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iiiABSTRACTIn this work two major topi
s in Conformal Field Theory are dis
ussed. First a detailedinvestigation of N=2 Super
onformal theories is presented. The stru
ture of the representationsof the N=2 super
onformal algebras is investigated and the 
hara
ter formulae are 
al
ulated.The general stru
ture of N=2 super
onformal theories is elu
idated and the operator algebra ofthe minimal models is derived. The �rst minimal system is dis
ussed in more detail. Se
ond,appli
ations of the 
onformal te
hniques are studied in the Ashkin-Teller model. The 
 = 1 aswell as the 
 = 12 
riti
al lines are dis
ussed in detail.
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1INTRODUCTIONIn the past �ve years there was a renewed interest in string theories as 
andidates for auni�ed theory of nature, [1℄. This 
ame as no surprise in an era where the theoreti
al ideas ofthe subje
t seemed to be inadequate for further advan
ement. On the other hand string theoryseemed to provide new solutions to problems we did not know how to atta
k before. It remainsto be seen if string theory is the theory that des
ribes Nature. But even if the answer is negativeit is 
ertainly true that now we understand Quantum Field Theory mu
h better than we did�ve years ago.The 
onne
tion between string theories and two-dimensional 
riti
al models is well known.Any two-dimensional 
riti
al model with the appropriate lo
al symmetry and 
entral 
harge isa 
lassi
al ground state for string theory. The fa
t above was responsible for the great interestin 2-d 
riti
al models in re
ent years and the emergen
e of new ideas and te
hniques in order to
lassify and solve them. In the light of string theory the 
lassi�
ation problem is quite important.Knowing all 
onformal �eld theories (CFT) in 2-d is equivalent, as mentioned above, to knowingthe 
lassi
al va
ua of string theories. Of 
ourse this knowledge is not the whole story sin
e itis expe
ted that only a sub
lass of them will be stable under quantum 
u
tuations. At thepresent status of string theory our knowledge of taking a

ount of quantum 
u
tuations in a�eld theoreti
 way is very limited, and as far as our 
al
ulational tools are 
on
erned we arein an even worse situation. It is 
on
eivable though that a knowledge of all string va
ua willenable us to see if string theory has anything to do with the real world. Be
ause imagine thatin our 
omplete list of 
lassi
al string va
ua we �nd none with a spe
trum that resembles thereal world. Then it is very hard to see how one 
an re
on
ile the theory with basi
 experimentalfa
ts (spe
trum). In the opposite 
ase one will be pushed to investigate more 
losely va
ua withproperties in a

ord with Nature.From the view-point of 
ondensed matter physi
s the problems of 2-d 
riti
al phenomenadis
ussed above are fundamental. There are two reasons for one being interested in the 
riti
albehaviour of 2-d models. First, there are a lot of situations in real life where the system understudy is a 2-d one, (e.g. surfa
e behaviour). Se
ond it is well known by now that 2-d 
riti
alphenomena possess the ri
hest stru
ture 
ompared with higher dimensional ones.In the last �ve years there emerged a new approa
h to 2-d 
riti
al phenomena whi
h provedto be very powerful and illuminating at the same time. We will refer to this approa
h with thename Conformal Field Theory. It was introdu
ed by Belavin, Polyakov and Zamolod
hikov, [2℄,in an attempt to introdu
e both as a prin
iple and as a tool the group theoreti
 stru
ture of
onformal symmetry. The main hope whi
h be
omes more plausible as time goes by is the useof the representation theory of the 
onformal group and its extensions as well as elements of 2-dgeometry as tools to 
lassify and solve all universality 
lasses of 
riti
al behaviour in 2-d.Sin
e its introdu
tion, CFT has advan
ed 
onsiderably and has been re
ognized as a valuabletool both in string theory and in 
riti
al phenomena. Now more than ever it seems that a
lassi�
ation of 2-d CFTs is not a hopelessly diÆ
ult task. It also gave the biggest 
olle
tion ofexa
tly solvable 2-d models that we know so far.



2In this thesis I will try to present my own 
ontribution to the subje
t. In 
hapter 1 the basi
prin
iples and tools of CFT are presented in a way whi
h (hopefully) will make the rest moreintelligible to the non-expert. In 
hapter 2 various aspe
ts of N=2 super
onformal symmetryare dis
ussed as well as its relevan
e for realisti
 string 
ompa
ti�
ation. Chapter 3 
ontainssome appli
ations to 
ondensed matter systems, in parti
ular the Askin-Teller model. Someideas pertaining on non-standard bosonization te
hniques are also presented.This thesis is based on both published and unpublished work of the author. The publishedwork on the subje
t has been presented in referen
es [3,4,5,6,7,8℄.



3CHAPTER 1Introdu
tion to Conformal Field Theory1.1 Conformal Symmetry and Ward IdentitiesConformal symmetry was introdu
ed in quantum �eld theory inspired by 
ertain s
alingideas in the theory of se
ond order phase transitions, [9℄. The basi
 hypothesis was based onthe idea that the physi
s of the systems at the 
riti
al point was invariant under s
alings ofthe system. In terms of 
oordinates, �a ! ��a. Su
h a transformation is a symmetry if thestress-energy tensor is tra
eless, T aa (�) = 0 (1:1:1)If the 
ondition above is true then one 
an show that the system not only possesses the aforemen-tioned s
aling symmetry but it is also invariant under 
oordinate transformations, �a ! �a(�),whi
h have the property that the metri
 tensor transforms as,gab ! ��a0��a ��b0��b ga0b0 = �(�)gab (1:1:2)Su
h transformations 
onstitute the 
onformal group. The 
ondition for an in�nitesimal 
o-ordinate transformation of the form �a ! �a + fa(�) to have the property (2) turns out tobe, �afb + �bfa = 2dÆab�
f
 (1:1:3)where d is the dimension of spa
e-time.In the generi
 
ase, d 6= 2, only a �nite number of solutions exist for (1.1.3). This 
an beeasily seen by rewriting (1.1.3) in the more suggestive form,(Æab + (d � 2)�a�b)�
f
 = 0 (1:1:4)whi
h implies that for d 6= 2 f
 must be at most quadrati
 in �a. Thus the 
onformal groupin d > 2 dimensions is �nite dimensional 
onsisting of translations, rotations, dilatations andspe
ial 
onformal transformations. But in d = 2 equation (1.1.3) be
omes the Cau
hy-Riemannequations. Thus any meromorphi
 fun
tion is a solution. The 
onformal group in this 
ase isin�nite dimensional. It is generated by the 
omponents of the stress energy tensor.



4From now on we restri
t ourselves to the two-dimensional 
ase. We will also work in Eu-
lidean spa
e where both statisti
al me
hani
s and quantum �eld theory are well de�ned. Alongwith 
onformal invarian
e one needs to assume a strong version of the Operator Produ
t Ex-pansion (OPE): Assume that there exists an in�nite set of lo
al �elds �i(�).Then the set ofoperators �i(0) is assumed to be 
omplete in the following sense. The set [�i℄ 
ontains theidentity operator I as well as all 
oordinate derivatives of lo
al �elds. The 
ompleteness of theset [�i℄ means that any state 
an be generated by the linear a
tion of these operators. This isequivalent to the OPE: �i(�)�j(0) =Xk Ckij(�)�k(0) (1:1:5)The stru
ture 
onstants Ckij(�) are 
-number fun
tions whi
h are single valued. The previousrelations are understood as an exa
t expansion of the 
orrelation fun
tions,h�i1(�1)�i2(�2) � � � �in(�n)i =Xk Cki1i2(�1 � �2)h�k(�2) � � � �in(�n)i (1:1:6)whi
h 
onverges in some �nite domain of �, dependent on the positions �i. The most restri
tiverequirement is the asso
iativity of the operator algebra (1.1.5). This gives an in�nite number ofequations for the stru
ture fun
tions Ckij(�). Conformal symmetry �xes the form of the stru
turefun
tions up to numeri
al parameters. Then these equations should determine these parameters.For d > 2 the system is too 
ompli
ated due to the diÆ
ulty of 
lassifying the �elds parti
ipatingin the algebra. In d = 2 the situation is tra
table. The 
onformal group is in�nite dimensionaland the operators 
an be 
lassi�ed su

essfully by the irredu
ible representations of the group.In order to des
ribe the group we will 
hoose 
omplex 
oordinates z and �z (in Minkowskispa
e they 
orrespond to light 
one 
oordinates).z � �1 + i�2 ; �z � �1 � i�2 (1:1:7)From now on we will restri
t our attention to the 
at Eu
lidean spa
e. The results however 
anbe generalized to the most general 
ase and we will have to say more in subsequent 
hapters.The metri
 is written as, ds2 = dzd�z. In these 
oordinates a 
onformal transformation be
omesan analyti
 transformation, z ! �(z) ; �z ! ��(�z) (1:1:8)where �, �� are arbitrary analyti
 fun
tions. It will be useful to 
onsider the transformations(1.1.8) as independent and thus the 
onformal group G will be the dire
t produ
t, G = � 
 ��,where � (��) is the group of analyti
 (anti-analyti
) transformations.An in�nitesimal transformation of the group � is, z ! z + �(z), where �(z) is an arbitraryin�nitesimal meromorphi
 fun
tion. If we represent it in terms of its Laurent series �(z) =



5P1�1 �nzn+1 then the Lie algebra of � 
oin
ides with the algebra of di�erential operators ln =zn+1�z. The 
ommutation relations are,[ln; lm℄ = (n�m)lm+n (1:1:9)The generators l�1,, l0, l1 generate a subalgebra sl(2; C). The 
orresponding subgroup 
onsistsof the proje
tive transformations,z ! � = az + b
z + d ; ad� b
 = 1 (1:1:10)An important operator in a theory is the stress-energy tensor. It is de�ned as the variationof the a
tion with respe
t to the metri
, (whenever there exists an a
tion), T ab � ÆSÆgab .Let's 
onsider an arbitrary 
orrelation fun
tion of the form,hXi = h�i1(�1) � � ��in(�n)i (1:1:11)The �elds in the 
orrelation fun
tion are lo
al �elds. Let's now perform a 
oordinate transfor-mation, �a ! �a + �a(�). We 
an derive the appropriate Ward identity this way whi
h reads,nXk=1h�i1(�1) � � � Æ��ik(�k) � � ��in(�n)i+ Z d2��a�b(�)hT ab(�)Xi = 0 (1:1:12)where Æ��i denotes the variation of the lo
al �eld under the 
oordinate transformation. A
orollary of (1.1.12) is the 
onservation of the stress-energy tensor,�ahT ab(�)Xi = 0 (1:1:13)everywhere ex
ept at �i. In a 
onformally invariant theory the tra
e of the stress-energy tensorvanishes. Combining relations (1.1.1) and (1.1.13) we obtain,��zhT (�)Xi = 0 ; �zh �T (�)Xi = 0 (1:1:14)where, T � T11 � T22 + 2iT12 ; �T � T11 � T22 � 2iT12 (1:1:15)In view of (1.1.14) we 
an write T = T (z), �T = �T (�z). The 
orrelation fun
tion hT (z)Xi is ameromorphi
 fun
tion of z whi
h is single valued and regular everywhere ex
ept at the points



6zi where it has poles. The Ward identity (1.1.12) for a holomorphi
 
oordinate transformationbe
omes, hÆ�Xi = IC d�hT (�)Xi (1:1:16)where the 
ontour C en
loses all singularities zi of the 
orrelation fun
tion. Thus we 
an writethe following relation for the variation of a lo
al �eld under a holomorphi
 transformationz ! z + �(z), Æ��i(z; �z) = ICi d��(�)T (�)�i(z; �z) (1:1:17)The same arguments are valid for anti-holomorphi
 transformations.The transformation properties of T (z) are important sin
e they are related to the realizationof the algebra of 
onformal transformations in the quantum theory. The following theorem isdue to Ma
k and L�us
her?, [10℄:Theorem: In a lo
al relativisti
 quantum �eld theory (satisfying the Wightman axioms)let the stress-energy tensor be symmetri
, 
onserved (absen
e of gravitational anomalies) andtra
eless (s
ale invarian
e). Let also the stress-energy tensor be dilation 
ovariant and theva
uum state be dilatation invariant,U(�)Tab(�)U�1(�) = �2Tab(��) ; U(�)j0i = j0i (1:1:18)then, Æ�T (z) = �(z)�zT (z) + 2�z�(z)T (z) + 
12�3z�(z) (1:1:19)One de�nes a quantum �eld theory in 2-d spa
e (�,� ) and imposes periodi
ity requirementsin the spa
e dire
tion �. Then we 
an go from the 
ylinder to the 
omplex plane by means ofthe transformation z = exp(� + i�). The 
orrelation fun
tions in the (�; � ) spa
e 
an be de�nedthrough time ordering in the \time" � . In the operator formalism the variations Æ��i 
an beexpressed in terms of equal time 
ommutators,Æ��i(�; � ) = [T�; �i(�; � ℄ ; T� � Ilogjzj=� �(z)T (z)dz (1:1:20)Then relation (1.1.19) be
omes,[T�; T (z)℄ = �(z)T 0(z) + 2�0(z)T (z) + 
12 �000(z) (1:1:21a)? A more general theorem is in fa
t true. In any 2-d theory that satis�es the Ma
k-L�us
her assumptions andalso has a 
ontinuous global symmetry or global supersymmetry then this symmetry is automati
ally lo
al,[10℄



7or in OPE form, T (z)T (w) = 12 
(z � w)4 + 2 T (w)(z � w)2 + �wT (w)(z �w) + � � � (1:1:21b)It is 
onvenient to expand T (z) in a Laurent series,T (z) = 1Xn=�1 Lnzn+2 (1:1:22)Then using (1.1.21) one 
an derive the 
ommutation relations of the operators Ln whi
h are thegenerators of the holomorphi
 part of the 
onformal group.[Lm; Ln℄ = (m� n)Lm+n + 
12(m3 �m)Æm+n;0 (1:1:23)The same 
ommutation relations are valid for the antiholomorphi
 generators �Ln. The algebraof equation (1.1.23) is known as the Virasoro algebra. It 
ontains sl(2; C) as a subalgebra.The operators L�1, �L�1 generate translations on the 
omplex plane whereas L0, �L0 generatedilatations of z, �z. In the (�; � ) 
oordinates L0+�L0 generates time translations and 
onsequentlyit is the Hamiltonian. The in�nite past (� = �1) and the in�nite future (� =1) 
orrespondto the points z = 0 and z =1 on the 
omplex plane.The Cartan subalgebra of the Virasoro algebra is generated by L0. Its eigenvalues � (holo-morphi
 
riti
al dimensions) 
lassify the irredu
ible representations. The raising operators areLn, n = 1; 2; 3; :::. The unique va
uum state of the theory 
orresponds to the identity operatorand has zero L0 eigenvalue. It is also a highest weight ve
tor (hwv) of the algebra, that is it isannihilated by the raising operators,Lnj0 >= 0 ; n = 0; 1; 2; 3; ::: (1:1:24)Using (1.1.23) and (1.1.24) we 
an show that the va
uum state is also annihilated by L�1. Thisthe maximal subset of the 
onformal group generators that 
an annihilate the va
uum. Thefa
t that we 
annot impose a bigger set of generators to annihilate the va
uum is due to thenon-zero 
entral element 
 in the algebra (1.1.23). This fa
t 
an be 
ast in 
onventional �eldtheoreti
 terms as \the full 
onformal invarian
e of the theory is spontaneously broken". Thestatement above re
e
ts the fa
t that the va
uum state is not invariant under the full 
onformalgroup but the 
onformal Ward identities are still valid. However this interpretation should beused with 
are. As already explained above the sl(2; C) symmetry is still manifest.In order to de�ne Hermitian 
onjugation we have to remind ourselves that the matrix ele-ments are evaluated between the \in" (z = 0) and the \out" (z =1) states. These are related



8by z! 1z . From this and the reality of T (z) it 
an be inferred that,Lyn = L�n (1:1:25)Using the 
ommutation relations (1.1.23) along with (1.1.25) one 
an evaluate any 
orrelationfun
tion involving stress-energy tensors only. For example,hT (z1)T (z2)i = 
2 1(z1 � z2)4 (1:1:26)Re
e
tion positivity (unitarity in Minkowski spa
e) and (1.1.26) imply that 
 � 0.The states in the Hilbert spa
e of the theory are generated by lo
al operators a
ting on theva
uum state, j�ii � �i(0)j0i (1:1:27)The representations of the 
onformal group are generated by hwvs (primary �elds). The wholerepresentation is generated by the a
tion of the lowering operators of the algebra on the hwvs.Consider a hwv j�i. It satis�es the usual hwv 
onditions,Lnj�i = 0 ; n > 0 ; L0j�i = �j�i (1:1:28)These are equivalent to the 
ommutation relations (j�i � ��(0)j0i),[Lm; ��(z)℄ = zm+1�z��(z) + �(m+ 1)zm��(z) (1:1:29)or to the OPE, T (z)��(w) = � ��(w)(z � w)2 + �w��(w)(z � w) + � � � (1:1:30)where the dots in (1.1.30) denote terms regular as z ! w. The operators appearing in theregular terms are the des
endants of the hwv under the a
tion of the lowering operators. In theHilbert spa
e language an arbitrary state in the representation generated by j�i is of the form,j�; (ki)i � (L�1)k1(L�2)k2(L�3)k3 � � � j�i (1:1:31)These states 
onstitute a basis in the representation. They are not orthogonal in general butthey are linearly independent (modulo a subtlety whi
h will be dis
ussed later).



9So far we negle
ted the existen
e of the anti-holomorphi
 Virasoro operators �Ln. But it isquite easy to take them into a

ount due to the fa
t that the 
onformal group is simply a dire
tprodu
t of the holomorphi
 and anti-holomorphi
 fa
tors. Thus a hwv is 
hara
terized by thetwo eigenvalues � and �� of L0 and �L0. Then the whole representation is generated by thea
tion on the hwv of the lowering operators L�n and �L�n. In a few words the representations ofthe full 
onformal group are tensor produ
ts of representations of its left and right 
omponents.The physi
al dimension of an operator is given by � + �� and its \spin" by �� ��.Using the information above we 
an derive the 
onformal Ward identities. An importantingredient is the fa
t that a meromorphi
 fun
tion on the Riemann sphere is determined by itssingularities and the 
orresponding residues. Thus let's 
onsider 
orrelation fun
tions of primary�elds with an insertion of the stress-energy tensor, T (z). We will view it as meromorphi
 fun
tionof z. Then we know its singularities and residues from (1.1.30) so that,hT (z)�1(z1) � � ��n(zn)i = nXi=1 � �i(z � zi)2 + 1(z � zi ��zi� h�1(z1) � � � �n(zn)i (1:1:32)TheWard identity (1.1.32) is important to determine the 
orrelation fun
tions of the des
endantsof the primary �elds. From (1.1.31) they are de�ned by modes of T (z) a
ting on the primary�elds. Thus we 
an use (1.1.32) in order to determine their 
orrelation fun
tions. We 
analso derive the proje
tive Ward identities whi
h illustrate the fa
t that sl(2; C) is an exa
tsymmetry of the theory. From our previous dis
ussion it be
ome obvious that the generatorsL�1, L0, L1 annihilate both the \in" and the \out" va
uum. We 
an isolate their a
tion onthe 
orrelation fun
tions by taking appropriate 
ontour integrals in (1.1.32). This results in thefollowing proje
tive Ward identities.nXi=1 ��zi h�1(z1):::�n(zn)i = 0 (1:1:33a)nXi=1 �zi ��zi +�i� h�1(z1) � � � �n(zn)i = 0 (1:1:33b)nXi=1 �z2i ��zi + 2zi�i� h�1(z1) � � � �n(zn)i = 0 (1:1:33
)where all the �elds in the 
orrelation fun
tion are primary.The 
onstraints that (1.1.33) put on the 
orrelation fun
tion are the following. The 2-point



