
space with local coordinates (z,y,t,7) which is stationary with respect to 7 and
depends on a single scalar function ¥(z,y,t) in the following fashion:

ds® = U ,[e¥(dz? + dy?) + dt*] + E’I—[e(ﬁl,,dy -V, dz) + dr)?. (4.8)
ot

For convenience we introduce the variables z = (z +1y)/2, Z = (z —1y)/2 and let

€ = x1. Then, the self-duality condition for the Riemann curvature tensor,

€
Rn)‘u.u = '2'\/§€uupaRn)\pa ) (49)

is equivalent to the continual Toda field equation (4.7). This result follows by
straightforward calculation and establishes a link between the large N limit of
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Toda theories and hyper-Kahler geometry in 4-d. Of course, the regularity con-
dition for the metric (4.8), detg= (¥ ,e¥)? # 0, is assumed implicitly.

Self-dual metrics in four dimensions are quite important because they im-
ply Ricci flatness and hyper-Kahler structure. They also play a role in Euclidean
quantum gravity, because they describe gravitational instanton solutions to the
vacuum Einstein equations (see [26] for a review). The most obvious solution of
eq. (4.7), which is non-trivial and physically interesting for the problem (4.8), is
given by

log =& s g2 (4.10)
San+=)e " = '

It can be recognized almost immediately that this solution describes the two-

W(z,%,t) =

center Eguchi-Hanson instanton, which is topologically the cotangent bundle of
the sphere, T*S?%. It would be very interesting to find other regular solutions of
eq. (4.7) and identify the resulting 4-d Euclidean geometries. We point out that
the multi-center generalization of the Eguchi-Hanson instanton due to Gibbons
and Hawking, is of a different nature and does not fit our purposes. In their
work, the metric also depends on a scalar function V(%) = V(z1,z,,3), but
the self-duality condition (4.9) is equivalent to the Laplace equation in F-space.
However, it is interesting to note that there exist 4-d Kahler metrics which are
Ricci scalar flat (but not necessarily Ricci flat) and interpolate between the hyper-
Kahler class (4.8) and that of Gibbons and Hawking, [27]. We think that a better
understanding of these issues will clarify further the role of sl(oo)-Toda theory in
geometry.

Despite their limitations, the results we have presented so far are quite
suggestive. Since W, is a quantum deformation of the algebra (2.1), it is rea-
sonable to expect that area preserving diffeomorphisms are intimately related to
self-dual Einstein equations in four dimensions. Such relations might appear to
be somewhat limited to the continual Toda equation (4.7), because the metrics we
are considering here are rather special and admit a Killing symmetry. However,
our observation has more general value and fits nicely with Penrose’s theory of
non-linear gravitons, [28]. The twistor construction of self-dual Einstein spaces
shows quite explicitly that area preserving diffeomorphisms are fundamental in
the general theory of hyper-Kahler 4-manifolds. Further details can be found in
Penrose’s original work and in ref. [25, 29]. Recently, a link has also been found
between curved twistor theory and N=2 string theory in 4-d with space-time
signature (2,2), [30]. In fact, this particular string theory defines a consistent
quantum theory whose classical analog is self-dual gravity. Clearly, it would be
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very interesting to study the quantum analog of classical symmetries associated
with self-dual Einstein equations. It remains to be seen whether the deformed
structure described by W, is a vital symmetry in the quantum version of Eu-
clidean (or (2,2)) gravity.

4.3 Multi-matrix models: In the remaining of this section we will adopt
some ideas which were introduced recently in connection with the double scaling
limit of (N — 1)-matrix models and Wy algebras. Witten has conjectured that
topological Wy gravity is equivalent to the (N — 1)-matrix model. Wy-gravity is
defined in the context of topological field theories, using the moduli space of flat
SL(N, R) connections

Mp = Hom(my(Z), SL(N, R))/SL(N, R) (4.11)

over a Riemann surface ¥, [4]. Part of his motivation was provided by the exist-
ing relations between hermitian (multi)-matrix models and the generalized KdV
hierarchies of non-linear differential equations of sl(/N)-type. Subsequently, it has
been shown that the loop equations of multi-matrix models admit a group theo-
retic interpretation as highest weight conditions for Wy, [6]. In this framework,
the large N limit of W-algebras, W, arises when the embedding space of the
associated string model becomes one-dimensional.

