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iiiABSTRACTIn this work two major topis in Conformal Field Theory are disussed. First a detailedinvestigation of N=2 Superonformal theories is presented. The struture of the representationsof the N=2 superonformal algebras is investigated and the harater formulae are alulated.The general struture of N=2 superonformal theories is eluidated and the operator algebra ofthe minimal models is derived. The �rst minimal system is disussed in more detail. Seond,appliations of the onformal tehniques are studied in the Ashkin-Teller model. The  = 1 aswell as the  = 12 ritial lines are disussed in detail.
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1INTRODUCTIONIn the past �ve years there was a renewed interest in string theories as andidates for auni�ed theory of nature, [1℄. This ame as no surprise in an era where the theoretial ideas ofthe subjet seemed to be inadequate for further advanement. On the other hand string theoryseemed to provide new solutions to problems we did not know how to attak before. It remainsto be seen if string theory is the theory that desribes Nature. But even if the answer is negativeit is ertainly true that now we understand Quantum Field Theory muh better than we did�ve years ago.The onnetion between string theories and two-dimensional ritial models is well known.Any two-dimensional ritial model with the appropriate loal symmetry and entral harge isa lassial ground state for string theory. The fat above was responsible for the great interestin 2-d ritial models in reent years and the emergene of new ideas and tehniques in order tolassify and solve them. In the light of string theory the lassi�ation problem is quite important.Knowing all onformal �eld theories (CFT) in 2-d is equivalent, as mentioned above, to knowingthe lassial vaua of string theories. Of ourse this knowledge is not the whole story sine itis expeted that only a sublass of them will be stable under quantum utuations. At thepresent status of string theory our knowledge of taking aount of quantum utuations in a�eld theoreti way is very limited, and as far as our alulational tools are onerned we arein an even worse situation. It is oneivable though that a knowledge of all string vaua willenable us to see if string theory has anything to do with the real world. Beause imagine thatin our omplete list of lassial string vaua we �nd none with a spetrum that resembles thereal world. Then it is very hard to see how one an reonile the theory with basi experimentalfats (spetrum). In the opposite ase one will be pushed to investigate more losely vaua withproperties in aord with Nature.From the view-point of ondensed matter physis the problems of 2-d ritial phenomenadisussed above are fundamental. There are two reasons for one being interested in the ritialbehaviour of 2-d models. First, there are a lot of situations in real life where the system understudy is a 2-d one, (e.g. surfae behaviour). Seond it is well known by now that 2-d ritialphenomena possess the rihest struture ompared with higher dimensional ones.In the last �ve years there emerged a new approah to 2-d ritial phenomena whih provedto be very powerful and illuminating at the same time. We will refer to this approah with thename Conformal Field Theory. It was introdued by Belavin, Polyakov and Zamolodhikov, [2℄,in an attempt to introdue both as a priniple and as a tool the group theoreti struture ofonformal symmetry. The main hope whih beomes more plausible as time goes by is the useof the representation theory of the onformal group and its extensions as well as elements of 2-dgeometry as tools to lassify and solve all universality lasses of ritial behaviour in 2-d.Sine its introdution, CFT has advaned onsiderably and has been reognized as a valuabletool both in string theory and in ritial phenomena. Now more than ever it seems that alassi�ation of 2-d CFTs is not a hopelessly diÆult task. It also gave the biggest olletion ofexatly solvable 2-d models that we know so far.



2In this thesis I will try to present my own ontribution to the subjet. In hapter 1 the basipriniples and tools of CFT are presented in a way whih (hopefully) will make the rest moreintelligible to the non-expert. In hapter 2 various aspets of N=2 superonformal symmetryare disussed as well as its relevane for realisti string ompati�ation. Chapter 3 ontainssome appliations to ondensed matter systems, in partiular the Askin-Teller model. Someideas pertaining on non-standard bosonization tehniques are also presented.This thesis is based on both published and unpublished work of the author. The publishedwork on the subjet has been presented in referenes [3,4,5,6,7,8℄.



3CHAPTER 1Introdution to Conformal Field Theory1.1 Conformal Symmetry and Ward IdentitiesConformal symmetry was introdued in quantum �eld theory inspired by ertain salingideas in the theory of seond order phase transitions, [9℄. The basi hypothesis was based onthe idea that the physis of the systems at the ritial point was invariant under salings ofthe system. In terms of oordinates, �a ! ��a. Suh a transformation is a symmetry if thestress-energy tensor is traeless, T aa (�) = 0 (1:1:1)If the ondition above is true then one an show that the system not only possesses the aforemen-tioned saling symmetry but it is also invariant under oordinate transformations, �a ! �a(�),whih have the property that the metri tensor transforms as,gab ! ��a0��a ��b0��b ga0b0 = �(�)gab (1:1:2)Suh transformations onstitute the onformal group. The ondition for an in�nitesimal o-ordinate transformation of the form �a ! �a + fa(�) to have the property (2) turns out tobe, �afb + �bfa = 2dÆab�f (1:1:3)where d is the dimension of spae-time.In the generi ase, d 6= 2, only a �nite number of solutions exist for (1.1.3). This an beeasily seen by rewriting (1.1.3) in the more suggestive form,(Æab + (d � 2)�a�b)�f = 0 (1:1:4)whih implies that for d 6= 2 f must be at most quadrati in �a. Thus the onformal groupin d > 2 dimensions is �nite dimensional onsisting of translations, rotations, dilatations andspeial onformal transformations. But in d = 2 equation (1.1.3) beomes the Cauhy-Riemannequations. Thus any meromorphi funtion is a solution. The onformal group in this ase isin�nite dimensional. It is generated by the omponents of the stress energy tensor.



4From now on we restrit ourselves to the two-dimensional ase. We will also work in Eu-lidean spae where both statistial mehanis and quantum �eld theory are well de�ned. Alongwith onformal invariane one needs to assume a strong version of the Operator Produt Ex-pansion (OPE): Assume that there exists an in�nite set of loal �elds �i(�).Then the set ofoperators �i(0) is assumed to be omplete in the following sense. The set [�i℄ ontains theidentity operator I as well as all oordinate derivatives of loal �elds. The ompleteness of theset [�i℄ means that any state an be generated by the linear ation of these operators. This isequivalent to the OPE: �i(�)�j(0) =Xk Ckij(�)�k(0) (1:1:5)The struture onstants Ckij(�) are -number funtions whih are single valued. The previousrelations are understood as an exat expansion of the orrelation funtions,h�i1(�1)�i2(�2) � � � �in(�n)i =Xk Cki1i2(�1 � �2)h�k(�2) � � � �in(�n)i (1:1:6)whih onverges in some �nite domain of �, dependent on the positions �i. The most restritiverequirement is the assoiativity of the operator algebra (1.1.5). This gives an in�nite number ofequations for the struture funtions Ckij(�). Conformal symmetry �xes the form of the struturefuntions up to numerial parameters. Then these equations should determine these parameters.For d > 2 the system is too ompliated due to the diÆulty of lassifying the �elds partiipatingin the algebra. In d = 2 the situation is tratable. The onformal group is in�nite dimensionaland the operators an be lassi�ed suessfully by the irreduible representations of the group.In order to desribe the group we will hoose omplex oordinates z and �z (in Minkowskispae they orrespond to light one oordinates).z � �1 + i�2 ; �z � �1 � i�2 (1:1:7)From now on we will restrit our attention to the at Eulidean spae. The results however anbe generalized to the most general ase and we will have to say more in subsequent hapters.The metri is written as, ds2 = dzd�z. In these oordinates a onformal transformation beomesan analyti transformation, z ! �(z) ; �z ! ��(�z) (1:1:8)where �, �� are arbitrary analyti funtions. It will be useful to onsider the transformations(1.1.8) as independent and thus the onformal group G will be the diret produt, G = � 
 ��,where � (��) is the group of analyti (anti-analyti) transformations.An in�nitesimal transformation of the group � is, z ! z + �(z), where �(z) is an arbitraryin�nitesimal meromorphi funtion. If we represent it in terms of its Laurent series �(z) =



5P1�1 �nzn+1 then the Lie algebra of � oinides with the algebra of di�erential operators ln =zn+1�z. The ommutation relations are,[ln; lm℄ = (n�m)lm+n (1:1:9)The generators l�1,, l0, l1 generate a subalgebra sl(2; C). The orresponding subgroup onsistsof the projetive transformations,z ! � = az + bz + d ; ad� b = 1 (1:1:10)An important operator in a theory is the stress-energy tensor. It is de�ned as the variationof the ation with respet to the metri, (whenever there exists an ation), T ab � ÆSÆgab .Let's onsider an arbitrary orrelation funtion of the form,hXi = h�i1(�1) � � ��in(�n)i (1:1:11)The �elds in the orrelation funtion are loal �elds. Let's now perform a oordinate transfor-mation, �a ! �a + �a(�). We an derive the appropriate Ward identity this way whih reads,nXk=1h�i1(�1) � � � Æ��ik(�k) � � ��in(�n)i+ Z d2��a�b(�)hT ab(�)Xi = 0 (1:1:12)where Æ��i denotes the variation of the loal �eld under the oordinate transformation. Aorollary of (1.1.12) is the onservation of the stress-energy tensor,�ahT ab(�)Xi = 0 (1:1:13)everywhere exept at �i. In a onformally invariant theory the trae of the stress-energy tensorvanishes. Combining relations (1.1.1) and (1.1.13) we obtain,��zhT (�)Xi = 0 ; �zh �T (�)Xi = 0 (1:1:14)where, T � T11 � T22 + 2iT12 ; �T � T11 � T22 � 2iT12 (1:1:15)In view of (1.1.14) we an write T = T (z), �T = �T (�z). The orrelation funtion hT (z)Xi is ameromorphi funtion of z whih is single valued and regular everywhere exept at the points



6zi where it has poles. The Ward identity (1.1.12) for a holomorphi oordinate transformationbeomes, hÆ�Xi = IC d�hT (�)Xi (1:1:16)where the ontour C enloses all singularities zi of the orrelation funtion. Thus we an writethe following relation for the variation of a loal �eld under a holomorphi transformationz ! z + �(z), Æ��i(z; �z) = ICi d��(�)T (�)�i(z; �z) (1:1:17)The same arguments are valid for anti-holomorphi transformations.The transformation properties of T (z) are important sine they are related to the realizationof the algebra of onformal transformations in the quantum theory. The following theorem isdue to Mak and L�usher?, [10℄:Theorem: In a loal relativisti quantum �eld theory (satisfying the Wightman axioms)let the stress-energy tensor be symmetri, onserved (absene of gravitational anomalies) andtraeless (sale invariane). Let also the stress-energy tensor be dilation ovariant and thevauum state be dilatation invariant,U(�)Tab(�)U�1(�) = �2Tab(��) ; U(�)j0i = j0i (1:1:18)then, Æ�T (z) = �(z)�zT (z) + 2�z�(z)T (z) + 12�3z�(z) (1:1:19)One de�nes a quantum �eld theory in 2-d spae (�,� ) and imposes periodiity requirementsin the spae diretion �. Then we an go from the ylinder to the omplex plane by means ofthe transformation z = exp(� + i�). The orrelation funtions in the (�; � ) spae an be de�nedthrough time ordering in the \time" � . In the operator formalism the variations Æ��i an beexpressed in terms of equal time ommutators,Æ��i(�; � ) = [T�; �i(�; � ℄ ; T� � Ilogjzj=� �(z)T (z)dz (1:1:20)Then relation (1.1.19) beomes,[T�; T (z)℄ = �(z)T 0(z) + 2�0(z)T (z) + 12 �000(z) (1:1:21a)? A more general theorem is in fat true. In any 2-d theory that satis�es the Mak-L�usher assumptions andalso has a ontinuous global symmetry or global supersymmetry then this symmetry is automatially loal,[10℄



7or in OPE form, T (z)T (w) = 12 (z � w)4 + 2 T (w)(z � w)2 + �wT (w)(z �w) + � � � (1:1:21b)It is onvenient to expand T (z) in a Laurent series,T (z) = 1Xn=�1 Lnzn+2 (1:1:22)Then using (1.1.21) one an derive the ommutation relations of the operators Ln whih are thegenerators of the holomorphi part of the onformal group.[Lm; Ln℄ = (m� n)Lm+n + 12(m3 �m)Æm+n;0 (1:1:23)The same ommutation relations are valid for the antiholomorphi generators �Ln. The algebraof equation (1.1.23) is known as the Virasoro algebra. It ontains sl(2; C) as a subalgebra.The operators L�1, �L�1 generate translations on the omplex plane whereas L0, �L0 generatedilatations of z, �z. In the (�; � ) oordinates L0+�L0 generates time translations and onsequentlyit is the Hamiltonian. The in�nite past (� = �1) and the in�nite future (� =1) orrespondto the points z = 0 and z =1 on the omplex plane.The Cartan subalgebra of the Virasoro algebra is generated by L0. Its eigenvalues � (holo-morphi ritial dimensions) lassify the irreduible representations. The raising operators areLn, n = 1; 2; 3; :::. The unique vauum state of the theory orresponds to the identity operatorand has zero L0 eigenvalue. It is also a highest weight vetor (hwv) of the algebra, that is it isannihilated by the raising operators,Lnj0 >= 0 ; n = 0; 1; 2; 3; ::: (1:1:24)Using (1.1.23) and (1.1.24) we an show that the vauum state is also annihilated by L�1. Thisthe maximal subset of the onformal group generators that an annihilate the vauum. Thefat that we annot impose a bigger set of generators to annihilate the vauum is due to thenon-zero entral element  in the algebra (1.1.23). This fat an be ast in onventional �eldtheoreti terms as \the full onformal invariane of the theory is spontaneously broken". Thestatement above reets the fat that the vauum state is not invariant under the full onformalgroup but the onformal Ward identities are still valid. However this interpretation should beused with are. As already explained above the sl(2; C) symmetry is still manifest.In order to de�ne Hermitian onjugation we have to remind ourselves that the matrix ele-ments are evaluated between the \in" (z = 0) and the \out" (z =1) states. These are related



8by z! 1z . From this and the reality of T (z) it an be inferred that,Lyn = L�n (1:1:25)Using the ommutation relations (1.1.23) along with (1.1.25) one an evaluate any orrelationfuntion involving stress-energy tensors only. For example,hT (z1)T (z2)i = 2 1(z1 � z2)4 (1:1:26)Reetion positivity (unitarity in Minkowski spae) and (1.1.26) imply that  � 0.The states in the Hilbert spae of the theory are generated by loal operators ating on thevauum state, j�ii � �i(0)j0i (1:1:27)The representations of the onformal group are generated by hwvs (primary �elds). The wholerepresentation is generated by the ation of the lowering operators of the algebra on the hwvs.Consider a hwv j�i. It satis�es the usual hwv onditions,Lnj�i = 0 ; n > 0 ; L0j�i = �j�i (1:1:28)These are equivalent to the ommutation relations (j�i � ��(0)j0i),[Lm; ��(z)℄ = zm+1�z��(z) + �(m+ 1)zm��(z) (1:1:29)or to the OPE, T (z)��(w) = � ��(w)(z � w)2 + �w��(w)(z � w) + � � � (1:1:30)where the dots in (1.1.30) denote terms regular as z ! w. The operators appearing in theregular terms are the desendants of the hwv under the ation of the lowering operators. In theHilbert spae language an arbitrary state in the representation generated by j�i is of the form,j�; (ki)i � (L�1)k1(L�2)k2(L�3)k3 � � � j�i (1:1:31)These states onstitute a basis in the representation. They are not orthogonal in general butthey are linearly independent (modulo a subtlety whih will be disussed later).



9So far we negleted the existene of the anti-holomorphi Virasoro operators �Ln. But it isquite easy to take them into aount due to the fat that the onformal group is simply a diretprodut of the holomorphi and anti-holomorphi fators. Thus a hwv is haraterized by thetwo eigenvalues � and �� of L0 and �L0. Then the whole representation is generated by theation on the hwv of the lowering operators L�n and �L�n. In a few words the representations ofthe full onformal group are tensor produts of representations of its left and right omponents.The physial dimension of an operator is given by � + �� and its \spin" by �� ��.Using the information above we an derive the onformal Ward identities. An importantingredient is the fat that a meromorphi funtion on the Riemann sphere is determined by itssingularities and the orresponding residues. Thus let's onsider orrelation funtions of primary�elds with an insertion of the stress-energy tensor, T (z). We will view it as meromorphi funtionof z. Then we know its singularities and residues from (1.1.30) so that,hT (z)�1(z1) � � ��n(zn)i = nXi=1 � �i(z � zi)2 + 1(z � zi ��zi� h�1(z1) � � � �n(zn)i (1:1:32)TheWard identity (1.1.32) is important to determine the orrelation funtions of the desendantsof the primary �elds. From (1.1.31) they are de�ned by modes of T (z) ating on the primary�elds. Thus we an use (1.1.32) in order to determine their orrelation funtions. We analso derive the projetive Ward identities whih illustrate the fat that sl(2; C) is an exatsymmetry of the theory. From our previous disussion it beome obvious that the generatorsL�1, L0, L1 annihilate both the \in" and the \out" vauum. We an isolate their ation onthe orrelation funtions by taking appropriate ontour integrals in (1.1.32). This results in thefollowing projetive Ward identities.nXi=1 ��zi h�1(z1):::�n(zn)i = 0 (1:1:33a)nXi=1 �zi ��zi +�i� h�1(z1) � � � �n(zn)i = 0 (1:1:33b)nXi=1 �z2i ��zi + 2zi�i� h�1(z1) � � � �n(zn)i = 0 (1:1:33)where all the �elds in the orrelation funtion are primary.The onstraints that (1.1.33) put on the orrelation funtion are the following. The 2-point



10funtions are �xed: h�1(z1)�2(z2)i = Æ�1;�2(z1 � z2)2�1 (1:1:34)The 3-point funtions are also �xed up to an overall onstant:h�1(z1)�2(z2)�3(z3)i = C�1;�2;�3 3Yi<j(zi � zj)��ij (1:1:35)where �12 = �1��2��3 and so on. The general n-point funtion is onstrained to be of theform, h�1(z1) � � ��n(zn)i = nYi<j(zi � zj)ijG(xklij ) (1:1:36)where the ij are any solutions of Pj 6=i ij = 2�i and G is an arbitrary funtion of the n � 3anharmoni quotients, xklij , xklij = (zi � zj)(zk � zl)(zi � zl)(zk � zj) (1:1:37)Thus all the non-trivial information of the theory is in the spetrum of ritial dimensions �iof the primary �elds and the OPE oeÆients Ckij.1.2 Minimal Theories and UnitarityIn this setion we will be disussing a speial set of CFTs that ontain representations ofthe onformal group whih are \unusual". Suh theories have a �nite number of primary �eldsand are exatly solvable.There are ertain ases where the representations of the onformal group (Verma modules)as onstruted above in (1.1.31), are not irreduible. This happens when one of the desendantstates j�; (ki)i happens to have the properties of a hwv. Then one an show that suh a statej�i is null, (h�j�i = 0), and orthogonal to all the other states of the representation. Suh astate generates another representation whih is embedded in the previous one. Thus the trueirreduible representation is obtained after disarding all suh states and their desendants.Sine in a unitary theory the Hilbert spae is positive de�nite suh a state is identially zero.This means in partiular that any orrelation funtion, where suh a state is partiipating in, iszero. To give a onrete example onsider a desendant state at level two,j�i = �L�2 + �L2�1� j�i (1:1:38)In order for this to satisfy the hwv onditions (1.1.28) we must have,� = � 32(2� + 1) ; 4� + 2 + 9�2� + 1 = 0 (1:1:39)Assume that  = 12 , then � an take only two values satisfying (1.1.39), � = 12 or � = 116 . Let's



11take � = 12 for onreteness. We would like to show that the existene of a null state impliesextra onstraints on the orrelation funtions of the theory. In partiular, if in a theory all theprimary �elds are of this kind (that is their representations ontain null vetors) then theseonstraints are enough to determine all the orrelation funtions. Suh theories will be referredto as \minimal" and the orresponding representations as \degenerate". Let's now show howthe null state j�i = �L�2 � 34L2�1� j12i implies onstraints in the orrelation funtions. As it wasargued before,h0j�1(z1) � � � �n(zn)j�i = h0j�1(z1) � � ��n(zn)�L�2 � 34L2�1�� 12 (0)j0i = 0 (1:1:40)On the other hand we an use the Ward identities (1.1.32) to move the Virasoro operators tothe left, piking up on the way various terms and eventually annihilating the \out" vauum.Thus we end up with a di�erential equation for the orrelation funtion, 34 �2�z2 � nXi=1 �i(z � zi)2 � nXi=1 1(z � zi) ��zi! h� 12 (z)�1(z1) � � � �n�1(zn)i = 0 (1:1:41)One an use the projetive Ward identities to substitute the derivatives with respet to zi withderivatives with respet to z so that (1.1.41) beomes an ordinary di�erential equation.Another important issue is unitarity (positivity). This is the statement that the Hilbertspae of the theory is positive de�nite . An important onept in the disussion of unitarityis the Ka� determinant. This is an objet that an be de�ned for every representation of theonformal group. As we mentioned before the representation is built by the ation of the loweringoperators on a hwv. We will de�ne the level of a desendant state ji > as the eigenvalue of L0��on that state, (� is the dimension of the hwv). Then it is easy to show that states at di�erentlevels are orthogonal. Now onsider the spae of states at a given level n. Choose a basis in thisspae, for example the basis in (1.1.31) will do. Now onsider the matrix, Mn, of all the innerproduts between states in this spae, (suh a matrix is known as the Shapovalov matrix in themathematis literature). The determinant of Mn is the Ka� determinant. It is a polynomial intwo variables, the dimension of the hwv, �, and the entral harge, . Then the statement ofunitarity beomes the statement that the Ka� determinant has positive eigenvalues.Null states an also be seen from the Ka� determinant. If at least one of the eigenvalues ofMn is zero we an show that there is a null state at level n. The eigenvetor ofMn, orrespondingto the zero eigenvalue, is the null state. The orresponding Ka� determinant vanishes at leveln. Thus zeros of the Ka� determinant signal the presene of null states. The Ka� determinantan be evaluated. For example the Ka� determinant of the onformal group was onjetured byV. Ka�, [11℄, and proven by Feigin and Fuks, [12℄. It is the following,det(Mn) = nYi=10B�Yrs=ir�s fr;s(�; )1CAP (n�i) (1:1:42)



12where, fr;s(�; ) = (��A+r;s)(��A�r;s) ; r; s 2 N ; r 6= s (1:1:43)fr;r(�; ) = � + 124(r2 � 1)(� 1) (1:1:44)A�r;s = 148 h(13 � )(r2 + s2)�p2 � 26 + 25(r2 � s2)� 24rs � 2 + 2i (1:1:45)and P (n) is de�ned through, 1Yn=1 1(1 � zn) = 1Xn=0P (n)zn (1:1:46)An analysis of unitarity in onformally invariant theories using the Ka� determinant was per-formed by Friedan, Qiu and Shenker, [13℄. They found that for  � 1 no onstraint omes fromthe unitarity analysis. But for  < 1 unitary models exist only for speial values of the entralharge ,  = 1� 6m(m+ 1) ; m = 2; 3; 4; ::: (1:1:47)The spetrum of ritial dimensions an be found.�p;q = ((m+ 1)p �mq)2 � 14m(m+ 1) ; 1 � p � m� 1 ; 1 � q � p (1:1:48)In these models there is a �nite number of primary �elds all of whih are degenerate. Aordingto our previous disussion these models are exatly solvable sine their orrelation funtionssatisfy linear ordinary di�erential equations. The above onstitutes a �rst step towards thelassi�ation of 2-d CFTs sine it lassi�es all unitary CFTs with  < 1.But for  � 1 there are no null states in the onformal algebra. Moreover other onstraintson the theories (e.g. modular invariane) imply that the set of primary �elds must be in�nite,[14℄. To irumvent suh diÆulties one has to introdue new ideas, in partiular enlargingthe onformal algebra. Imagine that the symmetry algebra of the theory is a bigger loalalgebra that ontains the onformal algebra as a subalgebra. Then one expets that irreduiblerepresentations of that algebra will be (in�nitely in general) deomposable in representations ofthe onformal algebra. Several examples of suh larger algebras are known, loal gauge algebras(Ka�-Moody algebras), supersymmetri algebras, parafermioni algebras et. Thus theories withan in�nite number of onformal representations an have a �nite number of the extended algebrarepresentations.It is probably not true that extended algebras are enough to put order in the vast spaeof CFTs. There are more ambitious ideas on how to attak this problem, but sine they areurrently under study we will refrain from saying anything more.



13So far we disussed CFT on the Riemann sphere. It is natural to ask how muh of thismahinery arries over to CFT de�ned on more ompliated 2-d surfaes. After all ondensedmatter systems are usually de�ned on a parallelogram with periodi boundary onditions andthis is topologially a torus. In string theory perturbation theory �a la Polyakov is de�ned asdealing with CFTs on Riemann surfaes with an arbitrary number of handles.In a theory with onformal invariane details assoiated with the metri of the surfae areredundant. Thus one is led to onsider the surfaes modulo di�eomorphisms and onformaltransformations. Compat 2-d surfaes are lassi�ed topologially by their number of handles(genus). For a given genus the surfaes are parametrized by a �nite dimensional spae alledmoduli spae.There are elements of what we said so far that will not hange when we go to more om-pliated surfaes. In partiular all the loal properties of a theory will remain the same. Shortdistane singularities, the spetrum of ritial exponents and the OPE oeÆients will nothange. But the Ward identities for example will hange sine we ruially used the fat thatwe were working on the sphere. Correlation funtions will also hange sine they also arryglobal information. We do know though how to generalize the formalism of CFT to surfae ofarbitrary genus. Viewing a CFT as an objet that an be de�ned on various surfaes seems to bea promising approah towards suh goals as lassi�ation and solution of 2-d ritial phenomenaand/or string theory.