10fun
tions are �xed: h�1(z1)�2(z2)i = Æ�1;�2(z1 � z2)2�1 (1:1:34)The 3-point fun
tions are also �xed up to an overall 
onstant:h�1(z1)�2(z2)�3(z3)i = C�1;�2;�3 3Yi<j(zi � zj)��ij (1:1:35)where �12 = �1��2��3 and so on. The general n-point fun
tion is 
onstrained to be of theform, h�1(z1) � � ��n(zn)i = nYi<j(zi � zj)
ijG(xklij ) (1:1:36)where the 
ij are any solutions of Pj 6=i 
ij = 2�i and G is an arbitrary fun
tion of the n � 3anharmoni
 quotients, xklij , xklij = (zi � zj)(zk � zl)(zi � zl)(zk � zj) (1:1:37)Thus all the non-trivial information of the theory is in the spe
trum of 
riti
al dimensions �iof the primary �elds and the OPE 
oeÆ
ients Ckij.1.2 Minimal Theories and UnitarityIn this se
tion we will be dis
ussing a spe
ial set of CFTs that 
ontain representations ofthe 
onformal group whi
h are \unusual". Su
h theories have a �nite number of primary �eldsand are exa
tly solvable.There are 
ertain 
ases where the representations of the 
onformal group (Verma modules)as 
onstru
ted above in (1.1.31), are not irredu
ible. This happens when one of the des
endantstates j�; (ki)i happens to have the properties of a hwv. Then one 
an show that su
h a statej�i is null, (h�j�i = 0), and orthogonal to all the other states of the representation. Su
h astate generates another representation whi
h is embedded in the previous one. Thus the trueirredu
ible representation is obtained after dis
arding all su
h states and their des
endants.Sin
e in a unitary theory the Hilbert spa
e is positive de�nite su
h a state is identi
ally zero.This means in parti
ular that any 
orrelation fun
tion, where su
h a state is parti
ipating in, iszero. To give a 
on
rete example 
onsider a des
endant state at level two,j�i = �L�2 + �L2�1� j�i (1:1:38)In order for this to satisfy the hwv 
onditions (1.1.28) we must have,� = � 32(2� + 1) ; 4� + 
2 + 9�2� + 1 = 0 (1:1:39)Assume that 
 = 12 , then � 
an take only two values satisfying (1.1.39), � = 12 or � = 116 . Let's



11take � = 12 for 
on
reteness. We would like to show that the existen
e of a null state impliesextra 
onstraints on the 
orrelation fun
tions of the theory. In parti
ular, if in a theory all theprimary �elds are of this kind (that is their representations 
ontain null ve
tors) then these
onstraints are enough to determine all the 
orrelation fun
tions. Su
h theories will be referredto as \minimal" and the 
orresponding representations as \degenerate". Let's now show howthe null state j�i = �L�2 � 34L2�1� j12i implies 
onstraints in the 
orrelation fun
tions. As it wasargued before,h0j�1(z1) � � � �n(zn)j�i = h0j�1(z1) � � ��n(zn)�L�2 � 34L2�1�� 12 (0)j0i = 0 (1:1:40)On the other hand we 
an use the Ward identities (1.1.32) to move the Virasoro operators tothe left, pi
king up on the way various terms and eventually annihilating the \out" va
uum.Thus we end up with a di�erential equation for the 
orrelation fun
tion, 34 �2�z2 � nXi=1 �i(z � zi)2 � nXi=1 1(z � zi) ��zi! h� 12 (z)�1(z1) � � � �n�1(zn)i = 0 (1:1:41)One 
an use the proje
tive Ward identities to substitute the derivatives with respe
t to zi withderivatives with respe
t to z so that (1.1.41) be
omes an ordinary di�erential equation.Another important issue is unitarity (positivity). This is the statement that the Hilbertspa
e of the theory is positive de�nite . An important 
on
ept in the dis
ussion of unitarityis the Ka�
 determinant. This is an obje
t that 
an be de�ned for every representation of the
onformal group. As we mentioned before the representation is built by the a
tion of the loweringoperators on a hwv. We will de�ne the level of a des
endant state ji > as the eigenvalue of L0��on that state, (� is the dimension of the hwv). Then it is easy to show that states at di�erentlevels are orthogonal. Now 
onsider the spa
e of states at a given level n. Choose a basis in thisspa
e, for example the basis in (1.1.31) will do. Now 
onsider the matrix, Mn, of all the innerprodu
ts between states in this spa
e, (su
h a matrix is known as the Shapovalov matrix in themathemati
s literature). The determinant of Mn is the Ka�
 determinant. It is a polynomial intwo variables, the dimension of the hwv, �, and the 
entral 
harge, 
. Then the statement ofunitarity be
omes the statement that the Ka�
 determinant has positive eigenvalues.Null states 
an also be seen from the Ka�
 determinant. If at least one of the eigenvalues ofMn is zero we 
an show that there is a null state at level n. The eigenve
tor ofMn, 
orrespondingto the zero eigenvalue, is the null state. The 
orresponding Ka�
 determinant vanishes at leveln. Thus zeros of the Ka�
 determinant signal the presen
e of null states. The Ka�
 determinant
an be evaluated. For example the Ka�
 determinant of the 
onformal group was 
onje
tured byV. Ka�
, [11℄, and proven by Feigin and Fuks, [12℄. It is the following,det(Mn) = nYi=10B�Yrs=ir�s fr;s(�; 
)1CAP (n�i) (1:1:42)



12where, fr;s(�; 
) = (��A+r;s)(��A�r;s) ; r; s 2 N ; r 6= s (1:1:43)fr;r(�; 
) = � + 124(r2 � 1)(
� 1) (1:1:44)A�r;s = 148 h(13 � 
)(r2 + s2)�p
2 � 26
 + 25(r2 � s2)� 24rs � 2 + 2
i (1:1:45)and P (n) is de�ned through, 1Yn=1 1(1 � zn) = 1Xn=0P (n)zn (1:1:46)An analysis of unitarity in 
onformally invariant theories using the Ka�
 determinant was per-formed by Friedan, Qiu and Shenker, [13℄. They found that for 
 � 1 no 
onstraint 
omes fromthe unitarity analysis. But for 
 < 1 unitary models exist only for spe
ial values of the 
entral
harge 
, 
 = 1� 6m(m+ 1) ; m = 2; 3; 4; ::: (1:1:47)The spe
trum of 
riti
al dimensions 
an be found.�p;q = ((m+ 1)p �mq)2 � 14m(m+ 1) ; 1 � p � m� 1 ; 1 � q � p (1:1:48)In these models there is a �nite number of primary �elds all of whi
h are degenerate. A

ordingto our previous dis
ussion these models are exa
tly solvable sin
e their 
orrelation fun
tionssatisfy linear ordinary di�erential equations. The above 
onstitutes a �rst step towards the
lassi�
ation of 2-d CFTs sin
e it 
lassi�es all unitary CFTs with 
 < 1.But for 
 � 1 there are no null states in the 
onformal algebra. Moreover other 
onstraintson the theories (e.g. modular invarian
e) imply that the set of primary �elds must be in�nite,[14℄. To 
ir
umvent su
h diÆ
ulties one has to introdu
e new ideas, in parti
ular enlargingthe 
onformal algebra. Imagine that the symmetry algebra of the theory is a bigger lo
alalgebra that 
ontains the 
onformal algebra as a subalgebra. Then one expe
ts that irredu
iblerepresentations of that algebra will be (in�nitely in general) de
omposable in representations ofthe 
onformal algebra. Several examples of su
h larger algebras are known, lo
al gauge algebras(Ka�
-Moody algebras), supersymmetri
 algebras, parafermioni
 algebras et
. Thus theories withan in�nite number of 
onformal representations 
an have a �nite number of the extended algebrarepresentations.It is probably not true that extended algebras are enough to put order in the vast spa
eof CFTs. There are more ambitious ideas on how to atta
k this problem, but sin
e they are
urrently under study we will refrain from saying anything more.



13So far we dis
ussed CFT on the Riemann sphere. It is natural to ask how mu
h of thisma
hinery 
arries over to CFT de�ned on more 
ompli
ated 2-d surfa
es. After all 
ondensedmatter systems are usually de�ned on a parallelogram with periodi
 boundary 
onditions andthis is topologi
ally a torus. In string theory perturbation theory �a la Polyakov is de�ned asdealing with CFTs on Riemann surfa
es with an arbitrary number of handles.In a theory with 
onformal invarian
e details asso
iated with the metri
 of the surfa
e areredundant. Thus one is led to 
onsider the surfa
es modulo di�eomorphisms and 
onformaltransformations. Compa
t 2-d surfa
es are 
lassi�ed topologi
ally by their number of handles(genus). For a given genus the surfa
es are parametrized by a �nite dimensional spa
e 
alledmoduli spa
e.There are elements of what we said so far that will not 
hange when we go to more 
om-pli
ated surfa
es. In parti
ular all the lo
al properties of a theory will remain the same. Shortdistan
e singularities, the spe
trum of 
riti
al exponents and the OPE 
oeÆ
ients will not
hange. But the Ward identities for example will 
hange sin
e we 
ru
ially used the fa
t thatwe were working on the sphere. Correlation fun
tions will also 
hange sin
e they also 
arryglobal information. We do know though how to generalize the formalism of CFT to surfa
e ofarbitrary genus. Viewing a CFT as an obje
t that 
an be de�ned on various surfa
es seems to bea promising approa
h towards su
h goals as 
lassi�
ation and solution of 2-d 
riti
al phenomenaand/or string theory.



14CHAPTER 2The Stru
ture of N=2 Super
onformal Field Theories2.1 Introdu
tionIn this 
hapter we are going to dis
uss various aspe
ts of N = 2 super
onformal �eld theories.As already mentioned in the �rst 
hapter if there are extra global (super)symmetries ina 
onformally invariant theory then the theory is invariant under a bigger lo
al algebra thatin
ludes the 
onformal algebra as a subalgebra.An interesting 
lass of su
h global symmetries are supersymmetries. A supersymmetry is asymmetry that relates bosons and fermions. Various kinds of supersymmetry in 2-d are 
lassi�edby the number of super
urrents. In 2-d we 
an de�ne left and right supersymmetries separately.A model invariant under m left and n right supersymmetries will be 
alled of the type (m,n).From now on our dis
ussion will be fo
used on the left (holomorphi
) part of a theory to avoidrepetition. When eventually we have to make a model we will have to tensor appropriately theleft and right parts in a way 
onsistent with various 
onstraints that we will dis
uss later.The possible super
onformal algebras in 2-d have been 
lassi�ed by Ramond and S
hwarz?,[15℄. The possibilities are:N = 1 Super
onformal Algebra. It is generated by the stress-energy tensor T (z) and adimension 32 fermioni
 operator, the super
urrent G(z). The algebra is given by the followingOPEs: T (z)T (w) = 34 
̂(z � w)4 + 2T (w)(z � w)2 + �wT (w)(z � w) + � � � (2:1:1a)T (z)G(w) = 32 G(w)(z �w)2 + �wG(w)(z � w) + � � � (2:1:1b)G(z)G(w) = 
̂(z �w)3 + 2T (z)(z � w) + � � � (2:1:1
)where 
̂ is related to 
 in (1.1.23) by 
̂ = 23
 and from now on the � � � in OPEs will represent thenon-singular terms as z ! w (whi
h do not 
ontribute to the (anti)-
ommutation relations).? One may 
onsider super
onformal algebras for any N, [16℄. The di�eren
e is that they do not, stri
tlyspeaking form an algebra. The 
ommutation relations give expressions that are not linear in the algebraoperators. However it is possible to use them in order to de�ne CFTs.



15N = 2 Super
onformal Algebra. It is generated by the stress-energy tensor T (z), a U(1)
urrent J(z) and two super
urrents G(z), �G(z).T (z)T (w) = 32 ~
(z � w)4 + 2T (w)(z � w)2 + �wT (w)(z � w) + � � � (2:1:2a)T (z)J(w) = J(w)(z � w)2 + �wJ(w)(z � w) + � � � ; J(z)J(w) = ~
(z �w)2 + � � � (2:1:2b)T (z)G(w) = 32 G(w)(z �w)2 + �wG(w)(z � w) + � � � (2:1:2:
)T (z) �G(w) = 32 �G(w)(z �w)2 + �w �G(w)(z � w) + � � � (2:1:2d)J(z)G(w) = G(w)(z � w) + � � � ; J(z) �G(w) = � �G(w)(z � w) + � � � (2:1:2e)G(z)G(w) = 0 + � � � ; �G(z) �G(w) = 0 + � � � (2:1:2f)G(z) �G(w) = 2~
(z � w)3 + 2J(w)(z � w)2 + �wJ(w)(z � w) + 2T (w)(z � w) + � � � (2:1:2g)where 
 = 3~
.N = 3 Super
onformal Algebra. It is generated by the stress-energy tensor T (z), threeSU(2) 
urrents Ja(z), three supersymmetry generators Ga(z) in the adjoint of SU(2) and anSU(2) singlet fermion �eld  (z).T (z)T (w) = 32 �(z � w)4 + 2T (w)(z � w)2 + �wT (w)(z � w) + � � � (2:1:3a)T (z)Ja(w) = Ja(w)(z � w)2 + �wJa(w)(z � w) + � � � (2:1:3b)T (z) (w) = 12  (w)(z �w)2 + �w (w)(z � w) + � � � (2:1:3
)T (z)Ga(w) = 32 Ga(w)(z �w)2 + �wGa(w)(z � w) + � � � ; Ja(z) (w) = 0 + � � � (2:1:3d)



16Ja(z)Gb(w) = i�ab
 G
(w)(z � w) + Æab �w (w)(z �w) + � � � ; Ga(z) (w) = Ja(w)(z � w) + � � � (2:1:3e)Ja(z)J b(w) = i�ab
 J
(w)(z � w) + �Æab(z �w)2 + � � � ;  (z) (w) = �(z � w) + � � � (2:1:3f)Ga(z)Gb(w) = 2�Æab(z � w)3 + i�ab
� 2J
(w)(z � w)2 + �wJ
(w)(z � w) �+ 2Æab T (w)(z �w) + � � � (2:1:3g)where 
 = 3� and � takes the values � = n2 , n = 1; 2; 3; � � �N = 4 Super
onformal Algebra. It is generated by the stress-energy tensor T (z), threeSU(2) 
urrents Ja(z) and two SU(2) doublets of supper
urrents, Gi(z) and �Gi(z).T (z)T (w) = 6�(z � w)4 + 2T (w)(z � w)2 + �wT (w)(z � w) + � � � (2:1:4a)T (z)Gi(w) = 32 Gi(w)(z �w)2 + �wGi(w)(z � w) + � � � (2:1:4b)T (z) �Gi(w) = 32 �Gi(w)(z � w)2 + �w �Gi(w)(z � w) + � � � (2:1:4
)T (z)Ja(w) = Ja(w)(z � w)2 + �wJa(w)(z � w) + � � � (2:4:d)Ja(z)J b(w) = i�ab
 J
(w)(z � w) + �Æab(z � w)2 + � � � (2:1:4e)Ja(z)Gi(w) = 12�aij Gj(w)(z �w) + � � � ; Ja(z) �Gi(w) = �12�aji �Gj(w)(z � w) + � � � (2:1:4f)Gi(z)Gj(w) = 0 + � � � ; �Gi(z) �Gj(w) = 0 + � � � (2:1:4g)Gi(z) �Gj(w) = 8�Æij(z � w)3 + 2Æij T (w)(z � w) + 2�aji� 2Ja(w)(z � w)2 + �wJa(w)(z � w) �+ � � � (2:1:4h)where 
 = 12�, � = n2 n = 1; 2; 3; � � � and �aij are the standard Pauli matri
es.



17There are various se
tors in the theories invariant under the super
onformal algebras above.Their existen
e is linked to the possibility on imposing various boundary 
onditions on thealgebra operators that respe
t the algebra stru
ture. The stress-energy tensor will have to bealways periodi
 otherwise 
onformal invarian
e will be broken. The algebras have in general aglobal automorphism group G whi
h is represented on the operators Oi(z) of the algebra bymatri
es Mij(g), g 2 G. Then the di�erent algebras are obtained by imposing the periodi
ity
onditions, Oi(z) =Mij(g)Oj(e2�iz) (2:1:5)Elements of G in the same 
onjuga
y 
lass give equivalent algebras. The algebras also 
on-tain lo
al automorphisms due to the lo
al gauge symmetries present (U(1) for N=2, SU(2) forN=3,4). Thus some of the boundary 
onditions introdu
ed through twists of the global auto-morphisms 
an be removed by a lo
al gauge transformation. So the truly independent algebrasare generated by global automorphisms that are not 
ontained in the lo
al automorphisms. Su
hautomorphisms are known in the mathemati
s literature as \outer" automorphisms. In the N=1algebra there are no lo
al automorphisms whereas the group of global automorphisms is isomor-phi
 to Z2. This is a fan
y way of saying that there are two possible boundary 
onditions forthe super
urrent, anti-periodi
 (NS algebra) and periodi
 (R algebra). These two algebras areinequivalent.In the N=2 algebra the group of global automorphisms is O(2). The lo
al automorphismgroup is SO(2) and the outer automorphism group is O(2)=SO(2) = Z2. Thus there are twoinequivalent N=2 algebras, [17℄. The one whi
h 
orresponds to the non-trivial element of Z2is \twisted" (the U(1) invarian
e is broken). The untwisted algebra is really a in�nite set oflo
ally equivalent algebras whi
h are de�ned through the various boundary 
onditions of thesuper
urrents, (The U(1) 
urrent is periodi
).G(z) = e2�i�G(e2�iz) ; �G(z) = e�2�i� �G(e2�iz) (2:1:6)where 0 � � � 1. The various algebras are spe
i�ed by the value of �. They 
an be mappedonto ea
h other through a lo
al U(1) transformation as follows:T�(z) = T0(z)� iz dfdzT0(z)� 12~
�z dfdz�2 (2:1:7a)J�(z) = J0(z)� i~
z dfdz (2:1:7b)G�(z) = eif(z)G0(z) ; �G�(z) = e�if(z) �G0(z) (2:1:7
)where f(z) = i�log(z).



18For the N=3 algebra the global automorphism group is O(3) whereas the lo
al automorphismgroup is SO(3). Thus again the outer automorphism group is Z2 and there only two inequivalentN=3 algebras R and NS. Finally the global automorphism group of the N=4 algebra is SO(4) (thealgebra is not invariant under parity). The lo
al automorphism group is SU(2), thus the outerautomorphism group is SO(4)=SU(2) = SU(2) and there is an in�nite number of inequivalentN=4 super
onformal algebras.Super
onformal invarian
e is important in superstring models. It seems to be indispensableif one hopes to get spa
e-time fermions. There are two kinds of 
losed superstring models, thetype II models whi
h have (1,1) lo
al supersymmetry (gauged in the sense that there are ghostsasso
iated with it) and the heteroti
 models whi
h have (1,0) lo
al supersymmetry. There is alsothe U(1) string whi
h has (2,2) lo
al gauged supersymmetry but for phenomenologi
al reasonsit is uninteresting sin
e it makes sense if spa
e time is two-dimensional.To 
onstru
t four-dimensional string theories one has to pro
eed as follows. The part de-s
ribing 4-d Minkowski spa
e is 
onstru
ted out of free bosons (and fermions) in the 
onventionalway. Then the theory has to be supplemented by a 
onformal �eld theory des
ribing the inter-nal degrees of freedom. Su
h a theory has to have the appropriate value for the 
entral 
hargewhi
h is 
 = 22 for the N=0 
ase and 
 = 9 for the N=1 
ase. Su
h a CFT may have a biggerlo
al invarian
e that the gauged one. We are usually interested in a theory whi
h has unbro-ken 4-d N=1 supersymmetry at the Plan
k s
ale. The reason for supersymmetry is to solveproblems asso
iated with hierar
hies. We need N=1 instead of an extended supersymmetrybe
ause in 4-d only N=1 supersymmetry 
an a

ommodate 
hiral fermions. It 
an be shownthat the statement that the theory has N=1 spa
e-time supersymmetry is equivalent to thestatement that the CFT des
ribing the internal degrees of freedom has an N=2 super
onformalinvarian
e. Thus N=1 spa
e-time supersymmetri
 string theories in 4-d are 
lassi�ed by N=2super
onformal �eld theories with ~
 = 3. The study of N=2 super
onformal �eld theories isa very important part of 
onstru
ting phenomenologi
ally viable string theories. It would bevery useful to 
onstru
t N=2 models whi
h are exa
tly solvable. Using su
h models as buildingblo
ks we would 
onstru
t string theories where s
attering amplitudes would be 
al
ulable.The study of the unitary representations of the N=2 super
onformal algebra showed thatthere is an analogous stru
ture as in the N=0,1 
ases. There is a dis
reetly in�nite set of minimalmodels, [18,19,26℄, with, ~
 = 1� 2m ; m = 2; 3; 4; ::: (2:1:8)whi
h 
ontain a �nite number of N=2 irredu
ible representations and whi
h are exa
tly solvable.For ~
 � 1 there is a 
ontinuum of models whi
h have not been 
lassi�ed yet.There are also other motivations for studying N=2 super
onformal CFTs. They 
ome from
ondensed matter physi
s. There are 
riti
al 2-d systems that exhibit N=2 super
onformalinvarian
e. Su
h examples will be dis
ussed in 
hapter 3.The �rst step in the study of N=2 theories is the 
al
ulation of the Ka�
 determinant. Asdis
ussed in the introdu
tion it is very important in the study of questions of unitarity as wellas in studying the existen
e of null states present in some representations. The presen
e of