The complex dimension of the moduli space My is (g — 1)dim sl(N)
(for genus g > 2) and has a definite meaning in the BRST formulation of
Wn-symmetries, [31]. Recall that for each algebra generator W?(z) (with s =
2,3,---,N), we introduce a ghost ¢;_, and its conjugate field b° with scaling di-
mensions 1 — s and s respectively. Then, the Riemann-Roch theorem states that
on a genus g Riemann surface,

(# of zero modes of b*) — (# of zero modes of ¢;_,) = (g—1)(2s—1) . (4.12)

Summing up the contribution in (4.12) from all spins, we find that the net number
of b, ¢ zero modes (ie. moduli) for the Wy algebra is (g— 1)(N? — 1) which is pre-
cisely the dimension of M. This counting provides a field theoretic justification
for associating the moduli spaces (4.11) with W-symmetries.

The geometric interpretation of the moduli spaces My is rather obscure
for N > 3, because higher order differentials (cubic, etc.) are not related to
any known deformations in the classical theory of Riemann surfaces. Only for
N = 2 we obtain the Teichmiiller space which describes the inequivalent complex

structures on ¥. However, the situation becomes rather interesting as N — oc.
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Witten and Hitchin have argued independently, [4, 32] that M, can be regarded
as the moduli space of complex structures on T*%. It is intriguing that the
same spaces have been conjectured to provide a consistent background for the
propagation of N = 2 strings, [30]. Once again it is interesting to notice that the
values N = 2 and N = oo, which correspond to the Virasoro and W, algebras
respectively, have a special meaning in geometry. This should be compared with
our previous result in Toda field theory, which also suggests that a W, structure
in two dimensions has a natural geometric interpretation in four dimensions. We
think that there is a direct link between the symplectic structure of the moduli
spaces (4.11), [33) and sl(N)-Toda theory for all N > 2, which is party responsible
for these analogies. Work in this direction is in progress with D. J. Smit.

In any case, the topological field theory description of multi-matrix models
in terms of Wy-gravity, provides an alternative framework for studying (toy)
string theories in less than one dimensions non-perturbatively. For finite N,
the embedding space is discrete and its points correspond to the vertices of the
Dynkin diagram of sl(N). However, as N — 00, the model becomes a D = 1
string theory and for this purpose it is more convenient to think of sl(co) as a
continual algebra, whose root system is a smooth 1-d manifold. In this limit, the
KP hierarchy provides (at least formally) a universal KdV system of non-linear
differential equations for the model. However, the string equation is ill defined
for an infinitely long chain of matrices and further work is required before this
program is brought to completion. In view of Witten’s suggestion, we think
that the geometric interpretation of W, structures should be taken into account
seriously in search of a solution.

5. Conclusions

The complete structure of W, is described as a linear deformation of the
area preserving diffeomorphism algebra, which also admits central terms in the
(quantum) commutation relations of all higher spin fields. Using the theory of
Z parafermions, we have shown that the structure suggested by Pope, Romans
and Shen is in fact identical to W,. As a byproduct, we derived all unitary
irreducible hw representations of this algebra, which arise as smooth limits of
CFT representations at large N. However, we do not know whether the list is
complete. It would very interesting to find field theoretic representations of W,
which are naturally related to physical models in higher dimensions. In this case,
We would have a direct interpretation in terms of operator algebras of (possibly



Universal W-Algebras ... 2887

conformal) quantum field theories in d > 2.

In ref. [16] we also introduced W2 as a U(p)-matrix generalization of the
universal algebra W,,. Its commutation relations were obtained in closed form
for all values of p and W, was identified with the U(1) (trace) part of W2. It
turns out that the large p limit of W2 is associated with the algebra of symplectic
diffeomorphisms in four dimensions. For this reason, W deserves a thorough
study.

Finally, the action of W.-gravity, as formulated in [34], provides a mas-
ter theory which yields by truncation all Wy-gravity theories. We think that
more work on this subject will clarify further the role of universal W-algebras in
quantum field theory. Also, the relations between W, and the theory of inte-
grable non-linear differential equations, in particular self-dual Einstein equations
in 4-d, suggest that there are some very interesting geometrical structures under-
lying the non-perturbative solution of D = 1 string theory. These problems pose
challenging questions which we hope to address elsewhere.
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