14CHAPTER 2The Struture of N=2 Superonformal Field Theories2.1 IntrodutionIn this hapter we are going to disuss various aspets of N = 2 superonformal �eld theories.As already mentioned in the �rst hapter if there are extra global (super)symmetries ina onformally invariant theory then the theory is invariant under a bigger loal algebra thatinludes the onformal algebra as a subalgebra.An interesting lass of suh global symmetries are supersymmetries. A supersymmetry is asymmetry that relates bosons and fermions. Various kinds of supersymmetry in 2-d are lassi�edby the number of superurrents. In 2-d we an de�ne left and right supersymmetries separately.A model invariant under m left and n right supersymmetries will be alled of the type (m,n).From now on our disussion will be foused on the left (holomorphi) part of a theory to avoidrepetition. When eventually we have to make a model we will have to tensor appropriately theleft and right parts in a way onsistent with various onstraints that we will disuss later.The possible superonformal algebras in 2-d have been lassi�ed by Ramond and Shwarz?,[15℄. The possibilities are:N = 1 Superonformal Algebra. It is generated by the stress-energy tensor T (z) and adimension 32 fermioni operator, the superurrent G(z). The algebra is given by the followingOPEs: T (z)T (w) = 34 ̂(z � w)4 + 2T (w)(z � w)2 + �wT (w)(z � w) + � � � (2:1:1a)T (z)G(w) = 32 G(w)(z �w)2 + �wG(w)(z � w) + � � � (2:1:1b)G(z)G(w) = ̂(z �w)3 + 2T (z)(z � w) + � � � (2:1:1)where ̂ is related to  in (1.1.23) by ̂ = 23 and from now on the � � � in OPEs will represent thenon-singular terms as z ! w (whih do not ontribute to the (anti)-ommutation relations).? One may onsider superonformal algebras for any N, [16℄. The di�erene is that they do not, stritlyspeaking form an algebra. The ommutation relations give expressions that are not linear in the algebraoperators. However it is possible to use them in order to de�ne CFTs.



15N = 2 Superonformal Algebra. It is generated by the stress-energy tensor T (z), a U(1)urrent J(z) and two superurrents G(z), �G(z).T (z)T (w) = 32 ~(z � w)4 + 2T (w)(z � w)2 + �wT (w)(z � w) + � � � (2:1:2a)T (z)J(w) = J(w)(z � w)2 + �wJ(w)(z � w) + � � � ; J(z)J(w) = ~(z �w)2 + � � � (2:1:2b)T (z)G(w) = 32 G(w)(z �w)2 + �wG(w)(z � w) + � � � (2:1:2:)T (z) �G(w) = 32 �G(w)(z �w)2 + �w �G(w)(z � w) + � � � (2:1:2d)J(z)G(w) = G(w)(z � w) + � � � ; J(z) �G(w) = � �G(w)(z � w) + � � � (2:1:2e)G(z)G(w) = 0 + � � � ; �G(z) �G(w) = 0 + � � � (2:1:2f)G(z) �G(w) = 2~(z � w)3 + 2J(w)(z � w)2 + �wJ(w)(z � w) + 2T (w)(z � w) + � � � (2:1:2g)where  = 3~.N = 3 Superonformal Algebra. It is generated by the stress-energy tensor T (z), threeSU(2) urrents Ja(z), three supersymmetry generators Ga(z) in the adjoint of SU(2) and anSU(2) singlet fermion �eld  (z).T (z)T (w) = 32 �(z � w)4 + 2T (w)(z � w)2 + �wT (w)(z � w) + � � � (2:1:3a)T (z)Ja(w) = Ja(w)(z � w)2 + �wJa(w)(z � w) + � � � (2:1:3b)T (z) (w) = 12  (w)(z �w)2 + �w (w)(z � w) + � � � (2:1:3)T (z)Ga(w) = 32 Ga(w)(z �w)2 + �wGa(w)(z � w) + � � � ; Ja(z) (w) = 0 + � � � (2:1:3d)



16Ja(z)Gb(w) = i�ab G(w)(z � w) + Æab �w (w)(z �w) + � � � ; Ga(z) (w) = Ja(w)(z � w) + � � � (2:1:3e)Ja(z)J b(w) = i�ab J(w)(z � w) + �Æab(z �w)2 + � � � ;  (z) (w) = �(z � w) + � � � (2:1:3f)Ga(z)Gb(w) = 2�Æab(z � w)3 + i�ab� 2J(w)(z � w)2 + �wJ(w)(z � w) �+ 2Æab T (w)(z �w) + � � � (2:1:3g)where  = 3� and � takes the values � = n2 , n = 1; 2; 3; � � �N = 4 Superonformal Algebra. It is generated by the stress-energy tensor T (z), threeSU(2) urrents Ja(z) and two SU(2) doublets of supperurrents, Gi(z) and �Gi(z).T (z)T (w) = 6�(z � w)4 + 2T (w)(z � w)2 + �wT (w)(z � w) + � � � (2:1:4a)T (z)Gi(w) = 32 Gi(w)(z �w)2 + �wGi(w)(z � w) + � � � (2:1:4b)T (z) �Gi(w) = 32 �Gi(w)(z � w)2 + �w �Gi(w)(z � w) + � � � (2:1:4)T (z)Ja(w) = Ja(w)(z � w)2 + �wJa(w)(z � w) + � � � (2:4:d)Ja(z)J b(w) = i�ab J(w)(z � w) + �Æab(z � w)2 + � � � (2:1:4e)Ja(z)Gi(w) = 12�aij Gj(w)(z �w) + � � � ; Ja(z) �Gi(w) = �12�aji �Gj(w)(z � w) + � � � (2:1:4f)Gi(z)Gj(w) = 0 + � � � ; �Gi(z) �Gj(w) = 0 + � � � (2:1:4g)Gi(z) �Gj(w) = 8�Æij(z � w)3 + 2Æij T (w)(z � w) + 2�aji� 2Ja(w)(z � w)2 + �wJa(w)(z � w) �+ � � � (2:1:4h)where  = 12�, � = n2 n = 1; 2; 3; � � � and �aij are the standard Pauli matries.



17There are various setors in the theories invariant under the superonformal algebras above.Their existene is linked to the possibility on imposing various boundary onditions on thealgebra operators that respet the algebra struture. The stress-energy tensor will have to bealways periodi otherwise onformal invariane will be broken. The algebras have in general aglobal automorphism group G whih is represented on the operators Oi(z) of the algebra bymatries Mij(g), g 2 G. Then the di�erent algebras are obtained by imposing the periodiityonditions, Oi(z) =Mij(g)Oj(e2�iz) (2:1:5)Elements of G in the same onjugay lass give equivalent algebras. The algebras also on-tain loal automorphisms due to the loal gauge symmetries present (U(1) for N=2, SU(2) forN=3,4). Thus some of the boundary onditions introdued through twists of the global auto-morphisms an be removed by a loal gauge transformation. So the truly independent algebrasare generated by global automorphisms that are not ontained in the loal automorphisms. Suhautomorphisms are known in the mathematis literature as \outer" automorphisms. In the N=1algebra there are no loal automorphisms whereas the group of global automorphisms is isomor-phi to Z2. This is a fany way of saying that there are two possible boundary onditions forthe superurrent, anti-periodi (NS algebra) and periodi (R algebra). These two algebras areinequivalent.In the N=2 algebra the group of global automorphisms is O(2). The loal automorphismgroup is SO(2) and the outer automorphism group is O(2)=SO(2) = Z2. Thus there are twoinequivalent N=2 algebras, [17℄. The one whih orresponds to the non-trivial element of Z2is \twisted" (the U(1) invariane is broken). The untwisted algebra is really a in�nite set ofloally equivalent algebras whih are de�ned through the various boundary onditions of thesuperurrents, (The U(1) urrent is periodi).G(z) = e2�i�G(e2�iz) ; �G(z) = e�2�i� �G(e2�iz) (2:1:6)where 0 � � � 1. The various algebras are spei�ed by the value of �. They an be mappedonto eah other through a loal U(1) transformation as follows:T�(z) = T0(z)� iz dfdzT0(z)� 12~�z dfdz�2 (2:1:7a)J�(z) = J0(z)� i~z dfdz (2:1:7b)G�(z) = eif(z)G0(z) ; �G�(z) = e�if(z) �G0(z) (2:1:7)where f(z) = i�log(z).



18For the N=3 algebra the global automorphism group is O(3) whereas the loal automorphismgroup is SO(3). Thus again the outer automorphism group is Z2 and there only two inequivalentN=3 algebras R and NS. Finally the global automorphism group of the N=4 algebra is SO(4) (thealgebra is not invariant under parity). The loal automorphism group is SU(2), thus the outerautomorphism group is SO(4)=SU(2) = SU(2) and there is an in�nite number of inequivalentN=4 superonformal algebras.Superonformal invariane is important in superstring models. It seems to be indispensableif one hopes to get spae-time fermions. There are two kinds of losed superstring models, thetype II models whih have (1,1) loal supersymmetry (gauged in the sense that there are ghostsassoiated with it) and the heteroti models whih have (1,0) loal supersymmetry. There is alsothe U(1) string whih has (2,2) loal gauged supersymmetry but for phenomenologial reasonsit is uninteresting sine it makes sense if spae time is two-dimensional.To onstrut four-dimensional string theories one has to proeed as follows. The part de-sribing 4-d Minkowski spae is onstruted out of free bosons (and fermions) in the onventionalway. Then the theory has to be supplemented by a onformal �eld theory desribing the inter-nal degrees of freedom. Suh a theory has to have the appropriate value for the entral hargewhih is  = 22 for the N=0 ase and  = 9 for the N=1 ase. Suh a CFT may have a biggerloal invariane that the gauged one. We are usually interested in a theory whih has unbro-ken 4-d N=1 supersymmetry at the Plank sale. The reason for supersymmetry is to solveproblems assoiated with hierarhies. We need N=1 instead of an extended supersymmetrybeause in 4-d only N=1 supersymmetry an aommodate hiral fermions. It an be shownthat the statement that the theory has N=1 spae-time supersymmetry is equivalent to thestatement that the CFT desribing the internal degrees of freedom has an N=2 superonformalinvariane. Thus N=1 spae-time supersymmetri string theories in 4-d are lassi�ed by N=2superonformal �eld theories with ~ = 3. The study of N=2 superonformal �eld theories isa very important part of onstruting phenomenologially viable string theories. It would bevery useful to onstrut N=2 models whih are exatly solvable. Using suh models as buildingbloks we would onstrut string theories where sattering amplitudes would be alulable.The study of the unitary representations of the N=2 superonformal algebra showed thatthere is an analogous struture as in the N=0,1 ases. There is a disreetly in�nite set of minimalmodels, [18,19,26℄, with, ~ = 1� 2m ; m = 2; 3; 4; ::: (2:1:8)whih ontain a �nite number of N=2 irreduible representations and whih are exatly solvable.For ~ � 1 there is a ontinuum of models whih have not been lassi�ed yet.There are also other motivations for studying N=2 superonformal CFTs. They ome fromondensed matter physis. There are ritial 2-d systems that exhibit N=2 superonformalinvariane. Suh examples will be disussed in hapter 3.The �rst step in the study of N=2 theories is the alulation of the Ka� determinant. Asdisussed in the introdution it is very important in the study of questions of unitarity as wellas in studying the existene of null states present in some representations. The presene of



19null states is welome sine they impose extra onstraints on the orrelation funtions. Anotherimportant onept is that of a harater. It is a generalization of the orresponding oneptin �nite dimensional algebras and groups. It ontains a lot of information about the strutureof a representation, in a sense it spei�es it unambiguously. There is an extra property of theharaters that is ruial both for 2-d ritial systems and string theory. This is the fat thatharaters are losely related to the exat partition funtion of the system on the torus. Thisonnetion will be studied in more detail in the next setion.For an irreduible representation [h℄ of the onformal algebra the harater is de�ned as,hh = Trh(zL0) (2:1:9)where the trae is to be taken over all the states of the irreduible representation [h℄ and z is aformal variable.When the representation [h℄ does not ontain any null vetors then the omputation of theharater is quite easy. Things start to get ompliated when there are null vetors. As wealready mentioned the Verma module in this ase is not irreduible and in order to ompute theharater one has to subtrat the ontributions of the extra representations embedded in theoriginal one. Thus there are two stages in the proess. The �rst onsists in determining, (usingthe Ka� determinant), the embedding pattern of the representations in the original one. Theseond onsists in using the embedding pattern to subtrat their ontributions. Both stages willbe disussed in more detail in subsequent setions.There are other issues that need to be examined in N=2 Superonformal models. One hasto derive Ward identities and in partiular solve the ones that relate to the fat that N=2supersymmetry is an unbroken symmetry. Also the operator produt rules, (fusion rules), insuh models have to be worked out.In this hapter we will disuss the N=2 superonformal �eld theories with partiular em-phasis on the minimal ones. In setion 2.2 we disuss the relation between haraters andpartition funtions. The onept and onsequenes of modular invariane will be also touhedupon. Setion 2.3 is devoted to a study of the unitary irreduible representations of the N=2superonformal algebras. We will derive the embedding struture of the degenerate irreduiblerepresentations and we will derive their haraters for any value of the entral harge. Setion2.4 deals with a desription of (2,0) superspae and its geometry as well as with the group ofN=2 global transformations, Osp(2j2). Setion 2.5 is devoted to the general desription of N=2CFTs, their primary �elds and the struture of their ground states. In setion 2.6 we will studyOsp(2|2) invariane and the onstraints it puts on orrelation funtions. In setion 2.7 wedisuss the operator algebra and orrelation funtions in the NS setor of the unitary minimalN=2 models. Setion 2.8 deals with the operator formalism in the Ramond setor. We willpoint out how we an apply the tehniques used in the NS setor to the R setor. Setion 2.9is devoted to the study of the �rst minimal model with ~ = 13 using the general tehniques weintrodued so far. Finally setion 2.10 ontain onlusions and future prospets on the study ofN=2 models.



202.2 Modular Invariane, Charaters and Partition Funtionson the TorusLet's onsider a 2-d ritial model on the torus. The torus an be represented as a parallel-ogram with sides l, l0 and periodi boundary onditions. At the limit l, l0 ! 1 with l=l0 = Æ�xed?, the Hamiltonian operator is, H = 2�l (L0 + �L0) (2:2:1)while the momentum operator is, P = 2�l (L0 � �L0) (2:2:2)l0 will be allowed to take omplex values. This will onsequently allow the parallelogram rep-resenting the torus to be tilted. Then the partition funtion of the system an be writtenas, Z(l; l0) = e�fll0+�ReÆ6 Xn e�EnRel0�iPnIml0 (2:2:3)where the sum is over all the states of the theory. Equation (2.2.3) an be written in a moresuggestive form: Z(Æ; Æ�) = e�fA+�ReÆ6 Tr[zL0�z �L0℄ (2:2:4)where z = e2�Æ, �z = e�2�Æ� and A is the area of the torus. In a onformally invariant theorythe states are assembled in irreduible representations of the onformal group. Then equation(2.2.4) an be written in terms of the haraters of the holomorphi (left) and anti-holomorphi(right) representations. Z(Æ; Æ�) = e�fA+�ReÆ6 X(h;�h)N(h; �h)hh(Æ)h�h(Æ�) (2:2:5)where N(h; �h) is the number of times the irreduible representation (h; �h) appears in the theoryand hh denotes the harater of the holomorphi part of the representation (h; �h). Thus knowl-edge of the haraters and the representation ontent of the theory is enough to determine thepartition funtion.As already mentioned the haraters of the representation an be alulated by purely alge-brai means. Thus the only issue to be settled is the representation ontent. It is here that theonept of modular invariane omes to the resue, [14℄, (if we assume that the theory ontainsa �nite number of irreduible representations)y.? Æ is losely related to the modulus of the torus. The exat relation is Æ = i� .y For theories invariant under the onformal group only, this implies that the entral harge must be  < 1. InN=1(2) superonformal �eld theories ̂(~) < 1. In N=3,4 superonformal theories as well as WZW modelsthis is always true. The above are speial ases of G/H theories whih always ontain a �nite number ofrepresentations of some loal algebra.



21When we onsider a �eld theory of the torus whih we want to be oordinate invariantwe �rst hek invariane under in�nitesimal oordinate transformations. Sometimes there areoordinate transformations whih are not ontinuously onneted to the identity, thus theyannot be built out of in�nitesimal ones. Then we have to hek that the theory is in fatinvariant under suh oordinate transformations. The group of oordinate transformations ofthe torus is known to ontain suh disonneted omponents whih an be labeled by elementsof PSL(2; Z). Suh globally non-trivial oordinate transformations, (modular transformations),are generated by two basi transformations, T : Æ ! Æ+ i and S : Æ ! 1Æ . The partition funtionof a theory on the torus must be invariant under the modular transformations.The onsequenes of invariane under T are easy to determine beause the haraters arediagonal under its ation. It implies that all the states of the theory must have spin h��h whihis integer. The onsequenes of invariane under S are more diÆult to �nd. The reason is thatthe ation of S mixes the haraters among themselves. One ends up with a linear algebraisystem of equations among the numbers N(h; �h). This system has to be supplemented withextra physial requirements. There must be only one unit operator in the theory, N(0; 0) = 1,and N(h; �h) must be non-negative integersz. In this manner one obtains the representationontent of a wide lass of theories.The derivation of the torus partition funtions of various CFTs is very useful also for stringtheory. The partition funtion, integrated over the modulus of the torus, Æ, gives the one-loopontribution to the vauum energy of string theory.In the next setion we will analyze the struture of the representations of the N=2 super-onformal algebras and we will eventually evaluate their haraters.2.3 Charater Formulae and the Struture of the Representationsof the N=2 Superonformal AlgebrasIn this setion we will onsider the unitary degenerate representations of the N=2 superon-formal algebra. We will derive their struture and the orresponding haratersx.The N=2 algebra is given by the following (anti-)ommutation relations{[Lm; Ln℄ = (m� n)Lm+n + ~4(m3 �m)Æm+n;0 (2:3:1a)z In ases that have been examined so far it seems that the N (h; �h) obtained by solving the system are alwaysintegers but there are examples with N (0; 0) 6= 1 and/or N (h; �h) being negative integers.x Charater formulae were also derived in [22℄. In [23℄ the haraters of the ~ < 1 representations werederived.{ We have hosen a partiular normalization for the entral harge of the U(1) sub-algebra. It is worthnoting that the most general N=2 superonformal algebra inludes, up to the freedom of rede�nitions,another free parameter, the U(1) harge of the superharges. Then the respetive ommutation relationsbeome: [Jm; Gir℄ = iq�ijGjm+r and [Gir; Gjs℄+ = 2ÆijLr+s + iq �ij(r� s)Jr+s +~(r2 � 14 )ÆijÆr+s;0. This newparameter does not hange the struture of the irreduible representations. Its only e�et is to hange thedistane between suessive relative harge levels.



22[Lm; Gir℄ = (m2 � r)Gim+r ; [Lm; Jn℄ = �nJm+n (2:3:1b)[Jm; Jn℄ = ~mÆm+n;0 ; [Jm; Gir℄ = i�ijGjm+r (2:3:1)[Gir; Gjs℄+ = 2ÆijLr+s + i�ij(r � s)Jr+s + ~(r2 � 14)ÆijÆr+s;0 (2:3:1d)The normalization of the onformal anomaly is suh that a free N=2 salar super�eld has~ = 1. It is related to the anomaly of the Virasoro algebra by ~ = 3.As already disussed in setion 2.1 there are two inequivalent N=2 algebras The twistedone and the untwisted one. There is a ontinuous family of untwisted N=2 algebras whih arerelated through loal U(1) transformations (2.1.17). We will study one of them, the NS algebra.Then through the aforementioned isomorphism we will be able to translate our statements tothe general member of the ontinuous set. Choosing integer moding for Lm, Jn and half-integerfor Gir we get the NS-type algebra.We will start our disussion from the NS algebra and fous on the unitary representationswith ~ < 1. In [18,19℄ it was shown that these exist only when :~ = 1� 2m ; m = 2; 3; 4; :::: (2:3:2)and have hwv's with dimension and U(1) harge q given by,hj;k = 4jk � 14m ; q = j � km ; j; k 2 Z + 12 ; 0 < j; k; j + k � m� 1 (2:3:3)Hwv states are labeled by the eigenvalues of the zero modes, L0 and J0, whih are the dimensionh and the U(1) harge q. Then any desendant is labeled by its level (eigenvalue of L0 �h) andits relative harge (eigenvalue of J0 � q).The Ka� determinant at level n and relative harge m is given by [18,19,20,21℄detMNSn;m(~; h; q) = s evenY1�rs�2n[fNSr;s ℄PNS(n�rs=2;m) � Yk2Z+ 12 [gNSk ℄ ~PNS(n�jkj;m�sgn(k);k) (2:3:4)where : fNSr;s = 2(~� 1)h� q2 � 14(~� 1)2 + 14[(~� 1)r + s℄2 ; r 2 Z+ ; s 2 2Z+ (2:3:5a)gNSk = 2h � 2kq + (~� 1)(k2 � 14) ; k 2 Z + 12 ; (2:3:5b)



23while the NS partition funtions are de�ned by,�Xn;m PNS(n;m)znwm = 1Yk=1 (1 + zk�1=2w)(1 + zk�1=2w�1)(1 � zk)2 (2:3:6a)Xn;m ~PNS(n;m; k)znwm = [1 + zjkjwsgn(k)℄�1Xn;m PNS(n;m)znwm (2:3:6b)Equation (2.3.4) implies that whenever there is a vanishing of fNSr;s , there exists a unique hwvat level rs=2 with the same harge as the initial one, (relative harge zero). When gNSk = 0,there is a hwv at level jkj and relative harge sgn(k).Consider the representation of dimension hj;k = (4jk � 1)=4m and harge q = (j � k)=m .We will �rst searh for null hwv's at relative harge zero. fNSr;s vanishes for,r = nm� (j + k) ; s = 2n n = 1; 2; :::: (2:3:7)Thus there are null vetors at relative harge zero, embedded in the family (hj;k; q) theirdimensions being hj;k+n2�n(j+ k). We an show that the above hwv's exhaust all null hwv'sat relative harge zero. In fat if we order them in order of inreasing dimension,h2n�1 = hj;k + n2m� n(j + k) n = 1; 2; :::: (2:3:8a)h2n = hj;k + n2m+ n(j + k) n = 0; 1; 2; :::: (2:3:8b)we an show by analyzing the Ka� determinant for hi, that (still at relative harge zero), thefamilies hj j > i (and only these) are embedded in hi.Next we have to look for null vetors of non-zero relative harge. For hj;k gNSl vanishes forl = k and l = �j . This implies the existene of a hwv of dimension hj;k + k and harge q + 1as well as a hwv of dimension hj;k + j and harge q � 1 embedded in [hj;k℄.Looking now at the Ka� determinant (relative harge zero), of the hwv h01 = hj;k + k ,q01 = q + 1, we an establish that it vanishes for,r = (n+ 1)m+ (j + k) ; s = 2n n = 1; 2; :::: (2:3:9a)r = nm� (j + k) ; s = 2(n + 1) n = 1; 2; :::: (2:3:9b)implying the existene of another series of null hwv's with dimensions,h02n�1 = hj;k + n(n+ 1)m� (n+ 1)j � nk n = 1; 2; :::: (2:3:10a)h02n = hj;k + n(n+ 1)m + nj + (n+ 1)k n = 1; 2; :::: (2:3:10b)and harge q + 1.� The derivation of the partition funtions an be found in App. 2.B.



24This senario ontinues so that by using indution we an establish the existene of anembedding pattern shown in �g. 3 . All embedding diagrams are ommutative. The mapsbetween setors of di�erent harge form exat sequenes due to the fermioni nature of thegenerating operators. There is unique hwv at eah level and harge sine the Ka� determinanthas a simple zero orresponding to that hwv. The dimensions and harges of the various familiesdepited on it are, hl2n+l = hj;k + n(n+ l)m+ n(j + k) + lk ; l � 0 ; n � 0 (2:3:11a)hl2n+l�1 = hj;k + n(n+ l)m� (n+ l)(j + k) + lk ; l � 0 ; n � 1 (2:3:11b)h�l2n+l = hj;k + n(n+ l)m+ n(j + k) + lj ; l � 0 ; n � 0 (2:3:11)h�l2n+l�1 = hj;k + n(n + l)m� (n+ l)(j + k) + lj ; l � 0 ; n � 1 (2:3:11d)qln = q + l ; l 2 Z (2:3:11e)It is obvious from (2.3.11) that all dimensions in a given harge setor are di�erent so that theorresponding representations are distint.We de�ne the harater of the irreduible representation generated by the hwv of dimensionhj;k = 4jk�14m and harge q = j�km (m � 2, 0 < j; k; j + k � m� 1, j; k 2 Z + 12) by :h(hj;k; ~; z; w) � Tr[zL0wJ0 ℄ (2:3:12)The trae over all the desendants of a hwv, (h; q), is given by?�(h; q; z; w) = FNS(z;w)zhwq (2:3:13)FNS(z;w) = 1Yk=1 (1 + zk�1=2w)(1 + zk�1=2w�1)(1� zk)2 (2:3:14)Our task now is to ompute the trae by exluding all superonformal families that areembedded in hj;k . It is obvious from the embedding pattern pitured in �g. 3 that,[h0i ℄ \ [h1i ℄ = [h0i+1℄ + [h1i+1℄ ; [h0i ℄ \ [h�1i ℄ = [h0i+1℄ + [h�1i+1℄ (2:3:15a)[h1i ℄ \ [h�1i ℄ = [h0i+1℄ ; [h0i ℄ \ [h1i ℄ \ [h�1i ℄ = [h0i+1℄ (2:3:15b)The largest proper submodule of h00 is [h01℄ + [h11℄ + [h�11 ℄. The largest proper submodule of? See App. 2.B.