19null states is wel
ome sin
e they impose extra 
onstraints on the 
orrelation fun
tions. Anotherimportant 
on
ept is that of a 
hara
ter. It is a generalization of the 
orresponding 
on
eptin �nite dimensional algebras and groups. It 
ontains a lot of information about the stru
tureof a representation, in a sense it spe
i�es it unambiguously. There is an extra property of the
hara
ters that is 
ru
ial both for 2-d 
riti
al systems and string theory. This is the fa
t that
hara
ters are 
losely related to the exa
t partition fun
tion of the system on the torus. This
onne
tion will be studied in more detail in the next se
tion.For an irredu
ible representation [h℄ of the 
onformal algebra the 
hara
ter is de�ned as,
hh = Trh(zL0) (2:1:9)where the tra
e is to be taken over all the states of the irredu
ible representation [h℄ and z is aformal variable.When the representation [h℄ does not 
ontain any null ve
tors then the 
omputation of the
hara
ter is quite easy. Things start to get 
ompli
ated when there are null ve
tors. As wealready mentioned the Verma module in this 
ase is not irredu
ible and in order to 
ompute the
hara
ter one has to subtra
t the 
ontributions of the extra representations embedded in theoriginal one. Thus there are two stages in the pro
ess. The �rst 
onsists in determining, (usingthe Ka�
 determinant), the embedding pattern of the representations in the original one. These
ond 
onsists in using the embedding pattern to subtra
t their 
ontributions. Both stages willbe dis
ussed in more detail in subsequent se
tions.There are other issues that need to be examined in N=2 Super
onformal models. One hasto derive Ward identities and in parti
ular solve the ones that relate to the fa
t that N=2supersymmetry is an unbroken symmetry. Also the operator produ
t rules, (fusion rules), insu
h models have to be worked out.In this 
hapter we will dis
uss the N=2 super
onformal �eld theories with parti
ular em-phasis on the minimal ones. In se
tion 2.2 we dis
uss the relation between 
hara
ters andpartition fun
tions. The 
on
ept and 
onsequen
es of modular invarian
e will be also tou
hedupon. Se
tion 2.3 is devoted to a study of the unitary irredu
ible representations of the N=2super
onformal algebras. We will derive the embedding stru
ture of the degenerate irredu
iblerepresentations and we will derive their 
hara
ters for any value of the 
entral 
harge. Se
tion2.4 deals with a des
ription of (2,0) superspa
e and its geometry as well as with the group ofN=2 global transformations, Osp(2j2). Se
tion 2.5 is devoted to the general des
ription of N=2CFTs, their primary �elds and the stru
ture of their ground states. In se
tion 2.6 we will studyOsp(2|2) invarian
e and the 
onstraints it puts on 
orrelation fun
tions. In se
tion 2.7 wedis
uss the operator algebra and 
orrelation fun
tions in the NS se
tor of the unitary minimalN=2 models. Se
tion 2.8 deals with the operator formalism in the Ramond se
tor. We willpoint out how we 
an apply the te
hniques used in the NS se
tor to the R se
tor. Se
tion 2.9is devoted to the study of the �rst minimal model with ~
 = 13 using the general te
hniques weintrodu
ed so far. Finally se
tion 2.10 
ontain 
on
lusions and future prospe
ts on the study ofN=2 models.



202.2 Modular Invarian
e, Chara
ters and Partition Fun
tionson the TorusLet's 
onsider a 2-d 
riti
al model on the torus. The torus 
an be represented as a parallel-ogram with sides l, l0 and periodi
 boundary 
onditions. At the limit l, l0 ! 1 with l=l0 = Æ�xed?, the Hamiltonian operator is, H = 2�l (L0 + �L0) (2:2:1)while the momentum operator is, P = 2�l (L0 � �L0) (2:2:2)l0 will be allowed to take 
omplex values. This will 
onsequently allow the parallelogram rep-resenting the torus to be tilted. Then the partition fun
tion of the system 
an be writtenas, Z(l; l0) = e�fll0+�
ReÆ6 Xn e�EnRel0�iPnIml0 (2:2:3)where the sum is over all the states of the theory. Equation (2.2.3) 
an be written in a moresuggestive form: Z(Æ; Æ�) = e�fA+�
ReÆ6 Tr[zL0�z �L0℄ (2:2:4)where z = e2�Æ, �z = e�2�Æ� and A is the area of the torus. In a 
onformally invariant theorythe states are assembled in irredu
ible representations of the 
onformal group. Then equation(2.2.4) 
an be written in terms of the 
hara
ters of the holomorphi
 (left) and anti-holomorphi
(right) representations. Z(Æ; Æ�) = e�fA+�
ReÆ6 X(h;�h)N(h; �h)
hh(Æ)
h�h(Æ�) (2:2:5)where N(h; �h) is the number of times the irredu
ible representation (h; �h) appears in the theoryand 
hh denotes the 
hara
ter of the holomorphi
 part of the representation (h; �h). Thus knowl-edge of the 
hara
ters and the representation 
ontent of the theory is enough to determine thepartition fun
tion.As already mentioned the 
hara
ters of the representation 
an be 
al
ulated by purely alge-brai
 means. Thus the only issue to be settled is the representation 
ontent. It is here that the
on
ept of modular invarian
e 
omes to the res
ue, [14℄, (if we assume that the theory 
ontainsa �nite number of irredu
ible representations)y.? Æ is 
losely related to the modulus of the torus. The exa
t relation is Æ = i� .y For theories invariant under the 
onformal group only, this implies that the 
entral 
harge must be 
 < 1. InN=1(2) super
onformal �eld theories 
̂(~
) < 1. In N=3,4 super
onformal theories as well as WZW modelsthis is always true. The above are spe
ial 
ases of G/H theories whi
h always 
ontain a �nite number ofrepresentations of some lo
al algebra.



21When we 
onsider a �eld theory of the torus whi
h we want to be 
oordinate invariantwe �rst 
he
k invarian
e under in�nitesimal 
oordinate transformations. Sometimes there are
oordinate transformations whi
h are not 
ontinuously 
onne
ted to the identity, thus they
annot be built out of in�nitesimal ones. Then we have to 
he
k that the theory is in fa
tinvariant under su
h 
oordinate transformations. The group of 
oordinate transformations ofthe torus is known to 
ontain su
h dis
onne
ted 
omponents whi
h 
an be labeled by elementsof PSL(2; Z). Su
h globally non-trivial 
oordinate transformations, (modular transformations),are generated by two basi
 transformations, T : Æ ! Æ+ i and S : Æ ! 1Æ . The partition fun
tionof a theory on the torus must be invariant under the modular transformations.The 
onsequen
es of invarian
e under T are easy to determine be
ause the 
hara
ters arediagonal under its a
tion. It implies that all the states of the theory must have spin h��h whi
his integer. The 
onsequen
es of invarian
e under S are more diÆ
ult to �nd. The reason is thatthe a
tion of S mixes the 
hara
ters among themselves. One ends up with a linear algebrai
system of equations among the numbers N(h; �h). This system has to be supplemented withextra physi
al requirements. There must be only one unit operator in the theory, N(0; 0) = 1,and N(h; �h) must be non-negative integersz. In this manner one obtains the representation
ontent of a wide 
lass of theories.The derivation of the torus partition fun
tions of various CFTs is very useful also for stringtheory. The partition fun
tion, integrated over the modulus of the torus, Æ, gives the one-loop
ontribution to the va
uum energy of string theory.In the next se
tion we will analyze the stru
ture of the representations of the N=2 super-
onformal algebras and we will eventually evaluate their 
hara
ters.2.3 Chara
ter Formulae and the Stru
ture of the Representationsof the N=2 Super
onformal AlgebrasIn this se
tion we will 
onsider the unitary degenerate representations of the N=2 super
on-formal algebra. We will derive their stru
ture and the 
orresponding 
hara
tersx.The N=2 algebra is given by the following (anti-)
ommutation relations{[Lm; Ln℄ = (m� n)Lm+n + ~
4(m3 �m)Æm+n;0 (2:3:1a)z In 
ases that have been examined so far it seems that the N (h; �h) obtained by solving the system are alwaysintegers but there are examples with N (0; 0) 6= 1 and/or N (h; �h) being negative integers.x Chara
ter formulae were also derived in [22℄. In [23℄ the 
hara
ters of the ~
 < 1 representations werederived.{ We have 
hosen a parti
ular normalization for the 
entral 
harge of the U(1) sub-algebra. It is worthnoting that the most general N=2 super
onformal algebra in
ludes, up to the freedom of rede�nitions,another free parameter, the U(1) 
harge of the super
harges. Then the respe
tive 
ommutation relationsbe
ome: [Jm; Gir℄ = iq�ijGjm+r and [Gir; Gjs℄+ = 2ÆijLr+s + iq �ij(r� s)Jr+s +~
(r2 � 14 )ÆijÆr+s;0. This newparameter does not 
hange the stru
ture of the irredu
ible representations. Its only e�e
t is to 
hange thedistan
e between su

essive relative 
harge levels.



22[Lm; Gir℄ = (m2 � r)Gim+r ; [Lm; Jn℄ = �nJm+n (2:3:1b)[Jm; Jn℄ = ~
mÆm+n;0 ; [Jm; Gir℄ = i�ijGjm+r (2:3:1
)[Gir; Gjs℄+ = 2ÆijLr+s + i�ij(r � s)Jr+s + ~
(r2 � 14)ÆijÆr+s;0 (2:3:1d)The normalization of the 
onformal anomaly is su
h that a free N=2 s
alar super�eld has~
 = 1. It is related to the anomaly of the Virasoro algebra by ~
 = 3
.As already dis
ussed in se
tion 2.1 there are two inequivalent N=2 algebras The twistedone and the untwisted one. There is a 
ontinuous family of untwisted N=2 algebras whi
h arerelated through lo
al U(1) transformations (2.1.17). We will study one of them, the NS algebra.Then through the aforementioned isomorphism we will be able to translate our statements tothe general member of the 
ontinuous set. Choosing integer moding for Lm, Jn and half-integerfor Gir we get the NS-type algebra.We will start our dis
ussion from the NS algebra and fo
us on the unitary representationswith ~
 < 1. In [18,19℄ it was shown that these exist only when :~
 = 1� 2m ; m = 2; 3; 4; :::: (2:3:2)and have hwv's with dimension and U(1) 
harge q given by,hj;k = 4jk � 14m ; q = j � km ; j; k 2 Z + 12 ; 0 < j; k; j + k � m� 1 (2:3:3)Hwv states are labeled by the eigenvalues of the zero modes, L0 and J0, whi
h are the dimensionh and the U(1) 
harge q. Then any des
endant is labeled by its level (eigenvalue of L0 �h) andits relative 
harge (eigenvalue of J0 � q).The Ka�
 determinant at level n and relative 
harge m is given by [18,19,20,21℄detMNSn;m(~
; h; q) = s evenY1�rs�2n[fNSr;s ℄PNS(n�rs=2;m) � Yk2Z+ 12 [gNSk ℄ ~PNS(n�jkj;m�sgn(k);k) (2:3:4)where : fNSr;s = 2(~
� 1)h� q2 � 14(~
� 1)2 + 14[(~
� 1)r + s℄2 ; r 2 Z+ ; s 2 2Z+ (2:3:5a)gNSk = 2h � 2kq + (~
� 1)(k2 � 14) ; k 2 Z + 12 ; (2:3:5b)



23while the NS partition fun
tions are de�ned by,�Xn;m PNS(n;m)znwm = 1Yk=1 (1 + zk�1=2w)(1 + zk�1=2w�1)(1 � zk)2 (2:3:6a)Xn;m ~PNS(n;m; k)znwm = [1 + zjkjwsgn(k)℄�1Xn;m PNS(n;m)znwm (2:3:6b)Equation (2.3.4) implies that whenever there is a vanishing of fNSr;s , there exists a unique hwvat level rs=2 with the same 
harge as the initial one, (relative 
harge zero). When gNSk = 0,there is a hwv at level jkj and relative 
harge sgn(k).Consider the representation of dimension hj;k = (4jk � 1)=4m and 
harge q = (j � k)=m .We will �rst sear
h for null hwv's at relative 
harge zero. fNSr;s vanishes for,r = nm� (j + k) ; s = 2n n = 1; 2; :::: (2:3:7)Thus there are null ve
tors at relative 
harge zero, embedded in the family (hj;k; q) theirdimensions being hj;k+n2�n(j+ k). We 
an show that the above hwv's exhaust all null hwv'sat relative 
harge zero. In fa
t if we order them in order of in
reasing dimension,h2n�1 = hj;k + n2m� n(j + k) n = 1; 2; :::: (2:3:8a)h2n = hj;k + n2m+ n(j + k) n = 0; 1; 2; :::: (2:3:8b)we 
an show by analyzing the Ka�
 determinant for hi, that (still at relative 
harge zero), thefamilies hj j > i (and only these) are embedded in hi.Next we have to look for null ve
tors of non-zero relative 
harge. For hj;k gNSl vanishes forl = k and l = �j . This implies the existen
e of a hwv of dimension hj;k + k and 
harge q + 1as well as a hwv of dimension hj;k + j and 
harge q � 1 embedded in [hj;k℄.Looking now at the Ka�
 determinant (relative 
harge zero), of the hwv h01 = hj;k + k ,q01 = q + 1, we 
an establish that it vanishes for,r = (n+ 1)m+ (j + k) ; s = 2n n = 1; 2; :::: (2:3:9a)r = nm� (j + k) ; s = 2(n + 1) n = 1; 2; :::: (2:3:9b)implying the existen
e of another series of null hwv's with dimensions,h02n�1 = hj;k + n(n+ 1)m� (n+ 1)j � nk n = 1; 2; :::: (2:3:10a)h02n = hj;k + n(n+ 1)m + nj + (n+ 1)k n = 1; 2; :::: (2:3:10b)and 
harge q + 1.� The derivation of the partition fun
tions 
an be found in App. 2.B.



24This s
enario 
ontinues so that by using indu
tion we 
an establish the existen
e of anembedding pattern shown in �g. 3 . All embedding diagrams are 
ommutative. The mapsbetween se
tors of di�erent 
harge form exa
t sequen
es due to the fermioni
 nature of thegenerating operators. There is unique hwv at ea
h level and 
harge sin
e the Ka�
 determinanthas a simple zero 
orresponding to that hwv. The dimensions and 
harges of the various familiesdepi
ted on it are, hl2n+l = hj;k + n(n+ l)m+ n(j + k) + lk ; l � 0 ; n � 0 (2:3:11a)hl2n+l�1 = hj;k + n(n+ l)m� (n+ l)(j + k) + lk ; l � 0 ; n � 1 (2:3:11b)h�l2n+l = hj;k + n(n+ l)m+ n(j + k) + lj ; l � 0 ; n � 0 (2:3:11
)h�l2n+l�1 = hj;k + n(n + l)m� (n+ l)(j + k) + lj ; l � 0 ; n � 1 (2:3:11d)qln = q + l ; l 2 Z (2:3:11e)It is obvious from (2.3.11) that all dimensions in a given 
harge se
tor are di�erent so that the
orresponding representations are distin
t.We de�ne the 
hara
ter of the irredu
ible representation generated by the hwv of dimensionhj;k = 4jk�14m and 
harge q = j�km (m � 2, 0 < j; k; j + k � m� 1, j; k 2 Z + 12) by :
h(hj;k; ~
; z; w) � Tr[zL0wJ0 ℄ (2:3:12)The tra
e over all the des
endants of a hwv, (h; q), is given by?�(h; q; z; w) = FNS(z;w)zhwq (2:3:13)FNS(z;w) = 1Yk=1 (1 + zk�1=2w)(1 + zk�1=2w�1)(1� zk)2 (2:3:14)Our task now is to 
ompute the tra
e by ex
luding all super
onformal families that areembedded in hj;k . It is obvious from the embedding pattern pi
tured in �g. 3 that,[h0i ℄ \ [h1i ℄ = [h0i+1℄ + [h1i+1℄ ; [h0i ℄ \ [h�1i ℄ = [h0i+1℄ + [h�1i+1℄ (2:3:15a)[h1i ℄ \ [h�1i ℄ = [h0i+1℄ ; [h0i ℄ \ [h1i ℄ \ [h�1i ℄ = [h0i+1℄ (2:3:15b)The largest proper submodule of h00 is [h01℄ + [h11℄ + [h�11 ℄. The largest proper submodule of? See App. 2.B.



25[h01℄+[h11℄+[h�11 ℄ is given by:[h01℄ \ [h11℄ + [h01℄ \ [h�11 ℄ + [h11℄ \ [h�11 ℄� 2[h01℄ \ [h11℄ \ [h�11 ℄whi
h is equal to [h02℄+[h12℄+[h�12 ℄. Indu
tively, the largest proper submodule of [h0i ℄+[h1i ℄+[h�1i ℄is [h0i+1℄ + [h1i+1℄ + [h�1i+1℄. Consequently the 
hara
ter for the irredu
ible representation [h00℄ isgiven by: 
h[h00℄ = �([h00℄) + 1Xi=1 (�1)i�([h0i + h1i + h�1i ℄) (2:3:16)where � denotes the unrestri
ted tra
e de�ned by (2.3.13).In order to write down an expli
it formula for the 
hara
ter we need also the partitionfun
tions for single 
harged fermionsySubstituting in (2.3.16) we get,
h(hj;k; z; w) = FNS(z;w)zhj;kwq [1 + f1(z;w)� f2(z;w)℄ (2:3:17)f1(z;w) = 1Xn=1"zn2m+n(j+k) + zn(n+1)m�(n+1)(j+k)+kw1 + znm�jw + zn(n+1)m�(n+1)(j+k)+jw�11 + znm�kw�1 #f2(z;w) = 1Xn=0"z(n+1)2m�(n+1)(j+k) + zn(n+1)m+n(j+k)+kw1 + znm+kw + zn(n+1)m+n(j+k)+jw�11 + znm+jw�1 #Let's now 
onsider the rest of the untwisted algebras. The isomorphism des
ribed in se
tion2.1 among the modes of the various algebras is,L�n = L0n � �J0n + �22 ~
Æn;0 (2:3:18a)J�n = J0n � �~
Æn;0 (2:3:18b)G�n+� = G0n ; �G�n�� = �G0n (2:3:18
)In parti
ular the dimensions and 
harges of the irredu
ible representations are related by,h� = h0 � �q0 + �22 ~
 ; q� = q0 � �~
 (2:3:19)� = 0 
orresponds to the NS-algebra whereas � = �12 
orresponds to the R� algebras. Thusy For a derivation see app. 2.B



26the 
hara
ters are related by,
hh�(z;w) = z �22 ~
w��~

hh0(z; z��w) (2:3:20)The expression for the 
hara
ters (2.3.17) 
an be written in an elegant and 
ompa
t formusing the SU(2) #-fun
tions and the SU(2) string-fun
tions, [24℄. Su
h a form is useful whenone desires to study the modular properties of the 
hara
ters.The expressions for general � are:
h�j;k(z;w) = l� ~m evenX�N+1� ~m�N 
l~m(� )#~q; ~mN;�(�; �) (2:3:21)where #~q; ~mN;�(�; �) = #N(N+2)=2;( ~m�~q)(N+2)=2+~q�N(��1=2)(�; �) (2:3:22a)#a;b(�; �) = Xn2Z+b=2a e2�i(�n2�n�) (2:3:22b)z = e2�i� ; w = e2�i� (2:3:22
)l = j + k � 1 ; ~q = j � k ; N = m� 2 (2:3:22d)and 
lm(� ) are the SU(2) string-fun
tions.The twisted algebra is de�ned by imposing anti-periodi
 boundary 
onditions on the U(1)
urrent and periodi
 boundary 
onditions on G1(z). For the twisted algebra the zero modes areL0 and G10. Their eigenvalues 
hara
terize hwv's. Ea
h level 
ontains two equal subspa
es offermion number (�1)F = �1. The Ka�
 determinant for the T-algebra is the following, [18,25℄,detMT+;0 = 1 ; detMT�;0 = h� ~
8 (2:3:23a)detMT�;n(~
; h) = [h� ~
8℄PT (n)=2 s oddY1�rs�2n[fTr;s℄PT (n�rs=2) (2:3:23b)fTr;s = 2(~
� 1)(h� ~
8) + 14[(~
� 1)r + s℄2 ; s = 1; 3; 5; ::: (2:3:24)