25[h01℄+[h11℄+[h�11 ℄ is given by:[h01℄ \ [h11℄ + [h01℄ \ [h�11 ℄ + [h11℄ \ [h�11 ℄� 2[h01℄ \ [h11℄ \ [h�11 ℄whih is equal to [h02℄+[h12℄+[h�12 ℄. Indutively, the largest proper submodule of [h0i ℄+[h1i ℄+[h�1i ℄is [h0i+1℄ + [h1i+1℄ + [h�1i+1℄. Consequently the harater for the irreduible representation [h00℄ isgiven by: h[h00℄ = �([h00℄) + 1Xi=1 (�1)i�([h0i + h1i + h�1i ℄) (2:3:16)where � denotes the unrestrited trae de�ned by (2.3.13).In order to write down an expliit formula for the harater we need also the partitionfuntions for single harged fermionsySubstituting in (2.3.16) we get,h(hj;k; z; w) = FNS(z;w)zhj;kwq [1 + f1(z;w)� f2(z;w)℄ (2:3:17)f1(z;w) = 1Xn=1"zn2m+n(j+k) + zn(n+1)m�(n+1)(j+k)+kw1 + znm�jw + zn(n+1)m�(n+1)(j+k)+jw�11 + znm�kw�1 #f2(z;w) = 1Xn=0"z(n+1)2m�(n+1)(j+k) + zn(n+1)m+n(j+k)+kw1 + znm+kw + zn(n+1)m+n(j+k)+jw�11 + znm+jw�1 #Let's now onsider the rest of the untwisted algebras. The isomorphism desribed in setion2.1 among the modes of the various algebras is,L�n = L0n � �J0n + �22 ~Æn;0 (2:3:18a)J�n = J0n � �~Æn;0 (2:3:18b)G�n+� = G0n ; �G�n�� = �G0n (2:3:18)In partiular the dimensions and harges of the irreduible representations are related by,h� = h0 � �q0 + �22 ~ ; q� = q0 � �~ (2:3:19)� = 0 orresponds to the NS-algebra whereas � = �12 orresponds to the R� algebras. Thusy For a derivation see app. 2.B



26the haraters are related by,hh�(z;w) = z �22 ~w��~hh0(z; z��w) (2:3:20)The expression for the haraters (2.3.17) an be written in an elegant and ompat formusing the SU(2) #-funtions and the SU(2) string-funtions, [24℄. Suh a form is useful whenone desires to study the modular properties of the haraters.The expressions for general � are:h�j;k(z;w) = l� ~m evenX�N+1� ~m�N l~m(� )#~q; ~mN;�(�; �) (2:3:21)where #~q; ~mN;�(�; �) = #N(N+2)=2;( ~m�~q)(N+2)=2+~q�N(��1=2)(�; �) (2:3:22a)#a;b(�; �) = Xn2Z+b=2a e2�i(�n2�n�) (2:3:22b)z = e2�i� ; w = e2�i� (2:3:22)l = j + k � 1 ; ~q = j � k ; N = m� 2 (2:3:22d)and lm(� ) are the SU(2) string-funtions.The twisted algebra is de�ned by imposing anti-periodi boundary onditions on the U(1)urrent and periodi boundary onditions on G1(z). For the twisted algebra the zero modes areL0 and G10. Their eigenvalues haraterize hwv's. Eah level ontains two equal subspaes offermion number (�1)F = �1. The Ka� determinant for the T-algebra is the following, [18,25℄,detMT+;0 = 1 ; detMT�;0 = h� ~8 (2:3:23a)detMT�;n(~; h) = [h� ~8℄PT (n)=2 s oddY1�rs�2n[fTr;s℄PT (n�rs=2) (2:3:23b)fTr;s = 2(~� 1)(h� ~8) + 14[(~� 1)r + s℄2 ; s = 1; 3; 5; ::: (2:3:24)



27Xn PT (n)zn = 1Yk=1 (1 + zk)(1 + zk�1=2)(1 � zk)(1� zk�1=2) � �FT (z) (2:3:25)The unitary representations of the T-algebra with ~ < 1 are given by,~ = 1� 2m ; h = ~8 + (m� 2r)216m ; m = 2; 3; ::: ; r 2 Z ; 1 � r � m2 (2:3:26)Only even m allows the state h = ~8 , the presene of whih implies that supersymmetry isunbroken.The vanishing of fTr;s signals the existene of two hwv's at level rs=2 and fermion parity�1. At level zero there is only one vanishing whereas for eah of the higher levels there are twovanishings orresponding to states of opposite parity. Analyzing the vanishings of fTr;s, we aneasily show that the embedding pattern is the one shown in �g.1 with,h0 = ~8 + (m� 2r)216m (2:3:27)hk = ~8 + [(2k � 1)m+ 2r℄216m ; h0k = ~8 + [(2k + 1)m� 2r℄216m (2:3:28)The harater formula in this ase is written down in the same way as in the N=1 ase.hTm;r(z) = FT (z)z ~8 "Xk22Z(�1)k=2z [(k+1)m�2r℄216m # (2:3:29)When h = ~8 , one of the two states of di�erent hirality is degenerate at the zeroth level anddeouples as it an be easily seen from the formula for the Ka� determinant. Then supersym-metry is unbroken due to the non-vanishing of the Witten index.The above omplete the derivation of the harater formulae for the degenerate representa-tions of the N=2 superonformal algebras with ~ < 1.A onstrution of these representations based on the oset spae SU(2) 
 U(1)=U(1) hasbeen given, [26,27℄, proving their unitarity through an expliit unitary onstrution of theirHilbert spae.The untwisted algebra ontain another lass of degenerate representations with ~ � 1. Wewill fous as before on the NS setor?. There we have two distint sets of degenerate represen-tations.? The results then an be extended to the rest by use of the isomorphism (2.1.7)



28NS2 representations.(the subsript indiates the dimension of their moduli spae). A rep-resentation in this lass is unitary and degenerate if gNSn0 = 0 for some n0 2 Z+ 12 , gNSn0+sgn(n0) < 0and fNS1;2 � 0. Aording to (2.3.5b) the �rst ondition implies that,2h = 2n0q � (~� 1)(n20 � 14) (2:3:30)We will suppose for the moment that n0 > 0. Then the seond ondition implies that,q > (n0 + 12)(~� 1) (2:3:31)whereas the third ondition implies,�(~+ 1)2 + n0(~� 1) � q � (~+ 1)2 + n0(~� 1) (2:3:32)Colleting everything together, the three onditions boil down to (2.3.30) and(n0 + 12)(~� 1) < q � (n0 + 12)(~� 1) + 1 (2:3:33)and it is obvious that both h and q are positive. If n0 < 0 then (2.3.33) is replaed by :(n0 � 12)(~� 1)� 1 � q < (n0 � 12)(~� 1) (2:3:34)whih in partiular implies h > 0 ; q < 0 in this ase. In the following we will disuss the n0 > 0ase and we will point out in the end the appropriate hanges for n0 < 0.As it turns out to be, the embedding struture of these representations depends ruially onthe values of ~ and q, (onstrained already by (2.3.33)). We have to distinguish the followingases:(A) . ~ > 1, ~ irrational. We will analyze �rst the interior of the interval (2.3.33).(i) The U(1) harge q has the form, q = 12n(~ � 1) �m, n 2 Z ; m 2 Z+0 with n onstrainedfrom (2.3.33) : 2n0 + 1 + 2m~� 1 < n � 2n01 + 2(m+ 1)~� 1 (2:3:35)Then it is easy to show that the embedding pattern is the one shown in �g. 4 with,hk = h0 + kn0 ; h0m+k = h0 + k(n� n0) ; qk = q0k = q + k (2:3:36)It is obvious that in a given harge setor the various dimensions are distint and thus the or-responding representations di�erent. Also the maps fron one harged setor to another generate



29exat sequenes due to the fermioni nature of the operators generating the relevant hwv's.Another remark is in order here onerning the embedding diagrams: embedding maps that arefatorizable have been omitted from the �gures. For example in �g. 4 the family hm ontainsalso a degenerate vetor generating h0m+1. Thus the embedding map f : hm ! h0m+1 is theomposition of the maps g1 : hm ! hm+1 and g2 : hm+1 ! h0m+1, that is f(x) = g2(g1(x)).Similar remarks are true for the rest of the embedding diagrams.The trae over all the desendants of the primary state jh; q > is given?Tr[zL0wJ0℄ = FNS(z;w)zhwq (2:3:37a)whereas the trae, for example, over all the desendants of the family (h1; q1) is given by,Trh1[zL0wJ0 ℄ = FNS(z;w)1 + zn0w (2:3:38b)To ompute the harater in this ase we have to subtrat the ontribution from the family(h1; q1) so that,h(h; q; z; w) = FNS(z;w)zhwq �1 � zn0w1 + zn0w� = FNS(z;w) zhwq1 + zn0w (2:3:39)(ii) q has any other allowable value exept the ones mentioned in (i). In this ase the embed-ding pattern is shown in �g.2. The relevant dimensions are,hk = h + kn0 ; qk = q + k (2:3:40)so that the harater is given again by (2.3.39).Let's now onsider the representation whih lies on the vanishing surfae fNS1;2 = 0, whoseharge is given by q = (~� 1)(n0+ 12)+ 1. In this ase there is also a null hwv at relative hargezero embedded in the initial representation at the �rst level. The relevant diagram is given in�g. 5. The orresponding dimensions are,hk = h+ kn0 ; h0k = h+ k(n0 + 1) + 1 ; qk = q0k = q + k (2:3:41)To evaluate the harater in this ase we subtrat �rst the family h1 so that we fatorout everything else exept the irreduible family h00. This is given by subtrating h01 o� h00.? See App. 2.B.



30Consequently,h(z;w) = �([h0℄� [h1℄� [h00℄ + [h01℄) = FNS(z;w) zhwq(1 � z)(1 + zn0w)(1 + zn0+1w) (2:3:42)(B) ~ > 1, ~ rational. Then there is a unique way to write ~ as,~ = 1 + 2r2r1 ; r1; r2 2 Z ; r1 � 1; r2 � 1 (2:3:43)and with r2 being the least positive integer suh that (2.3.43) is true. For r2 = 1 thisorresponds to the speial lass of representations found in [1℄, whih are identi�ed bytriple intersetions of vanishing surfaes.We will fous �rst on representations whih are ontained in the interior of the interval(2.3.33).(i) If q = 12n(~ � 1) � m, n 2 Z ; m 2 Z+0 with the integer n onstrained by (2.3.35), thenthere are three possible embedding patterns orresponding to the following situations.(ia) r2 > 1. The orresponding diagram in this ase is displayed in �g. 6. The pattern repeatsitself with \period" r2, and the relevant dimensions are,hk = h+ kn0 ; h0m+k = h + k(n� n0) ; qk = q0k = q + keqno(2:3:44a)h00k+m+r2 = h + (r2 � k)n0 + k(n+ r1) ; q00k = q + k ; k � r2 (2:3:44b)h000k+m+r2 = h + r2(n� n0) + k(n0 + r1) ; q000k = q + k ; k � r2(2:3:44)At eah relative harge level all the dimensions are di�erent and orrespond to di�erenthwv's.(ib) r2 = 1, n 6= 2n0 + r1. Then the diagram of �g. 6 simpli�es to the one shown in �g. 7.The dimensions and harges are given by,h2l�1m+k = h+ (k � l + 1)[n+ (l � 1)r1℄ + (m+ 2l � k � 2)n0 ; 1 � l � [k + 12℄ (2:3:45a)h2lm+k = h + l[n+ (k � l)r1℄ + (m+ k � 2l)n0 ; 1 � l � [k2 ℄ (2:3:45b)h0k = h+ kn0 ; k � 0 ; qlk = q + k (2:3:45)(i) r2 = 1, n = 2n0 + r1. In this ase the diagram on �g. 7 ollapses even further to the



31diagram shown in �g. 8, the relevant dimensions being,hlm+k = h+ l(k � l + 1)n+ [2(l � k)(l � 1) +m� k℄n0 ; qlk = q + k (2:3:46)(ii) The harge q is not of the form (i). Then the embedding diagram is very simple and it isshown in �g. 2.In all the ases disussed above the harater an be omputed by subtrating the ontri-bution of the �rst embedded family. Consequently the harater is given by (2.3.39).Let's now onsider the representation that lies on the fNS1;2 = 0 surfae with q = (n0+ 12)(~�1) + 1.(a) For r1 > 1, r2 > 1 the embedding pattern is shown in �g. 9, the relevant dimensionsbeing, hk = h+ kn0 ; h0k = h+ kn0 + k + 1 ; qk = q0k = q + k (2:3:47a)h00k+r2 = h+(r2+k)n0+(k+1)r1+ r2 ; h000k+r2 = h+(r2+k)n0+(k+1)(r1+1) (2:3:47b)(b) r2 = 1, r1 > 1. The orresponding diagram is shown in �gure 10 with the followingdimensions and harges,h2l�1k = h+ kn0 + (k � l � 2)[(l� 1)r1 + 1℄ ; k � 0 ; l � 1 (2:3:48a)h2lk = h + kn0 + l[(k � l + 1)r1 + 1℄ ; k � 0 ; l � 0 (2:3:48b)qlk = q + k (2:3:48)() r1 = 1, r2 > 1 . In this ase the embedding diagram beomes the one shown in �g. 11where the periodiity of the pattern is again set by r2. The orresponding dimensions are,hk = h+ kn0 ; h0k = h+ kn0 + k + 1 ; qk = q0k = q + k (2:3:49)(d) r1 = r2 = 1, ~ = 3. Then the previous diagram ollapses to the one shown in �g. 12,hkl = h+ ln0 + k(l � k + 2) ; qkl = q + k ; k � 2l � 2 (2:3:50)In all of the above ases the harater an be omputed in the same way as in the respetivease where ~ was irrational. Consequently the harater is given by (2.3.42).



32The only ase left to onsider for the NS2 representations is ~ = 1 whih is not inluded in(B).(C) ~ = 1.(i) 0 < q < 1. In this ase the embedding diagram beomes fairly simple and it is shown in�g. 2, hk = (q + k)n0 ; qk = q + k (2:3:51)and the harater is given by (2.3.39).(ii) q = 1. The Ka� determinant simpli�es enormously, its fators beoming,fNSr;s = �q2 + s24 ; gNSk = h� qk (2:3:52)This gives rise to the pattern pitured in �g. 13 withhk;l = k[n0 + l � 1℄ qk;l = k ; k; l � 1 (2:3:53)The harater is given again by (2.3.42).We will now fous on the degenerate representations of NS3. They are haraterized by thefollowing onditions, ~ � 1 ; gNSn � 0 8n 2 Z + 12 (2:3:54)For a �xed ~ this is a onvex region in the (h,q) plane bounded by piees of the gNSn = 0 lines.The degenerate representations lie on the boundary of the region above and an be labeled byn0 suh that gNSn0 = 0 and their harge. This implies that their dimensions and harges aregiven by, (~� 1)(n0 � 12) < q � (~� 1)(n0 + 12) (2:3:55a)h = n0q � (~� 1)2 (n20 � 14) (2:3:55b)We will fous again on n0 > 0.(A0) ~ > 1 rational.(i) q = (n0 + 12)(~� 1). In this ase the embedding diagram is shown in �g. 15 with,hk = h+ kn0 ; h0k = h+ k(n0 + 1) ; qk = q0k = q + k (2:3:56)For the other allowed values of q we have to distinguish the following two ases



33(ii) q = n2 (~� 1)�m with n 2 Z ; m 2 Z+0 . The embedding diagram in this ase is shown in�g.14 with,hk = h+ kn0 ; h0m+k+r2 = h+ (r2 + k)n0 + kr1 ; qk = q0k = q + k (2:3:57)(iii) q has any other allowed valued exept the ones mentioned in (i), (ii). Then the embeddingstruture is the one shown in �g. 2.(B0) ~ > 1 irrational.(i0) q = (n0 + 12)(~� 1). Then the embedding diagram is the one shown in �g. 16 with,hk = h+ kn0 ; h0k = h+ k(n0 + 1) ; qk = q0k = q + k (2:3:58)(ii0) For all the other allowed values of q the embedding pattern is the one of �g. 2.The above exhaust all possible degenerate representations belonging to NS3. In the ~ = 1ase the only degenerate representation is given by the unit operator. From the struture of therepresentations of NS3 we an onlude that their haraters are given by (2.3.39).Thus we an distinguish representations for ~ � 1 in those that have only degeneraies relatedto gn with their orresponding haraters given by (2.3.39) and in those that have additionaldegeneraies related to f1;2 whose haraters are given by (2.3.42).The same results apply in the ase n0 < 0 with the following substitutions in the relevantformulae : n0 ! jn0j ; w! w�1 ; wq ! wq.The null hwv's whih orrespond to the representations studied above degenerate at relativeharge �1 do not generate full Verma modules. There exist lowering operators whih annihilatethem.?The above omplete the derivation of the haraters for all the unitary degenerate represen-tations of the N=2 algebras. The haraters of the non-degenerate representations are given inAppendix 2.B.The speial values of ~ mentioned in [18℄, namely ~ = 1 + 2n , n = 1; 2; 3; ::: also ontainthe interesting ase of ~ = 3(2) arising in the string theory ompati�ation on a ompatsix(four) dimensional Rii at manifold. In partiular the (anti-)holomorphi �-tensor realizesthe representations of the NS2 algebra, (sine it is a spae-time boson), with q = �~ and h = ~2orresponding to our notation to r1 = 1(2), r2 = 1, n0 = �1=2, n = �3(�4), m = 0. Theembedding struture of their Verma module is depited in �g. 12. The ovariantly onstantspinors on the internal manifold orrespond to degenerate representations of the R�2 , (spae-timefermions), whih are degenerate at level n0 = 0 with h = ~8 and q = sgn(0) ~+12 (lying on theintersetion of gR0 = 0 and fR1;2 = 0). These representations are important in the onstrution ofthe four generators of the four-dimensional N=1 supersymmetry. The dimensions and harges? For expliit examples see App. 2.A.



34of these operators should not be renormalized even non-perturbatively sine the spetrum forthis lass of representations is disrete. Their partition funtions an be read-o� immediatelyfrom (2.3.42), and they provide the means to study questions of modular invariane in theorresponding �-model.2.4 N=2 Supersymmetry and the Analyti Geometryof (2,0) SuperspaeIn this setion we are going to disuss the loal geometry of (2,0) superspaey.N=2 supersymmetry is a natural extension of N=1 supersymmetry. In this ase we have twodi�erent supersymmetry generators (superharges), as well as an O(2) (or U(1)) urrent whihmanifests the symmetry of the theory under an O(2) rotation of the two supersymmetries. Thenatural spae to de�ne the �elds of the theory is N=2 superspae, (or more preisely (2,0)superspae). In a theory with (super)onformal invariane the left and right setors of thetheory ompletely deouple, so that the struture of the theory is that of a tensor produt ofthe left and right setors. From now on we will restrit ourselves to the left setor only, keepingin mind the previous remarks.(2,0) superspae inludes, apart from the omplex analyti oordinate z, two other fermionioordinates, � and �� orresponding to the two supersymmetries.�2 = ��2 = f�; ��g = 0: (2:4:1)A point in superspae will be denoted by z � (z; �; ��).A super�eld is an analyti funtion in z de�ned through its power series expansion in thefermioni oordinates: �(z) � �(z) + � � (z) + �� (z) + ���g(z): (2:4:2)The two supersymmetry transformations an be written as:(z; �; ��)! (z � ���; � + �; ��) (2:4:3a)(z; �; ��)! (z � ���; �; �� + ��) (2:4:3b)where �; �� are antiommuting variables whih are the parameter of the transformation. Undery Global issues have been disussed in [30℄.



35the two supersymmetry transformations, (2.4.3a,b), a super�eld transforms as:�(z; �; ��)! �(z � ���; � + �; ��) = �(z � ���) + (� + �) � (z � ���) + �� (z � ���)+(� + �)��g(z � ���) = �(z) + � � (z) + ��[��z�(z)� �g(z) +  (z)℄+� � (z) + ���[g(z) + ��z � (z)℄ (2:4:4a)�(z; �; ��)! �(z � ���; �; �� + �) = �(z � ���) + � � (z � ���) + (�� + ��) (z � ���)+�(�� + ��)g(z � ���) = �(z) + �� (z) + �[ � (z) + ���z�(z) + ��g(z)℄+�� (z) + ���[g(z)� ���z (z)℄ (2:4:4b)whih implies the following transformation laws for the omponent �elds:Æ��(z) = � � (z)Æ� (z) = �[�z�(z)� g(z)℄Æ� � (z) = 0Æ�g(z) = ��z � (z) �Æ���(z) = �� (z)�Æ�� (z) = 0�Æ�� � (z) = ��[�z�(z) + g(z)℄�Æ��g(z) = ����z (z) (2:4:5)It is easy to verify the global supersymmetry algebra:[Æ�; Æ��℄ = 2��� ��z ; [Æ�; Æ�℄ = [Æ��; Æ��℄ = 0: (2:4:6)The ovariant derivatives in superspae are de�ned by:D � ��� + �� ��z ; �D � ���� + � ��z (2:4:7a)D2 = �D2 = 0 ; fD; �Dg = 2 ��z : (2:4:7b)We introdue here the notion of a hiral N=2 super�eld, as a super�eld satisfying one of the



36following onditions: D�(z) = 0 =) �(z) = �(z) + 2�� (z)� ����z�(z) (2:4:8a)�D ��(z) = 0 =) �(z) = ��(z) + 2� � (z) + ����z ��(z) (2:4:8b)The Grassman integration is de�ned through the usual standard rules:Z d�d�� = Z d�d��� = Z d�d���� = 0 ; Z d�d�� ��� = 1: (2:4:9)If we all the generators of the two supersymmetries G�1=2; �G�1=2 then eq. (2.4.6) is trans-lated into:fG�1=2; G�1=2g = f �G�1=2; �G�1=2g = 0; fG�1=2; �G�1=2g = 2L�1 (2:4:10)L�1 being the usual translation operator on the omplex plane. The full superonformal sym-metry is generated by the usual Virasoro generators Ln, the supersymmetry generators,Gr � 2n+ 1[Ln; G�1=2℄ ; �Gr � 2n+ 1[Ln; �G�1=2℄ ; r = n� 1=2 (2:4:11)and the U(1) urrent generators, Jn, whih implement the U(1) symmetry, under whih the twosuperurrents are in omplex onjugate representations. The full N=2 superonformal algebrathen takes the form:[Lm; Ln℄ = (m� n)Lm+n + ~4(m3 �m)Æm+n;0[Lm; Gr℄ = (m2 � r)Gm+r ; [Lm; �Gr℄ = (m2 � r) �Gm+r[Jm; Jn℄ = ~mÆm+n;0 ; [Jm; Gr℄ = Gm+r; [Jm; �Gr℄ = �Gm+rfGr; Gsg = f �Gr; �Gsg = 0 ; [Lm; Jn℄ = �nJm+nfGr; �Gsg = 2Lr+s + (r � s)Jr+s + ~(r2 � 14)Ær+s;0 (2:4:12)It is the generating algebra of N=2 superanalyti transformations in N=2 superspae. Weshould, at this point, de�ne what we mean by an extended superanalyti transformation. Themost general oordinate transformation in N = 2 superspae has the form?z0 = f0(z) + �f1(z) + �� �f1(z) + ���f2(z)�0 = g0(z) + �g1(z) + ���g1(z) + ���g2(z)��0 = h0(z) + �h1(z) + ���h1(z) + ���h2(z) (2:4:13)A natural de�nition for an extended superanalyti transformation is one under whih the o-variant derivatives transform homogeneously. Under (2.4.13) the ovariant derivatives transform? f0; f2; g1; �g1; h1; �h1 are ommuting funtions, whereas f1; �f1; g0; g2; h0; h2 are antiommuting ones.



37as: D = (D�0)D0 + (D��0) ����0 + [Dz0 � (D�0)��0℄ ��z0 (2:4:14a)�D = ( �D��0) �D0 + ( �D�0) ���0 + [ �Dz0 � ( �D��0)�0℄ ��z0 : (2:4:14b)Consequently the onditions for (2.4.13) to be a superanalyti transformation are:y�D�0 = D��0 = Dz0 � (D�0)��0 = �Dz0 � ( �D��0)�0 = 0: (2:4:15)Solving (2.4.15) we arrive at the most general form of an extended superanalyti transformation:z0 = f0(z) + �g1(z)h0(z) + ���h1(z)g0(z) + ���[g0(z)h0(z)℄0�0 = g0(z) + �g1(z) + ���g00(z)��0 = h0(z) + ��h1(z)� ���h00(z) (2:4:16)along with the supplementary ondition:f 00(z) = g00(z)h0(z)� g0(z)h00(z) + g1(z)�h1(z) (2:4:17)where in (2.4.17) and in the left-hand side of (2.4.16) a prime means di�erentiation with respetto z.In partiular the global supersymmetry transformations are speial ases of (2.4.16) withf0(z) = z; g0(z) = �; h0(z) = 0; g1(z) = �h1(z) = 1 and f0(z) = z; g0(z) = 0; h0(z) = ��; g1(z) =�h1(z) = 1 respetively.We de�ne the two abelian N=2 superdi�erentials through their transformation propertiesunder analyti superonformal transformations:dz0 � (D�0)dz ; ~z0 � ( ~D~�0)d~z (2:4:18)The superonformal tensor �elds are de�ned by the ondition that�(z)(dz)�+Q=2(d~z)��Q=2is an N=2 superonformal invariant quantity, where �; Q are the dimensions and harge of thelowest omponent �eld. They are the primary super�elds generating the highest weight irre-duible representations of the N=2 superonformal algebra. Globally de�ned tensor super�eldsmust have dimensions and harges whih are integers or half integers. They an be onstrutedas omposite operations from loally de�ned �elds.y In fat, even if we demand that D transforms in general as D = (D�0)D + (D��0) �D0 we end up at (2.4.15).There is a dual requirement, D = (D��0) �D0 whih gives onditions onjugate to (2.4.15)



38We an also extend the Cauhy integral formulas in superspae. If we de�ne the invariant\distanes," zij � zi � zj � �i��j � ��i�j; �ij � �i � �j; ��ij � ��i � ��j, and the \volume" elementdz = dzd�d��, then, [28℄,12�i IC dz1 �(z1)��12�12 = 012�i IC dz1 �(z1) ��12�12zm12 = 1(m� 1)! �m�1�zm�12 �(z2)12�i IC dz1 �(z1) ��12zm12 = 1(m� 1)! �m�1�zm�12 D�(z2)12�i IC dz1 �(z1)�12zm12 = � 1(m� 1)! �m�1�zm�12 �D�(z2)12�i IC dz1 �(z1) 1zm12 = 12 1(m� 1)! �m�1�zm�12 [D; �D℄ �(z2) : (2:4:19)
The presription to evaluate the integrals above is the following: First, do the Grassmanintegrations using eq. (2.4.9) and then perform the omplex integrations in the usual way. Theontour C is winding around the point z2.The N=2 superanalyti transformations are generated by the stress-energy super�eld, whihin omponent form an be written as:J(z) � J(z) + i� �G(z) + i��G(z) + 2���T (z): (2:4:20)The Fourier modes of the generators are de�ned in the usual way:J(z) �Xn2Z Jnzn+1G(z) �Xn2Z Gn�1=2zn+1 ; T (z) �Xn2Z Lnzn+2�G(z) �Xn2Z �Gn�1=2zn+1 (2:4:21)These generators are represented in the spae of super�eld funtions in the following way:Ln � �zn+1 ��z � n+ 12 zn[� ��� + �� ���� ℄Jn � zn[�� ���� � � ��� ℄Gn�1=2 � zn[ ��� � �� ��z ℄ + nzn�1��� ����Gn�1=2 � zn[ ���� � � ��z ℄� nzn�1��� ���� (2:4:22)



39It is straightforward to hek that the generators in equations (2.4.22) satisfy the N=2superonformal loop algebra, (as in (2.4.12) with ~ = 0), whih is the algebra of N=2 superon-formal transformations over S1. The expliit representation (2.4.22) will be useful later on inthis paper, to analyze the orrelation funtions of N=2 superonformal invariant theories.The stress-energy tensor has an operator produt expansion with itself:J(z1)J(z2) = �12z12DJ(z2)� ��12z12 �DJ(z2) + 2�12��12z212 J(z2)+2�12��12z12 J0(z2) + ~z212 (2:4:23)where the anomaly ~ is normalized, so that a free salar N=2 super�elds has ~ = 1. Eq. (2.4.23)orresponds to a hange of the stress-energy tensor under a superonformal transformationÆvJ(z) = [�zv℄J(z) + v�zJ(z) + 12[ �Dv℄DJ(z) + 12[Dv℄ �DJ(z)+ ~4�z[ �D;D℄v (2:4:24)v being an in�nitesimal N=2 super�eld.The hange in the stress-energy tensor under a �nite superonformal transformation is givenby: J(z) = J0(z0)[D�0℄[ �D��0℄ + ~2S(z; z0) (2:4:25)where the N=2 super-Shwarzian derivative is de�ned through:S(z; z0) � � �D��0�D��0 � �D�0D�0 � 2 ���0 ��0( �D��0) (D�0) (2:4:26)It satis�es the following omposition law:S(z1; z3) = S(z1; z2) + (D�2)( �D��2)S(z2; z3) (2:4:27)On the sphere for a vetor �eld to be globally de�ned, it must have a vanishing \anomaly,"that is under an in�nitesimal transformation generated by it, the anomalous part in (2.4.24)



40must vanish, that is, �z[ �D;D℄v = 0, whih gives an eight-parameter family of globally de�nedvetor �elds on the sphere:v(z) = v�1 + v0z + v1z2 + �[u�1=2 + u1=2z℄ + ��[�u�1=2 + �u1=2z℄ + q0���: (2:4:28)These vetor �elds generate the global N=2 superonformal algebra, osp(2j2). (In fat theygenerate half of osp(2j2), its holomorphi part.) The global N=2 superonformal algebra is themaximal, �nite dimensional, subalgebra of the N=2 superonformal algebra. It ontains the gen-erators of the ordinary projetive transformations, L1; L0; L�1, the superharges G�1=2; �G�1=2and the zero mode of the U(1) urrent. It is easy to hek using (2.4.12) that this set of genera-tors loses into itself, and it ontains as a subalgebra, the N=1 superonformal algebra, osp(2j1).Sine the Shwarzian derivative transforms as in (2.4.27), the fat that it vanishes for in�nitesi-mal global N=2 transformations ontinues to be true for �nite transformations belonging to theidentity omponent of the group.TheOSP (2j2) group transformations an be found either by exponentiating the generators ofthe algebra given in (2.5.22) or using the general form of superanalyti transformations (2.4.16),and some analytiity arguments [29℄. Another way is to solve the equation S(z; z0) = 0. Thereare three parameters assoiated with the subgroup SL(2; C), four supersymmetry parameters,(Grassman), �1; �2; ��1; ��2 and a parameter q assoiated with the zero mode of the U(1) urrent.The group transformations are:z0 = az + bz + d + eq� (1� 12�1��2)��1z + ��2(1 + 12�2��1)(z + d)2 + e�q�� (1 + 12�1��2)�1z + (1 � 12�1��2)�2(z + d)2+[2d�1��1 � 2(��1�2 + ��2�1)℄z + d(��1�2 + ��2�1)� 2��2�2(z + d)3 (2:4:29a)�0 = �1z + �2z + d + eq�1 + 12 (�2��1 � �1��2) + 14�1��1�2��2(z + d) + ��� �1d � �2(z + d)2 (2:4:29b)��0 = ��1z + ��z + d + e�q��1 + 12(�2��1 � �1��2) + 14�1��1�2��2(z + d) + �����2� ��1d(z + d)2 (2:4:29)The N=2 superonformal vetor �eld generates the group of N=2 super-di�eomorphisms onthe irle, ~̂Diff(S1). The Shwarzian derivative is the globally invariant generator of the seondohomology group of ~̂Diff(S1). It generates a non-trivial transformation on the stress-energytensor viewed as a onnetion on moduli spae.As an be seen from (2.4.12), the subalgebra does not have an anomaly even if ~ 6= 0.This is of ruial importane in a superonformal theory as we will see later. It implies that allorrelation funtions are invariant under OSP (2j2) onstraining in suh a way their form. Along



41with some supplementary onstraints on the orrelation funtions, present when the theory hasdegenerate representations, it helps to determine the orrelation funtions ompletely, renderingthe theory exatly solvable.2.5 The Ground States and Primary Fieldsin N=2 Superonformal Field TheoriesAn N=2 superonformal �eld theory is a �eld theory invariant under the N=2 superanalytitransformations desribed in the previous setion, whih form the N=2 superonformal group.The in�nitesimal transformations are generated by an in�nitesimal loal super�eld v(z):v(z) � v0(z) + � v1(z) + ���v1(z) + ��� v2(z) (2:5:1)z0 = z + v(z) + 12[( �Dv)� + (Dv)��℄�0 = � + 12 �Dv ; ��0 = �� + 12Dv (2:5:2)The funtion v1; �v1 are Grassman funtions antiommuting among themselves and with �; ��,whereas v0; v2 are usual meromorphi funtions. The superonformal transformations are gener-ated by the super-stress-energy tensor, see (2.4.20). Using the Cauhy formulas of the previoussetion we an write the hange of a loal super�eld under a superonformal transformation as:Æv�(z) = � 14�i Iz dz0v(z0)J(z0)�(z) (2:5:3)where the ontour Cz surrounds the point z in the omplex plane.The variation (2.5.3) is determined by the singularities of the OPE, of the stress-energytensor with the super�eld. In partiular a super�eld funtion transforms under an in�nitesimaltransformation as: Æv� = v��+ 12Dv �D� + 12 �DvD�: (2:5:4)It is usually onvenient to use radial quantizations going, (through a superanalyti transfor-mation), from the ylinder to the plane, (lnz; z�1=2�; z�1=2��) ! (� + i�; �; ��).The fermioni �elds on the ylinder an have two possible boundary onditions? , periodior antiperiodi. On the plane, this is translated to G; �G(ze2�i) = �G; �G(z), the orrespondingsubspaes of the full Hilbert spaes being the NS and R setors. In the NS setor G(ze2�i) =G(z) whereas in the Ramond setor, G(ze2�i) = �G(z), that is the fermioni �elds are doublevalued on the plane.? We will postpone for the moment the disussion of more general boundary onditions.



42The operator produt expansion for the stress-energy tensor was given in (2.4.23). Theterms that appear in (2.4.23) are the most general terms that are allowed in a Eulidean N=2supersymmetri quantum �eld theory, satisfying the standard onstrutive �eld theory axioms.The proof of [10℄ an be extended easily in our ase, to guarantee (2.4.23) provided the theoryhas sale invariane and global N=2 supersymmetry. Using the mode expansions (2.4.21) we anderive (2.4.12) from (2.4.23). The stress-energy tensor must be a Hermitian operator, implyingsome hermitiity onditions among its omponents:Lyn = L�n; Jyn = J�n; Gyr = �G;�r �Gyr = G�r: (2:6:5)We de�ne the in-vauum j0i of the theory at time � = �1; (z = 0), to be OSP (2j2) invariant.This means that it is annihilated by Ln; n � �1; Jn; n � 0; Gr; �Gr; r � �1=2, (NS setor) orGn; �Gn; n � 0 in the R setor. In the same way the out-vauum is de�ned at z ! 1. Thevauum state belongs to the NS setor and it is the ground state of the theory. The unitaryirreduible representations of the N=2 superonformal algebra are generated from highest weightvetors, (hwv), by the ation of the lowering operators of the algebra , Ln; Jn; Gr; �Gr; n; r < 0.In the NS setor the hwv's are generated by the ation of primary onformal super�elds onthe vauum state. Their de�ning relations are their transformation properties under superon-formal transformations enoded in their OPE with the stress-energy tensor:J(z1)�(z2) = 2��12��12z212 �(z2) + 2�12��12z12 �0(z2) + �12z12D�(z2)� ��12z12 �D�(z2) + Q�(z2)z12 (2:5:6)Using (2.5.3) and (2.5.6) we an derive the transformation law for a primary super�eldoperator: Æv�(z) = �(�zv)�(z) + v�z�(z) + 12[ �Dv℄D�(z) + 12 [Dv℄ �D�(z)� Q4 f[D; �D℄vg�(z) (2:5:7)Under a �nite transformation �(z) transforms as:�(z) = �(z0)[D�0℄�+Q2 [ �D��0℄��Q2 (2:5:8)where (�; Q) are its dimension and U(1) harge. The hwv in the NS setor are haraterizedby their eigenvalues under the zero modes of the algebra:L0j�i = �j�i ; J0j�i = Qj�i (2:5:9)



43Being hw states they must be annihilated by the raising operators of the algebra:Lnj�i = Jnj�i = Gnj�i = �Gnj�i; n > 0: (2:5:10)The OPE (2.5.6) an be written also as ommutation relations whih will be useful later on:[Ln;�(z)℄ = zn+1 ��z�(z) + (n+ 1)zn[� + 12[� ��� + �� ���� ℄℄�(z)+ Q2 n(n+ 1)zn�1����(z)[Jn;�(z)℄ = zn[Q+ �� ���� � � ��� ℄�(z) + 2n�zn�1����(z)[Gr;�(z)℄ = zr+ 12 [ ���� � � ��z ℄�(z)� (r + 12)zr� 12 [(2� +Q)�+ ��� ��� ℄�(z)[ �Gr;�(z)℄ = zr+ 12 [ ��� � �� ��z ℄�(z)� (r + 12)zr� 12 [(2��Q)�� � ��� ���� ℄�(z) (2:5:11)In the R-setor the zero modes are L0; J0, and �G0; G0, their eigenvalues haraterizing hwv's.There are two kinds of hwv's, j�; Q� 1=2i� , [18℄,L0j�; Q� 12 i� = �j�; Q� 12i�J0j�; Q� 12 i� = (Q� 12)j�; Q� 12 i� (2:5:12)whih satisfy an additional hwv ondition with respet to the superharges:G0j�; Q+ 12i� = 0 ; �G0j�; Q� 12i+ = 0: (2:5:13)Consequently there are two kinds of representations, R�. The two representations are isomorphiunder harge onjugations (Gn $ �Gn; Jn! �Jn).From now on we will restrit to one of them, say R+, our statements being valid for R� aswell.In the R-setor the ground state is not unique. There are two ground states degenerate inenergy, (i.e., having the same dimension). j�+i and G0j�+i � j��i. They are generated fromthe vauum j0i, (whih belongs to the NS setor), by primary �elds ��(z), muh like the spin�elds of the N=1 superonformal theories. The spin �elds have double-valued OPE with thestress-energy tensor, for example:G(z)��(!) = 12�� ��(!)(z � !)3=2 (2:5:14)where �+ = 1; �� = � � ~=8. This happens in order for the spin �eld to be able to hangethe boundary onditions of the fermioni parts of the super�elds. We an view the spin �elds as



44opening and losing uts on the ylinder. The states in the R-setor are generated by ordinaryonformal super�elds ating on the Ramond ground states. The generators of global N=2supersymmetry transformations in the R-setor are G0; �G0.Unbroken N=2 supersymmetry is implied by the existene of a ground state whih is anni-hilated by the global N=2 supersymmetry generators. The state j�+i is annihilated by �G0 dueto (2.5.13). Applying fG0; �G0g to it we obtain:fG0; �G0gj�+i = �G0G0j�+i = (2L0 � ~=4)j�+i = (2�� ~=4)j�+i: (2:5:15)Consequently, in order for G0 to annihilate j�+i, its dimension must be �+ = ~=8. The operatorfG0; �G0g is a hermitian positive operator, thus any dimension in the R-setor has to be � ~=8.This is the reason that the vauum j0i, the lowest energy state must belong to the NS-setor. Inthe same way �G0j��i = 0, implies �� = ~=8. Therefore, the existene of a state in the R-setorwith � = ~=8 implies unbroken N=2 supersymmetry on the ylinder. On the other hand if suha state does not exist in the theory the one supersymmetry out of the two is broken.So far we have been disussing the two setors of the N=2 superonformal theory that parallelthe situation in ordinary N=1 superonformal theories. In the N=2 ase though, unlike theN=1, there is another setor present in general due to the fat that N=2 super�elds ontain twofermioni omponents, so there is also the possibility of hoosing periodi boundary onditionsfor one of them, and antiperiodi for the other one. This an be seen easier if we write thealgebra (2.4.13) in an O(2) basis:G1r � Gr + �Grp2 ; G2r = Gr � �Grip2 : (2:5:16)In this basis the algebra (2.4.12) beomes:[Lm; Ln℄ = (m� n)Lm+n + ~4(m3 �m)Æm+n;0[Lm; Gir℄ = (m2 � r)Gim+r; [Lm; Jn℄ = �nJm+n[Jm; Jn℄ = ~mÆm+n;0 [Jm; Gir℄ = i�ijGjm+rfGir; Gjsg = 2ÆijLr+s + i�ij(r � s)Jr+s + ~(r2 � 14)ÆijÆr+s;0 : (2:5:17)The twisted (T ) N=2 algebra is de�ned by hoosing integer modes for G1m; Lm and halfinteger modes for G2r ; Jr hoies, ompatible with the ommutation relations (2.5.17). In theO(2) basis the stress-energy tensor beomes:J(z) � J(z) + �ij�iGj(z) + �ij�i�jT (z) (2:5:18)where �i is an O(2) doublet of Grassmann oordinates. A twisted super�eld:�(z) � �(z) + �ij�i j(z)(z) + 12�ij�i�jg(z) (2:5:19)has antiperiodi boundary onditions for �(z) and  2(z) and periodi boundary onditions for



45g(z) and  1(z), on the ylinder, that is � and  1 are Z2 twisted. Again here, G10 is a hermitianoperator. Its square, ating on a primary state must give positive eigenvalues, whih impliesthat all the dimensions in the T-setor satisfy: � � ~=8. In partiular it implies that if there isa state with � = ~=8 this is then the ground state, and it is doubly degenerate sine this statejH+i and jH�i � G10jH+i, have the same energies. One of the two supersymmetries, namelythe one generated by G10 is then unbroken, sine G10 annihilates the ground states:(G10)2jH+i = 12fG10; G10gjH+i = (L0 � ~=8)jH+i = 0G10jH�i = (G10)2jH+i = 0 (2:5:20)The global supersymmetry generated by G2�1=2 is broken sine G2�1=2 fails to annihilate theground states. This is obvious sine in order for G21=2 to annihilate a primary state, its dimensionhas to be zero, and as we argued above, states with zero dimension do not exist in the T-setor.Thus in the T-setor we have at most a remnant N=1 supersymmetry. The ground states aregenerated from the NS vauum by the \twist" �elds H�(z), the presene of whih indues utson the omplex plane suh that �(z) and  1(z) are double valued around the point where thetwist �eld lies. In the T-setor there is a parity operator, (�1)F , whih ommutes with Lm; Jmand antiommutes with Gim. In partiular:(�1)F jH+i = jH+i ; (�1)F jH�i = �jH�i; (2:5:21)In the R-setor the two-spin �elds are non-loal with respet to eah other. Their operatorprodut expansion ontains square root singularities in the omplex plane whih indue non-loality when we projet to Eulidean spae. The same is true in the T-setor. In order toobtain a loal theory we must suitably projet out one fermion parity, the same way as in theN=1 ase.2.6 Global OSP(2j2) InvarianeAs it was mentioned earlier in this work, the invariane of the vauum under the globalN = 2 superonformal group, OSP (2j2), turns out to be very useful towards the evaluation ofthe orrelation funtions. From now on we restrit ourselves to theNS setor. Similar tehniquesthough apply to the R� and T setors although the analysis is somewhat more ompliated.Using the ommutations relations (2.5.11), derived in the previous setion, we an write theWard identities for global superonformal invariane. Their derivation is obvious. For exampleL�1 annihilates the in-vauum. But we an move it to the left using (2.6.11), so we end up with



46a di�erential equation for the orrelation funtion. Thus the n-point funtion:Fn(z1; z2; � � � ; zn) � h0j�1(z1)�2(z2)�3(z3) � � ��n(zn)j0i (2:7:1)satis�es the following Ward identities:L�1 : " nXi=1 ��zi#Fn = 0 (2:6:2a)L0 : nXi=1 �zi ��zi +�i + 12[�i ���i + ��i ����i ℄�Fn = 0 (2:6:2b)L1 : nXi=1 �z2i ��zi + 2zi��i + zi(�i ���i + ��i ����i )� +Qi�i��i�Fn = 0 (2:6:1)J0 : nXi=1 �Qi + ��i ����i � �i ���i�Fn = 0 (2:6:2d)G�1=2; �G�1=2 : nXi=1 � ����i � ��i ��zi�Fn = nXi=1 � ���i � ��i ��zi�Fn = 0 (2:6:2e)G1=2 : nXi=1 �zi[ ����i � �i ��zi ℄� (2�i +Qi)�i � �i��i ���i�Fn = 0 (2:6:2f)�G1=2 : nXi=1 �zi[ ���i � ��i ��zi ℄� (2�i �Qi)��i + �i��i ���i�Fn = 0 (2:6:2g)where �i; Qi are dimensions and harges of the various �elds appearing in the orrelation fun-tion (2.6.1).A super�eld operator in terms of omponents has the form:�(z) � �(z) + � (z) + �� (z) + ���g(z): (2:6:3)The two-point funtion is ompletely �xed by the Ward identities, up to an irrelevant nor-malization onstant.h0j�1(z1)�2(z2)j0i = z�(�1+�2)12 expfQ2 �12��12z12 gÆQ1+Q2;0Æ�1;�2 (2:6:4)It is a funtion of the supersymmetry invariant distanes in super spae, z12 = z1 � z2 ��1��2 � ��1�2; �12 = �1 � �2; ��12 = ��1 � ��2: The three-point funtion depends on nine



47independent variables (zi; �i; ��i). Sine OSP (2j2) has eight generators we an �x at most eightof them, so there must be a unique ombination invariant under OSP (2j2). This is a ommutingombination whih turns out to be nilpotent:R̂ = �12��12z12 � �13��13z13 + �23��23z23 ; R̂2 = 0 (2:6:5)So, for any partiular solution of the Ward identities, we an obtain the general solutionby multiplying it with (1 + �R̂), � being an arbitrary ommuting onstant. Solving the Wardidentities for the three-point funtion we obtain:h0j�1(z1)�2(z2)�3(z3)j0i = C 24 3Yi<j z��ijij 35 exp24 3Xi<j Aij �ij ��ijzij 35 ÆQ1+Q2+Q3;0 (2:6:6)where the onstants Aij = �Aji; 3Xj=1j 6=i Aij = �Qi (2:6:7)It is easily seen from (2.6.7), that the equations de�ning the onstants Aij, are not �xing allof them beause of the hange neutrality ondition, for the orrelation funtion. In partiular,if Aij is some solution of (2.6.7) then A12+�;A31+�;A23+�, is also a solution. Of ourse thisis expeted. It orresponds to multiplying the three-point funtion by the OSP (2j2) invariant,(1 + �R̂). For the three-point funtion to be non-zero, the OPE of the operators �1;�2 mustontain the family �3. Then the normalization onstant C of the three-point funtion is theGlebsh-Gordan oeÆient for the deomposition [�1℄ 
 [�2℄ ! [�3℄: In the N = 2 ase, likethe N = 1, there is another operator produt oeÆient to be determined, namely one of theAij, due to the existene of the OSP (2j2) invariant R̂.In general OSP (2j2) invariane onstraints the n-point funtion to have the form:h0j�1(z1)�2(z2); : : :�n(zn)j0i � nYi<j[z��ijij ℄ exp[ nXi<j Aij �ij ��ijzij ℄�Fn[x1; x2; : : : ; x3n�8℄� ÆPni=1 Qi;0 (2:6:8)Aij = �Aji; �ij = �ji; nXj=1i6=j Aij = �Qi; nXi=1j 6=i �ij = 2�i (2:6:9)where xi; i = 1; 2 : : : ; 3n � 8 are the ombinations of the oordinates, with dimension zero,invariant under OSP (2j2). They are funtions of the invariant distanes, zij; �ij; ��ij. All the



48non-trivial information about the theory is enoded in the funtions Fn. In most ases they aredetermined by the spei� details of the theory. In ertain ases though, that will be disussedin the next setion, they an be evaluated, just by knowing the representation ontent of thetheory.2.7 Operator Algebra and Correlation Funtionsin N=2 Unitary Minimal Superonformal Models (NS Setor)From now on we will fous on unitary minimal N=2 superonformal models. As mentionedin setion 2.3 these exist for the following values of the entral harge,~ = 1� 2m ; m = 2; 3; :::: (2:7:1)They ontain degenerate representations only and we will show that they are exatly solvable.The strategy is the following. Consider a hw unitary irreduible representation of the N = 2superonformal algebra. It is generated by a hwv; j�; Qi, the primary state, satisfying theusual hwv onditions. The full representation is obtained from j�; Qi by applying the loweringoperations of the algebra. In some speial situations it may turn out that one of the seondarystates satis�es the hwv onditions. This means that the representation generated by j�; Qiis not irreduible, but there is another representation, (the one generated by the seondaryvetor), embedded in it. The seondary hwv; j�i, has the interesting property, that it is null,(i.e. h�j�i = 0); and orthogonal to any other state in the Hilber spae. We may thus onsistentlyset j�i to be equal to zero, a ondition that deouples all its family from the orrelation funtionsof the theory. In fat this ondition will generate onstraints on the orrelation funtions, of theprimary state j�; Qi. To see how suh onstraints arise we have to remember that j�i is givenby some operator Ô, onstruted out of the lowering operators of the algebra, ating on j�; Qi,thus:0 � h0j�1(z1)�2(z2) � � ��n�1(zn�1)j�i = h0j�1(z1)�2(z2) : : :�n�1(zn�1)Ôj�; Qi (2:7:2)Moving the operator Ô to the left using the ommutation relations (2.6.11) we end upwith a super-di�erential equation for the orrelation funtion. Solving these equations we andetermine all the orrelation funtions that the degenerate family is partiipating in.A neessary and suÆient ondition for the existene of suh systems is the losure of theoperator algebra of a set of unitary degenerate representations. In fat we will show that theoperator algebra of the unitary degenerate representations of the N = 2 superonformal algebra,with ~ < 1, does lose. We will derive also the \fusion" rules for the operator algebra.



49Consider the OPE of two primary operators:�1(z)�2(0) =Xi �i(0)z�1+�2��i (2:7:3)where the notation in the right hand side of (2.7.3) is symboli, meaning the produt an bewritten as a sum of primary operators and/or their desendants, and the (z; �; ��) dependenean be easily substituted bak. What we want to know is whih irreduible representationan appear in the operator produt of two given representations. There is a simple riterionfor representations whih are not allowed, and this is the vanishing of the appropriate 3-pointfuntion.The strategy is to use the superdi�erential equations stemming from the degeneray ofthe representations to derive seletion rules for the operator produt algebra. Let's onsidera onrete example. Take a representation whih has a null vetor at the �rst level. Suh arepresentation is for example one with � = m�22m ; Q = �m�2m , when ~ = 1� 2m ;m = 2; 3 : : :. Thenull vetor at level one is given by:j�01i = [(Q� 1)L�1 � (2� + 1)J�1 +G�1=2 �G�1=2℄j�; Qi (2:7:4)It is easy to verify, using the ommutation relations (2.4.12), that j�01i satis�es all thehwv onditions. Consider now the n-point funtion where this state is partiipating in. We'vementioned already that suh a orrelation funtion is identially zero.0 � h0j�1(z1)�2(z2) : : :�n(zn)j�01i = h0j�1(z1)�2(z2) : : : Ô�(0)j0i (2:7:5)Commuting Ô through to the left we arrive at the following superdi�erential equation((1 �Q) nXn=1 ��zi + (2� + 1) nXi=1 �Qizi + 1zi (��i ���i � �i ���i )� 2�iz2i �i��i�+ nXi=1 nXj=1 � ����i � �i ��zi� � ���j � ��i ��zi�9=; h0j�(z1) � � ��n(zn)�(0)j0i = 0 (2:7:6)We will speialize (2.7.6) to the 3-point funtion < 0j�1(z1)�2(z2)�3(z3)j0 > where �3 isthe degenerate operator mentioned above.



50Doing a translation and two global supersymmetry transformations (we have the freedomto do that, thanks to the OSP (2j2) invariane of the orrelation funtion), we an write thethree-point funtion in the form < 0j�1(~z1)�2(~z2)�3(0)j0 >, where:~z1 � (z1 � z3 � �1��3 � ��1�3; �1 � �3; ��1 � ��3)~z2 � (z2 � z3 � �2��3 � ��2�3; �2 � �3; ��2 � ��3) (2:7:7)Using the form of the three-point funtion found earlier, in (2.6.6) we arrive at the followingset of onditions for the dimension �ij and the onstants Aij:�13(Q3 � 1) +Q1(2�3 + 1) +A13 +�13 = 0(�12 �A12)(A13 +�13) = 0; (�12 +A12)(A13 +�13) = 0(Q3 � 1)A13 � 2�1(2�3 + 1) + (�13 �A13 + 1)(�13 +A13) = 0(2�3 + 1)(�12 �A12) + (�13 �A13)(�23 +A23) = 0(2�3 + 1)(A12 +�12) + (�23 �A23)(�13 +A13) = 0 (2:7:8)The state mentioned above happens to be also degenerate at level 1=2 and relative harge�1, the null vetor being j��1=2i = �G�1=2j�; Qi (2:7:9)In the same way we derive another equation:nXi=1 � ���i � ��i ���i� < 0j�1(z1) : : :�n(zn)�(0)j0 >= 0 (2:7:10)whih for the three-point funtion in partiular impliesA13 = ��13; A23 = ��23 (2:7:11)Solving (2.7.8) and (2.7.11) we obtain2�1 = Q1; 2�2 = Q2;�1 = �3 ��2 (2:7:12)Consequently in the operator produt of �2, with 2�2 = Q2, and �3, only �elds with 2�1 = Q1,and �1 = �3 ��2 an appear.