27Xn PT (n)zn = 1Yk=1 (1 + zk)(1 + zk�1=2)(1 � zk)(1� zk�1=2) � �FT (z) (2:3:25)The unitary representations of the T-algebra with ~
 < 1 are given by,~
 = 1� 2m ; h = ~
8 + (m� 2r)216m ; m = 2; 3; ::: ; r 2 Z ; 1 � r � m2 (2:3:26)Only even m allows the state h = ~
8 , the presen
e of whi
h implies that supersymmetry isunbroken.The vanishing of fTr;s signals the existen
e of two hwv's at level rs=2 and fermion parity�1. At level zero there is only one vanishing whereas for ea
h of the higher levels there are twovanishings 
orresponding to states of opposite parity. Analyzing the vanishings of fTr;s, we 
aneasily show that the embedding pattern is the one shown in �g.1 with,h0 = ~
8 + (m� 2r)216m (2:3:27)hk = ~
8 + [(2k � 1)m+ 2r℄216m ; h0k = ~
8 + [(2k + 1)m� 2r℄216m (2:3:28)The 
hara
ter formula in this 
ase is written down in the same way as in the N=1 
ase.
hTm;r(z) = FT (z)z ~
8 "Xk22Z(�1)k=2z [(k+1)m�2r℄216m # (2:3:29)When h = ~
8 , one of the two states of di�erent 
hirality is degenerate at the zeroth level andde
ouples as it 
an be easily seen from the formula for the Ka�
 determinant. Then supersym-metry is unbroken due to the non-vanishing of the Witten index.The above 
omplete the derivation of the 
hara
ter formulae for the degenerate representa-tions of the N=2 super
onformal algebras with ~
 < 1.A 
onstru
tion of these representations based on the 
oset spa
e SU(2) 
 U(1)=U(1) hasbeen given, [26,27℄, proving their unitarity through an expli
it unitary 
onstru
tion of theirHilbert spa
e.The untwisted algebra 
ontain another 
lass of degenerate representations with ~
 � 1. Wewill fo
us as before on the NS se
tor?. There we have two distin
t sets of degenerate represen-tations.? The results then 
an be extended to the rest by use of the isomorphism (2.1.7)



28NS2 representations.(the subs
ript indi
ates the dimension of their moduli spa
e). A rep-resentation in this 
lass is unitary and degenerate if gNSn0 = 0 for some n0 2 Z+ 12 , gNSn0+sgn(n0) < 0and fNS1;2 � 0. A

ording to (2.3.5b) the �rst 
ondition implies that,2h = 2n0q � (~
� 1)(n20 � 14) (2:3:30)We will suppose for the moment that n0 > 0. Then the se
ond 
ondition implies that,q > (n0 + 12)(~
� 1) (2:3:31)whereas the third 
ondition implies,�(~
+ 1)2 + n0(~
� 1) � q � (~
+ 1)2 + n0(~
� 1) (2:3:32)Colle
ting everything together, the three 
onditions boil down to (2.3.30) and(n0 + 12)(~
� 1) < q � (n0 + 12)(~
� 1) + 1 (2:3:33)and it is obvious that both h and q are positive. If n0 < 0 then (2.3.33) is repla
ed by :(n0 � 12)(~
� 1)� 1 � q < (n0 � 12)(~
� 1) (2:3:34)whi
h in parti
ular implies h > 0 ; q < 0 in this 
ase. In the following we will dis
uss the n0 > 0
ase and we will point out in the end the appropriate 
hanges for n0 < 0.As it turns out to be, the embedding stru
ture of these representations depends 
ru
ially onthe values of ~
 and q, (
onstrained already by (2.3.33)). We have to distinguish the following
ases:(A) . ~
 > 1, ~
 irrational. We will analyze �rst the interior of the interval (2.3.33).(i) The U(1) 
harge q has the form, q = 12n(~
 � 1) �m, n 2 Z ; m 2 Z+0 with n 
onstrainedfrom (2.3.33) : 2n0 + 1 + 2m~
� 1 < n � 2n01 + 2(m+ 1)~
� 1 (2:3:35)Then it is easy to show that the embedding pattern is the one shown in �g. 4 with,hk = h0 + kn0 ; h0m+k = h0 + k(n� n0) ; qk = q0k = q + k (2:3:36)It is obvious that in a given 
harge se
tor the various dimensions are distin
t and thus the 
or-responding representations di�erent. Also the maps fron one 
harged se
tor to another generate



29exa
t sequen
es due to the fermioni
 nature of the operators generating the relevant hwv's.Another remark is in order here 
on
erning the embedding diagrams: embedding maps that arefa
torizable have been omitted from the �gures. For example in �g. 4 the family hm 
ontainsalso a degenerate ve
tor generating h0m+1. Thus the embedding map f : hm ! h0m+1 is the
omposition of the maps g1 : hm ! hm+1 and g2 : hm+1 ! h0m+1, that is f(x) = g2(g1(x)).Similar remarks are true for the rest of the embedding diagrams.The tra
e over all the des
endants of the primary state jh; q > is given?Tr[zL0wJ0℄ = FNS(z;w)zhwq (2:3:37a)whereas the tra
e, for example, over all the des
endants of the family (h1; q1) is given by,Trh1[zL0wJ0 ℄ = FNS(z;w)1 + zn0w (2:3:38b)To 
ompute the 
hara
ter in this 
ase we have to subtra
t the 
ontribution from the family(h1; q1) so that,
h(h; q; z; w) = FNS(z;w)zhwq �1 � zn0w1 + zn0w� = FNS(z;w) zhwq1 + zn0w (2:3:39)(ii) q has any other allowable value ex
ept the ones mentioned in (i). In this 
ase the embed-ding pattern is shown in �g.2. The relevant dimensions are,hk = h + kn0 ; qk = q + k (2:3:40)so that the 
hara
ter is given again by (2.3.39).Let's now 
onsider the representation whi
h lies on the vanishing surfa
e fNS1;2 = 0, whose
harge is given by q = (~
� 1)(n0+ 12)+ 1. In this 
ase there is also a null hwv at relative 
hargezero embedded in the initial representation at the �rst level. The relevant diagram is given in�g. 5. The 
orresponding dimensions are,hk = h+ kn0 ; h0k = h+ k(n0 + 1) + 1 ; qk = q0k = q + k (2:3:41)To evaluate the 
hara
ter in this 
ase we subtra
t �rst the family h1 so that we fa
torout everything else ex
ept the irredu
ible family h00. This is given by subtra
ting h01 o� h00.? See App. 2.B.



30Consequently,
h(z;w) = �([h0℄� [h1℄� [h00℄ + [h01℄) = FNS(z;w) zhwq(1 � z)(1 + zn0w)(1 + zn0+1w) (2:3:42)(B) ~
 > 1, ~
 rational. Then there is a unique way to write ~
 as,~
 = 1 + 2r2r1 ; r1; r2 2 Z ; r1 � 1; r2 � 1 (2:3:43)and with r2 being the least positive integer su
h that (2.3.43) is true. For r2 = 1 this
orresponds to the spe
ial 
lass of representations found in [1℄, whi
h are identi�ed bytriple interse
tions of vanishing surfa
es.We will fo
us �rst on representations whi
h are 
ontained in the interior of the interval(2.3.33).(i) If q = 12n(~
 � 1) � m, n 2 Z ; m 2 Z+0 with the integer n 
onstrained by (2.3.35), thenthere are three possible embedding patterns 
orresponding to the following situations.(ia) r2 > 1. The 
orresponding diagram in this 
ase is displayed in �g. 6. The pattern repeatsitself with \period" r2, and the relevant dimensions are,hk = h+ kn0 ; h0m+k = h + k(n� n0) ; qk = q0k = q + keqno(2:3:44a)h00k+m+r2 = h + (r2 � k)n0 + k(n+ r1) ; q00k = q + k ; k � r2 (2:3:44b)h000k+m+r2 = h + r2(n� n0) + k(n0 + r1) ; q000k = q + k ; k � r2(2:3:44
)At ea
h relative 
harge level all the dimensions are di�erent and 
orrespond to di�erenthwv's.(ib) r2 = 1, n 6= 2n0 + r1. Then the diagram of �g. 6 simpli�es to the one shown in �g. 7.The dimensions and 
harges are given by,h2l�1m+k = h+ (k � l + 1)[n+ (l � 1)r1℄ + (m+ 2l � k � 2)n0 ; 1 � l � [k + 12℄ (2:3:45a)h2lm+k = h + l[n+ (k � l)r1℄ + (m+ k � 2l)n0 ; 1 � l � [k2 ℄ (2:3:45b)h0k = h+ kn0 ; k � 0 ; qlk = q + k (2:3:45
)(i
) r2 = 1, n = 2n0 + r1. In this 
ase the diagram on �g. 7 
ollapses even further to the



31diagram shown in �g. 8, the relevant dimensions being,hlm+k = h+ l(k � l + 1)n+ [2(l � k)(l � 1) +m� k℄n0 ; qlk = q + k (2:3:46)(ii) The 
harge q is not of the form (i). Then the embedding diagram is very simple and it isshown in �g. 2.In all the 
ases dis
ussed above the 
hara
ter 
an be 
omputed by subtra
ting the 
ontri-bution of the �rst embedded family. Consequently the 
hara
ter is given by (2.3.39).Let's now 
onsider the representation that lies on the fNS1;2 = 0 surfa
e with q = (n0+ 12)(~
�1) + 1.(a) For r1 > 1, r2 > 1 the embedding pattern is shown in �g. 9, the relevant dimensionsbeing, hk = h+ kn0 ; h0k = h+ kn0 + k + 1 ; qk = q0k = q + k (2:3:47a)h00k+r2 = h+(r2+k)n0+(k+1)r1+ r2 ; h000k+r2 = h+(r2+k)n0+(k+1)(r1+1) (2:3:47b)(b) r2 = 1, r1 > 1. The 
orresponding diagram is shown in �gure 10 with the followingdimensions and 
harges,h2l�1k = h+ kn0 + (k � l � 2)[(l� 1)r1 + 1℄ ; k � 0 ; l � 1 (2:3:48a)h2lk = h + kn0 + l[(k � l + 1)r1 + 1℄ ; k � 0 ; l � 0 (2:3:48b)qlk = q + k (2:3:48
)(
) r1 = 1, r2 > 1 . In this 
ase the embedding diagram be
omes the one shown in �g. 11where the periodi
ity of the pattern is again set by r2. The 
orresponding dimensions are,hk = h+ kn0 ; h0k = h+ kn0 + k + 1 ; qk = q0k = q + k (2:3:49)(d) r1 = r2 = 1, ~
 = 3. Then the previous diagram 
ollapses to the one shown in �g. 12,hkl = h+ ln0 + k(l � k + 2) ; qkl = q + k ; k � 2l � 2 (2:3:50)In all of the above 
ases the 
hara
ter 
an be 
omputed in the same way as in the respe
tive
ase where ~
 was irrational. Consequently the 
hara
ter is given by (2.3.42).



32The only 
ase left to 
onsider for the NS2 representations is ~
 = 1 whi
h is not in
luded in(B).(C) ~
 = 1.(i) 0 < q < 1. In this 
ase the embedding diagram be
omes fairly simple and it is shown in�g. 2, hk = (q + k)n0 ; qk = q + k (2:3:51)and the 
hara
ter is given by (2.3.39).(ii) q = 1. The Ka�
 determinant simpli�es enormously, its fa
tors be
oming,fNSr;s = �q2 + s24 ; gNSk = h� qk (2:3:52)This gives rise to the pattern pi
tured in �g. 13 withhk;l = k[n0 + l � 1℄ qk;l = k ; k; l � 1 (2:3:53)The 
hara
ter is given again by (2.3.42).We will now fo
us on the degenerate representations of NS3. They are 
hara
terized by thefollowing 
onditions, ~
 � 1 ; gNSn � 0 8n 2 Z + 12 (2:3:54)For a �xed ~
 this is a 
onvex region in the (h,q) plane bounded by pie
es of the gNSn = 0 lines.The degenerate representations lie on the boundary of the region above and 
an be labeled byn0 su
h that gNSn0 = 0 and their 
harge. This implies that their dimensions and 
harges aregiven by, (~
� 1)(n0 � 12) < q � (~
� 1)(n0 + 12) (2:3:55a)h = n0q � (~
� 1)2 (n20 � 14) (2:3:55b)We will fo
us again on n0 > 0.(A0) ~
 > 1 rational.(i) q = (n0 + 12)(~
� 1). In this 
ase the embedding diagram is shown in �g. 15 with,hk = h+ kn0 ; h0k = h+ k(n0 + 1) ; qk = q0k = q + k (2:3:56)For the other allowed values of q we have to distinguish the following two 
ases



33(ii) q = n2 (~
� 1)�m with n 2 Z ; m 2 Z+0 . The embedding diagram in this 
ase is shown in�g.14 with,hk = h+ kn0 ; h0m+k+r2 = h+ (r2 + k)n0 + kr1 ; qk = q0k = q + k (2:3:57)(iii) q has any other allowed valued ex
ept the ones mentioned in (i), (ii). Then the embeddingstru
ture is the one shown in �g. 2.(B0) ~
 > 1 irrational.(i0) q = (n0 + 12)(~
� 1). Then the embedding diagram is the one shown in �g. 16 with,hk = h+ kn0 ; h0k = h+ k(n0 + 1) ; qk = q0k = q + k (2:3:58)(ii0) For all the other allowed values of q the embedding pattern is the one of �g. 2.The above exhaust all possible degenerate representations belonging to NS3. In the ~
 = 1
ase the only degenerate representation is given by the unit operator. From the stru
ture of therepresentations of NS3 we 
an 
on
lude that their 
hara
ters are given by (2.3.39).Thus we 
an distinguish representations for ~
 � 1 in those that have only degenera
ies relatedto gn with their 
orresponding 
hara
ters given by (2.3.39) and in those that have additionaldegenera
ies related to f1;2 whose 
hara
ters are given by (2.3.42).The same results apply in the 
ase n0 < 0 with the following substitutions in the relevantformulae : n0 ! jn0j ; w! w�1 ; wq ! wq.The null hwv's whi
h 
orrespond to the representations studied above degenerate at relative
harge �1 do not generate full Verma modules. There exist lowering operators whi
h annihilatethem.?The above 
omplete the derivation of the 
hara
ters for all the unitary degenerate represen-tations of the N=2 algebras. The 
hara
ters of the non-degenerate representations are given inAppendix 2.B.The spe
ial values of ~
 mentioned in [18℄, namely ~
 = 1 + 2n , n = 1; 2; 3; ::: also 
ontainthe interesting 
ase of ~
 = 3(2) arising in the string theory 
ompa
ti�
ation on a 
ompa
tsix(four) dimensional Ri

i 
at manifold. In parti
ular the (anti-)holomorphi
 �-tensor realizesthe representations of the NS2 algebra, (sin
e it is a spa
e-time boson), with q = �~
 and h = ~
2
orresponding to our notation to r1 = 1(2), r2 = 1, n0 = �1=2, n = �3(�4), m = 0. Theembedding stru
ture of their Verma module is depi
ted in �g. 12. The 
ovariantly 
onstantspinors on the internal manifold 
orrespond to degenerate representations of the R�2 , (spa
e-timefermions), whi
h are degenerate at level n0 = 0 with h = ~
8 and q = sgn(0) ~
+12 (lying on theinterse
tion of gR0 = 0 and fR1;2 = 0). These representations are important in the 
onstru
tion ofthe four generators of the four-dimensional N=1 supersymmetry. The dimensions and 
harges? For expli
it examples see App. 2.A.



34of these operators should not be renormalized even non-perturbatively sin
e the spe
trum forthis 
lass of representations is dis
rete. Their partition fun
tions 
an be read-o� immediatelyfrom (2.3.42), and they provide the means to study questions of modular invarian
e in the
orresponding �-model.2.4 N=2 Supersymmetry and the Analyti
 Geometryof (2,0) Superspa
eIn this se
tion we are going to dis
uss the lo
al geometry of (2,0) superspa
ey.N=2 supersymmetry is a natural extension of N=1 supersymmetry. In this 
ase we have twodi�erent supersymmetry generators (super
harges), as well as an O(2) (or U(1)) 
urrent whi
hmanifests the symmetry of the theory under an O(2) rotation of the two supersymmetries. Thenatural spa
e to de�ne the �elds of the theory is N=2 superspa
e, (or more pre
isely (2,0)superspa
e). In a theory with (super)
onformal invarian
e the left and right se
tors of thetheory 
ompletely de
ouple, so that the stru
ture of the theory is that of a tensor produ
t ofthe left and right se
tors. From now on we will restri
t ourselves to the left se
tor only, keepingin mind the previous remarks.(2,0) superspa
e in
ludes, apart from the 
omplex analyti
 
oordinate z, two other fermioni

oordinates, � and �� 
orresponding to the two supersymmetries.�2 = ��2 = f�; ��g = 0: (2:4:1)A point in superspa
e will be denoted by z � (z; �; ��).A super�eld is an analyti
 fun
tion in z de�ned through its power series expansion in thefermioni
 
oordinates: �(z) � �(z) + � � (z) + �� (z) + ���g(z): (2:4:2)The two supersymmetry transformations 
an be written as:(z; �; ��)! (z � ���; � + �; ��) (2:4:3a)(z; �; ��)! (z � ���; �; �� + ��) (2:4:3b)where �; �� are anti
ommuting variables whi
h are the parameter of the transformation. Undery Global issues have been dis
ussed in [30℄.



35the two supersymmetry transformations, (2.4.3a,b), a super�eld transforms as:�(z; �; ��)! �(z � ���; � + �; ��) = �(z � ���) + (� + �) � (z � ���) + �� (z � ���)+(� + �)��g(z � ���) = �(z) + � � (z) + ��[��z�(z)� �g(z) +  (z)℄+� � (z) + ���[g(z) + ��z � (z)℄ (2:4:4a)�(z; �; ��)! �(z � ���; �; �� + �) = �(z � ���) + � � (z � ���) + (�� + ��) (z � ���)+�(�� + ��)g(z � ���) = �(z) + �� (z) + �[ � (z) + ���z�(z) + ��g(z)℄+�� (z) + ���[g(z)� ���z (z)℄ (2:4:4b)whi
h implies the following transformation laws for the 
omponent �elds:Æ��(z) = � � (z)Æ� (z) = �[�z�(z)� g(z)℄Æ� � (z) = 0Æ�g(z) = ��z � (z) �Æ���(z) = �� (z)�Æ�� (z) = 0�Æ�� � (z) = ��[�z�(z) + g(z)℄�Æ��g(z) = ����z (z) (2:4:5)It is easy to verify the global supersymmetry algebra:[Æ�; Æ��℄ = 2��� ��z ; [Æ�; Æ�℄ = [Æ��; Æ��℄ = 0: (2:4:6)The 
ovariant derivatives in superspa
e are de�ned by:D � ��� + �� ��z ; �D � ���� + � ��z (2:4:7a)D2 = �D2 = 0 ; fD; �Dg = 2 ��z : (2:4:7b)We introdu
e here the notion of a 
hiral N=2 super�eld, as a super�eld satisfying one of the



36following 
onditions: D�(z) = 0 =) �(z) = �(z) + 2�� (z)� ����z�(z) (2:4:8a)�D ��(z) = 0 =) �(z) = ��(z) + 2� � (z) + ����z ��(z) (2:4:8b)The Grassman integration is de�ned through the usual standard rules:Z d�d�� = Z d�d��� = Z d�d���� = 0 ; Z d�d�� ��� = 1: (2:4:9)If we 
all the generators of the two supersymmetries G�1=2; �G�1=2 then eq. (2.4.6) is trans-lated into:fG�1=2; G�1=2g = f �G�1=2; �G�1=2g = 0; fG�1=2; �G�1=2g = 2L�1 (2:4:10)L�1 being the usual translation operator on the 
omplex plane. The full super
onformal sym-metry is generated by the usual Virasoro generators Ln, the supersymmetry generators,Gr � 2n+ 1[Ln; G�1=2℄ ; �Gr � 2n+ 1[Ln; �G�1=2℄ ; r = n� 1=2 (2:4:11)and the U(1) 
urrent generators, Jn, whi
h implement the U(1) symmetry, under whi
h the twosuper
urrents are in 
omplex 
onjugate representations. The full N=2 super
onformal algebrathen takes the form:[Lm; Ln℄ = (m� n)Lm+n + ~
4(m3 �m)Æm+n;0[Lm; Gr℄ = (m2 � r)Gm+r ; [Lm; �Gr℄ = (m2 � r) �Gm+r[Jm; Jn℄ = ~
mÆm+n;0 ; [Jm; Gr℄ = Gm+r; [Jm; �Gr℄ = �Gm+rfGr; Gsg = f �Gr; �Gsg = 0 ; [Lm; Jn℄ = �nJm+nfGr; �Gsg = 2Lr+s + (r � s)Jr+s + ~
(r2 � 14)Ær+s;0 (2:4:12)It is the generating algebra of N=2 superanalyti
 transformations in N=2 superspa
e. Weshould, at this point, de�ne what we mean by an extended superanalyti
 transformation. Themost general 
oordinate transformation in N = 2 superspa
e has the form?z0 = f0(z) + �f1(z) + �� �f1(z) + ���f2(z)�0 = g0(z) + �g1(z) + ���g1(z) + ���g2(z)��0 = h0(z) + �h1(z) + ���h1(z) + ���h2(z) (2:4:13)A natural de�nition for an extended superanalyti
 transformation is one under whi
h the 
o-variant derivatives transform homogeneously. Under (2.4.13) the 
ovariant derivatives transform? f0; f2; g1; �g1; h1; �h1 are 
ommuting fun
tions, whereas f1; �f1; g0; g2; h0; h2 are anti
ommuting ones.