51The superdi�erential equations for the three-point funtions are solved in Appendix 2.D.Here we will present the \fusion" rules for the NS setor of degenerate theories with ~ < 1.As was mentioned in setion 2.3, the unitary irreduible representations in the NS setorwith ~ < 1, exist when ~ = 1 � 2m ;m�Z+ � f1g and their dimensions and hanges are given by(2.3.3). It was shown that for the family (j; k), there are three independent null hwvs embeddedin it, one at relative hange zero and level m � (j + k), another at relative hange 1 and levelk and another one at relative hange �1 and level j. Consequently the orrelation funtions of(j; k) satisfy three superdi�erential equations of orders j; k;m � (j + k), simultaneously. Theexistene of three null vetors in the N=2 ase is qualitatively di�erent from the N=0,1 ases.The \fusion" rules oming from the onsideration of the two harged null vetors at levelsj1; k1 of the family (j1; k1) are the following:(j1; k1)
 (j2; k2) = j2� 12Xn= 12�k2(j1 + n; n� j2 + k1 + k2) ; j1 + k1 � j2 + k2 (2:7:13a)(j1; k1)
 (j2; k2) = j1� 12Xn= 12�k1(j2 + n; n� j1 + k1 + k2) ; j1 + k1 � j2 + k2 (2:7:13b)The strategy to derive the fusion rules in their general form (2.7.13), is parallel to the oneused in the N=0,1 ases. The representations (32 ,12) and (12 , 32) are the shifting up and downoperators and the following relations are proven using the results of Appendix 2.D,(32 ; 12)
 (j; k) = (j; k � 1)� (j + 1; k) (2:7:14a)(12 ; 32)
 (j; k) = (j � 1; k)� (j; k + 1) (2:7:14b)Then (2.7.13) is proven by indution using (2.7.14) and the ommutativity and assoiativity ofthe operator algebra.As was mentioned above, the family (j; k) is also degenerate at relative harge zero and levelm� (j+k). The extra onditions from this new null hwv have the e�et of trunating the sumsin (2.7.13) into the \unitary bounds", 0 < j; k; j + k � m� 1, where (j1; k1)
 (j2; k2) � (j; k).This trunation phenomenon is known already to happen in the analogous minimal theories ofthe N = 0; 1 algebras. Thus it is onsistent to built N = 2 unitary minimal systems, with~ < 1, where there is a �nite number of representations, all degenerate, and all the orrelationfuntions alulable.



52We present the two expliit examples of the operator algebra of the �rst two non-trivialtheories with ~ = 1=3; (m = 3); ~ = 1=2; (m = 2). In the ~ = 1=3 theory the operator algebra isthe following: (16 ;�13)
 (0; 0) � (0; 0); (16 ;�13)
 (16 ;�13) � (0; 0): (2:7:15)This system, is somewhat speial and it will be analyzed in more detail in the next setion.The fusion rules of the ~ = 1=2 system are:(18 ;�14)
 (18 ;�14) � (0; 0)(18 ;�14)
 (12 ; 0) � (18 ;�14)(14 ;�12)
 (12 ; 0) � (14 ;�12) ; (18 ;�14)
 (14 ;�12) � (18 ;�14); (14 ;�12)
 (18 ;�14) � (18 ;�14); (12 ; 0)
 (12 ; 0) � (12 ; 0)� (0; 0) (2:7:16)We should remind the reader that the \fusion" rules we have derived, give the maximumpossible set of operators that an appear in an operator produt expansion. To determine exatlywhih of them ontribute and to evaluate their Glebsh-Gordon oeÆients one has to evaluatethe 4-point funtion. This is what we will do for the ~ = 1=3 system in the next setion.2.8 The Operator Formalism in The Ramond SetorIn setion 2.5 we gave a brief desription of the Ramond setor and its ground states. Wewill ontinue this disussion and develop in a parallel way the struture that we outlined insetions 2.6, 2.7 for the NS setor?.The ground states that preserves N=2 supersymmetry has � = ~8 . The rest of the primarystates are generated from the ground state by the ation of NS super�eld operators. Sineprimary operators are also labeled by their harge there is a non-trivial question to answer:What is the harge of the ground state? To �nd a plausible answer to that we will employ theisomorphism between the NS and the R setor. We will fous for onreteness on the R+ setor.It is natural to onsider as the Ramond ground state the image of the vauum state (in theNS setor) under the isomorphism (2.1.7). From (2.3.19) it an be seen that it has dimension� = ~8 and harge Q = � ~2 . The \out" ground state jR�i then must have harge Q = ~8 . Thestates jR+i and jR�i being hwvs of the R+ algebra must satisfy among others the followinghwv onditions, �G0jR+i = �G0jR�i = 0 (2:8:1)The representations orresponding to jR+i and jR�i are degenerate for any value of ~. Bylooking at the Ka� determinant in the R setor we an easily verify that jR+i is degenerate at? The isomorphism (2.1.7) annot provide omplete information about orrelation funtions in the R setor.



53level zero, relative harge one as well as level one and relative harge -1. On the other handjR�i is degenerate at level zero and relative harge 1y. The vanishing onditions for the nullvetors mentioned above are, G0jR+i = �G�1jR+i = G0jR�i = 0 (2:8:2)We de�ne the orrelation funtions in the R setor as ,Fn(z1; z2; :::zn) � hR�j�1(z1)::::�n(zn)jR+ >< R�jR+i (2:8:3)where �i(zi) is a NS super�eld operator. Then the orrelation funtion (2.8.3) satisfy Wardidentities due to (2.8.1,2) whih parallel the global N=2 Ward identities in the NS setor:nXi=1 �Qi + ��i ����i � �i ���i�Fn(z1; � � � ; zn) = 0 (2:8:4a)nXi=1 �zi ��zi +�i + 12 ��i ���i + ��i ����i��Fn(z1; � � � ; zn) = 0 (2:8:4b)nXi=1 �pzi � ����i � �i ��zi�� 12pzi �(2�i +Qi)�i + �i��i ����i��Fn(z1; � � � ; zn) = 0 (2:8:4)nXi=1 �pzi � ���i � ��i ��zi�� 12pzi �(2�i �Qi)��i � �i��i ���i��Fn(z1; � � � ; zn) = 0 (2:8:4d)nXi=1 � 1pzi � ���i � ��i ��zi�+ 12zipzi �(2�i �Qi)��i � �i��i ���i��Fn(z1; � � � ; zn) = 0 (2:8:4e)where �i, Qi are the (NS) dimension and harge of �i. Equations (2.8.4) an be used toonstraint the form of the Ramond orrelation funtions. We will solve as an example theonstraints (2.8.4) on the 2-point funtion, F2(z1; z2).y At speial values of ~ there are additional degeneraies



54Equation (2.8.4a) implies that Q1 +Q2 = 0 andF2(z1; z2) = f0(z1; z2) + �1��1f1(z1; z2) + �2��2f2(z1; z2)++�1��2f3(z1; z2) + ��1�2f4(z1; z2) + �1��1�2��2g(z1; z2) (2:8:5)De�ne the variables u = pz1=z2, v = pz1z2 in order to split the dimensional dependene.Equation (2.8.4b) implies, f0(u; v) = f0(u)v2� ; g(u; v) = g(u)v2�+2 (2:8:6a)fi(u; v) = fi(u)v2�+1 ; i = 1; 2; 3; 4 (2:8:6b)The rest of the equations are solved by,f0(u) = u2��Q1(u2 � 1)2� ; f1(u) = �� (� +Q1)u2u(u2 � 1) f0(u) (2:8:7a)f2(u) = ��u2 +Q1 ��u2 � 1 uf0(u) (2:8:7b)f3(u) = 22�u2 � 2� +Q1u2 � 1 f0(u) (2:8:7)f4(u) = 2��Q1u2 � 1 f0(u) (2:8:7d)g(u) = 2� � (2� + 1)u4(u2 � 1)2 � (2��Q1 + 1)u2u2 � 1 + ��Q12 � f0(u) (2:8:7e)The 2-point funtion is asymmetri due to the asymmetry in the harge assignments of the\in" and \out" states. The 2-point funtion with jR+i $ jR�i is given by (2.8.7) with thefollowing substitutions:f0 ! f0, g ! g, f1 ! �f1, f2 ! �f2, f3 $ f4 and Q1 ! �Q1. In asimilar way higher orrelation funtions an be onstrained by (2.8.4).



55Let's now disuss the fusion rules in the R setor. It is important to note that the isomor-phism (2.1.7) preserves the struture of the Ka� determinant (the relations (2.3.19) have to betaken into aount). Thus it preserves the form of the fusion rules derived in the NS setor.Consider the set of hwvs of the R+ algebra, j�; Q� 12i with dimensions and harges given by,� = ~8 + jk2 (1� ~) ; Q = j � k2 (1� ~) ; j; k 2 Z (2:8:8)Using (2.3.19) we an establish the orrespondene,NS 3 (j; k)$ (j + 12 ; k � 12) 2 R+ ; j; k 2 Z+ + 12 (2:8:9)whih along with (2.7.13) implies the following fusion rules in the R+ setor,(j1; k1)
 (j2; k2) = j2�1Xn=�k2(j1 + n; n+ k1 + k2 � j2 + 1) ; j1 + k1 � j2 + k2 (2:8:10a)(j1; k1)
 (j2; k2) = j1�1Xn=�k1(j2 + n; n+ k1 + k2 � j1 + 1) ; j1 + k1 � j2 + k2 (2:8:10b)where j1, j2, k1, k2 are integers.The preeding results in the Ramond setor are veri�ed expliitly in App. 2.E.2.9 The ~ = 13 ; N = 2 Superonformal TheoryThis theory has the simplest operator ontent ompared to the other unitary minimal N = 2theories. It is also the only member of the N = 2 disrete series whih has the same entralelement with a member of the N = 1 disrete series. The model is also interesting sine itdesribes a point? in the A-T model phase diagram, [6,33℄. The operator ontent of the theoryas well as it deomposition into N=1 representations is disussed in Appendix 2.C.The general disussion of the previous setion an be speialized in this situation. The modelontains the unit (super�eld) operator and a onjugate pair of primary operators, representingthe � = 16 ; Q = �13 states of the model. We will denote by �� and �0 the orrespondingsuper�eld operators. The two point funtion is:h0j�+(z1)��(z2)j0i = z�1=312 exp��13 �12��12z12 � (2:9:1)where we suppressed the antianalyti part and we've hosen a partiular onvenient nor-malization for the two-point funtion. The only three-point funtion whih is non-zero is,? In fat, as explained in the next hapter, it desribes three points in the phase diagram of the A-T model.



56h0j�0(z1)�+(z2)��(z3))j0i. It is �xed up to a normalization onstant by the OSP (2j2) in-variane and the extra di�erential equations that it is satisfying due to the fat that it ontainsdegenerate �elds. h0j�0(z1)�+(z2)��(z3)j0i = Cz�1=323 exp��13 �23��23z23 � (2:9:2)It implies the following operator produt expansions for the omponent �elds��(z) � ��(z) + � � �(z) + �� �(z) + ���g�(z) (2:9:3a)�+�� � J; �+g� � �13J; ��g+ � �13J (2:9:3b)� + � � 13J;  + � � � 13J; g+g� � 49J(2:9:3)whih are determined up to an overall normalization onstant. The �rst non-trivial orrelationfuntion is the 4-point funtion. Its evaluation enables us to �x the Glebsh-Gordon oeÆientin the OPE, in (2.9.3).There are two ways to evaluate the 4-point funtion. One is to solve the superdif-ferential equations that it satis�es due to degeneray of the operators ontained in it.The other is to use the Feigin-Fuks onstrution. The only non-trivial 4-point funtion ish0j��(z1)�+(z2)��(z3)�+(z4)j0i. The operator �+(z) is degenerate at level 1, relative hangezero, at level 1=2, relative harge one and at level 32 , relative hange �1. The relevant superdif-ferential equation for the 4-point funtion F4(~z1; ~z2; ~z3) are:" 3Xi=1 Gi1=2#F4(z1; z2; z3) = 0 (2:9:4a)3Xi=1 �Li1 � J i1�F4(z1; z2; z3) = 0 (2:9:4b)24 3Xi=1 �Gi3=2 � 3Xi;j=1(J i1 + Li1) �Gj1=235F4(z1; z2; z3) = 0 (2:9:4)where the relevant di�erential operators are de�ned in (2.D.4) in Appendix 2.D, and we havesimpli�ed (2.9.4b) using (2.9.4a). The variables zi are the shifted variables we mentioned insetion 2.7.



57Global N = 2 superonformal invariane onstrains the four-point funtion to be of theform: F4(z1; z2; z3; z4) = C(z12z34)�1=3 exp �13 ��14��14z14 � �24��24z24 + �34��34z34 ����G4(x1; x2; x3; x4) (2:9:5)where x1; i = 1; 2; 3; 4 are the four independent ombinations of the oordinates invariant underthe OSP(2j2) group. The obvious (dependent) invariants are:x1 = �23��23z23 + �34��34z34 � �24��24z24x2 = �12��12z12 + �24��24z24 � �14��14z14x3 = �13��13z13 + �34��34z34 � �14��14z14y1 = �12��12z12 + �23��23z23 � �13��13z13y2 = z14z23z12z34 ; y3 = z13z24z12z34 (2:9:6)Sine y1 = x1 + x2 � x3; y1 an be deleted. We have also the additional relations:x21 = x22 = x23 = y21 = 0; x1x2 = (x1 + x3)x2; x1x2x3 = 0 (2:9:7a)(y2 � y3 + 1)2 = 2y2x1x2; x2x3 = y2x1x3; x1x2 = y3x1x3 (2:9:7b)The relations above imply that in fat x1; x2; x3 and x4 � y2 are independent invariants.Solving equations (2.9.4) we arrive at a four-point funtion of the form:G4(x1; x2; x3; x4) = C�x4 + 1x4 �1=3 exp � 13(x4 + 1) (y � x1 + x4x2)� (2:9:8)where y � y2 � y3 + 1.



58The four-point funtion, (2.9.8), is powerlike, something to be expeted sine the primary�elds of the ~ = 1=3 theory an be onstruted as vertex operators of a single  = 1 salar�eld (see Appendix 2.E). We have performed the same alulations using the vertex operatormethod, [20,25,31℄. We �nd the same result as in (2.9.8). It is diÆult though in this methodto obtain the result as a super meromorphi funtion in N = 2 superspae.By fatorizing over two-point funtions we an �nd that C = 1. This implies that the OPEoeÆient in (2.9.3) is in fat unity.The full onstrution of the four-point funtion, inluding its anti-holomorphi part doesnot involve any subtleties related to monodromy invariane, (loality in the Eulidean domain).We simply have to multiply the holomorphi and antiholomorphi piees whih have the sameform. Knowledge of the four-point funtion (2.9.8) is enough to determine any n�point funtionusing the OPE oeÆient for the degenerate operators.2.10 Conlusions and ProspetsIn this hapter we delved into a detailed analysis of N=2 superonformal �eld theories.We desribed the struture of the representations of the N=2 superonformal algebras and wealulated their haraters. We also disussed Ward identities, and in the ase of minimal modelswe derived their fusion rules as well as some orrelation funtions.There is onstrution of the N=2 minimal models that gives a lot of information by relatingthem to ritial SU(2) WZ-models, [26℄. The N=2 minimal models an be onstruted as G=HCFTs where G = SU(2) 
 U(1) and H = U(1), a linear ombination of the initial U(1) andthe Cartan generator of SU(2). Thus these theories an be onstruted out of a free boson andSU(2) parafermions. In this way their orrelation funtions an be alulated using the knownorrelation funtions of the parafermioni theory.?N=1 spae-time supersymmetri string theories in 4(6) dimensions have been onstrutedwhere the CFT desribing the internal degrees of freedom is a tensor produt of N=2 minimalmodels with the right value of the entral harge, (~ = 3(2)), [32℄. It is argued that suh modelsdesribe exatly string propagation on a sublass of Calabi-Yau manifolds. One an then usemarginal perturbations in these models to obtain the solutions orresponding to (hopefully) allCalabi-Yau manifolds.This shows one of the main advantages of CFT. The handling of non-linear �-models onCalabi-Yau manifolds, (in partiular their exat solution at their ritial points), is a hopelesslydiÆult task using the methods of onventional quantum �eld theory.Of ourse the e�ort in this respet has to be onentrated in lassifying all N=2 superon-formal models. This will provide with all possible lassial solutions to string theory havingN=1 supersymmetry.? This is true for the untwisted setor. For the twisted setor one needs the orrelation funtions of theC-disorder �elds whih are presently unknown.



59APPENDIX 2.AExamples of Null States in N=2 Superonformal AlgebrasIn this appendix we give expliit examples of null hwv's of the N=2 algebras whih , wethink, are helpful to visualize several properties that we stated in the main body of the paper.Their expliit form is also very useful in deriving superdi�erential equations for the orrelationfuntions of the degenerate primary �elds. We remind the reader that a null hwv is a seondarystate, j�i, in a Verma module whih has also the properties of a hwv, namely,Lnj�i = Jnj�i = Grj�i = �Grj�i = 0 ; n; r > 0 (2:A:1)It is easy to dedue that suh states have zero norm and the Verma module they generate isorthogonal to all other states ontained in the initial Verma module. So they an onsistentlyset to zero and this ondition implies superdi�erential equations for orrelation funtions of theinitial hwv with other operators. These equations provide us with the means to solve the theoryexatly. Suh a theory must ontain only degenerate representations.(i) NS algebra, relative harge zero. An example of a null vetor belonging to the super-onformal family generated by jh; qi at the �rst level and relative harge zero is givenby: j�i = [(q � 1)L�1 � (2h+ 1)J�1 +G�1=2 �G�1=2℄jh; qi (2:A:2)when 2h(~� 1) = q2 � ~. The only non-trivial hwv ondition that one has to hek is theation of L�1, J�1, G�1=2 , �G�1=2. The others are trivially satis�ed.NS algebra relative harge �1.Let's �rst onsider a state whih is degenerate at the n0 = 1=2 level. Then, gNS1=2 = 2h� q sothat a state with h = q=2 is an example of a primary state that generates suh a representation.The null state in this representation is given by,j�+1=2i = G1=2jh; qi (2:A:3)whih is obviously annihilated by any of Ln, Jn, Gn, �Gn for n � 1. The only non-trivialondition is �G1=2j�+1=2i = (2h � q)j�+1=2i = 0 due to the previously mentioned relation betweenhis dimension and harge. It is obvious that this null vetor does not generate a full Vermamodule sine it is annihilated by G�1=2. For n0 = �1=2 the orresponding null state is j��1=2i =�G�1=2jh; qi. At higher levels the degenerate states involve also generators of the Virasoro or the



60U(1) algebra. For example at n0 = �3=2 the orresponding states are,j�+3=2i = [(h� q2 + 1)G�3=2 +G�1=2(J�1 � L�1)℄jh; qi (2:A:4a)j��3=2i = [(h+ q2 + 1) �G�3=2 � �G�1=2(J�1 + L�1)℄jh; qi (2:A:4b)Again these null hwv's do not generate full Verma modules. There exist lowering operators thatannihilate them. [(h� q2 + 1)G�3=2 + (J�1 � L�1)G�1=2℄j�+3=2i = 0 (2:A:5a)[(h+ q2 + 1) �G�3=2 � (J�1 + L�1) �G�1=2℄j��3=2i = 0 (2:A:5b)Finally at level 5/2 and relative harge one, when 2h� 5q + 6(~� 1) = 0, the null hwv is,j�+5=2i = [(2h� q + 4)(q + 3 � 2~)G�5=2 + (2h� q + 4)G�3=2�̂�1 +G�1=2�̂�2℄jh; qi�̂�1 = (2J�1 � L�1) (2:A:6)�̂�2 = [(q + 3� 2~)(3J�2 � 2L�2)� 4J�2 + 2(L�1)2 + 4(J�1)2 � 6J�1L�1 +G�3=2 �G�1=2℄(ii) R� algebra, null states with the same harge as the initial hwv.An example of a null hwv of the representation of the R� algebra generated by jh; q�1=2i�at the �rst level is given by :j�+i = [(q+1)(2h� ~4)L�1� (2h+ 34)(2h� ~4)J�1� (2h� q2 + 14) �G�1G0℄jh; q�1=2i+ (2:A:7a)j��i = [(q�1)(2h� ~4)L�1� (2h+ 34)(2h� ~4)J�1+(2h+ q2 + 14)G�1 �G0℄jh; q+1=2i� (2:A:7b)satisfying all the hwv onditions provided h = ~8 + q2�(~+1)2=42(~�1) .R� algebra, null states having harges di�ering by �1 from the initial harge.



61In the R+ algebra the null state at n0 = 0 and relative harge +1/2 is,j�+0 i = G0jh; q � 1=2i+ (2:A:8)whih is annihilated by G0 provided h = ~8 . At level one and relative harge +1/2 and -3/2,(n0 = �1), the null states are :j�+1 i = [(2h+ 2� ~4)G�1 +G0(J�1 � 2L�1)℄jh; q� 1=2i+ (2:A:9a)j��1 i = �G�1jh; q � 1=2i+ (2:A:9b)The state j�+1 i is annihilated by the operator (2h+ 2 � ~4)G�1 + (J�1 � 2L�1)G0, whereasj��1 i is annihilated by �G�1. At level two and relative harge +1/2, (n0 = 2), the null state is,j�+2 i = [2(q � ~+ 2)(2q � 3~+ 5)G�2 + 2(q � ~+ 2)G�1 ���1 +G0���2℄jh; q � 1=2i+���1 = (3J�1 � 2L�1) (2:A:10)���2 = [(2q � 3~+ 5)(J�2 � L�2)� 3J�2 + 2(L�1)2 + 32(J�1)2 � 4J�1L�1 +G�1 �G�1℄At n0 = �2 the null hwv of relative harge -3/2 is,j��2 i = [(2q + 3~ � 5) �G�2 + �G�1(2L�1 + 3J�1)℄jh; q � 1=2i+ (2:A:11)The orresponding null state of the R� algebra at level zero is,j��0 i = �G0jh; q + 1=2i� (2:A:12)annihilated by �G0, whereas at level one, (n0 = �1), they are,j�+1 i = [(2h+ 2� ~4) �G�1 � �G0(2L�1 + J�1)℄jh; q+ 1=2i� (2:A:13a)j��1 i = G�1jh; q + 1=2i� (2:A:13b)annihilated by [(2h + 2� ~4) �G�1 � (2L�1 + J�1) �G0℄ and G�1 respetively.



62(iii) T algebra. When h = ~8 , one of the two states of opposite parity is degenerate at levelzero and deouples from the spetrum. The expliit form of the null hwv is,j��0 i = G10jhi (2:A:14)whih has negative parity.(We de�ne the parity or fermion number operator, (�1)F , sothat it ommutes with L�n, J�n and antiommutes with G1�n, G2�n. It is obvious that itounts the number of fermioni operators modulo two.) The existene of the state withh = ~8 implies the non-vanishing of the Witten index and thus that supersymmetry isunbroken on the ylinder.At level 1/2 there are two null hwv's of opposite parity when h~ = h� ~8 ,j��1=2i = [2iJ�1=2G10 + ~G2�1=2℄jhi (2:A:15a)j�+1=2i = [2ihJ�1=2 +G2�1=2G10℄jhi (2:A:15b)At level one there are again two null hwv's provided 2h = �3~2�3~+14(~�1) ,j�+1 i = [(2~� 1)(2(~� 1)L�1 + (J�1=2)2) + (~� 1)(8iJ�1=2G2�1=2G10 � 4~G1�1G10)℄jhi (2:A:16a)j��1 i = [4(~� 1)L�1G10 � 2i(2~� 1)J�1=2G2�1=2 + 2(J�1=2)2G10 + ~(2~� 1)G1�1℄jhi (2:A:16b)The examples presented above are also very important in the derivation of the super-di�erential equations satis�ed by the orrelation funtions of the orresponding degeneratehwv's.



63APPENDIX 2.BDerivation of the Partition Funtions for theN=2 Superonformal AlgebrasIn this appendix we will evaluate the partition funtions for the N=2 superonformal alge-bras.For the NS and R� algebras the partition funtions are de�ned as:F (z;w) = z�hw�qTr[zL0wJ0 ℄ (2:B:1)whereas for the T-algebra : F (z) = z�hTr[zL0℄ (2:B:2)where the trae is taken over all the seondary states of a non-degenerate representation ofdimension h and harge q.(i) NS algebra. A basis of states is given by,j(n); (m); (k); (r)i = L(n)J(m)G(k) �G(r)jh; qi (2:B:3)where the respetive operators are de�ned as,L(n) � (L�1)n1(L�2)n2:::: ni 2 N0 (2:B:4a)J(m) � (J�1)m1(J�2)m2:::: mi 2 N0 (2:B:4b)G(k) � (G�1=2)k1(G�3=2)k2:::: ki 2 (0; 1) (2:B:4)�G(r) � ( �G�1=2)r1( �G�3=2)r2:::: ri 2 (0; 1) (2:B:4d)Gr � 1p2(G1r + iG2r) ; �Gr � 1p2(G1r � iG2r)Any other permutation in (2.B.4) an be expressed, using the ommutation relations ofthe algebra, as a linear ombination of the above. The range of the exponents in (2.B.4,d)is suh beause the squares of Gr and �Gr are zero due to the anti-ommutation relations.