37as: D = (D�0)D0 + (D��0) ����0 + [Dz0 � (D�0)��0℄ ��z0 (2:4:14a)�D = ( �D��0) �D0 + ( �D�0) ���0 + [ �Dz0 � ( �D��0)�0℄ ��z0 : (2:4:14b)Consequently the 
onditions for (2.4.13) to be a superanalyti
 transformation are:y�D�0 = D��0 = Dz0 � (D�0)��0 = �Dz0 � ( �D��0)�0 = 0: (2:4:15)Solving (2.4.15) we arrive at the most general form of an extended superanalyti
 transformation:z0 = f0(z) + �g1(z)h0(z) + ���h1(z)g0(z) + ���[g0(z)h0(z)℄0�0 = g0(z) + �g1(z) + ���g00(z)��0 = h0(z) + ��h1(z)� ���h00(z) (2:4:16)along with the supplementary 
ondition:f 00(z) = g00(z)h0(z)� g0(z)h00(z) + g1(z)�h1(z) (2:4:17)where in (2.4.17) and in the left-hand side of (2.4.16) a prime means di�erentiation with respe
tto z.In parti
ular the global supersymmetry transformations are spe
ial 
ases of (2.4.16) withf0(z) = z; g0(z) = �; h0(z) = 0; g1(z) = �h1(z) = 1 and f0(z) = z; g0(z) = 0; h0(z) = ��; g1(z) =�h1(z) = 1 respe
tively.We de�ne the two abelian N=2 superdi�erentials through their transformation propertiesunder analyti
 super
onformal transformations:dz0 � (D�0)dz ; ~z0 � ( ~D~�0)d~z (2:4:18)The super
onformal tensor �elds are de�ned by the 
ondition that�(z)(dz)�+Q=2(d~z)��Q=2is an N=2 super
onformal invariant quantity, where �; Q are the dimensions and 
harge of thelowest 
omponent �eld. They are the primary super�elds generating the highest weight irre-du
ible representations of the N=2 super
onformal algebra. Globally de�ned tensor super�eldsmust have dimensions and 
harges whi
h are integers or half integers. They 
an be 
onstru
tedas 
omposite operations from lo
ally de�ned �elds.y In fa
t, even if we demand that D transforms in general as D = (D�0)D + (D��0) �D0 we end up at (2.4.15).There is a dual requirement, D = (D��0) �D0 whi
h gives 
onditions 
onjugate to (2.4.15)



38We 
an also extend the Cau
hy integral formulas in superspa
e. If we de�ne the invariant\distan
es," zij � zi � zj � �i��j � ��i�j; �ij � �i � �j; ��ij � ��i � ��j, and the \volume" elementdz = dzd�d��, then, [28℄,12�i IC dz1 �(z1)��12�12 = 012�i IC dz1 �(z1) ��12�12zm12 = 1(m� 1)! �m�1�zm�12 �(z2)12�i IC dz1 �(z1) ��12zm12 = 1(m� 1)! �m�1�zm�12 D�(z2)12�i IC dz1 �(z1)�12zm12 = � 1(m� 1)! �m�1�zm�12 �D�(z2)12�i IC dz1 �(z1) 1zm12 = 12 1(m� 1)! �m�1�zm�12 [D; �D℄ �(z2) : (2:4:19)
The pres
ription to evaluate the integrals above is the following: First, do the Grassmanintegrations using eq. (2.4.9) and then perform the 
omplex integrations in the usual way. The
ontour C is winding around the point z2.The N=2 superanalyti
 transformations are generated by the stress-energy super�eld, whi
hin 
omponent form 
an be written as:J(z) � J(z) + i� �G(z) + i��G(z) + 2���T (z): (2:4:20)The Fourier modes of the generators are de�ned in the usual way:J(z) �Xn2Z Jnzn+1G(z) �Xn2Z Gn�1=2zn+1 ; T (z) �Xn2Z Lnzn+2�G(z) �Xn2Z �Gn�1=2zn+1 (2:4:21)These generators are represented in the spa
e of super�eld fun
tions in the following way:Ln � �zn+1 ��z � n+ 12 zn[� ��� + �� ���� ℄Jn � zn[�� ���� � � ��� ℄Gn�1=2 � zn[ ��� � �� ��z ℄ + nzn�1��� ����Gn�1=2 � zn[ ���� � � ��z ℄� nzn�1��� ���� (2:4:22)



39It is straightforward to 
he
k that the generators in equations (2.4.22) satisfy the N=2super
onformal loop algebra, (as in (2.4.12) with ~
 = 0), whi
h is the algebra of N=2 super
on-formal transformations over S1. The expli
it representation (2.4.22) will be useful later on inthis paper, to analyze the 
orrelation fun
tions of N=2 super
onformal invariant theories.The stress-energy tensor has an operator produ
t expansion with itself:J(z1)J(z2) = �12z12DJ(z2)� ��12z12 �DJ(z2) + 2�12��12z212 J(z2)+2�12��12z12 J0(z2) + ~
z212 (2:4:23)where the anomaly ~
 is normalized, so that a free s
alar N=2 super�elds has ~
 = 1. Eq. (2.4.23)
orresponds to a 
hange of the stress-energy tensor under a super
onformal transformationÆvJ(z) = [�zv℄J(z) + v�zJ(z) + 12[ �Dv℄DJ(z) + 12[Dv℄ �DJ(z)+ ~
4�z[ �D;D℄v (2:4:24)v being an in�nitesimal N=2 super�eld.The 
hange in the stress-energy tensor under a �nite super
onformal transformation is givenby: J(z) = J0(z0)[D�0℄[ �D��0℄ + ~
2S(z; z0) (2:4:25)where the N=2 super-S
hwarzian derivative is de�ned through:S(z; z0) � � �D��0�D��0 � �D�0D�0 � 2 ���0 ��0( �D��0) (D�0) (2:4:26)It satis�es the following 
omposition law:S(z1; z3) = S(z1; z2) + (D�2)( �D��2)S(z2; z3) (2:4:27)On the sphere for a ve
tor �eld to be globally de�ned, it must have a vanishing \anomaly,"that is under an in�nitesimal transformation generated by it, the anomalous part in (2.4.24)



40must vanish, that is, �z[ �D;D℄v = 0, whi
h gives an eight-parameter family of globally de�nedve
tor �elds on the sphere:v(z) = v�1 + v0z + v1z2 + �[u�1=2 + u1=2z℄ + ��[�u�1=2 + �u1=2z℄ + q0���: (2:4:28)These ve
tor �elds generate the global N=2 super
onformal algebra, osp(2j2). (In fa
t theygenerate half of osp(2j2), its holomorphi
 part.) The global N=2 super
onformal algebra is themaximal, �nite dimensional, subalgebra of the N=2 super
onformal algebra. It 
ontains the gen-erators of the ordinary proje
tive transformations, L1; L0; L�1, the super
harges G�1=2; �G�1=2and the zero mode of the U(1) 
urrent. It is easy to 
he
k using (2.4.12) that this set of genera-tors 
loses into itself, and it 
ontains as a subalgebra, the N=1 super
onformal algebra, osp(2j1).Sin
e the S
hwarzian derivative transforms as in (2.4.27), the fa
t that it vanishes for in�nitesi-mal global N=2 transformations 
ontinues to be true for �nite transformations belonging to theidentity 
omponent of the group.TheOSP (2j2) group transformations 
an be found either by exponentiating the generators ofthe algebra given in (2.5.22) or using the general form of superanalyti
 transformations (2.4.16),and some analyti
ity arguments [29℄. Another way is to solve the equation S(z; z0) = 0. Thereare three parameters asso
iated with the subgroup SL(2; C), four supersymmetry parameters,(Grassman), �1; �2; ��1; ��2 and a parameter q asso
iated with the zero mode of the U(1) 
urrent.The group transformations are:z0 = az + b
z + d + eq� (1� 12�1��2)��1z + ��2(1 + 12�2��1)(
z + d)2 + e�q�� (1 + 12�1��2)�1z + (1 � 12�1��2)�2(
z + d)2+[2d�1��1 � 2
(��1�2 + ��2�1)℄z + d(��1�2 + ��2�1)� 2
��2�2(
z + d)3 (2:4:29a)�0 = �1z + �2
z + d + eq�1 + 12 (�2��1 � �1��2) + 14�1��1�2��2(
z + d) + ��� �1d � �2
(
z + d)2 (2:4:29b)��0 = ��1z + ��
z + d + e�q��1 + 12(�2��1 � �1��2) + 14�1��1�2��2(
z + d) + �����2
� ��1d(
z + d)2 (2:4:29
)The N=2 super
onformal ve
tor �eld generates the group of N=2 super-di�eomorphisms onthe 
ir
le, ~̂Diff(S1). The S
hwarzian derivative is the globally invariant generator of the se
ond
ohomology group of ~̂Diff(S1). It generates a non-trivial transformation on the stress-energytensor viewed as a 
onne
tion on moduli spa
e.As 
an be seen from (2.4.12), the subalgebra does not have an anomaly even if ~
 6= 0.This is of 
ru
ial importan
e in a super
onformal theory as we will see later. It implies that all
orrelation fun
tions are invariant under OSP (2j2) 
onstraining in su
h a way their form. Along



41with some supplementary 
onstraints on the 
orrelation fun
tions, present when the theory hasdegenerate representations, it helps to determine the 
orrelation fun
tions 
ompletely, renderingthe theory exa
tly solvable.2.5 The Ground States and Primary Fieldsin N=2 Super
onformal Field TheoriesAn N=2 super
onformal �eld theory is a �eld theory invariant under the N=2 superanalyti
transformations des
ribed in the previous se
tion, whi
h form the N=2 super
onformal group.The in�nitesimal transformations are generated by an in�nitesimal lo
al super�eld v(z):v(z) � v0(z) + � v1(z) + ���v1(z) + ��� v2(z) (2:5:1)z0 = z + v(z) + 12[( �Dv)� + (Dv)��℄�0 = � + 12 �Dv ; ��0 = �� + 12Dv (2:5:2)The fun
tion v1; �v1 are Grassman fun
tions anti
ommuting among themselves and with �; ��,whereas v0; v2 are usual meromorphi
 fun
tions. The super
onformal transformations are gener-ated by the super-stress-energy tensor, see (2.4.20). Using the Cau
hy formulas of the previousse
tion we 
an write the 
hange of a lo
al super�eld under a super
onformal transformation as:Æv�(z) = � 14�i I
z dz0v(z0)J(z0)�(z) (2:5:3)where the 
ontour Cz surrounds the point z in the 
omplex plane.The variation (2.5.3) is determined by the singularities of the OPE, of the stress-energytensor with the super�eld. In parti
ular a super�eld fun
tion transforms under an in�nitesimaltransformation as: Æv� = v��+ 12Dv �D� + 12 �DvD�: (2:5:4)It is usually 
onvenient to use radial quantizations going, (through a superanalyti
 transfor-mation), from the 
ylinder to the plane, (lnz; z�1=2�; z�1=2��) ! (� + i�; �; ��).The fermioni
 �elds on the 
ylinder 
an have two possible boundary 
onditions? , periodi
or antiperiodi
. On the plane, this is translated to G; �G(ze2�i) = �G; �G(z), the 
orrespondingsubspa
es of the full Hilbert spa
es being the NS and R se
tors. In the NS se
tor G(ze2�i) =G(z) whereas in the Ramond se
tor, G(ze2�i) = �G(z), that is the fermioni
 �elds are doublevalued on the plane.? We will postpone for the moment the dis
ussion of more general boundary 
onditions.



42The operator produ
t expansion for the stress-energy tensor was given in (2.4.23). Theterms that appear in (2.4.23) are the most general terms that are allowed in a Eu
lidean N=2supersymmetri
 quantum �eld theory, satisfying the standard 
onstru
tive �eld theory axioms.The proof of [10℄ 
an be extended easily in our 
ase, to guarantee (2.4.23) provided the theoryhas s
ale invarian
e and global N=2 supersymmetry. Using the mode expansions (2.4.21) we 
anderive (2.4.12) from (2.4.23). The stress-energy tensor must be a Hermitian operator, implyingsome hermiti
ity 
onditions among its 
omponents:Lyn = L�n; Jyn = J�n; Gyr = �G;�r �Gyr = G�r: (2:6:5)We de�ne the in-va
uum j0i of the theory at time � = �1; (z = 0), to be OSP (2j2) invariant.This means that it is annihilated by Ln; n � �1; Jn; n � 0; Gr; �Gr; r � �1=2, (NS se
tor) orGn; �Gn; n � 0 in the R se
tor. In the same way the out-va
uum is de�ned at z ! 1. Theva
uum state belongs to the NS se
tor and it is the ground state of the theory. The unitaryirredu
ible representations of the N=2 super
onformal algebra are generated from highest weightve
tors, (hwv), by the a
tion of the lowering operators of the algebra , Ln; Jn; Gr; �Gr; n; r < 0.In the NS se
tor the hwv's are generated by the a
tion of primary 
onformal super�elds onthe va
uum state. Their de�ning relations are their transformation properties under super
on-formal transformations en
oded in their OPE with the stress-energy tensor:J(z1)�(z2) = 2��12��12z212 �(z2) + 2�12��12z12 �0(z2) + �12z12D�(z2)� ��12z12 �D�(z2) + Q�(z2)z12 (2:5:6)Using (2.5.3) and (2.5.6) we 
an derive the transformation law for a primary super�eldoperator: Æv�(z) = �(�zv)�(z) + v�z�(z) + 12[ �Dv℄D�(z) + 12 [Dv℄ �D�(z)� Q4 f[D; �D℄vg�(z) (2:5:7)Under a �nite transformation �(z) transforms as:�(z) = �(z0)[D�0℄�+Q2 [ �D��0℄��Q2 (2:5:8)where (�; Q) are its dimension and U(1) 
harge. The hwv in the NS se
tor are 
hara
terizedby their eigenvalues under the zero modes of the algebra:L0j�i = �j�i ; J0j�i = Qj�i (2:5:9)



43Being hw states they must be annihilated by the raising operators of the algebra:Lnj�i = Jnj�i = Gnj�i = �Gnj�i; n > 0: (2:5:10)The OPE (2.5.6) 
an be written also as 
ommutation relations whi
h will be useful later on:[Ln;�(z)℄ = zn+1 ��z�(z) + (n+ 1)zn[� + 12[� ��� + �� ���� ℄℄�(z)+ Q2 n(n+ 1)zn�1����(z)[Jn;�(z)℄ = zn[Q+ �� ���� � � ��� ℄�(z) + 2n�zn�1����(z)[Gr;�(z)℄ = zr+ 12 [ ���� � � ��z ℄�(z)� (r + 12)zr� 12 [(2� +Q)�+ ��� ��� ℄�(z)[ �Gr;�(z)℄ = zr+ 12 [ ��� � �� ��z ℄�(z)� (r + 12)zr� 12 [(2��Q)�� � ��� ���� ℄�(z) (2:5:11)In the R-se
tor the zero modes are L0; J0, and �G0; G0, their eigenvalues 
hara
terizing hwv's.There are two kinds of hwv's, j�; Q� 1=2i� , [18℄,L0j�; Q� 12 i� = �j�; Q� 12i�J0j�; Q� 12 i� = (Q� 12)j�; Q� 12 i� (2:5:12)whi
h satisfy an additional hwv 
ondition with respe
t to the super
harges:G0j�; Q+ 12i� = 0 ; �G0j�; Q� 12i+ = 0: (2:5:13)Consequently there are two kinds of representations, R�. The two representations are isomorphi
under 
harge 
onjugations (Gn $ �Gn; Jn! �Jn).From now on we will restri
t to one of them, say R+, our statements being valid for R� aswell.In the R-se
tor the ground state is not unique. There are two ground states degenerate inenergy, (i.e., having the same dimension). j�+i and G0j�+i � j��i. They are generated fromthe va
uum j0i, (whi
h belongs to the NS se
tor), by primary �elds ��(z), mu
h like the spin�elds of the N=1 super
onformal theories. The spin �elds have double-valued OPE with thestress-energy tensor, for example:G(z)��(!) = 12�� ��(!)(z � !)3=2 (2:5:14)where �+ = 1; �� = � � ~
=8. This happens in order for the spin �eld to be able to 
hangethe boundary 
onditions of the fermioni
 parts of the super�elds. We 
an view the spin �elds as



44opening and 
losing 
uts on the 
ylinder. The states in the R-se
tor are generated by ordinary
onformal super�elds a
ting on the Ramond ground states. The generators of global N=2supersymmetry transformations in the R-se
tor are G0; �G0.Unbroken N=2 supersymmetry is implied by the existen
e of a ground state whi
h is anni-hilated by the global N=2 supersymmetry generators. The state j�+i is annihilated by �G0 dueto (2.5.13). Applying fG0; �G0g to it we obtain:fG0; �G0gj�+i = �G0G0j�+i = (2L0 � ~
=4)j�+i = (2�� ~
=4)j�+i: (2:5:15)Consequently, in order for G0 to annihilate j�+i, its dimension must be �+ = ~
=8. The operatorfG0; �G0g is a hermitian positive operator, thus any dimension in the R-se
tor has to be � ~
=8.This is the reason that the va
uum j0i, the lowest energy state must belong to the NS-se
tor. Inthe same way �G0j��i = 0, implies �� = ~
=8. Therefore, the existen
e of a state in the R-se
torwith � = ~
=8 implies unbroken N=2 supersymmetry on the 
ylinder. On the other hand if su
ha state does not exist in the theory the one supersymmetry out of the two is broken.So far we have been dis
ussing the two se
tors of the N=2 super
onformal theory that parallelthe situation in ordinary N=1 super
onformal theories. In the N=2 
ase though, unlike theN=1, there is another se
tor present in general due to the fa
t that N=2 super�elds 
ontain twofermioni
 
omponents, so there is also the possibility of 
hoosing periodi
 boundary 
onditionsfor one of them, and antiperiodi
 for the other one. This 
an be seen easier if we write thealgebra (2.4.13) in an O(2) basis:G1r � Gr + �Grp2 ; G2r = Gr � �Grip2 : (2:5:16)In this basis the algebra (2.4.12) be
omes:[Lm; Ln℄ = (m� n)Lm+n + ~
4(m3 �m)Æm+n;0[Lm; Gir℄ = (m2 � r)Gim+r; [Lm; Jn℄ = �nJm+n[Jm; Jn℄ = ~
mÆm+n;0 [Jm; Gir℄ = i�ijGjm+rfGir; Gjsg = 2ÆijLr+s + i�ij(r � s)Jr+s + ~
(r2 � 14)ÆijÆr+s;0 : (2:5:17)The twisted (T ) N=2 algebra is de�ned by 
hoosing integer modes for G1m; Lm and halfinteger modes for G2r ; Jr 
hoi
es, 
ompatible with the 
ommutation relations (2.5.17). In theO(2) basis the stress-energy tensor be
omes:J(z) � J(z) + �ij�iGj(z) + �ij�i�jT (z) (2:5:18)where �i is an O(2) doublet of Grassmann 
oordinates. A twisted super�eld:�(z) � �(z) + �ij�i j(z)(z) + 12�ij�i�jg(z) (2:5:19)has antiperiodi
 boundary 
onditions for �(z) and  2(z) and periodi
 boundary 
onditions for



45g(z) and  1(z), on the 
ylinder, that is � and  1 are Z2 twisted. Again here, G10 is a hermitianoperator. Its square, a
ting on a primary state must give positive eigenvalues, whi
h impliesthat all the dimensions in the T-se
tor satisfy: � � ~
=8. In parti
ular it implies that if there isa state with � = ~
=8 this is then the ground state, and it is doubly degenerate sin
e this statejH+i and jH�i � G10jH+i, have the same energies. One of the two supersymmetries, namelythe one generated by G10 is then unbroken, sin
e G10 annihilates the ground states:(G10)2jH+i = 12fG10; G10gjH+i = (L0 � ~
=8)jH+i = 0G10jH�i = (G10)2jH+i = 0 (2:5:20)The global supersymmetry generated by G2�1=2 is broken sin
e G2�1=2 fails to annihilate theground states. This is obvious sin
e in order for G21=2 to annihilate a primary state, its dimensionhas to be zero, and as we argued above, states with zero dimension do not exist in the T-se
tor.Thus in the T-se
tor we have at most a remnant N=1 supersymmetry. The ground states aregenerated from the NS va
uum by the \twist" �elds H�(z), the presen
e of whi
h indu
es 
utson the 
omplex plane su
h that �(z) and  1(z) are double valued around the point where thetwist �eld lies. In the T-se
tor there is a parity operator, (�1)F , whi
h 
ommutes with Lm; Jmand anti
ommutes with Gim. In parti
ular:(�1)F jH+i = jH+i ; (�1)F jH�i = �jH�i; (2:5:21)In the R-se
tor the two-spin �elds are non-lo
al with respe
t to ea
h other. Their operatorprodu
t expansion 
ontains square root singularities in the 
omplex plane whi
h indu
e non-lo
ality when we proje
t to Eu
lidean spa
e. The same is true in the T-se
tor. In order toobtain a lo
al theory we must suitably proje
t out one fermion parity, the same way as in theN=1 
ase.2.6 Global OSP(2j2) Invarian
eAs it was mentioned earlier in this work, the invarian
e of the va
uum under the globalN = 2 super
onformal group, OSP (2j2), turns out to be very useful towards the evaluation ofthe 
orrelation fun
tions. From now on we restri
t ourselves to theNS se
tor. Similar te
hniquesthough apply to the R� and T se
tors although the analysis is somewhat more 
ompli
ated.Using the 
ommutations relations (2.5.11), derived in the previous se
tion, we 
an write theWard identities for global super
onformal invarian
e. Their derivation is obvious. For exampleL�1 annihilates the in-va
uum. But we 
an move it to the left using (2.6.11), so we end up with



46a di�erential equation for the 
orrelation fun
tion. Thus the n-point fun
tion:Fn(z1; z2; � � � ; zn) � h0j�1(z1)�2(z2)�3(z3) � � ��n(zn)j0i (2:7:1)satis�es the following Ward identities:L�1 : " nXi=1 ��zi#Fn = 0 (2:6:2a)L0 : nXi=1 �zi ��zi +�i + 12[�i ���i + ��i ����i ℄�Fn = 0 (2:6:2b)L1 : nXi=1 �z2i ��zi + 2zi��i + zi(�i ���i + ��i ����i )� +Qi�i��i�Fn = 0 (2:6:1
)J0 : nXi=1 �Qi + ��i ����i � �i ���i�Fn = 0 (2:6:2d)G�1=2; �G�1=2 : nXi=1 � ����i � ��i ��zi�Fn = nXi=1 � ���i � ��i ��zi�Fn = 0 (2:6:2e)G1=2 : nXi=1 �zi[ ����i � �i ��zi ℄� (2�i +Qi)�i � �i��i ���i�Fn = 0 (2:6:2f)�G1=2 : nXi=1 �zi[ ���i � ��i ��zi ℄� (2�i �Qi)��i + �i��i ���i�Fn = 0 (2:6:2g)where �i; Qi are dimensions and 
harges of the various �elds appearing in the 
orrelation fun
-tion (2.6.1).A super�eld operator in terms of 
omponents has the form:�(z) � �(z) + � (z) + �� (z) + ���g(z): (2:6:3)The two-point fun
tion is 
ompletely �xed by the Ward identities, up to an irrelevant nor-malization 
onstant.h0j�1(z1)�2(z2)j0i = z�(�1+�2)12 expfQ2 �12��12z12 gÆQ1+Q2;0Æ�1;�2 (2:6:4)It is a fun
tion of the supersymmetry invariant distan
es in super spa
e, z12 = z1 � z2 ��1��2 � ��1�2; �12 = �1 � �2; ��12 = ��1 � ��2: The three-point fun
tion depends on nine



47independent variables (zi; �i; ��i). Sin
e OSP (2j2) has eight generators we 
an �x at most eightof them, so there must be a unique 
ombination invariant under OSP (2j2). This is a 
ommuting
ombination whi
h turns out to be nilpotent:R̂ = �12��12z12 � �13��13z13 + �23��23z23 ; R̂2 = 0 (2:6:5)So, for any parti
ular solution of the Ward identities, we 
an obtain the general solutionby multiplying it with (1 + �R̂), � being an arbitrary 
ommuting 
onstant. Solving the Wardidentities for the three-point fun
tion we obtain:h0j�1(z1)�2(z2)�3(z3)j0i = C 24 3Yi<j z��ijij 35 exp24 3Xi<j Aij �ij ��ijzij 35 ÆQ1+Q2+Q3;0 (2:6:6)where the 
onstants Aij = �Aji; 3Xj=1j 6=i Aij = �Qi (2:6:7)It is easily seen from (2.6.7), that the equations de�ning the 
onstants Aij, are not �xing allof them be
ause of the 
hange neutrality 
ondition, for the 
orrelation fun
tion. In parti
ular,if Aij is some solution of (2.6.7) then A12+�;A31+�;A23+�, is also a solution. Of 
ourse thisis expe
ted. It 
orresponds to multiplying the three-point fun
tion by the OSP (2j2) invariant,(1 + �R̂). For the three-point fun
tion to be non-zero, the OPE of the operators �1;�2 must
ontain the family �3. Then the normalization 
onstant C of the three-point fun
tion is theGlebs
h-Gordan 
oeÆ
ient for the de
omposition [�1℄ 
 [�2℄ ! [�3℄: In the N = 2 
ase, likethe N = 1, there is another operator produ
t 
oeÆ
ient to be determined, namely one of theAij, due to the existen
e of the OSP (2j2) invariant R̂.In general OSP (2j2) invarian
e 
onstraints the n-point fun
tion to have the form:h0j�1(z1)�2(z2); : : :�n(zn)j0i � nYi<j[z��ijij ℄ exp[ nXi<j Aij �ij ��ijzij ℄�Fn[x1; x2; : : : ; x3n�8℄� ÆPni=1 Qi;0 (2:6:8)Aij = �Aji; �ij = �ji; nXj=1i6=j Aij = �Qi; nXi=1j 6=i �ij = 2�i (2:6:9)where xi; i = 1; 2 : : : ; 3n � 8 are the 
ombinations of the 
oordinates, with dimension zero,invariant under OSP (2j2). They are fun
tions of the invariant distan
es, zij; �ij; ��ij. All the



48non-trivial information about the theory is en
oded in the fun
tions Fn. In most 
ases they aredetermined by the spe
i�
 details of the theory. In 
ertain 
ases though, that will be dis
ussedin the next se
tion, they 
an be evaluated, just by knowing the representation 
ontent of thetheory.2.7 Operator Algebra and Correlation Fun
tionsin N=2 Unitary Minimal Super
onformal Models (NS Se
tor)From now on we will fo
us on unitary minimal N=2 super
onformal models. As mentionedin se
tion 2.3 these exist for the following values of the 
entral 
harge,~
 = 1� 2m ; m = 2; 3; :::: (2:7:1)They 
ontain degenerate representations only and we will show that they are exa
tly solvable.The strategy is the following. Consider a hw unitary irredu
ible representation of the N = 2super
onformal algebra. It is generated by a hwv; j�; Qi, the primary state, satisfying theusual hwv 
onditions. The full representation is obtained from j�; Qi by applying the loweringoperations of the algebra. In some spe
ial situations it may turn out that one of the se
ondarystates satis�es the hwv 
onditions. This means that the representation generated by j�; Qiis not irredu
ible, but there is another representation, (the one generated by the se
ondaryve
tor), embedded in it. The se
ondary hwv; j�i, has the interesting property, that it is null,(i.e. h�j�i = 0); and orthogonal to any other state in the Hilber spa
e. We may thus 
onsistentlyset j�i to be equal to zero, a 
ondition that de
ouples all its family from the 
orrelation fun
tionsof the theory. In fa
t this 
ondition will generate 
onstraints on the 
orrelation fun
tions, of theprimary state j�; Qi. To see how su
h 
onstraints arise we have to remember that j�i is givenby some operator Ô, 
onstru
ted out of the lowering operators of the algebra, a
ting on j�; Qi,thus:0 � h0j�1(z1)�2(z2) � � ��n�1(zn�1)j�i = h0j�1(z1)�2(z2) : : :�n�1(zn�1)Ôj�; Qi (2:7:2)Moving the operator Ô to the left using the 
ommutation relations (2.6.11) we end upwith a super-di�erential equation for the 
orrelation fun
tion. Solving these equations we 
andetermine all the 
orrelation fun
tions that the degenerate family is parti
ipating in.A ne
essary and suÆ
ient 
ondition for the existen
e of su
h systems is the 
losure of theoperator algebra of a set of unitary degenerate representations. In fa
t we will show that theoperator algebra of the unitary degenerate representations of the N = 2 super
onformal algebra,with ~
 < 1, does 
lose. We will derive also the \fusion" rules for the operator algebra.



49Consider the OPE of two primary operators:�1(z)�2(0) =Xi �i(0)z�1+�2��i (2:7:3)where the notation in the right hand side of (2.7.3) is symboli
, meaning the produ
t 
an bewritten as a sum of primary operators and/or their des
endants, and the (z; �; ��) dependen
e
an be easily substituted ba
k. What we want to know is whi
h irredu
ible representation
an appear in the operator produ
t of two given representations. There is a simple 
riterionfor representations whi
h are not allowed, and this is the vanishing of the appropriate 3-pointfun
tion.The strategy is to use the superdi�erential equations stemming from the degenera
y ofthe representations to derive sele
tion rules for the operator produ
t algebra. Let's 
onsidera 
on
rete example. Take a representation whi
h has a null ve
tor at the �rst level. Su
h arepresentation is for example one with � = m�22m ; Q = �m�2m , when ~
 = 1� 2m ;m = 2; 3 : : :. Thenull ve
tor at level one is given by:j�01i = [(Q� 1)L�1 � (2� + 1)J�1 +G�1=2 �G�1=2℄j�; Qi (2:7:4)It is easy to verify, using the 
ommutation relations (2.4.12), that j�01i satis�es all thehwv 
onditions. Consider now the n-point fun
tion where this state is parti
ipating in. We'vementioned already that su
h a 
orrelation fun
tion is identi
ally zero.0 � h0j�1(z1)�2(z2) : : :�n(zn)j�01i = h0j�1(z1)�2(z2) : : : Ô�(0)j0i (2:7:5)Commuting Ô through to the left we arrive at the following superdi�erential equation((1 �Q) nXn=1 ��zi + (2� + 1) nXi=1 �Qizi + 1zi (��i ���i � �i ���i )� 2�iz2i �i��i�+ nXi=1 nXj=1 � ����i � �i ��zi� � ���j � ��i ��zi�9=; h0j�(z1) � � ��n(zn)�(0)j0i = 0 (2:7:6)We will spe
ialize (2.7.6) to the 3-point fun
tion < 0j�1(z1)�2(z2)�3(z3)j0 > where �3 isthe degenerate operator mentioned above.



50Doing a translation and two global supersymmetry transformations (we have the freedomto do that, thanks to the OSP (2j2) invarian
e of the 
orrelation fun
tion), we 
an write thethree-point fun
tion in the form < 0j�1(~z1)�2(~z2)�3(0)j0 >, where:~z1 � (z1 � z3 � �1��3 � ��1�3; �1 � �3; ��1 � ��3)~z2 � (z2 � z3 � �2��3 � ��2�3; �2 � �3; ��2 � ��3) (2:7:7)Using the form of the three-point fun
tion found earlier, in (2.6.6) we arrive at the followingset of 
onditions for the dimension �ij and the 
onstants Aij:�13(Q3 � 1) +Q1(2�3 + 1) +A13 +�13 = 0(�12 �A12)(A13 +�13) = 0; (�12 +A12)(A13 +�13) = 0(Q3 � 1)A13 � 2�1(2�3 + 1) + (�13 �A13 + 1)(�13 +A13) = 0(2�3 + 1)(�12 �A12) + (�13 �A13)(�23 +A23) = 0(2�3 + 1)(A12 +�12) + (�23 �A23)(�13 +A13) = 0 (2:7:8)The state mentioned above happens to be also degenerate at level 1=2 and relative 
harge�1, the null ve
tor being j��1=2i = �G�1=2j�; Qi (2:7:9)In the same way we derive another equation:nXi=1 � ���i � ��i ���i� < 0j�1(z1) : : :�n(zn)�(0)j0 >= 0 (2:7:10)whi
h for the three-point fun
tion in parti
ular impliesA13 = ��13; A23 = ��23 (2:7:11)Solving (2.7.8) and (2.7.11) we obtain2�1 = Q1; 2�2 = Q2;�1 = �3 ��2 (2:7:12)Consequently in the operator produ
t of �2, with 2�2 = Q2, and �3, only �elds with 2�1 = Q1,and �1 = �3 ��2 
an appear.



51The superdi�erential equations for the three-point fun
tions are solved in Appendix 2.D.Here we will present the \fusion" rules for the NS se
tor of degenerate theories with ~
 < 1.As was mentioned in se
tion 2.3, the unitary irredu
ible representations in the NS se
torwith ~
 < 1, exist when ~
 = 1 � 2m ;m�Z+ � f1g and their dimensions and 
hanges are given by(2.3.3). It was shown that for the family (j; k), there are three independent null hwvs embeddedin it, one at relative 
hange zero and level m � (j + k), another at relative 
hange 1 and levelk and another one at relative 
hange �1 and level j. Consequently the 
orrelation fun
tions of(j; k) satisfy three superdi�erential equations of orders j; k;m � (j + k), simultaneously. Theexisten
e of three null ve
tors in the N=2 
ase is qualitatively di�erent from the N=0,1 
ases.The \fusion" rules 
oming from the 
onsideration of the two 
harged null ve
tors at levelsj1; k1 of the family (j1; k1) are the following:(j1; k1)
 (j2; k2) = j2� 12Xn= 12�k2(j1 + n; n� j2 + k1 + k2) ; j1 + k1 � j2 + k2 (2:7:13a)(j1; k1)
 (j2; k2) = j1� 12Xn= 12�k1(j2 + n; n� j1 + k1 + k2) ; j1 + k1 � j2 + k2 (2:7:13b)The strategy to derive the fusion rules in their general form (2.7.13), is parallel to the oneused in the N=0,1 
ases. The representations (32 ,12) and (12 , 32) are the shifting up and downoperators and the following relations are proven using the results of Appendix 2.D,(32 ; 12)
 (j; k) = (j; k � 1)� (j + 1; k) (2:7:14a)(12 ; 32)
 (j; k) = (j � 1; k)� (j; k + 1) (2:7:14b)Then (2.7.13) is proven by indu
tion using (2.7.14) and the 
ommutativity and asso
iativity ofthe operator algebra.As was mentioned above, the family (j; k) is also degenerate at relative 
harge zero and levelm� (j+k). The extra 
onditions from this new null hwv have the e�e
t of trun
ating the sumsin (2.7.13) into the \unitary bounds", 0 < j; k; j + k � m� 1, where (j1; k1)
 (j2; k2) � (j; k).This trun
ation phenomenon is known already to happen in the analogous minimal theories ofthe N = 0; 1 algebras. Thus it is 
onsistent to built N = 2 unitary minimal systems, with~
 < 1, where there is a �nite number of representations, all degenerate, and all the 
orrelationfun
tions 
al
ulable.



52We present the two expli
it examples of the operator algebra of the �rst two non-trivialtheories with ~
 = 1=3; (m = 3); ~
 = 1=2; (m = 2). In the ~
 = 1=3 theory the operator algebra isthe following: (16 ;�13)
 (0; 0) � (0; 0); (16 ;�13)
 (16 ;�13) � (0; 0): (2:7:15)This system, is somewhat spe
ial and it will be analyzed in more detail in the next se
tion.The fusion rules of the ~
 = 1=2 system are:(18 ;�14)
 (18 ;�14) � (0; 0)(18 ;�14)
 (12 ; 0) � (18 ;�14)(14 ;�12)
 (12 ; 0) � (14 ;�12) ; (18 ;�14)
 (14 ;�12) � (18 ;�14); (14 ;�12)
 (18 ;�14) � (18 ;�14); (12 ; 0)
 (12 ; 0) � (12 ; 0)� (0; 0) (2:7:16)We should remind the reader that the \fusion" rules we have derived, give the maximumpossible set of operators that 
an appear in an operator produ
t expansion. To determine exa
tlywhi
h of them 
ontribute and to evaluate their Glebs
h-Gordon 
oeÆ
ients one has to evaluatethe 4-point fun
tion. This is what we will do for the ~
 = 1=3 system in the next se
tion.2.8 The Operator Formalism in The Ramond Se
torIn se
tion 2.5 we gave a brief des
ription of the Ramond se
tor and its ground states. Wewill 
ontinue this dis
ussion and develop in a parallel way the stru
ture that we outlined inse
tions 2.6, 2.7 for the NS se
tor?.The ground states that preserves N=2 supersymmetry has � = ~
8 . The rest of the primarystates are generated from the ground state by the a
tion of NS super�eld operators. Sin
eprimary operators are also labeled by their 
harge there is a non-trivial question to answer:What is the 
harge of the ground state? To �nd a plausible answer to that we will employ theisomorphism between the NS and the R se
tor. We will fo
us for 
on
reteness on the R+ se
tor.It is natural to 
onsider as the Ramond ground state the image of the va
uum state (in theNS se
tor) under the isomorphism (2.1.7). From (2.3.19) it 
an be seen that it has dimension� = ~
8 and 
harge Q = � ~
2 . The \out" ground state jR�i then must have 
harge Q = ~
8 . Thestates jR+i and jR�i being hwvs of the R+ algebra must satisfy among others the followinghwv 
onditions, �G0jR+i = �G0jR�i = 0 (2:8:1)The representations 
orresponding to jR+i and jR�i are degenerate for any value of ~
. Bylooking at the Ka�
 determinant in the R se
tor we 
an easily verify that jR+i is degenerate at? The isomorphism (2.1.7) 
annot provide 
omplete information about 
orrelation fun
tions in the R se
tor.



53level zero, relative 
harge one as well as level one and relative 
harge -1. On the other handjR�i is degenerate at level zero and relative 
harge 1y. The vanishing 
onditions for the nullve
tors mentioned above are, G0jR+i = �G�1jR+i = G0jR�i = 0 (2:8:2)We de�ne the 
orrelation fun
tions in the R se
tor as ,Fn(z1; z2; :::zn) � hR�j�1(z1)::::�n(zn)jR+ >< R�jR+i (2:8:3)where �i(zi) is a NS super�eld operator. Then the 
orrelation fun
tion (2.8.3) satisfy Wardidentities due to (2.8.1,2) whi
h parallel the global N=2 Ward identities in the NS se
tor:nXi=1 �Qi + ��i ����i � �i ���i�Fn(z1; � � � ; zn) = 0 (2:8:4a)nXi=1 �zi ��zi +�i + 12 ��i ���i + ��i ����i��Fn(z1; � � � ; zn) = 0 (2:8:4b)nXi=1 �pzi � ����i � �i ��zi�� 12pzi �(2�i +Qi)�i + �i��i ����i��Fn(z1; � � � ; zn) = 0 (2:8:4
)nXi=1 �pzi � ���i � ��i ��zi�� 12pzi �(2�i �Qi)��i � �i��i ���i��Fn(z1; � � � ; zn) = 0 (2:8:4d)nXi=1 � 1pzi � ���i � ��i ��zi�+ 12zipzi �(2�i �Qi)��i � �i��i ���i��Fn(z1; � � � ; zn) = 0 (2:8:4e)where �i, Qi are the (NS) dimension and 
harge of �i. Equations (2.8.4) 
an be used to
onstraint the form of the Ramond 
orrelation fun
tions. We will solve as an example the
onstraints (2.8.4) on the 2-point fun
tion, F2(z1; z2).y At spe
ial values of ~
 there are additional degenera
ies



54Equation (2.8.4a) implies that Q1 +Q2 = 0 andF2(z1; z2) = f0(z1; z2) + �1��1f1(z1; z2) + �2��2f2(z1; z2)++�1��2f3(z1; z2) + ��1�2f4(z1; z2) + �1��1�2��2g(z1; z2) (2:8:5)De�ne the variables u = pz1=z2, v = pz1z2 in order to split the dimensional dependen
e.Equation (2.8.4b) implies, f0(u; v) = f0(u)v2� ; g(u; v) = g(u)v2�+2 (2:8:6a)fi(u; v) = fi(u)v2�+1 ; i = 1; 2; 3; 4 (2:8:6b)The rest of the equations are solved by,f0(u) = u2��Q1(u2 � 1)2� ; f1(u) = �� (� +Q1)u2u(u2 � 1) f0(u) (2:8:7a)f2(u) = ��u2 +Q1 ��u2 � 1 uf0(u) (2:8:7b)f3(u) = 22�u2 � 2� +Q1u2 � 1 f0(u) (2:8:7
)f4(u) = 2��Q1u2 � 1 f0(u) (2:8:7d)g(u) = 2� � (2� + 1)u4(u2 � 1)2 � (2��Q1 + 1)u2u2 � 1 + ��Q12 � f0(u) (2:8:7e)The 2-point fun
tion is asymmetri
 due to the asymmetry in the 
harge assignments of the\in" and \out" states. The 2-point fun
tion with jR+i $ jR�i is given by (2.8.7) with thefollowing substitutions:f0 ! f0, g ! g, f1 ! �f1, f2 ! �f2, f3 $ f4 and Q1 ! �Q1. In asimilar way higher 
orrelation fun
tions 
an be 
onstrained by (2.8.4).