64The next step is to evaluate the expetation value,F [(n); (m); (k); (r)) � h(n); (m); (k); (r)jzL0wJ0j(n); (m); (k); (r)i (2:B:5)where the basis states are assumed to be normalized. J0 ommutes with L�n , J�n for everyn 2 Z and [J0; G�r℄ = G�r ; [J0; �G�r℄ = � �G�rTo evaluate the ommutators of wJ0 with the superharge operators we have to onsider:f(Æ) � eÆJ0(G�r)k e�ÆJ0dfdÆ = rf(Æ) (2:B:6)Solving the di�erential equation and setting w = eÆ, we obtain:wJ0(G�r)k = (G�r)kwJ0+k ; k 2 (0; 1) (2:B:7a)wJ0( �G�r)k = ( �G�r)kwJ0�k ; k 2 (0; 1) (2:B:7b)The same proedure for the zL0 fator giveszL0(L�n)k = (L�n)kzL0+nk ; zL0(J�n)k = (J�n)kzL0+nk (2:B:8a)zL0(G�n)k = (G�n)kzL0+nk ; zL0( �G�n)k = ( �G�n)kzL0+nk (2:B:8b)Taking into aount all the above we obtain :F [(n); (m); (k); (r)℄ = zhwq "zP1j=1(jnj+jmj)(z 12w)k1(z 32w)k2:::(z 12w )r1(z 32w )r2:::# (2:B:9)It remains to sum over all the permissible sets of integers (n); (m); (k); (r).X(ni) zP1j=1 jnj =X (ni) 1Yj=1 zjnj = 1Yj=1X(ni) zjnj = 1Yj=1 1(1� zj) (2:B:10a)



65Xki=0;1(z 2i�12 w)ki = (1 + z 2i�12 w) (2:B:10b)so that �nally, FNS(z;w) = 1Yn=1 (1 + zn�1=2w)(1 + zn�1=2w�1)(1� zn)2 (2:B:11)For the R+ algebra the modding of the superharges is integral. The derivation goes alongthe same lines with the following minor modi�ations. There is the additional ontribution ofG0, ( �G0 annihilates the primary state jh; q� 1=2i+), whih amounts to a fator (1 +w),there isanother fator of w�1=2 oming from the inomplete anellation of wq�1=2 and sine we haveinteger modding, n � 1=2 in (2.B.11) is replaed by n. Consequently the partition funtion forthe R+ algebra is, FR(z;w) = (w1=2 + w�1=2) 1Yn=1 (1 + znw)(1 + znw�1)(1 � zn)2 (2:B:12)In the R� algebra we have to replae G0 with �G0 and q � 1=2 with q + 1=2. The partitionfuntion is idential to (2.B.12).We have also to disuss the partition funtions of single harged fermions. Some partiularexamples in this ase are the inomplete Verma modules generated by the null vetors of thedegenerate representations of the NS and R� algebras with ~ � 1. To motivate the disussion,let's look at the simplest example of suh a module generated by the null hwv at level 1/2,(n0 = 1=2), of the NS algebra, given expliitly by (2.A.3). This state, as it was mentionedbefore is annihilated by G�1=2. So, in our previous omputation of the partition funtions,basis states with a G�1=2 operator in them do not ontribute. This in turn means that afator (1 + z1=2w) is absent from the orresponding partition funtion. The �rst non-trivialexample omes at level 3/2, (n0 = 3=2), the null hwv given expliitly by (2.A.4a). Instead ofhoosing the G�3=2 , G�1=2J�1 , G�1=2L�1 as basis operators, we an hoose the annihilatingoperator, (2h�q=2+1)G�3=2+(J�1�L�1)G�1=2, giving a zero ontribution, and the remainingG�1=2J�1, G�1=2L�1. Thus, e�etively, the ontribution of G�3=2 is absent, ausing a loss of afator (1 + z3=2w) from the orresponding partition funtion. For the null hwv at n0 = �3=2 ,given by (2.A.4b), following the previous argument, the ontribution of �G�3=2 is again e�etivelymissing, and onsequently a fator (1 + z3=2w�1) is absent from the partition funtion.Now the general situation is evident. For a null hwv at some level jn0j, (n0 being aninteger or half-integer, orresponding to R� or NS respetively), the partition funtion laksthe ontribution of G�n0 , sgn(n0) > 0 or �G�n0 , sgn(n0) < 0. Thus the partition funtion isgiven by : ~FX(z;w;n0) = [1 + zjn0jwsgn(n0)℄�1 �FX(z;w) (2:B:13)where X stands for either R or NS.



66In the T-algebra the situation is now lear. There is no wJ0 fator . The ontributionfrom the Virasoro and U(1) operators is Q1n=1(1 � zn)�1(1 � zn�1=2)�1 (the U(1) generatorshave half-integer modding). The ontribution from the G1�r operators, (integer modding), isQ1n=1(1 + zn) , whereas for the G2�r operators, (half-integer modding), it is Q1n=1(1 + zn�1=2) .Colleting everything : FT (z;w) = 1Yn=1 (1 + zn)(1 + zn�1=2)(1� zn)(1� zn�1=2) (2:B:14)This onludes the derivation of the partition funtions of the N=2 superonformal algebras.



67APPENDIX 2.CProof of the Equivalene between the ~ = 13 N=2 Modeland the ̂ = 23 N=1 ModelIn this setion we will show that the �rst member of the disreet series of N=2 superonformalmodels oinides with the seond member of the orresponding N=1 disreet series.The ~ = 1=3 theory onstitutes a subsetor of the ̂ = 2=3 N=1 superonformal theory. Itis the only member of the ~ < 1 N=2 series whih has the same anomaly with a member of thê < 1 N=1 series. For example the N=2 unit operator, (0)2, deomposes into the unit operatorof the N=1 theory, (0)1, (ontaining the unit operator and one of the N=2 superharges), anda dimension-one operator, (1)1, (ontaining the U(1) urrent of dimension one and the seondN=2 superharge). The representation of the NS setor with h = 16 , q = �13 deomposes into(16)1 of the N=1 NS setor. The operator (38)2 belonging to the Ramond setor, deomposes as(38)2 ! (38)1 whereas the two ( 124 )2 representations of the R� setor deompose as ( 124 )2 ! ( 124 )1in the R setor of the N=1 theory. Finally in the twisted setor of the ~ = 1=3, N=2 system therepresentation of dimension h = 116 deomposes into ( 116 )1 in the NS setor of the N=1 system.These deompositions an be easily justi�ed by heking the validity of the equalities betweenthe appropriate haraters:hNS1 (h = 0; z) + hNS1 (h = 1; z) = hNS2 (h = 0; q = 0; z; w = 1) (2:C:1)hNS1 (h = 16 ; z) = hNS2 (h = 16 ; q = �13 ; z; w = 1) (2:C:2)hR1 (h = 38 ; z) = hR2 (h = 38 ; q = 0; z; w = 1) (2:C:3)hR1 (h = 124 ; z) = hR2 (h = 124 ; q = �13 ; z; w = 1) = hR2 (h = 124 ; q = �23 ; z; w = 1) (2:C:4)hNS1 (h = 116 ; z) = hR1 (h = 116) + hR1 (h = 916) = hT2 (h = 116 ; z) (2:C:5)



68APPENDIX 2.DSolution of the Degeneray Equations Up to Level 52In this appendix we solve the �rst few superdi�erential equations for the three-point funtionand derive the onditions leading to the \fusion" rules disussed in setion 2.7.For the representation (�3; Q3), degenerate at level 1=2 and relative hange 1 the null hwvis: j�+1=2i = G�1=2j�3; Q3i (2:D:1)It implies the following equation for the three-point funtion2Xi=1h ����i � �i ��ziih0j�1(z1)�2(z2)�3(0)j0i = 0 (2:D:2)Substituting the general form of the three-point funtion in (2.D.2) we obtain:A13 = �13; A23 = �23 (2:D:3)Before we ontinue, it is onvenient to introdue some notations onerning the superdi�erentialoperations we use. We de�ne:L̂in = z1�ni ��zi � (n� 1)z�ni h�i + 12(�i ���i + ��i ���ii+ Qi2 n(n� 1)z�n�1i �i��iĴ in = z�ni hQi + ��i ���i � �i ���i � 2nz�1i �i�i��ii (2:D:4)Ĝir = z 12�ri h ����i � �i ��zii+ (r � 1=2)(2�i + qi)z�r�1=2i �i + (r � 1=2)z�r�1=2i �i��i ���i�̂Gir = z 12�ri h ���i � ��i ��zii+ (r � 1=2)(2�i �Qi)z�r�1=2i ��i + (r � 1=2)z�r�1=2i �i��i ����iThe onditions oming from the null hwv at level one and relative hange zero have been



69disussed in the main body of the paper. At level 3=2 and relative hange 1 the null hwv isj�+3=2i = h(�3 � Q32 )G�3=2 + (J�1 � L�1)G�1=2ij�3; Q3i (2:D:5)implying the following equations for the three point funtionh��3 � Q32 � 2Xi=1 Ĝi3=2 + 2Xi=1 2Xj=1(Ĵ i1 � L̂i1)Ĝj1=2ih0j�1(z1)�2(z2)�3(0)j0i = 0 (2:D:6)whih give after substituting the three-point funtion in:(2�3 �Q3)(�12 �A12) + 2(Q2 +�23)(�13 �A13) = 0 (2:D:7)Finally at level 5=2 and relative hange 1 the di�erential equation is:h(2�3 �Q3 + 4)(2�3 � 2Q3 + 3) 2Xi=1 Ĝi5=2 � 3(2�3 �Q3 + 4) 2Xi=1 2Xj=1 Ĝi3=2(2Ĵ j1 � 2L̂j1)+�̂ih0j�1(z1)�2(z2)�3(0)j0i = 0 (2:D:8)where �̂ � 2Xi=1 Ĝi1=2 2Xj=1h(2�3 � 2Q3 + 3)(2L̂j2 � 3Ĵ j2 ) + 12Ĵ j2 + 2Xk=1n6L̂j1L̂k1+12Ĵ j1 Ĵk1 � 18Ĵ j1 L̂k1 + 3Gj3=2 �Gk1=2oi (2:D:80)implying the following set of onditions(�13 �A13)[(2�3 �Q3)(2�3 � 2Q3 � 3) � 3(�13 + 1)(2�3 �Q3 � 2)� 6(Q1 � 1)(2�3 �Q3)� 3(Q1 � 1)(2�3 � 2Q3 � 1)� (2�3 � 2Q3 + 3)(2�13 + 2�1 + 3) + 6(�13 + 1)(�13 + 2)+ 18(Q1 � 1)(�13 + 1) + 12(Q1 � 1)2℄ + (2�1 +Q1)� [2(2�3 �Q3)(2�3 � 2Q3 � 3)� 3�13(2�3 �Q3 � 2) � 6(Q1 � 1)� (2�3 �Q3) � 3(�13 +A13)℄ = 0 (2:D:9a)



70(�12 �A12)[�(2�3 �Q3)(2�3 � 2Q3 � 3) + 3�13(2�3 �Q3 � 2)+ 6(Q1 � 1)(2�3 �Q3) + 3(�13 +A13)℄ + (�13 �A13)� [�3(2�3 �Q3 � 2)�23 � 6Q2(2�3 �Q3) + 2�12(2�3 � 2Q3 + 3)� 3(�23 +A23) + 12�23(�13 + 1) + 18Q2(�13 + 1) + 18(Q1 � 1)��23 + 24(Q1 � 1)Q2℄ + (2�1 +Q1)[�3�23(2�3 �Q3 � 2)� 6Q2(2�3 �Q3)� 3(�23 +A23)℄ = 0 (2:A:9b)(�12 �A12)[�(2�3 �Q3)(2�3 � 2Q3 � 3) + 3�23(2�3 �Q3 � 2) + 6Q2� (2�3 �Q3) + 3(�23 +A23)℄ + (�13 �A13)[�3Q2(2�3 � 2Q3 � 1)� 2(2�3 � 2Q3 + 3)(�2 +�23) + 6�23(�23 + 1)+ 18Q2�23 + 12Q22 + 3(A23 +�23)℄ = 0 (2:A:9)(�12 +A12)[�(2�3 �Q3)(2�3 � 2Q3 � 3) + 3�13(2�3 �Q3 � 2)+ 6Q1(2�3 �Q3) + 3(�13 +A13)℄ + (�23 �A23)[�3Q1(2�3 � 2Q3 � 1) � 2(2�3 � 2Q3 + 3)� (�1 +�13)+ 6�13(�13 + 1) + 18Q1�13 + 12Q21 + 3(�13 +A13)℄ = 0 (2:D:9d)(�23 �A23)[(2�3 �Q3)(2�3 � 2Q3 � 3)� 3(2�3 �Q3 � 2)(�23 + 1)� 6(Q2 � 1)(2�3Q3)� 3(Q2 � 1)(2�3 � 2Q3 � 1)(2�3 � 2Q3 + 3)(2�23 + 2�2 + 3) + 6(�23 + 1)(�23 + 2) + 18(Q2 � 1)(�23 + 1)+ 12(Q2 � 1)2℄ + (2�2 +Q2)[2(2�3 �Q3)(2�3 � 2�3 � 3)� 3�23(2�3 �Q3 � 2) � 6(Q2 � 1)(2�3 �Q3)� 3(�23 +A23)℄ = 0 (2:D:9e)(�12 +A12)[�(2�3 �Q3)(2�3 � 2Q3 + 3) + 3�23(2�3 �Q3 � 2) + 6(Q2 � 1)(2�1 �Q3) + 3(�23 +A23)℄ + (2�2 +Q2)[�3�13(2�3 �Q3 � 2)� 6Q1(2�3 �Q3)� 3(�13 +A13)℄ + (�23 �A23)[�3�13(2�3 �Q3 � 2) � 6Q1(2�3 �Q3) + 2�12(2�3 � 2Q3 + 3)+ 12�13(�23 + 1) + 18Q1(�23 + 1) + 18�13(Q2 � 1)+ 24Q1(Q2 � 1) � 3(�13 +A13)℄ = 0 (2:D:9f)The null hwv at level n0�Z+ + 12 and relative hange �1 are obtained from those withrelative hange 1 by making the following substitutions: Jn ! �Jn; Gr $ �Gr and Q ! �Q.Consequently the onditions derived from the three-point funtion are those of relative hange1 with the additional substitution Qi! �Qi; Aij !�Aij.



71APPENDIX 2.EThe Bosoni Constrution of the ~ =13N=2 Superonformal ModelIn this appendix we onstrut the omponents of the primary super�elds of the ~ = 1=3 N =2 superonformal system (NS, R setor) using a single  = 1 salar �eld. We use these operatorsto give an alternative alulation of the four-point funtion (2.9.8) whih was omputed in themain body of this paper. We will also illustrate some results that were derived in setion 2.8onerning the R setor.We onsider a salar �eld �(z) with a two-point funtion given by:
 0 j�(z)�(w) j 0 � = �ln(z � w) (2:E:1)We de�ne the standard energy momentum tensor T (z) = �12 : �z��z� : satisfying:T (z)T (w) = 12(z �w)4 + 2T (w)(z � w)2 + �wT (w)(z � w) + ::: (2:E:2)A vertex operator de�ned by Va(z) �: eia�(z) : has dimension �a = a22 :T (z)Va(w) = a22 Va(w)(z � w)2 + �wVa(w)z �w + ::: (2:E:3)In this system the N = 2 superonformal algebra is realized by T (z) and, [33℄,J(z) � ip3 �z�(z); G(z) �p2=3 : eip3�(z) :; �G(z) =p2=3 : e�ip3�(z) : (2:E:4)We an evaluate operator produt expansions of vertex operators using the familiar formula:Va(z)Vb(w) = (z � w)ab : eia�(z)+ib�(w) : (2:E:5)by expanding the seond exponential around z = w and keeping the singular terms. Sine:J(z)Va(w) = ap3 Va(w)z � wwe an easily establish that T (z); G(z); �G(z) and J(z) satisfy the standard N = 2 superon-formal algebra (2.5.12) with ~ = 1=3.



72Candidates for the lowest omponents of the primary super�elds ��(z) with dimension 1=6and harge �1=3 are the vertex operators:�+(z) �: e ip3�(z) :; ��(z) =: e� ip3�(z) : (2:E:7)whih by (2.E.3) and (2.E.6) have the orret dimension and U(1) harge. We have now to �ndthe superpartners of ��. Using the relations (2.6.6) in omponent form we have that:G(z)��(w) =  �(w)z � w + ::: (2:E:8a)�G(z)��(w) = � �(w)z � w + ::: (2:E:8b)Applying (2.E.8a,b) to (2.E.7) we �nd +(z) = 0; � +(z) =p2=3 : e� 2ip3�(z) : �(z) =p2=3 : e 2ip3�(z) : � �(z) = 0 (2:E:9)Using then: G(z) �(w) = 0; �G(z) � �(w) = 0G(z) � �(w) = (2� +Q) ��(w)(z � w)2 + �w��(w)z �w + g�(w)z � w�G(z) �(w) = (2��Q) ��(w)(z � w)2 + �w��(w)z �w � g�(w)z � w (2:E:10)we �nd that they are satis�ed if: g+(z) = �z�+(z) and g�(z) = ��z��(z).The fat that one of the fermioni omponents is zero and the fourth omponent isa desendant of the �rst omponent explains the group theoreti result?, that the family(� = 16 ; Q = �13) deomposes to the N = 1 family with � = 16 and half the apparent de-grees of freedom.This means, using our de�nition (2.4.8a,b) that �� are hiral primary operators of oppositehirality. In fat, looking at (2.6.11) we an establish that any primary super�eld, degenerateat n0 = �1=2, is hiral in the sense of (2.4.8a,b) and thus ontains half the apparent degrees offreedom.? See Appendi 2.C.



73Computing orrelation funtions of �+ and �� is now trivial. Using:
 0 jVa1 (z1)Va2(z2) : : : Van(zn) j 0 � = nYi<j(zij)aiajÆa1+���+an;0 (2:E:11)We an evaluate the di�erent omponents of (2.9.8). Suh a orrelation is non-zero only ifPi ai = 0, otherwise IR divergenes fore it to vanish. Suh a alulation has been performedfor the four-point funtion and as expeted it agrees with the result (2.9.8).Let's also illustrate the situation in the R+ setor of the model. We have two operatorsof dimension 124 and harge �16 and two operators of dimension 38 and harge �12. the groundstates an be represented by the � = 124 vertex operators:R�(z) =: e(i=2p3)�(z) : ; R+(z) =: e�(i=2p3)�(z) : (2:E:12)The operators of dimension 38 are represented by : e�(ip3=2)�(z) :. It is easy to see that it isgenerated from the Ramond vauum by the ation of the � = 16 operators of the NS setor dueto the following OPE:: e(i=p3)�(z) :: e(i=2p3)�(w) := (z � w)1=6[: e(ip3=2)�(w) : +O(z � w)℄ (2:E:13a): e�(i=p3)�(z) :: e�(i=2p3)�(w) := (z � w)1=6[: e�(ip3=2)�(w) : +O(z � w)℄ (2:E:13b)The 2-point funtion,F2(z1; z2) � < R�(1)j�+1=6(z1)��1=6(z2)R+(0) >< R�(1)R+(0) > (2:E:14)an be omputed the same way and agrees with the result (2.8.7) obtained through purely grouptheoreti means.



74CHAPTER 3Some Appliations of CFT to 2-d Critial Statistial Models3.1 IntrodutionConformal Field Theory is a very promising approah in order to obtain an exat solutionto known 2-d ritial statistial models, or to �nd wider lasses of models that have not beenknown before.There are a lot of CFT models that desribe known universality lasses of ritial behaviorin 2-d. The unitary models with  < 1 are known to desribe the ritial behavior of an in�niteseries of models introdued by Andrews, Baxter and Forrester, [34℄. The �rst model in theseries desribes the universality lass of the Ising model, ( = 12 ). The seond model, ( = 710),desribes the tri-ritial Ising model (whih has also N=1 superonformal invariane), [35℄. Thethird member, ( = 45), desribes two di�erent statistial models. The solution of the modularinvariane onstraints shows that there are two onsistent subsets of operators for  = 45 . Oneof them desribes the three-state, (Z3), Potts model, [36℄, whereas the other one desribes the\generi" tetra-ritial model, (in �eld theory language this orresponds to the ritial point ofa �8 salar �eld theory). Finally the  = 67 model desribes the tri-ritial Potts model, [37℄.There are also other suh examples. All the ritial lines of the Askin-Teller, (A-T), model havebeen desribed using onformal �eld theory. On the  = 1 line there are points that orrespondto the �rst minimal N=2 superonformal model (~ = 13), [6,38℄, two deoupled Ising models, aZ4 parafermioni model, [39℄ and an SU(2) WZW model with entral harge k = 1, [7,40℄. Theritial behavior of isotropi spin-s anti-ferromagneti hains is desribed by the SU(2) WZWmodel with entral harge k = 2s, [40℄.New integrable models and universality lasses have been found due to CFT. A wholenew lass of SU(N) 
 SU(N)=SU(N) RSOS models has a ritial behavior desribed by theorresponding G=H CFT, [41℄.3.2 The CFT of a Free Salar FieldIn this setion we will examine in some detail the CFT of a free salar �eld, whih willprove useful in the next setions. The theory is de�ned on the omplex plane, (Riemann sphere)and the target manifold will taken to be a irle of radius R, (in order to deal with a disreet



75spetrum?. In omplex oordinates the free ation is,S = 12� Z d2z�z���z� (3:2:1)The lassial equation of motion is the 2-d wave equation,�z��z�(z; �z) = 0 (3:2:2)whih is solved by �(z; �z) = f1(z) + f2(�z) with f1, f2 arbitrary funtions. The 2-point funtionis, h�(z; �z)�(w; �w)i = �logjz � wj2 = �log(z � w)� log(�z � �w) (3:2:3)From now on we will talk separately about holomorphi and anti-holomorphi parts of orrelationfuntions. We will put them together at the end. The holomorphi stress-energy tensor is givenby, T (z) = �12 : �z��z� : (3:2:4)The theory has a entral harge  = 1 as an be seen from the OPE,T (z)T (w) = 12 1(z � w)4 + 2 T (z)(z � w)2 + �wT (w)(z �w) + � � � (3:2:5)The (anti-) holomorphi part of � has the following Fourier expansion,�(z) = 12�0 + plog(z) +Xn6=0 ann zn (3:2:6a)��(�z) = 12�0 + �plog(�z) +Xn6=0 �ann �zn (3:2:6b)where p and �p talke the following values,(p; �p) = ( nR + 12mR; nR � 12mR) ; m; n 2 Z (3:2:7)The quantized value for the winding number, (p � �p), is due to the fat that sine � is de�nedmodulo 2�R the boundary ondition is �(�+2�; � ) = �(�; � )+ 2�mR. The quantized value forthe momentum, (12(p+ �p)), is due to requiring the single valuedness of eiq�? This model will be referred to as the torus model sine its target spae is a one-dimensional torus.



76As it an be seen from (3.2.3) the �eld � is not a good onformal �eld, ( its orrelationfuntions grow with distane). Among operators that an be onstruted out of polynomialsin � and derivatives the only primary onformal �eld is �z�. This operator is a urrent with(�; ��) = (1; 0). It generates a U(1)L symmetry. There is also a right urrent, ��z� whihgenerates U(1)R. There are two additional Z2 symmetries,(�; ��)! (��;���) ; (�; ��)! (��; �) (3:2:8)Thus the total symmetry of the theory is O(2)L 
 O(2)R. There are other primary �elds inthe theory apart from the urrents. They are exponentials of �. They are the so alled vertexoperators, Vp(z) =: eip�(z) :. They are primary operators of dimension � = p22 sine they satisfy,T (z)Vp(w) = p22 Vp(w)(z � w)2 + �wVp(w)(z � w) + � � � (3:2:9)The U(1)L urrent J(z) = i�z� generates a U(1) Ka�-Moody algebra,J(z)J(w) = 1(z �w)2 (3:2:10)The vertex operator Vp is a primary �eld of this U(1) algebra with U(1) harge p,J(z)Vp(w) = p Vp(w)(z �w) (3:2:11)Operator produts of vertex operators are obtained using the well-known formula,Vp(z)Vq(w) = (z � w)pq : eip�(z)+iq�(w) : (3:2:12)and by expanding the exponential in the right hand side in powers of z � w. Using (3.2.12)orrelation funtions of vertex operators are easily obtained,hVp1(z1)Vp2(z2):::VpN (zN )i =Yi<j(zi � zj)pipjÆp1+::+pN ;0 (3:2:13)Charge onservation fores orrelation funtions with non-zero U(1) harge to vanish.We an onstrut vertex operators with well de�ned momentum and winding number,V +m;n = p2 : os[p�(z) + �p�(�z)℄ : (3:2:14a)V �m;n = p2 : sin[p�(z) + �p�(�z)℄ : (3:2:14b)where p; �p are given in (3.2.7). The operators Vm;0 and V0;m are known as eletri and magnetioperators.



77The salar �eld theories above for di�erent ompati�ation radius R are related. Thereis an exatly marginal operator that drives a partiular theory to di�erent values of R. Let'sdigress a little and disuss marginal perturbations in ritial models.Consider a set of operatorsMi whih are marginal, in other words primary �elds of dimension(1,1). We need marginality so that ritiality and the value of the entral harge are preservedunder marginal perturbations. A perturbation generated by suh operators an be written asan extra term in the ation, ÆS =Xi Ægi2� Z d2zMi(z; �z) (3:2:15)Correlation funtions of operators X are modi�ed as follows,ÆÆgi hXi = 12� Z d2zhMi(z; �z)Xi (3:2:16)Dimensions and operator produt oeÆients hange in general under suh perturbations. Usingthe standard formulas, h�i(z; �z)�j(w; �w)i = Æi;j(z � w)�2�i(�z � �w)�2 ��i (3:2:17)�i(z; �z)�j(w; �w) �Xk Cijk(z � w)�k��i��j(�z � �w) ��k� ��i� ��j�k(w; �w) (3:2:18)along with (3.2.16) we �nd,ÆÆgi h�j(z; �z)�j(w; �w)i = Cijj(z � w)�2�j (�z � �w)�2 ��j logjz � wj2 (3:2:19)By looking bak to (3.2.17) we �nd that,Æ�j = Æ ��j = �Xi CijjÆgi (3:2:20)For ritiality to be preserved the dimension of the marginal operator must not hange under theperturbation. If there is only one marginal perturbation then from (3.2.20) we obtain Ciii = 0.If there are more than one marginal perturbations then Ciij = 0 where the indies refer tomarginal operators.Thus the neighborhood of a CFT an be parametrized by the ouplings gi of the marginaloperators. It has the struture of a manifold. Sometimes it happens that at ertain pointsthere is a larger number of marginal operators. Suh points are alled multi-ritial. At suhpoints there are extra diretions that the theory an be deformed. There is usually an enhanedsymmetry at suh points that relates some of the marginal perturbations. Then the manifolddevelops an orbifold-type singularity at the multi-ritial point.