55Let's now dis
uss the fusion rules in the R se
tor. It is important to note that the isomor-phism (2.1.7) preserves the stru
ture of the Ka�
 determinant (the relations (2.3.19) have to betaken into a

ount). Thus it preserves the form of the fusion rules derived in the NS se
tor.Consider the set of hwvs of the R+ algebra, j�; Q� 12i with dimensions and 
harges given by,� = ~
8 + jk2 (1� ~
) ; Q = j � k2 (1� ~
) ; j; k 2 Z (2:8:8)Using (2.3.19) we 
an establish the 
orresponden
e,NS 3 (j; k)$ (j + 12 ; k � 12) 2 R+ ; j; k 2 Z+ + 12 (2:8:9)whi
h along with (2.7.13) implies the following fusion rules in the R+ se
tor,(j1; k1)
 (j2; k2) = j2�1Xn=�k2(j1 + n; n+ k1 + k2 � j2 + 1) ; j1 + k1 � j2 + k2 (2:8:10a)(j1; k1)
 (j2; k2) = j1�1Xn=�k1(j2 + n; n+ k1 + k2 � j1 + 1) ; j1 + k1 � j2 + k2 (2:8:10b)where j1, j2, k1, k2 are integers.The pre
eding results in the Ramond se
tor are veri�ed expli
itly in App. 2.E.2.9 The ~
 = 13 ; N = 2 Super
onformal TheoryThis theory has the simplest operator 
ontent 
ompared to the other unitary minimal N = 2theories. It is also the only member of the N = 2 dis
rete series whi
h has the same 
entralelement with a member of the N = 1 dis
rete series. The model is also interesting sin
e itdes
ribes a point? in the A-T model phase diagram, [6,33℄. The operator 
ontent of the theoryas well as it de
omposition into N=1 representations is dis
ussed in Appendix 2.C.The general dis
ussion of the previous se
tion 
an be spe
ialized in this situation. The model
ontains the unit (super�eld) operator and a 
onjugate pair of primary operators, representingthe � = 16 ; Q = �13 states of the model. We will denote by �� and �0 the 
orrespondingsuper�eld operators. The two point fun
tion is:h0j�+(z1)��(z2)j0i = z�1=312 exp��13 �12��12z12 � (2:9:1)where we suppressed the antianalyti
 part and we've 
hosen a parti
ular 
onvenient nor-malization for the two-point fun
tion. The only three-point fun
tion whi
h is non-zero is,? In fa
t, as explained in the next 
hapter, it des
ribes three points in the phase diagram of the A-T model.



56h0j�0(z1)�+(z2)��(z3))j0i. It is �xed up to a normalization 
onstant by the OSP (2j2) in-varian
e and the extra di�erential equations that it is satisfying due to the fa
t that it 
ontainsdegenerate �elds. h0j�0(z1)�+(z2)��(z3)j0i = Cz�1=323 exp��13 �23��23z23 � (2:9:2)It implies the following operator produ
t expansions for the 
omponent �elds��(z) � ��(z) + � � �(z) + �� �(z) + ���g�(z) (2:9:3a)�+�� � J; �+g� � �13J; ��g+ � �13J (2:9:3b)� + � � 13J;  + � � � 13J; g+g� � 49J(2:9:3
)whi
h are determined up to an overall normalization 
onstant. The �rst non-trivial 
orrelationfun
tion is the 4-point fun
tion. Its evaluation enables us to �x the Glebs
h-Gordon 
oeÆ
ientin the OPE, in (2.9.3).There are two ways to evaluate the 4-point fun
tion. One is to solve the superdif-ferential equations that it satis�es due to degenera
y of the operators 
ontained in it.The other is to use the Feigin-Fuks 
onstru
tion. The only non-trivial 4-point fun
tion ish0j��(z1)�+(z2)��(z3)�+(z4)j0i. The operator �+(z) is degenerate at level 1, relative 
hangezero, at level 1=2, relative 
harge one and at level 32 , relative 
hange �1. The relevant superdif-ferential equation for the 4-point fun
tion F4(~z1; ~z2; ~z3) are:" 3Xi=1 Gi1=2#F4(z1; z2; z3) = 0 (2:9:4a)3Xi=1 �Li1 � J i1�F4(z1; z2; z3) = 0 (2:9:4b)24 3Xi=1 �Gi3=2 � 3Xi;j=1(J i1 + Li1) �Gj1=235F4(z1; z2; z3) = 0 (2:9:4
)where the relevant di�erential operators are de�ned in (2.D.4) in Appendix 2.D, and we havesimpli�ed (2.9.4b) using (2.9.4a). The variables zi are the shifted variables we mentioned inse
tion 2.7.



57Global N = 2 super
onformal invarian
e 
onstrains the four-point fun
tion to be of theform: F4(z1; z2; z3; z4) = C(z12z34)�1=3 exp �13 ��14��14z14 � �24��24z24 + �34��34z34 ����G4(x1; x2; x3; x4) (2:9:5)where x1; i = 1; 2; 3; 4 are the four independent 
ombinations of the 
oordinates invariant underthe OSP(2j2) group. The obvious (dependent) invariants are:x1 = �23��23z23 + �34��34z34 � �24��24z24x2 = �12��12z12 + �24��24z24 � �14��14z14x3 = �13��13z13 + �34��34z34 � �14��14z14y1 = �12��12z12 + �23��23z23 � �13��13z13y2 = z14z23z12z34 ; y3 = z13z24z12z34 (2:9:6)Sin
e y1 = x1 + x2 � x3; y1 
an be deleted. We have also the additional relations:x21 = x22 = x23 = y21 = 0; x1x2 = (x1 + x3)x2; x1x2x3 = 0 (2:9:7a)(y2 � y3 + 1)2 = 2y2x1x2; x2x3 = y2x1x3; x1x2 = y3x1x3 (2:9:7b)The relations above imply that in fa
t x1; x2; x3 and x4 � y2 are independent invariants.Solving equations (2.9.4) we arrive at a four-point fun
tion of the form:G4(x1; x2; x3; x4) = C�x4 + 1x4 �1=3 exp � 13(x4 + 1) (y � x1 + x4x2)� (2:9:8)where y � y2 � y3 + 1.



58The four-point fun
tion, (2.9.8), is powerlike, something to be expe
ted sin
e the primary�elds of the ~
 = 1=3 theory 
an be 
onstru
ted as vertex operators of a single 
 = 1 s
alar�eld (see Appendix 2.E). We have performed the same 
al
ulations using the vertex operatormethod, [20,25,31℄. We �nd the same result as in (2.9.8). It is diÆ
ult though in this methodto obtain the result as a super meromorphi
 fun
tion in N = 2 superspa
e.By fa
torizing over two-point fun
tions we 
an �nd that C = 1. This implies that the OPE
oeÆ
ient in (2.9.3) is in fa
t unity.The full 
onstru
tion of the four-point fun
tion, in
luding its anti-holomorphi
 part doesnot involve any subtleties related to monodromy invarian
e, (lo
ality in the Eu
lidean domain).We simply have to multiply the holomorphi
 and antiholomorphi
 pie
es whi
h have the sameform. Knowledge of the four-point fun
tion (2.9.8) is enough to determine any n�point fun
tionusing the OPE 
oeÆ
ient for the degenerate operators.2.10 Con
lusions and Prospe
tsIn this 
hapter we delved into a detailed analysis of N=2 super
onformal �eld theories.We des
ribed the stru
ture of the representations of the N=2 super
onformal algebras and we
al
ulated their 
hara
ters. We also dis
ussed Ward identities, and in the 
ase of minimal modelswe derived their fusion rules as well as some 
orrelation fun
tions.There is 
onstru
tion of the N=2 minimal models that gives a lot of information by relatingthem to 
riti
al SU(2) WZ-models, [26℄. The N=2 minimal models 
an be 
onstru
ted as G=HCFTs where G = SU(2) 
 U(1) and H = U(1), a linear 
ombination of the initial U(1) andthe Cartan generator of SU(2). Thus these theories 
an be 
onstru
ted out of a free boson andSU(2) parafermions. In this way their 
orrelation fun
tions 
an be 
al
ulated using the known
orrelation fun
tions of the parafermioni
 theory.?N=1 spa
e-time supersymmetri
 string theories in 4(6) dimensions have been 
onstru
tedwhere the CFT des
ribing the internal degrees of freedom is a tensor produ
t of N=2 minimalmodels with the right value of the 
entral 
harge, (~
 = 3(2)), [32℄. It is argued that su
h modelsdes
ribe exa
tly string propagation on a sub
lass of Calabi-Yau manifolds. One 
an then usemarginal perturbations in these models to obtain the solutions 
orresponding to (hopefully) allCalabi-Yau manifolds.This shows one of the main advantages of CFT. The handling of non-linear �-models onCalabi-Yau manifolds, (in parti
ular their exa
t solution at their 
riti
al points), is a hopelesslydiÆ
ult task using the methods of 
onventional quantum �eld theory.Of 
ourse the e�ort in this respe
t has to be 
on
entrated in 
lassifying all N=2 super
on-formal models. This will provide with all possible 
lassi
al solutions to string theory havingN=1 supersymmetry.? This is true for the untwisted se
tor. For the twisted se
tor one needs the 
orrelation fun
tions of theC-disorder �elds whi
h are presently unknown.



59APPENDIX 2.AExamples of Null States in N=2 Super
onformal AlgebrasIn this appendix we give expli
it examples of null hwv's of the N=2 algebras whi
h , wethink, are helpful to visualize several properties that we stated in the main body of the paper.Their expli
it form is also very useful in deriving superdi�erential equations for the 
orrelationfun
tions of the degenerate primary �elds. We remind the reader that a null hwv is a se
ondarystate, j�i, in a Verma module whi
h has also the properties of a hwv, namely,Lnj�i = Jnj�i = Grj�i = �Grj�i = 0 ; n; r > 0 (2:A:1)It is easy to dedu
e that su
h states have zero norm and the Verma module they generate isorthogonal to all other states 
ontained in the initial Verma module. So they 
an 
onsistentlyset to zero and this 
ondition implies superdi�erential equations for 
orrelation fun
tions of theinitial hwv with other operators. These equations provide us with the means to solve the theoryexa
tly. Su
h a theory must 
ontain only degenerate representations.(i) NS algebra, relative 
harge zero. An example of a null ve
tor belonging to the super-
onformal family generated by jh; qi at the �rst level and relative 
harge zero is givenby: j�i = [(q � 1)L�1 � (2h+ 1)J�1 +G�1=2 �G�1=2℄jh; qi (2:A:2)when 2h(~
� 1) = q2 � ~
. The only non-trivial hwv 
ondition that one has to 
he
k is thea
tion of L�1, J�1, G�1=2 , �G�1=2. The others are trivially satis�ed.NS algebra relative 
harge �1.Let's �rst 
onsider a state whi
h is degenerate at the n0 = 1=2 level. Then, gNS1=2 = 2h� q sothat a state with h = q=2 is an example of a primary state that generates su
h a representation.The null state in this representation is given by,j�+1=2i = G1=2jh; qi (2:A:3)whi
h is obviously annihilated by any of Ln, Jn, Gn, �Gn for n � 1. The only non-trivial
ondition is �G1=2j�+1=2i = (2h � q)j�+1=2i = 0 due to the previously mentioned relation betweenhis dimension and 
harge. It is obvious that this null ve
tor does not generate a full Vermamodule sin
e it is annihilated by G�1=2. For n0 = �1=2 the 
orresponding null state is j��1=2i =�G�1=2jh; qi. At higher levels the degenerate states involve also generators of the Virasoro or the



60U(1) algebra. For example at n0 = �3=2 the 
orresponding states are,j�+3=2i = [(h� q2 + 1)G�3=2 +G�1=2(J�1 � L�1)℄jh; qi (2:A:4a)j��3=2i = [(h+ q2 + 1) �G�3=2 � �G�1=2(J�1 + L�1)℄jh; qi (2:A:4b)Again these null hwv's do not generate full Verma modules. There exist lowering operators thatannihilate them. [(h� q2 + 1)G�3=2 + (J�1 � L�1)G�1=2℄j�+3=2i = 0 (2:A:5a)[(h+ q2 + 1) �G�3=2 � (J�1 + L�1) �G�1=2℄j��3=2i = 0 (2:A:5b)Finally at level 5/2 and relative 
harge one, when 2h� 5q + 6(~
� 1) = 0, the null hwv is,j�+5=2i = [(2h� q + 4)(q + 3 � 2~
)G�5=2 + (2h� q + 4)G�3=2�̂�1 +G�1=2�̂�2℄jh; qi�̂�1 = (2J�1 � L�1) (2:A:6)�̂�2 = [(q + 3� 2~
)(3J�2 � 2L�2)� 4J�2 + 2(L�1)2 + 4(J�1)2 � 6J�1L�1 +G�3=2 �G�1=2℄(ii) R� algebra, null states with the same 
harge as the initial hwv.An example of a null hwv of the representation of the R� algebra generated by jh; q�1=2i�at the �rst level is given by :j�+i = [(q+1)(2h� ~
4)L�1� (2h+ 34)(2h� ~
4)J�1� (2h� q2 + 14) �G�1G0℄jh; q�1=2i+ (2:A:7a)j��i = [(q�1)(2h� ~
4)L�1� (2h+ 34)(2h� ~
4)J�1+(2h+ q2 + 14)G�1 �G0℄jh; q+1=2i� (2:A:7b)satisfying all the hwv 
onditions provided h = ~
8 + q2�(~
+1)2=42(~
�1) .R� algebra, null states having 
harges di�ering by �1 from the initial 
harge.



61In the R+ algebra the null state at n0 = 0 and relative 
harge +1/2 is,j�+0 i = G0jh; q � 1=2i+ (2:A:8)whi
h is annihilated by G0 provided h = ~
8 . At level one and relative 
harge +1/2 and -3/2,(n0 = �1), the null states are :j�+1 i = [(2h+ 2� ~
4)G�1 +G0(J�1 � 2L�1)℄jh; q� 1=2i+ (2:A:9a)j��1 i = �G�1jh; q � 1=2i+ (2:A:9b)The state j�+1 i is annihilated by the operator (2h+ 2 � ~
4)G�1 + (J�1 � 2L�1)G0, whereasj��1 i is annihilated by �G�1. At level two and relative 
harge +1/2, (n0 = 2), the null state is,j�+2 i = [2(q � ~
+ 2)(2q � 3~
+ 5)G�2 + 2(q � ~
+ 2)G�1 ���1 +G0���2℄jh; q � 1=2i+���1 = (3J�1 � 2L�1) (2:A:10)���2 = [(2q � 3~
+ 5)(J�2 � L�2)� 3J�2 + 2(L�1)2 + 32(J�1)2 � 4J�1L�1 +G�1 �G�1℄At n0 = �2 the null hwv of relative 
harge -3/2 is,j��2 i = [(2q + 3~
 � 5) �G�2 + �G�1(2L�1 + 3J�1)℄jh; q � 1=2i+ (2:A:11)The 
orresponding null state of the R� algebra at level zero is,j��0 i = �G0jh; q + 1=2i� (2:A:12)annihilated by �G0, whereas at level one, (n0 = �1), they are,j�+1 i = [(2h+ 2� ~
4) �G�1 � �G0(2L�1 + J�1)℄jh; q+ 1=2i� (2:A:13a)j��1 i = G�1jh; q + 1=2i� (2:A:13b)annihilated by [(2h + 2� ~
4) �G�1 � (2L�1 + J�1) �G0℄ and G�1 respe
tively.



62(iii) T algebra. When h = ~
8 , one of the two states of opposite parity is degenerate at levelzero and de
ouples from the spe
trum. The expli
it form of the null hwv is,j��0 i = G10jhi (2:A:14)whi
h has negative parity.(We de�ne the parity or fermion number operator, (�1)F , sothat it 
ommutes with L�n, J�n and anti
ommutes with G1�n, G2�n. It is obvious that it
ounts the number of fermioni
 operators modulo two.) The existen
e of the state withh = ~
8 implies the non-vanishing of the Witten index and thus that supersymmetry isunbroken on the 
ylinder.At level 1/2 there are two null hwv's of opposite parity when h~
 = h� ~
8 ,j��1=2i = [2iJ�1=2G10 + ~
G2�1=2℄jhi (2:A:15a)j�+1=2i = [2ihJ�1=2 +G2�1=2G10℄jhi (2:A:15b)At level one there are again two null hwv's provided 2h = �3~
2�3~
+14(~
�1) ,j�+1 i = [(2~
� 1)(2(~
� 1)L�1 + (J�1=2)2) + (~
� 1)(8iJ�1=2G2�1=2G10 � 4~
G1�1G10)℄jhi (2:A:16a)j��1 i = [4(~
� 1)L�1G10 � 2i(2~
� 1)J�1=2G2�1=2 + 2(J�1=2)2G10 + ~
(2~
� 1)G1�1℄jhi (2:A:16b)The examples presented above are also very important in the derivation of the super-di�erential equations satis�ed by the 
orrelation fun
tions of the 
orresponding degeneratehwv's.



63APPENDIX 2.BDerivation of the Partition Fun
tions for theN=2 Super
onformal AlgebrasIn this appendix we will evaluate the partition fun
tions for the N=2 super
onformal alge-bras.For the NS and R� algebras the partition fun
tions are de�ned as:F (z;w) = z�hw�qTr[zL0wJ0 ℄ (2:B:1)whereas for the T-algebra : F (z) = z�hTr[zL0℄ (2:B:2)where the tra
e is taken over all the se
ondary states of a non-degenerate representation ofdimension h and 
harge q.(i) NS algebra. A basis of states is given by,j(n); (m); (k); (r)i = L(n)J(m)G(k) �G(r)jh; qi (2:B:3)where the respe
tive operators are de�ned as,L(n) � (L�1)n1(L�2)n2:::: ni 2 N0 (2:B:4a)J(m) � (J�1)m1(J�2)m2:::: mi 2 N0 (2:B:4b)G(k) � (G�1=2)k1(G�3=2)k2:::: ki 2 (0; 1) (2:B:4
)�G(r) � ( �G�1=2)r1( �G�3=2)r2:::: ri 2 (0; 1) (2:B:4d)Gr � 1p2(G1r + iG2r) ; �Gr � 1p2(G1r � iG2r)Any other permutation in (2.B.4) 
an be expressed, using the 
ommutation relations ofthe algebra, as a linear 
ombination of the above. The range of the exponents in (2.B.4
,d)is su
h be
ause the squares of Gr and �Gr are zero due to the anti-
ommutation relations.