78Let's now return to the salar theory. For any R there is always a (1,1) operator in thetheory, �z���z�. It is truly marginal in the sense disussed above. The perturbation it indueshanges the ation by, ÆS = Æg2� Z d2z�z���z� (3:2:21)whih amounds to a hange in the ompati�ation radius by ÆR2 = ÆgR2. This is true due to(3.2.20) whih in this ase reads,ÆÆg�m;n = �(m2R2 � n2R24 ) = 12R ÆÆR�m;n (3:2:22)Another interesting onept present in the theory is duality. This is the statement that thetheory at radius R is equivalent to the theory at radius 2R . This an be easily seen from thepartition funtion, Z(R) = Tr hqL0� 124 �q �L0� 124i = j�(q)j�2Xp;�p q p22 �q �p22 (3:2:23)where �(q) is the Dedekind �-funtion, [42℄. It is easy to see that Z(R) = Z(2=R). Under aduality transformation, Vm;n $ Vn;m ; �z���z�$ ��z���z� (3:2:24)Correlations funtions and operator produts are invariant under duality.Let's now look for multiritial points. In order to have extra marginal operators R, (orby duality 2R), must be a multiple of p2. But in order for the marginal operators to remainmarginal under the perturbation we end up with only two possible andidates, the self-dualpoint R = p2, and the point R = 1p2 . They will be analyzed in the next setions.3.3 Loal SU(2) Invariane in the Salar TheoryAt R = p2 the model has an enhaned loal symmetry. This point is the �xed point ofthe duality transformation. There are extra operators of dimension (1,0) that appear in thespetrum, as it an be seen from (3.2.7,9). They generate an SU(2)L 
 SU(2)R Ka�-Moodyalgebra with a entral harge k = 1. The left urrents are,J1 =: os[p2�℄ : ; J2 =: sin[p2�℄ : ; J3 = ip2�z� (3:3:1)They generate the following algebra,Ja(z)J b(w) = i�ab J(w)(z � w) + 12 Æab(z � w)2 + � � � (3:3:2)



79The stress-energy tensor is of the Sugawara form,T (z) = 13 : Ja(z)Ja(z) : (3:3:3)The in�nite set of primary operators of the onformal algebra in this ase is ontained injust two irreduible representations of SU(2)L 
 SU(2)R. The urrents and the stress-energytensor belong to the family of the unit operator. There is only one nontrivial representationwith spin 12 . It is generated by the following SU(2)L 
 SU(2)R multiplet,�� =: e 1p2 (�i��i��) : (3:3:4)of dimension (14 ; 14). The partition funtion (3.2.23) an be written in terms of the SU(2)haraters, Z(p2) = j�(q)j�2 X(m;n)2Z2 q (m+n)24 �q (m�n)24 = �0(� )�0(� ) + � 12 (� )� 12 (� ) (3:3:5)where q = e2�i� and? �0(� ) = #3(0j2� )�(� ) ; � 12 (� ) = #2(0j2� )�(� ) (3:3:6)There are nine marginal operators at this point. They an be onstruted out of the SU(2)urrents as Ja �J b. But due to SU(2) invariane they are equivalent among themselves and inpartiular to J3 �J3 = �z���z�. Thus there is still one marginal operator that hanges the valueof the radius. At this point we also have eletri-magneti duality sine �z���z� and ��z���z�are related by an SU(2) transformation.3.4 The One Dimensional OrbifoldAs it was mentioned in setion 3.2 the torus model has a Z2 symmetry: (�; ��)! (��;���).This is also a symmetry of the target spae, S1. One ould mode-out by this symmetry, thatis onsider on�gurations with opposite values for � as equivalent. This, when applied to thetarget manifold itself gives rise to a singular manifold, the Z2 orbifold, [43℄. The singularitiesappear at the �xed points of the symmetry transformation, � = 0; �R. Now apart from the? Details about #-funtions an be found in [42℄.



80states where the �eld � is periodi we will have also states whih are periodi up tp a symmetrytransformation, �(� + 2�; � ) = ��(�; � ) + 2�mR ; m 2 Z (3:4:1)The mode expansion in the twisted setor is,�(z; �z) = �0 +Xn "an+1=2n+ 12 zn+1=2 + �an+1=2n+ 12 �zn+1=2# ; n 2 Z (3:4:2)where �0 an take only the values 0 or �R. Thus � is double valued around the origin, z = 0,of the z-plane. In analogy with the free fermion in the Ramond setor we introdue �elds, (thetwist �elds), in the presene of whih the �eld � is double valued around the origin. There aretwo suh twist �elds, H0 and H1 orresponding to the two di�erent values for the zero mode of�, (�0 = 0; �R). A twist �eld at zero and another ar in�nity reate a branh ut on the planearound whih the boson is double valued.The interpretation above an be made more spei� in terms of orrelation funtions asfollows, hYi Oi(zi)it � hH0;1(1)QiOi(zi)H0;1(0)ihH0;1(1)H0;1(0)i (3:4:3)where Oi are operators onstruted out of the �eld � itself and the presription for alulatingthe left hand side is through the use of the mode expansion (3.4.2). The 2-point funtion of theboson in the presene of twist �eld an be easily alulated using the mode expansion (3.4.2),h�(z; �z)�(w; �w)it = log �pz +pwpz �pw�+ :: (3:4:4)We an use (3.2.4) and (3.4.4) to alulate the expetation value of the stress- energy tensorin the presene of the twist �elds. A short omputation gives,hH0;1jT (z)jH0;1ihH0;1jH0;1i = 116 1z2 (3:4:5)This implies that the dimension of the twist �eld is 116 . The U(1) urrent is double valuedaround the twist �eld as shown by the following OPE,�z�(z)H0;1(w) = � 0;1(w)(z �w) 12 + ::: (3:4:6)where � 0;1 is a desendant �eld of dimension 12 + 116 . What we have here is a twisted U(1) Ka�-Moody algebra. The global U(1) symmetry is broken and the harge neutrality ondition of the



81orrelation funtions is not true any more. The states fall into representations of the twistedU(1) Ka�-Moody algebra. The twist �elds, H0;1, in partiular are primary, that is they are hwvsof the algebra and they generate hw irreduible unitary representations. The desendant statesin suh representations are generated by ating on the hwv with the urrent modes, a�n+1=2,n = 1; 2; :::, (see (3.4.2)). For example the operator � 0;1 in (3.4.6) is obtained by ating a�1=2on the state jH0;1i. The primary �elds of the onformal algebra have dimensions given by�n = (2n+1)216 , [7,44℄. They are desendants of the primary �elds H0;1 in the twisted U(1) vermamodule. To see this expliitly onsider the partition funtion of the twisted U(1) algebray,�t(z) � Tr[zL0℄ = z1=16 1Yn=1 1(1 � zn�1=2) (3:4:7)The respetive partition funtion for the onformal algebra is,�(z) = 1Yn=1 1(1� zn) (3:4:8)Their ratio will give us the primary onformal �elds that are desendants in the twisted U(1)algebra. �t(z)�(z) = z1=16 1Yn=1 1 � zn1� zn�1=2 = 1Xn=0 z(2n+1)2=16 (3:4:9)whih proves our previous assertion. Suh primary onformal �elds an be onstruted out ofthe the jH0;1i by the ation of ertain lowering operators of the twisted U(1) algebra. As anillustration the �rst few ones are given below.jH1i = p2a�1=2jH0i ; jH2i = 3p2[a�3=2 � 2(a�1=2)3℄jH0i (3:4:10)Thus orrelation funtions of these �elds an be omputed from the orrelation funtions of H0;1in the presene of a U(1) urrent. Something worth of notiing is that the dimensions of theprimary states in the twisted setor do not depend on the radius of the orbifold.In the untwisted setor one has to projet out the states that are not invariant under �! ��.Thus from the set of operators in (3.2.14) only the ones in (3.2.14a) survive.Correlation funtions of the operators (3.2.14a) an be easily omputed in the presene oftwo twist �elds using the operator formalism and the 2-point funtion (3.4.4),h NYi=1 Vpi(zi)it = NYi=1 2�p2i z�p2i =2i NYi<j �pzi +pzjpzi �pzj ��pipj (3:4:11)and the same formula holds for the anti-holomorphi part.y See Appendix 2.B.



82The non-trivial orrelation funtion in the orbifold model is the 4-point funtion of twist�elds. This has been alulated in [45,46℄. We quote here there result sine it will be useful inthe followingz. Let,F�1;�2(x; �x) = limz1;�z1!1 jz1j1=4hH0(z1; �z1)H�1(1)H�1+�2(x; �x)H�2(0)i (3:4:12)where �1, �2 should be added modulo 2. Projetive invariane was used to put three out of thefour points at 0; 1;1. Then,F�1;�2(x; �x) = jx(1� x)j� 112G�1;�2(x; �x) (3:4:13)where,G�1;�2(x; �x) = j#01(� )j� 23 m2ZXn22Z+�2(�1)m�1exp"i�2  � �mR + nR2 �2 � �� �mR � nR2 �2!#(3:4:14)and, x = �#3(� )#4(� )�4 (3:4:15)We an use the 4-point funtion of the twist �elds, (3.4.14) to obtain the appropriate OPEand OPE oeÆients, [46,47℄.[H0℄
 [H0℄ = Xn;m2ZC2n;2m[V +2n;2m℄ + Xn;m2Z C2n+1;2m[V +2n+1;2m℄ (3:4:16a)[H1℄
 [H1℄ = Xn;m2ZC2n;2m[V +2n;2m℄� Xm;n2ZC2n+1;2m[V +2n+1;2m℄ (3:4:16b)[H0℄
 [H1℄ = Xm;n2ZC2n;2m+1[V +2n;2m+1℄ (3:4:16)where, [C0;0℄2 = 1 ; [Cn;m℄2 = 2 � 8�(p2m;n+�p2m;n) (3:4:17)There is a D4 invariane in the theory generated by,(H0;H1; V +m;n)! (�H0;H1; (�1)nV +m;n) (3:4:18a)(H0;H1; V +m;n)! (H1;H0; (�1)mV +m;n) (3:4:18b)The invariane follows from the OPE, (3.4.16). All orrelation funtions must be invariant underz In fat all partition funtions and orrelation funtions of twisted and untwisted operators have beenalulated on any genus Riemann surfae, [47℄.



83the transformations above whih generate the dihedral group D4.The partition funtion of the orbifold model is the sum of the ontributions oming from theuntwisted and twisted setors. The part oming from the untwisted setor is half the partitionfuntion of the orresponding torus model, (3.2.23), sine we projeted out half of the primaryoperators in (3.2.14). On the other hand the twisted part is independent of the radius R sineas we pointed out before the ritial dimensions and the struture of the representations of thetwisted setor are independent of R. The twisted part will be determined when we disuss themultiritial point R = 1p2 .3.5 The Multi-Critial Point, R= 1p2In setion 3.2 we pointed out that the only other andidate in the set of torus models to bea multiritial point is the model with R = 1p2 . Here we will show that this is indeed true.The model has half the radius of the SU(2) model. There is a well de�ned projetion inorder to get this model from the SU(2) model. This is done by projeting onto even momentumstates and adding extra states with half-integer winding number, (see (3.2.7)). Suh states arereated by the operators V +0; 12 . We would use the fats above beause they are helpful to visualizethe onnetion of this model with orbifold models.Consider the SU(2) model and introdue the operators �i whih are SU(2) elements andat on � as, �1��1 = �� ; �2��2 = ��+ �p2 ; �3��3 = �+ �p2 (3:5:1)They satisfy, �i�j = Æij + �ijk�k (3:5:2)The projetion operator that we mentioned before is P3 � 12(1 + �3��3). Out of the nine (1,1)operators of the SU(2) model only �ve survive the projetion P3. They are,J3 �J3 ; Ja �J b ; a; b = 1; 2 (3:5:3)The operators of the seond set are equivalent beause they are related by the U(1)L 
 U(1)Rsymmetry of the theory. On the other hand they generate perturbations whih are inequivalentto those generated by J3 �J3. Thus there exists a new ontinuous family of deformations of themodel. The model is indeed multi-ritial.In order to see the nature of the new diretion we notie that we ould have used P1 in orderto projet out unwanted states. This would have the e�et of identifying � with ��, as it isobvious from (3.5.1). So the model is in fat equivalent to the orbifold model at R = p2. Theoperator J3 �J3 generates perturbations that move along the line of the orbifold models.



84The aforementioned equivalene an be used to determine the twist partition funtion in theorbifold models as it was pointed out in the previous setion. That is,Zt = Z( 1p2)� 12Z(p2) = 12 j#2#3j+ j#2#4j+ j#3#4jj�j2 (3:5:4)where #i = #i(0j� ). Thus, Zorb(R) = 12Z(R) + Zt (3:5:5)There is a notion of duality for the orbifold models too. In the untwisted part of the spetrumthe transformation is the same as in the torus model, (3.2.24). In order to see what happens inthe twisted setor it is easy to look at the self dual point R = p2. The twist �elds H0;1 in thisase are equivalent to the vertex operators of the torus R = 1p2 model? V +0; 12 , V �0; 12 . Thus dualitymeans shifting ��! ��+ �p2 , �! �. The e�et of suh a transformation on the twist �elds is,H0 $ 1p2(H0 +H1) ; H1 $ 1p2(H0 �H1) (3:5:6)There are no (1,1) operators in the twisted setor of the orbifold models. Thus the analysisof the existene of multiritial points is the same as in the torus models.3.6 The  = 1 N=2 Superonformal ModelIt was already mentioned in the previous hapter that there is a minimal N=2 superonformalmodel with  = 1. In this setion we will analyze it in more detail. In fat we will show thatthere are two distint torus models with unbroken N=2 superonformal invariane and twodistint orbifold models where N=2 superonformal invariane is broken down to N=1 dueto the presene of the twisted setor. As we showed in Appendix 2.C the model, (inludingits twisted setor), is equivalent to one of the minimal models with N = 1 Superonformalinvariane. In Appendix 2.E we showed that the model with unbroken N = 2 supersymmetryyis in fat the torus model with R = 1p3 or R = 2p3 . In this setion we are going to disuss thefull model inluding the twisted setor too. We will use the formalism of N=1 supersymmetrywhih in this ase gives a more eonomial way of desribing things, espeially in the twistedase.In most of our disussion we will fous on the left setor only. At the end we will disussthe ombination of left and right setors.? In fat after some manipulations of equation (3.4.14,15) one arrives at the power-like behavior present inthe orrelation funtions of vertex operatorsy That is the untwisted setors.



85In the NS setor of the model the dimensions of the primary N=1 super�elds are, 1, 16 and116 . The last one will ome from the twisted setor of the orbifold model.Let's start from the untwisted model.To �nd the superpartner of T (z), we have to �nd an operator with � = 32 . There are twoandidates, Vp3(z) and V�p3(z), as well as any linear ombination of the two, whih has theorret dimension. For reasons that will be explained below, the orret form is:G(z) � ip3 h : eip3�(z) : � : e�ip3�(z) :i (3:6:1)Then the N = 1 superonformal algebra loses orretly:G(z)G(w) = 23 1(z � w)3 + 2T (w)(z � w) (3:6:2)The primary operators in the NS setor are generated by primary super�elds ating onthe NS vauum. A super�eld is a funtion in superspae:z �(z) = g(z) + � (z). If � is thedimension of the bosoni omponent g(z), then the orresponding dimension for the fermionipartner  (z) is �+ 12 . A primary super�eld operator is de�ned through the following OPE withthe super-stress-energy tensor:G(z)g(w) =  (w)(z � w) ; T (z)g(w) = �g(w)(z �w)2 + �wg(w)(z � w) (3:6:3)G(z) (w) = �wg(w)(z � w) + 2 g(w)(z �w)2 ; T (z) (w) = ��+ 12�  (w)(z � w)2 + �w (w)(z � w)The obvious andidate for the � = 1 primary operator is the U(1) urrent of the system,g1(z) � i�z�(z). It has an O.P.E. with G(z):G(z)g1(w) = �i : eip3�(w) : + : e�ip3�(w)(z � w) (3:6:4)From (3.6.3) we an infer that the superpartner of g1(z) is  1(z) = �i[Vp3(z) + V�p3(z)℄.It is an easy exerise to hek that the rest of the relations (3.6.3) are satis�ed.z z and � are the oordinates in superspae denoted olletively with z.



86G(z) and  1(z) are the two superharges of the orresponding N = 2 minimal theory whih,along with T (z) and g1(z), omplete the N = 2 super-stress-energy tensor multiplet, [6,33℄. Asfar as the other representations are onerned they an be built from the N=1 representationswithout adding new �elds in the super-multiplet. As it was shown in Appendix 2.E, for N=2representations degenerate at level 1/2 one of the fermioni omponents vanishes identiallywhile the seond bosoni omponent is the derivative of the �rst one. Thus the N=2 super-multiplets ontain the same number of degrees of freedom as the N=1 super-multiplets. Usingthe remarks above the N=2 struture an be easily reonstruted from the N=1 struture.There are two � = 16 operators with opposite U(1) harge: g�16 (z) � e� ip3�(z) . We analulate the superpartners of g�16 (z):  �1=6 = � ip3 : e� 2ip3�(z) . Thus apart from the � = 116operator, the above exhaust the set of primary operators in the NS setor. The identi�ationsabove imply the following operator algebra:[1℄
 [1℄ = [0℄ ; [1℄
 �16� = �16� (3:6:5a)�16�
 �16� = [0℄� [1℄� �16 + 12� (3:6:5b)whih is in aord with the known \fusion rules," [48℄.In the Ramond setor the two ground states are generated from the NS vauum by theorresponding spin �eld operators, �(z) and ��(z) of dimension � = 124 , G0j �i =j ��i:One of them, j ��i is degenerate at level zero and thus deouples. Correspondingly,G(z)�(w) � O[(z � w) 12 ℄. �(z) an be also represented as a vertex operator: ��(z) =:e� i2p3�(z). We an expliitly ompute:G(z)��(w) = � ip3 : e�i 52p3�(w) :(z � w) 12 (3:6:6)As expeted, ��(z) reate uts in the omplex plane around whih the fermioni omponentsof the super�elds are double valued. The Ramond primary operators are generated from theRamond ground state by the ation of super�eld operators.The operator of dimension � = 38 in the R-setor an be represented by g�38 (z) = : e�ip32 �(z):.It is generated by the super�eld operator � 16 (z) ating on theR-vauum. We an expliitly verifythe following O.P.E.:



87�0 + 32� 
 � 124�+ = � 124 + 1�+ ;�16�+ 
 � 124�+ = �38�+ ;�16 + 12�+ 
 � 124�+ = �38�� ; �0 + 32� 
 �38�� = �38�+�16�+ 
 � 124�� = � 124���16 + 12�+ 
 � 124�� = � 124 + 1�+ (3:6:7)By replaing +$ �, (12) remains valid.The operators onstruted so far orrespond to all the operators of the NS and R setorsof the orresponding N = 2 model.At this point we should be more areful onerning putting together the left and right partsin order to have a well de�ned model. We an rewrite the partition funtion (3.2.23) using theN=2 haraters derived in setion 2.3.Z( 1p3) = 12 hj�NS0+ j2 + j�NS0� j2 + 2j�NS16+ j2 + 2j�NS16� j2 + 4j�R38+j2 + 2j�R124+j2 + 2j�R124�j2i (3:6:8)The expliit expression for the haraters is,�NS0� (� ) = 1�(� )Xn2Z(�1)nq 3n22 (3:6:9a)�NS16� (� ) = 1�(� )Xn2Z(�1)nq 32 (n+ 13 )2 (3:6:9b)�R38�(� ) = 12�(� )Xn2Z(�1)nq 32 (n+ 12 )2 (3:6:9)�R124�(� ) = 1�(� )Xn2Z(�1)nq 32 (n+ 16 )2 (3:6:9d)where as usual q = e2�i� ?.? In fat �R38� = 0 and this is the reason that it does not appear in (3.6.8).



88The haraters with a minus subsript in (3.6.9) are de�ned with an insertion of the fermionnumber operator, (�1)F in the trae. Thus (3.6.8) implies that all the operators in the theoryhave even fermion number. Using the harater deomposition formulas from Appendix 2.C wean write the partition funtion using N=1 haraters. The model ontains the following N=1representations, (0; 0)NS , (16 , 16)NS, (1,1)NS , ( 124 , 124)R, (38 ,38)R of spin zero and (0; 1)NS , (1; 0)NSof spin �1. The N=2 supersymmetry is unbroken.There is another torus model with unbroken N=2 superonformal invariane at R = 2p3 .The loal operator analysis is the same as above. The only di�erene is in the way left and rightpart are sewn together. In fat it is easy to show that Z( 2p3 ) an be written as in (3.6.8) withthe only di�erene that the �R124� term omes with a minus sign in front. This has a onsequenethat the Ramond ground state ( 124 , 124) is projeted outy.Let's now disuss superonformal invariane in the orbifold models. As antiipated the twomodels with N=1 unbroken invariane haveR = 1p3 and R = 2p3 . We will start from the R = 1p3model. As in the torus ase the other model will be obtained by swithing the appropriate signin its partition funtion, (see (3.5.5)). In Appendix 2.C it was shown that the single operator ofthe twisted setor of the ~ = 13 , N = 2 model with � = 116 deomposes into the � = 116 operatorin the NS setor of the N = 1 system. Sine the operator in the T -setor twists one of the twobosoni omponents of the N = 2 super�elds, it is natural to expet that a andidate for the� = 116 operator is the \twist" �eld H0;1(z), whih twists the salar �eld �(z).Thus we identify the dimension 116 operator in the NS setor with one of the twist �elds, H0.Using (3.4.16) one an asertain that from the primary operators in the NS setor, only g1(z)and G(z) have vanishing three-point funtions with two twist �elds. The three-point funtionof three twist �elds is automatially zero due to the D4 symmetry of the orbifold model.Thus we have the following O.P.E.z:� 116� 
 � 116� = [0℄ � �1 + 12� � �16� � �16 + 12� (3:6:10)The superpartner of H0 is given by:G(z)H0(w) = � 0(w)(z � w) ; ��0 = 116 + 12 (3:6:11)Let's now investigate the operator produt [1℄ 
 [ 116℄. Due to twist onservation, the onlyfamilies that are allowed to appear are [ 116 ℄ and [ 116 + 12 ℄.y Part of the representation it generates is still presentz We use N=1 representations.



89Sine the expetation value of g1(z) in the presene of two twist �elds is zero, [ 116 ℄ isnot present in the operator produt. To investigate the appearane of [ 116 + 12 ℄ we must �ndh0jH0(1)i�z�� 0(0)j0i: To evaluate this three-point funtion, we �rst ompute:F (z;w) � h0 j H0(1)i�z�(z)G(w)H0(0) j 0ih0 j H0(1)H0(0) j 0i = ip34 z 12(z � w) � w (3:6:12)Now, if we let w! 0, we an �nd h0 j H0(1)i�z�(z)� 0(0) j 0i as the residue of the 1w pole.This gives: h0 j H0(1)i�z�(z)� 0(0) j 0ih0 j H0(1)H0(0) ji = �ip34 z� 32 6= 0 (3:6:13)Consequently [1℄ 
 [ 116 ℄ = [ 116+ 12 ℄. The only remaining O.P.E. to ompute in the NS setoris [16 ℄ 
 [ 116℄. Again, onservation of twist implies that only the families [ 116 ℄ and [ 116 + 12 ℄ anappear in the operator produt. Doing an analogous omputation as above we �nd indeed:�16� 
 � 116� = � 116� � � 116 + 12� (3:6:14)in aord with [48℄. Now the piture of the NS setor is omplete.In the Ramond setor the twisted states will be generate by the ation of H0 on the Ramondvauum. Indeed using (3.4.16) and the expliit form of the Ramond vauum it is easy to �ndthat the dimension 116 oparator in the Ramond setor is in fat H1 whereas the dimension 916operator is � 1. This is also supported by equation (2.C.5). Using the identi�ations above and(3.4.16) we an verify the fusion rules whih are already known, [48℄,� 116�R 
 � 116�R = [0℄NS � �16�NS ; � 116�R 
 �38�R = � 116�NS (3:6:15a)� 916�R 
 � 116�R = [1℄NS � �16�NS ; � 916�R 
 � 916�R = [0℄NS � �16�NS (3:6:15b)� 116�R 
 � 124�R = � 116�NS ; � 916�R 
 � 124�R = � 116�NS (3:6:15)What remains to be done is the desription of both left and right setors of the model. Thisan be done by looking at its partition funtion. As it was already shown in setion 3.4 the



90partition funtion of the model an be written as,Zorb( 1p3) = 12Z( 1p3) + Zt (3:6:16)where an expliit expression for Zt was given in (3.5.4) and the torus part was already shown tobe written in terms of the N=2 haraters. What remains to show is how to write the twistedpart in terms of the N=2 twisted or N=1 haraters. In terms of the N=1 haraters we aneasily verify that, Zt = 12 j�NS0+ � �NS1+ j2 + j�NS116+j2 + j�NS116�j2 (3:6:17)where, �NS0� � �NS1� = 1�(� )Xn2Z(�1)nqn2 (3:6:18a)�NS116� = 1�(� )Xn2Z(�1)nq(n+ 14 )2 (3:6:18b)Thus the extra representations, ( 116 , 116)NS, ( 116 , 116)R, ( 916 , 916)R appear whih have all spinzero.3.7 The Bosoni Representation of the Critial Ising ModelIn this setion we are going to disuss a ertain bosonization of the ritial Ising model, [8℄.We inlude this in the present hapter for reasons that will beome obvious in the next setion.The ritial Ising model is the �rst member of the onformal disreet series with  = 12 . It isthe ontinuum limit of a massless free Majorana fermion. The operator ontent is, (0; 0), �12 ; 12�,� 116 ; 116�. The operator of dimension 12 is the fermion whereas the operator of dimension 116 isthe spin �eld around whih the fermion is double-valued.One might wonder how an, a free salar �eld with  = 1 be equivalent to an Ising fermion( = 12 )? The answer is that the stress-energy tensor of the bosoni model does not have thestandard quadrati form. In partiular, as we shall see, it is far from obvious that the salar�eld is free.The onstrution that we are going to desribe is at the operator level. We will onsider asalar �eld with radius R = 1. We will assume that the two point funtion is the free one:?h0j�(z)�(w)j0i = � ln(z � w): (3:7:1)Consider the most general operator of dimension two. It is a linear ombination of : �z��z� :; �2z�; V�2(z); �z�V�p2(z): Thus we will onsider a general linear ombination of the operators? This is indeed an assumption sine the stress-energy tensor is not the free one.



91above. If we impose (1.1.21), then there are two distint possibilities: The �rst is T (z) = �12 :�z��z� : +��2z�, whih has been known already from the work of ref. [49℄. The seond is:T (z) = �14 : �z��z� : +�V2(z) + ��V�2(z): (3:7:2)with � �� = 116 , and �; �� are otherwise arbitrary. In this ase a diret omputation shows that = 12 ! From now on we will fous on the seond ase.The value of the entral harge hints that somehow the theory desribed by (3.7.2) is theIsing model. Let's investigate, what are the primary operators in this theory.Reall that a primary operator �(z), of dimension �, satis�es the following O.P.E.T (z)�(w) = � �(w)(z � w)2 + �w�(w)(z � w) + � � � (3:7:3)It is easy to show that derivatives of � annot be primary operators. But what about vertexoperators? Sine Va
Vb ' Va+b, only V�1 have a hane of being primary. In fat, by imposing(4), we an dedue that  (z) = kV1(z) + �kV�1(z) is primary if and only if 4��k = k, and itsdimension is � = 12 . The dimension suggests that this operator represents the fermion of theIsing model. There is another operator that we have to look for, the spin �eld (order anddisorder operator), with � = 116 . In the standard free salar theory there is an operator, (infat two, H0;1(z)); of dimension 116 , the \twist �elds" of the boson. We need though to omputeagain the dimension of these operators using the new form of the stress-energy tensor, (3.7.2).A straightforward alulation gives, �H0 = 132 + �+��16 , �H1 = 132 � �+��16 . Thus in order for oneof H0;1 to have the orret dimension, � + �� = 12 , or � + �� = �12 whih �xes them ompletely,� = �� = 14 or � = �� = �14 . We will fous on the �rst possibility, and we will omment on theseond later on. Thus �H0 = 116 and �H1 = 0. The operator H1 seems to deouple.Then,T (z) = �14 : �z��z� : +14(V2(z) + V�2(z)) � �14 : �z��z� : +12 : os(2�) : (3:7:4a) (z) = 1p2(V1(z) + V�1(z)) � p2 : os� : ; h0j (z) (w)j0i = 1z � w (3:7:4b)The next step is to verify the operator algebra of the Ising model:�12� 
 �12� = [0℄; �12�
 � 116� = � 116� ; � 116�
 � 116� = [0℄� �12� (3:7:5)That this is indeed true an be seen from (3.4.16). For example,h0jH0(z1) (z2)H0(z3)j0i = 1p2z� 1813 � z13z12z23 � 12 (3:7:6)The dihedral symmetry, (D4), of the bosoni system translates into the Z2 symmetry of the



92Ising model and its dual �Z2.Next we alulate the 4-point funtions in the bosoni theory. The following two are verysimple to alulate: h0j (z1) (z2) (z3) (z4)j0i = 1z14z23�x2 � x+ 1x � (3:7:7)
0j (z1) (z2)H0(z3)H0(z4)j0�h0jH0(z3)H0(z4)j0i = 12 z34z14z23 x� 2x p1 � x (3:7:8)where, x = z12z34z13z24 (3:7:9)The orrelation funtion of four twist �elds is the most non-trivial test. We an use equation(3.4.14). After some tedious algebra we an express the formula (3.4.14) for R = 1 expliitly interms of x. The result is,h0jH0(z1; �z1)H0(z2; �z2)H0(z3; �z3)H0(z4; �z4)j0rangle ==12 jz12z34j� 14 jx(1� x)j� 14G(x; �x) (3:7:10)G(x; �x) =q1 �pxq1 �p�x+q1 +pxq1 +p�x(3.7.7), (3.7.8) and (3.7.10) oinide with the orrelation funtions of the Ising model.As a �nal hek we ompute the partition funtion of the bosoni theory on a strip withperiodi boundary onditions (that is, on a torus).The method relies on omputing hT i and integrating with respet to the modulus of thetorus, � , to obtain the partition funtion.In order to ompute hT i in the bosoni theory we need the propagator for the salar �eldon the torus. We will employ the results on hiral bosonization, [50℄. The path integral overthe torus ontains also a sum over the instanton setors. Thus we split the salar �eld � into alassial, (instanton) part and a quantum part, � = �l + �qu. Thenh0j�qu(z)�qu(w)j0i = � lnE(z;w); E(z;w) = #1(z;wj� )#01(0j� ) ; (3:7:11)where #1 is the standard #-funtion on the torus, [42℄.hT (z)i = �14 limw!z�h�z�(z)�w�(w)i + 1(z � w)2� (3:7:12)sine the expetation value of V�2(z) vanishes. A straightforward omputation gives hT (z)i = e�4 ,



93where e� = �4�i ��� ln �#�+1(0j� )�(� ) � ; � = 1; 2; 3 (3:7:13)and � labels the periodiity properties of the fermion operator and �(� ) is the Dedekind �-funtion. (In the bosoni theory, this is generated by an appropriate sum over instanton setors,[50℄.) � = 1; 2; 3 orresponds to (P;AP ), (AP;AP ), (AP;P ) boundary onditions.Integrating with respet to � we obtainZ� / ���+1(0j� )�(� ) � 12 (3:7:14)Thus the partition funtion of the bosoni theory is given by the sum over the various setors,Ztot = 3X�=1Z�(� )�Z�(�� ) (3:7:15)whih is equal to the partition funtion of the Ising model?:ZIsing = j�0j2 + j� 12 j2 + j� 116 j2 (3:7:16)where �0; � 12 ; � 116 are the appropriate haraters of the Virasoro algebra for  = 12 .We mentioned previously that there is another set of values for �, �� in (3.7.2) so that wehave a onsistent spetrum. The stress energy tensor in this ase isy,T�(z) = �14 : �z��z� : �12 : os(2�) : (3:7:17)In this ase the primary operator of dimension 12 is, �(z) = ip2 (V1(z)� V�1(z)) (3:7:18)The twist �eld H0 has dimension zero under T� whereas the dimension of H1 is now 116 . Com-bining this with the fat that, T+(z) + T�(z) = �12 : �z��z� : (3:7:19)we realize that in fat what we have done is we split the =1 orbifold model at R = 1 in a diretprodut of two Ising models. Till now it was known that this is true, and we ould onstrut the? In Appendix 3.A we will show that this equivalene persists on an arbitrary ompat Riemann surfae.y We will use T+(z) to denote the stress energy tensor in (3.7.4a)



94fermions asl vertex operators, as in (3.7.4b,18), and the \spin" �elds that twisted both fermions,� = p2 : os �12(�� ��)� (3:7:20)of dimension 18 . Obviously � is the produt of the spin �elds of the two independent Isingmodels. But we ould not tell what the individual spin �elds looked like. The onstrutionabove in fat answers this question. From (3.4.14) we learn,H0(z)H1(w) = �(w) + � � � (3:7:21)Another non-trivial hek that points in the same diretion is the fat that the 4-point funtion oftwo H0 and two H1 alulated from (3.4.14) in fat fatorizesz in a produt of 2-point funtions,h0jH0(z1; �z1)H0(z2; �z2)H1(z3; �z3)H1(z4; �z4)j0iR=1 = jz12j� 14 jz34j� 14 (3:7:22)Finally the partition funtion of the orbifold model at R = 1 is easily shown to be the square ofthe partition funtion of the Ising model,�ZIsing�2 = 12Z(1) + Zt (3:7:23)We an see the onstrution above in another way using the vertex operator representation ofKa�-Moody algebras and the onstrution of the Ising model as a G/H CFT. This onstrutionseems to be generalized to all G/H CFTs and will be disussed in Appendix 2.B.3.8 The Critial Ashkin-Teller Model and CFTIn this setion we are going to disuss the ritial struture of the Ashkin-Teller, (A-T), modeland desribe the usefulness of the previous setions in understanding this ritial behavior.The A-T model is de�ned as the system of two Ising spins oupled with a 4-spin interation,[51℄. The Hamiltonian is, H = �X<ij> [g2(sisj + titj) + g4(sisjtitj)℄ (3:8:1)where the spins take the values �1 and are positioned on the sites of a 2-d lattie and theinteration is a nearest-neighbor interation. When g4 = 0 then the model is equivalent todeoupled Ising models.z After some tedious alulation



95The most rih phase diagram is obtained in the transfer matrix approah, [52℄. This involvesthe highly anisotropi hamiltonian lattie. In this approah we obtain the A-T quantum hainwith a quantum Hamiltonian,Ĥ = � 12(1 + �) NXi=1 h(�i + �yi + ��2i ) + �(�i�yi+1 + �yi �i+1 + ��2i�2i+1)i (3:8:2)where the hain has N sites, � is a oupling onstant, � plays the role of the inverse temperatureand � = 0BBBB�1 0 0 00 i 0 00 0 �1 00 0 0 �i1CCCCA � = 0BBBB� 0 0 0 11 0 0 00 1 0 00 0 1 01CCCCA (3:8:3)The generi symmetry of the model is D4. It is generated by the transformations,~�mi =Mmn�ni ; m; n = 1; 2; 3 (3:8:4)where the eight matries Mmn are given by �l and �lC,�l =0B� e i�l2 0 00 e 2i�l2 00 0 e 3i�l2 1CA ; l = 0; 1; 2; 3 ; C = 0B� 0 0 10 1 01 0 01CA (3:8:5)There are eight di�erent spetra of the quantum hamiltonian (3.8.2) generated by boundaryonditions related to the various elements of the symmetry group D4. For most of our disussionwe will fous on periodi boundary onditions.The phase diagram of the A-T quantum hain is knownx, [52℄. There a ontinuous line ofritial points with  = 1 and ontinuously varying ritial exponents, � = 1, �1 < � � 1.This line terminates in a Z4 model and then splits into two lines of ritial points belongingto the Ising universality lass. At the other end of the  = 1 line whih terminates in theKostelritz-Thouless point, start two lines that de�ne a \ritial fan", that is a whole area ofritiality. There is a paramagneti region, (I), whih is disordered and the expetation valuesof s+ t and st are zero. Region III is fully ordered and s+ t has an expetation value. RegionII is partially ordered. Here s+ t has zero expetation value unlike the expetation value of stwhih is non-zero. There is an anti-ferromagneti frozen region, (IV), in whih the system anbe divided in two sub-latties that behave di�erently. In one of them s + t and its onjugateoperator have eigenvalues respetively 1 and -1. In the other both eigenvalues are -1. In thisregion the expetation value of s+ t vanishes. For most of the rest we will fous on the =1 lineas well as the two Ising lines.x For onveniene and to �x notation it is presented in �g 17.



96On the =1 ritial line the model redues to a free gaussian model with Hamiltonian, [53℄,H = �2 X<ij>(�i � �j)2 (3:8:6)where �i is a periodi salar variable with period 2�. The ontinuum ation is,S = �2 Z d�d��(�2� + �2�)� (3:8:7)where � is given in terms of the oupling onstant{,� = 2� (1 � 1�aros(�)) (3:8:8)If we resale the �eld � so that the 2-point funtion is given by (3.2.3) then � is periodi modulo2�p�� . Thus the radius of the torus is given by,R(�) = �2(1 � 1�aros(�))�� 12 (3:8:9)It varies between the limits, 1p2 � R < 1. It is known that at the point � = 0 the two Isingspins deouple. Then the partition funtion has to be the square of the Ising partition funtion.This in fat along with modular invariane �xes the partition funtion of the A-T model to bethe orbifold partition funtion (3.5.5).Thus the whole disussion of the previous setions applies to this ritial line.The line � 1p2 � � � 1 is a ritial line orresponding to 1p2 � R � p2. It ontains thefollowing well known points. The 4-state Potts model at � = 1, the Z4 parafermioni model at� = 1p2 , two deoupled Ising models at � = 0, an N=1 superonformal model� at � = �qp2�12p2 ,and the Kosterlitz-Thouless model at � = � 1p2 .This line ontinues into the ritial fan, �1 < � < � 1p2 , or p2 < R < 1. In thereappear the dual models of the above with one exeption. There is the N=1 superonformalmodel at � = �p32 , two deoupled Ising models at � = �qp2+12p2 , the Z4 parafermioni modelat � = �p3+12p2 , the 4-state Potts model at � = �r12 + 12qp2+12p2 , and a N=1 superonformalmodel�� at � = �12q2p2+p3+1p2 . At the end of this line, � = �1 the gaussian analysis breaksdown. There is a �rst-order phase transition there. This model ould be desribed as an \anti-ferromagneti" 4-state Potts model.{ This is known by maping the A-T model to the six-vertex model, [54℄.� That is the twisted N=2 model.�� This is distint from the previous two.



97For the whole ritial line above we know, (thanks to the previous setions), the exatpartition funtion, the spetrum and the orrelation funtions. In partiular we showed thatthere are operators oming from the twisted setor of the salar theory with ritial indieswhih are onstant along the line. The most relevant one orresponds to the � 116 ; 116� familyoresponding to the leading magneti exponent xH = 18 . Our analysis predits the existeneand value of the seond magneti exponent ~xH = 98 whih orresponds to the presene of thefamily � 916 ; 916� in the spetrum.It remains to desribe the two Ising lines in terms of the salar theory. In fat the renor-malization group analysis of [52℄ derived the form of the Hamiltonian for those lines. Up tonormalization it oinides with the stress-energy tensors, T� we presented in setion 3.7. Thusthe \bosonization" desribed in 3.7 in fat gives the orret mapping between the bosoni vari-ables of the A-T model and the nature of the Ising ritial lines.The ritial points of the A-T model have phenomenologial importane sine they seem todesribe the superuid-to-normal transition of He4 �lms, [55℄ and possibly the ritial behaviorin planar magnets, [56℄ and liquid rystals, [57℄.3.9 Conlusions and ProspetsIn this hapter we analyzed in detail CFTs with  = 1. We subsequently used them toanalyze the ritial behavior of the quantum A-T hain. We were able to explain all importantritial lines and alulate the ritial partition funtions, the spetrum and the orrelationfuntions. All the alulations above are exat.There is a potentially omplete lassi�ation of  = 1 CFTs, [58℄. A large part of themappear in the ritial A-T model. One of ourse would like to solve more ompliated ritialsystems and to �nd new ones. Suh hopes seem well founded in the ontext of CFT. As itwas already mentioned in the introdution, there are new statistial models that were foundby knowing their ritial points. On the other hand their ritial points were found using CFTtehniques. The models in question are the G/H RSOS models whih turn out to be integrableeven outside the ritial regime. In Appendix 3.B we point out that suh ritial points willappear in multi-omponent salar models whih are not in general free.It is oneivable that a lot of progress will be ahieved in the oming years along these lines.



98APPENDIX 3.AThe Bosonized Ising Model at Higher GenusIn this appendix we prove the equivalene of the bosoni and fermioni versions of the Isingmodel on an arbitrary ompat Riemann surfae.We will show that the two theories possess the same partition funtion on any ompatRiemann surfae. To ahieve that we will show that the expetation value of the stress-energytensor is the same in both theories and thus their partition funtion are the same up to trivialonstant.?Let's �rst ompute hT i in the fermioni ase. The two-point funtion of the fermion on aompat Riemann surfae of genus g � 2 is given by the Szego kernelyh0j	(z)	(w)j0i = � �ab � (R zw �)� �ab � (0) � 1E(z;w) � P habi (z;w) (3:A:1)where the pair (a; b), (a; b are g-dimensional vetors whose omponents are either 0 or 12),spei�es an arbitrary even spin-struture on the surfae, E(z;w) is the prime form, and �i,i = 1; 2; :::; g, is a basis of holomorphi one-forms.hT (z)iF = �12 limw!z�h	(z)�w	(w)i � 1(z �w)2� (3:A:2)The Szego kernel satis�es the following identity, [59℄,hP habi (z;w)i2 = !(z;w) + gXi;j=1Aij�i(z)�j(w) (3:A:3)Aij � �2 ln � �ab ��zi�zj [0℄; !(z;w) = �2�z�w lnE(z;w): (3:A:4)We need also the short distane expansion of the prime form.E(z;w) = (z � w)� (z � w)312 S(w) +O[(z � w)5℄ (3:A:5)where S is the projetive onnetion, [59℄. Using (3.A.3), (3.A.4), (3.A.5) we an easily show? We will only disuss even spin strutures where there are no zero modes for the fermion.y For notation and more details see ref. [59℄.



99that hT (z)iF = 14 gXi;j=1Aij�i(z)�j(z)� S(z)24 (3:A:6)Note that hT (z)iF depends on z, sine translation invariane is not a symmetry of theorrelation funtions for g > 1.The orresponding alulation in the bosoni model proeeds along the same lines.hT (z)iB = �14 limw!z�h�z�(z)�w�(w)i+ 1(z � w)2� (3:A:7)�(z) � gXi=1 pi zZPo �i + �qu(z)where the winding number pi takes the appropriate values, pi = 2m + ai; m 2 Z, P0 is anarbitrary point on the surfae andh�z�qu(z)�w�qu(w)i = ��z�wlnE(z;w) = �!(z;w) (3:A:8)The sum over instanton setors is weighed by the holomorphi instanton ation, Sm � 12(m +a)i
ij(m + a)j + 2�ibi(m + a)i, where 
ij is the period matrix of the surfae. The instantonsum ontributes a fator �2 ��
ij ln � �ab � (0)�i(z)�i(z) whih by the heat equation satis�ed bythe �-funtions is equal to �Pgi;j=1Aij�i(z)�j(z). Thus hT (z)iF = hT (z)iB whih ompletesthe proof.



100APPENDIX 3.BThe Ising Bosonization as a G/H ConstrutionIn this appendix we will show that the bosonized version of the Ising model presented insetion 3.7 an be understood through its G/H onstrution.Let's onsider the tensor produt of two SU(2) Ka�-Moody algebras at level one. Theurrents satisfy the following algebra,Jai (z)J bi (w) = i�ab Ji (w)(z � w) + 12 Æab(z � w)2 + � � � ; i = 1; 2 (3:B:1)and the two algebras for i = 1; 2 ommute. The stress-energy tensor of this theory is of theSugawara form and the entral harge is  = 2,TG(z) = 13 2Xi=1; 3Xa=1 : Jai (z)Jai (z) : (3:B:2)Let's onsider the diagonal SU(2) subalgebra, generated by Ja1 + Ja2 . This is an SU(2) Ka�-Moody algebra at level two. There is an assoiated stress-energy tensor with it with entralharge  = 32 , TH(z) = 14 3Xa=1 : (Ja1 (z) + Ja2 (z))(Ja1 (z) + Ja2 (z)) : (3:B:3)If we form the di�erene TG(z)�TH(z) we an show that it is a stress-energy tensor with  = 12and that it ommutes with TH . Thus we an write SU(2)k=1
SU(2)k=1 = SU(2)k=2
MG=H ,[60℄. This expresses the fat that the initial CFT an be written as a diret produt of twoother CFTs. The piee MG=H generated by TG=H = TG � TH is the ritial Ising model as it issuggested by the value of the entral harge.We will now use the fat that the SU(2) Ka�-Moody algebra at level one an be onstrutedout of free boson of radius R = p2?. We will need two suh bosons, �1 and �2 in order to makethe produt. We normalize as usualy,h0j�i(z)�j(w)j0i = �Æijlog(z �w) (3:B:44)? As it was shown in setion 3.3.y In this appendix we will deal only with holomorphi aspets



101Then the SU(2) 
 SU(2) urrents arez,J3i (z) = ip2�z�i(z) ; J�i (z) � 1p2 �J1i (z)� iJ2i (z)� = 1p2e�ip2�i(z) (3:B:5)The Sugawara stress-energy tensor is just the sum of the stress-energy tensors of the two bosons,TG(z) = �12�z�1�z�1 � 12�z�2�z�2 (3:B:6)The urrents of the diagonal subalgebra an be written in terms of the bosons,J3H = ip2(�z�1 + �z�2) ; J�H = 1p2 he�ip2�1 + e�ip2�2i (3:B:7)Now we an use an use (3.B.3) in order to alulate the stress-energy tensor for the subalgebra.The result is,TH(z) = �18(�z�1 + �z�2)2 � 14 [(�z�1)2 + (�z�2)2℄ + 14 heip2(�1��2) + e�ip2(�1��2)i (3:B:8)We will use another basis for the bosons in suh a way that the formulas beome more trans-parent. De�nex, �1 = 1p2(�1 + �2) ; �2 = 1p2(�1 � �2) (3:B:9)The 2-point funtions are still diagonal,h0j�i(z)�j(w)j0i = �Æijlog(z � w) (3:B:10)In this basis, TH(z) beomes,TH(z) = �12(�z�1)2 � 14(�z�2)2 + 14 �e2i�2 + e�2i�2� = �12(�z�1)2 + T+ (3:B:11)and, TG=H(z) � TG(z)� TH(z) = �14(�z�2)2 � 14 �e2i�2 + e�2i�2� = T� (3:B:12)whih is exatly the expression we used for the Ising model in setion 3.7. It is instrutive towrite also the SU(2)k=2 urrents in the new basis{ ,J3H = i�z�1 ; J�H = 1p2e�i�1 �ei�2 + e�i�2� = e�i�1 + (3:B:13)It is known that the level two SU(2) algebra an be onstruted out of three free fermions. Wean ombine two of them to make a boson. Then (3.B.13) and (3.B.11) is written in terms ofz We will omit normal ordering symbols. All operators should be taken to be normal ordered.x The radius of the new bosons beomes now R = 1.{ The notations, T�,  � are the same as in setion 3.7.



102the boson �1 and the fermion in its bosonized form in terms of �2. The same remarks aply indeomposing the SU(2)1 
 SU(2)1 representations into representations of SU(2)2 
 Ising.The onstrution above suggests that this ould be done for any pair (G,H) by startingfrom level one algebras that have a bosoni form whih is well understood�. We will presentan example by onstruting the level N SU(2) algebra and thus the assoiated ZN parafermiontheory, [61℄.The level N SU(2) algebra will be onstruted as the diagonal subgroup of the produt ofN level one SU(2) algebras. We will need N free salar �elds �i of radius R = p2 in order toonstrut N opies of SU(2)1. We will normalize them as usual,h0j�i(z)�j(w)j0i = �Æijlog(z � w) ; i; j = 1; 2; � � � ; N (3:B:14)The individual SU(2)1 urrents are as in (3.B.5). The urrents of the diagonal SU(2)N beome,J3N = ip2 NXi=1 �z�i ; J�N = 1p2 NXi=1 e�ip2�i (3:B:15)while the Sugawara stress-energy tensor is,TN(z) = 1N + 2 24�12  NXi=1 �z�i!2 � NXi=1(�z�i)2 + NXi<j �eip2(�i��j) + e�ip2(�i��j)�35 (3:B:16)We must now make a transformation on our basi variables �i to make things more transparent.Let's de�ne, �i = �pN +p2~�i � ~� (3:B:17)where ~� is an (N-1)-dimensional vetor of salar �elds. The ~�i are the weights of the fundamentalrepresentation of SU(N). They are (N-1)-dimensional vetors and there are N of them. Theyare normalized as follows, ~�i � ~�j = � 12N + 12Æij (3:B:18)The roots of SU(N) are ~�ij = ~�i � ~�j. They are normalized to ~� � ~� = 1. The ~�i = ~�i � ~�i+1� There are indiations that one ould onstrut theories in this formalism that are of a wider variety thanG/H theories.



103are the simple roots. The new basis for the bosons de�ned by (3.B.17) is still orthonormal,h0j�i(z)�j(w)j0i = �Æijlog(z � w) ; h0jj�(z)�(w)j0i = �log(z � w) (3:B:19)The SU(2) urrents now beome,J3N = irN2 �z� ; J�N = 1p2e�ip 2N� " NXi=1 e�2i~�i�~�# (3:B:20)whereas the stress-energy tensor is,TN(z) = �12(�z�)2 + T parN (z) (3:B:21a)T parN (z) = � 1N + 2 "�z~� � �z~� +X~� e2i~��~�# (3:B:21b)The sum is over all roots of SU(N)��. From (3.B.20) one an easily identify the ZN parafermionoperators���.  1(z) = 1pN " NXi=1 eip2~�i�~�# (3:B:22)One then using the OPE among vertex operators an onstrut expliitly the whole parafermionalgebra���� ,  k(z) k0(w) = Ck;k0(z � w)� 2kk0N [ k+k0(w) +O[(z � w)℄℄ (3:B:23)with,  k(z) =  Nk !� 12 NXi1<i2<���<ik eip2(~�i1+���+~�iN )�~� (3:B:24)and C2k;k0 = (k + k0)!(N � k)!(N � k0)!(k!k0!(N � k � k0)!N ! (3:B:25)The spin �elds of the parafermioni theory are twist �elds for the vertex operators  �1. The�� The reason for the appearene of the roots of SU (N ) is the fat that the SU (2)N parafermions an also beonstruted as the oset spae SU (N )1 
 SU (N )1=SU (N )2.��� T parN is the stress-energy tensor for the ZN parafermion theory.���� The indies k, k0, k + k0 are always understood modulo N.



104fat that �k twists  �1 by � kN ompletely determines the orrelation funtion,h0j�yk (1) 1(z) �1(w)�k(0)j0ih0j�yk (1)�k(0)j0i = z�1+ kNw� kN(z � w)2� 2N ��1 � kN� z + kNw� (3:B:26)Using,  �1(z) 1(w) = (z � w)�2+ 2N �1+ N + 2N T parN (w)(z � w)2 + � � �� (3:B:27)we �nd the dimension of the spin �eld �k to be �k = k(N�k)2N(N+2). Unfortunately we do nothave a omplete desription of these �elds in the bosoni language but is oneivable that theirorrelation funtions an be omputed with tehniques similar to those of ref. [46℄.The onstrution above an be done for any G/H CFT by starting �rst from level onealgebras. It is obvious that the bosoni oordinates are ompati�ed on latties that are diretproduts of root latties of Lie algebras.