64The next step is to evaluate the expe
tation value,F [(n); (m); (k); (r)) � h(n); (m); (k); (r)jzL0wJ0j(n); (m); (k); (r)i (2:B:5)where the basis states are assumed to be normalized. J0 
ommutes with L�n , J�n for everyn 2 Z and [J0; G�r℄ = G�r ; [J0; �G�r℄ = � �G�rTo evaluate the 
ommutators of wJ0 with the super
harge operators we have to 
onsider:f(Æ) � eÆJ0(G�r)k e�ÆJ0dfdÆ = rf(Æ) (2:B:6)Solving the di�erential equation and setting w = eÆ, we obtain:wJ0(G�r)k = (G�r)kwJ0+k ; k 2 (0; 1) (2:B:7a)wJ0( �G�r)k = ( �G�r)kwJ0�k ; k 2 (0; 1) (2:B:7b)The same pro
edure for the zL0 fa
tor giveszL0(L�n)k = (L�n)kzL0+nk ; zL0(J�n)k = (J�n)kzL0+nk (2:B:8a)zL0(G�n)k = (G�n)kzL0+nk ; zL0( �G�n)k = ( �G�n)kzL0+nk (2:B:8b)Taking into a

ount all the above we obtain :F [(n); (m); (k); (r)℄ = zhwq "zP1j=1(jnj+jmj)(z 12w)k1(z 32w)k2:::(z 12w )r1(z 32w )r2:::# (2:B:9)It remains to sum over all the permissible sets of integers (n); (m); (k); (r).X(ni) zP1j=1 jnj =X (ni) 1Yj=1 zjnj = 1Yj=1X(ni) zjnj = 1Yj=1 1(1� zj) (2:B:10a)



65Xki=0;1(z 2i�12 w)ki = (1 + z 2i�12 w) (2:B:10b)so that �nally, FNS(z;w) = 1Yn=1 (1 + zn�1=2w)(1 + zn�1=2w�1)(1� zn)2 (2:B:11)For the R+ algebra the modding of the super
harges is integral. The derivation goes alongthe same lines with the following minor modi�
ations. There is the additional 
ontribution ofG0, ( �G0 annihilates the primary state jh; q� 1=2i+), whi
h amounts to a fa
tor (1 +w),there isanother fa
tor of w�1=2 
oming from the in
omplete 
an
ellation of wq�1=2 and sin
e we haveinteger modding, n � 1=2 in (2.B.11) is repla
ed by n. Consequently the partition fun
tion forthe R+ algebra is, FR(z;w) = (w1=2 + w�1=2) 1Yn=1 (1 + znw)(1 + znw�1)(1 � zn)2 (2:B:12)In the R� algebra we have to repla
e G0 with �G0 and q � 1=2 with q + 1=2. The partitionfun
tion is identi
al to (2.B.12).We have also to dis
uss the partition fun
tions of single 
harged fermions. Some parti
ularexamples in this 
ase are the in
omplete Verma modules generated by the null ve
tors of thedegenerate representations of the NS and R� algebras with ~
 � 1. To motivate the dis
ussion,let's look at the simplest example of su
h a module generated by the null hwv at level 1/2,(n0 = 1=2), of the NS algebra, given expli
itly by (2.A.3). This state, as it was mentionedbefore is annihilated by G�1=2. So, in our previous 
omputation of the partition fun
tions,basis states with a G�1=2 operator in them do not 
ontribute. This in turn means that afa
tor (1 + z1=2w) is absent from the 
orresponding partition fun
tion. The �rst non-trivialexample 
omes at level 3/2, (n0 = 3=2), the null hwv given expli
itly by (2.A.4a). Instead of
hoosing the G�3=2 , G�1=2J�1 , G�1=2L�1 as basis operators, we 
an 
hoose the annihilatingoperator, (2h�q=2+1)G�3=2+(J�1�L�1)G�1=2, giving a zero 
ontribution, and the remainingG�1=2J�1, G�1=2L�1. Thus, e�e
tively, the 
ontribution of G�3=2 is absent, 
ausing a loss of afa
tor (1 + z3=2w) from the 
orresponding partition fun
tion. For the null hwv at n0 = �3=2 ,given by (2.A.4b), following the previous argument, the 
ontribution of �G�3=2 is again e�e
tivelymissing, and 
onsequently a fa
tor (1 + z3=2w�1) is absent from the partition fun
tion.Now the general situation is evident. For a null hwv at some level jn0j, (n0 being aninteger or half-integer, 
orresponding to R� or NS respe
tively), the partition fun
tion la
ksthe 
ontribution of G�n0 , sgn(n0) > 0 or �G�n0 , sgn(n0) < 0. Thus the partition fun
tion isgiven by : ~FX(z;w;n0) = [1 + zjn0jwsgn(n0)℄�1 �FX(z;w) (2:B:13)where X stands for either R or NS.



66In the T-algebra the situation is now 
lear. There is no wJ0 fa
tor . The 
ontributionfrom the Virasoro and U(1) operators is Q1n=1(1 � zn)�1(1 � zn�1=2)�1 (the U(1) generatorshave half-integer modding). The 
ontribution from the G1�r operators, (integer modding), isQ1n=1(1 + zn) , whereas for the G2�r operators, (half-integer modding), it is Q1n=1(1 + zn�1=2) .Colle
ting everything : FT (z;w) = 1Yn=1 (1 + zn)(1 + zn�1=2)(1� zn)(1� zn�1=2) (2:B:14)This 
on
ludes the derivation of the partition fun
tions of the N=2 super
onformal algebras.



67APPENDIX 2.CProof of the Equivalen
e between the ~
 = 13 N=2 Modeland the 
̂ = 23 N=1 ModelIn this se
tion we will show that the �rst member of the dis
reet series of N=2 super
onformalmodels 
oin
ides with the se
ond member of the 
orresponding N=1 dis
reet series.The ~
 = 1=3 theory 
onstitutes a subse
tor of the 
̂ = 2=3 N=1 super
onformal theory. Itis the only member of the ~
 < 1 N=2 series whi
h has the same anomaly with a member of the
̂ < 1 N=1 series. For example the N=2 unit operator, (0)2, de
omposes into the unit operatorof the N=1 theory, (0)1, (
ontaining the unit operator and one of the N=2 super
harges), anda dimension-one operator, (1)1, (
ontaining the U(1) 
urrent of dimension one and the se
ondN=2 super
harge). The representation of the NS se
tor with h = 16 , q = �13 de
omposes into(16)1 of the N=1 NS se
tor. The operator (38)2 belonging to the Ramond se
tor, de
omposes as(38)2 ! (38)1 whereas the two ( 124 )2 representations of the R� se
tor de
ompose as ( 124 )2 ! ( 124 )1in the R se
tor of the N=1 theory. Finally in the twisted se
tor of the ~
 = 1=3, N=2 system therepresentation of dimension h = 116 de
omposes into ( 116 )1 in the NS se
tor of the N=1 system.These de
ompositions 
an be easily justi�ed by 
he
king the validity of the equalities betweenthe appropriate 
hara
ters:
hNS1 (h = 0; z) + 
hNS1 (h = 1; z) = 
hNS2 (h = 0; q = 0; z; w = 1) (2:C:1)
hNS1 (h = 16 ; z) = 
hNS2 (h = 16 ; q = �13 ; z; w = 1) (2:C:2)
hR1 (h = 38 ; z) = 
hR2 (h = 38 ; q = 0; z; w = 1) (2:C:3)
hR1 (h = 124 ; z) = 
hR2 (h = 124 ; q = �13 ; z; w = 1) = 
hR2 (h = 124 ; q = �23 ; z; w = 1) (2:C:4)
hNS1 (h = 116 ; z) = 
hR1 (h = 116) + 
hR1 (h = 916) = 
hT2 (h = 116 ; z) (2:C:5)



68APPENDIX 2.DSolution of the Degenera
y Equations Up to Level 52In this appendix we solve the �rst few superdi�erential equations for the three-point fun
tionand derive the 
onditions leading to the \fusion" rules dis
ussed in se
tion 2.7.For the representation (�3; Q3), degenerate at level 1=2 and relative 
hange 1 the null hwvis: j�+1=2i = G�1=2j�3; Q3i (2:D:1)It implies the following equation for the three-point fun
tion2Xi=1h ����i � �i ��ziih0j�1(z1)�2(z2)�3(0)j0i = 0 (2:D:2)Substituting the general form of the three-point fun
tion in (2.D.2) we obtain:A13 = �13; A23 = �23 (2:D:3)Before we 
ontinue, it is 
onvenient to introdu
e some notations 
on
erning the superdi�erentialoperations we use. We de�ne:L̂in = z1�ni ��zi � (n� 1)z�ni h�i + 12(�i ���i + ��i ���ii+ Qi2 n(n� 1)z�n�1i �i��iĴ in = z�ni hQi + ��i ���i � �i ���i � 2nz�1i �i�i��ii (2:D:4)Ĝir = z 12�ri h ����i � �i ��zii+ (r � 1=2)(2�i + qi)z�r�1=2i �i + (r � 1=2)z�r�1=2i �i��i ���i�̂Gir = z 12�ri h ���i � ��i ��zii+ (r � 1=2)(2�i �Qi)z�r�1=2i ��i + (r � 1=2)z�r�1=2i �i��i ����iThe 
onditions 
oming from the null hwv at level one and relative 
hange zero have been



69dis
ussed in the main body of the paper. At level 3=2 and relative 
hange 1 the null hwv isj�+3=2i = h(�3 � Q32 )G�3=2 + (J�1 � L�1)G�1=2ij�3; Q3i (2:D:5)implying the following equations for the three point fun
tionh��3 � Q32 � 2Xi=1 Ĝi3=2 + 2Xi=1 2Xj=1(Ĵ i1 � L̂i1)Ĝj1=2ih0j�1(z1)�2(z2)�3(0)j0i = 0 (2:D:6)whi
h give after substituting the three-point fun
tion in:(2�3 �Q3)(�12 �A12) + 2(Q2 +�23)(�13 �A13) = 0 (2:D:7)Finally at level 5=2 and relative 
hange 1 the di�erential equation is:h(2�3 �Q3 + 4)(2�3 � 2Q3 + 3) 2Xi=1 Ĝi5=2 � 3(2�3 �Q3 + 4) 2Xi=1 2Xj=1 Ĝi3=2(2Ĵ j1 � 2L̂j1)+�̂ih0j�1(z1)�2(z2)�3(0)j0i = 0 (2:D:8)where �̂ � 2Xi=1 Ĝi1=2 2Xj=1h(2�3 � 2Q3 + 3)(2L̂j2 � 3Ĵ j2 ) + 12Ĵ j2 + 2Xk=1n6L̂j1L̂k1+12Ĵ j1 Ĵk1 � 18Ĵ j1 L̂k1 + 3Gj3=2 �Gk1=2oi (2:D:80)implying the following set of 
onditions(�13 �A13)[(2�3 �Q3)(2�3 � 2Q3 � 3) � 3(�13 + 1)(2�3 �Q3 � 2)� 6(Q1 � 1)(2�3 �Q3)� 3(Q1 � 1)(2�3 � 2Q3 � 1)� (2�3 � 2Q3 + 3)(2�13 + 2�1 + 3) + 6(�13 + 1)(�13 + 2)+ 18(Q1 � 1)(�13 + 1) + 12(Q1 � 1)2℄ + (2�1 +Q1)� [2(2�3 �Q3)(2�3 � 2Q3 � 3)� 3�13(2�3 �Q3 � 2) � 6(Q1 � 1)� (2�3 �Q3) � 3(�13 +A13)℄ = 0 (2:D:9a)



70(�12 �A12)[�(2�3 �Q3)(2�3 � 2Q3 � 3) + 3�13(2�3 �Q3 � 2)+ 6(Q1 � 1)(2�3 �Q3) + 3(�13 +A13)℄ + (�13 �A13)� [�3(2�3 �Q3 � 2)�23 � 6Q2(2�3 �Q3) + 2�12(2�3 � 2Q3 + 3)� 3(�23 +A23) + 12�23(�13 + 1) + 18Q2(�13 + 1) + 18(Q1 � 1)��23 + 24(Q1 � 1)Q2℄ + (2�1 +Q1)[�3�23(2�3 �Q3 � 2)� 6Q2(2�3 �Q3)� 3(�23 +A23)℄ = 0 (2:A:9b)(�12 �A12)[�(2�3 �Q3)(2�3 � 2Q3 � 3) + 3�23(2�3 �Q3 � 2) + 6Q2� (2�3 �Q3) + 3(�23 +A23)℄ + (�13 �A13)[�3Q2(2�3 � 2Q3 � 1)� 2(2�3 � 2Q3 + 3)(�2 +�23) + 6�23(�23 + 1)+ 18Q2�23 + 12Q22 + 3(A23 +�23)℄ = 0 (2:A:9
)(�12 +A12)[�(2�3 �Q3)(2�3 � 2Q3 � 3) + 3�13(2�3 �Q3 � 2)+ 6Q1(2�3 �Q3) + 3(�13 +A13)℄ + (�23 �A23)[�3Q1(2�3 � 2Q3 � 1) � 2(2�3 � 2Q3 + 3)� (�1 +�13)+ 6�13(�13 + 1) + 18Q1�13 + 12Q21 + 3(�13 +A13)℄ = 0 (2:D:9d)(�23 �A23)[(2�3 �Q3)(2�3 � 2Q3 � 3)� 3(2�3 �Q3 � 2)(�23 + 1)� 6(Q2 � 1)(2�3Q3)� 3(Q2 � 1)(2�3 � 2Q3 � 1)(2�3 � 2Q3 + 3)(2�23 + 2�2 + 3) + 6(�23 + 1)(�23 + 2) + 18(Q2 � 1)(�23 + 1)+ 12(Q2 � 1)2℄ + (2�2 +Q2)[2(2�3 �Q3)(2�3 � 2�3 � 3)� 3�23(2�3 �Q3 � 2) � 6(Q2 � 1)(2�3 �Q3)� 3(�23 +A23)℄ = 0 (2:D:9e)(�12 +A12)[�(2�3 �Q3)(2�3 � 2Q3 + 3) + 3�23(2�3 �Q3 � 2) + 6(Q2 � 1)(2�1 �Q3) + 3(�23 +A23)℄ + (2�2 +Q2)[�3�13(2�3 �Q3 � 2)� 6Q1(2�3 �Q3)� 3(�13 +A13)℄ + (�23 �A23)[�3�13(2�3 �Q3 � 2) � 6Q1(2�3 �Q3) + 2�12(2�3 � 2Q3 + 3)+ 12�13(�23 + 1) + 18Q1(�23 + 1) + 18�13(Q2 � 1)+ 24Q1(Q2 � 1) � 3(�13 +A13)℄ = 0 (2:D:9f)The null hwv at level n0�Z+ + 12 and relative 
hange �1 are obtained from those withrelative 
hange 1 by making the following substitutions: Jn ! �Jn; Gr $ �Gr and Q ! �Q.Consequently the 
onditions derived from the three-point fun
tion are those of relative 
hange1 with the additional substitution Qi! �Qi; Aij !�Aij.



71APPENDIX 2.EThe Bosoni
 Constru
tion of the ~
 =13N=2 Super
onformal ModelIn this appendix we 
onstru
t the 
omponents of the primary super�elds of the ~
 = 1=3 N =2 super
onformal system (NS, R se
tor) using a single 
 = 1 s
alar �eld. We use these operatorsto give an alternative 
al
ulation of the four-point fun
tion (2.9.8) whi
h was 
omputed in themain body of this paper. We will also illustrate some results that were derived in se
tion 2.8
on
erning the R se
tor.We 
onsider a s
alar �eld �(z) with a two-point fun
tion given by:
 0 j�(z)�(w) j 0 � = �ln(z � w) (2:E:1)We de�ne the standard energy momentum tensor T (z) = �12 : �z��z� : satisfying:T (z)T (w) = 12(z �w)4 + 2T (w)(z � w)2 + �wT (w)(z � w) + ::: (2:E:2)A vertex operator de�ned by Va(z) �: eia�(z) : has dimension �a = a22 :T (z)Va(w) = a22 Va(w)(z � w)2 + �wVa(w)z �w + ::: (2:E:3)In this system the N = 2 super
onformal algebra is realized by T (z) and, [33℄,J(z) � ip3 �z�(z); G(z) �p2=3 : eip3�(z) :; �G(z) =p2=3 : e�ip3�(z) : (2:E:4)We 
an evaluate operator produ
t expansions of vertex operators using the familiar formula:Va(z)Vb(w) = (z � w)ab : eia�(z)+ib�(w) : (2:E:5)by expanding the se
ond exponential around z = w and keeping the singular terms. Sin
e:J(z)Va(w) = ap3 Va(w)z � wwe 
an easily establish that T (z); G(z); �G(z) and J(z) satisfy the standard N = 2 super
on-formal algebra (2.5.12) with ~
 = 1=3.



72Candidates for the lowest 
omponents of the primary super�elds ��(z) with dimension 1=6and 
harge �1=3 are the vertex operators:�+(z) �: e ip3�(z) :; ��(z) =: e� ip3�(z) : (2:E:7)whi
h by (2.E.3) and (2.E.6) have the 
orre
t dimension and U(1) 
harge. We have now to �ndthe superpartners of ��. Using the relations (2.6.6) in 
omponent form we have that:G(z)��(w) =  �(w)z � w + ::: (2:E:8a)�G(z)��(w) = � �(w)z � w + ::: (2:E:8b)Applying (2.E.8a,b) to (2.E.7) we �nd +(z) = 0; � +(z) =p2=3 : e� 2ip3�(z) : �(z) =p2=3 : e 2ip3�(z) : � �(z) = 0 (2:E:9)Using then: G(z) �(w) = 0; �G(z) � �(w) = 0G(z) � �(w) = (2� +Q) ��(w)(z � w)2 + �w��(w)z �w + g�(w)z � w�G(z) �(w) = (2��Q) ��(w)(z � w)2 + �w��(w)z �w � g�(w)z � w (2:E:10)we �nd that they are satis�ed if: g+(z) = �z�+(z) and g�(z) = ��z��(z).The fa
t that one of the fermioni
 
omponents is zero and the fourth 
omponent isa des
endant of the �rst 
omponent explains the group theoreti
 result?, that the family(� = 16 ; Q = �13) de
omposes to the N = 1 family with � = 16 and half the apparent de-grees of freedom.This means, using our de�nition (2.4.8a,b) that �� are 
hiral primary operators of opposite
hirality. In fa
t, looking at (2.6.11) we 
an establish that any primary super�eld, degenerateat n0 = �1=2, is 
hiral in the sense of (2.4.8a,b) and thus 
ontains half the apparent degrees offreedom.? See Appendi
 2.C.



73Computing 
orrelation fun
tions of �+ and �� is now trivial. Using:
 0 jVa1 (z1)Va2(z2) : : : Van(zn) j 0 � = nYi<j(zij)aiajÆa1+���+an;0 (2:E:11)We 
an evaluate the di�erent 
omponents of (2.9.8). Su
h a 
orrelation is non-zero only ifPi ai = 0, otherwise IR divergen
es for
e it to vanish. Su
h a 
al
ulation has been performedfor the four-point fun
tion and as expe
ted it agrees with the result (2.9.8).Let's also illustrate the situation in the R+ se
tor of the model. We have two operatorsof dimension 124 and 
harge �16 and two operators of dimension 38 and 
harge �12. the groundstates 
an be represented by the � = 124 vertex operators:R�(z) =: e(i=2p3)�(z) : ; R+(z) =: e�(i=2p3)�(z) : (2:E:12)The operators of dimension 38 are represented by : e�(ip3=2)�(z) :. It is easy to see that it isgenerated from the Ramond va
uum by the a
tion of the � = 16 operators of the NS se
tor dueto the following OPE:: e(i=p3)�(z) :: e(i=2p3)�(w) := (z � w)1=6[: e(ip3=2)�(w) : +O(z � w)℄ (2:E:13a): e�(i=p3)�(z) :: e�(i=2p3)�(w) := (z � w)1=6[: e�(ip3=2)�(w) : +O(z � w)℄ (2:E:13b)The 2-point fun
tion,F2(z1; z2) � < R�(1)j�+1=6(z1)��1=6(z2)R+(0) >< R�(1)R+(0) > (2:E:14)
an be 
omputed the same way and agrees with the result (2.8.7) obtained through purely grouptheoreti
 means.



74CHAPTER 3Some Appli
ations of CFT to 2-d Criti
al Statisti
al Models3.1 Introdu
tionConformal Field Theory is a very promising approa
h in order to obtain an exa
t solutionto known 2-d 
riti
al statisti
al models, or to �nd wider 
lasses of models that have not beenknown before.There are a lot of CFT models that des
ribe known universality 
lasses of 
riti
al behaviorin 2-d. The unitary models with 
 < 1 are known to des
ribe the 
riti
al behavior of an in�niteseries of models introdu
ed by Andrews, Baxter and Forrester, [34℄. The �rst model in theseries des
ribes the universality 
lass of the Ising model, (
 = 12 ). The se
ond model, (
 = 710),des
ribes the tri-
riti
al Ising model (whi
h has also N=1 super
onformal invarian
e), [35℄. Thethird member, (
 = 45), des
ribes two di�erent statisti
al models. The solution of the modularinvarian
e 
onstraints shows that there are two 
onsistent subsets of operators for 
 = 45 . Oneof them des
ribes the three-state, (Z3), Potts model, [36℄, whereas the other one des
ribes the\generi
" tetra-
riti
al model, (in �eld theory language this 
orresponds to the 
riti
al point ofa �8 s
alar �eld theory). Finally the 
 = 67 model des
ribes the tri-
riti
al Potts model, [37℄.There are also other su
h examples. All the 
riti
al lines of the Askin-Teller, (A-T), model havebeen des
ribed using 
onformal �eld theory. On the 
 = 1 line there are points that 
orrespondto the �rst minimal N=2 super
onformal model (~
 = 13), [6,38℄, two de
oupled Ising models, aZ4 parafermioni
 model, [39℄ and an SU(2) WZW model with 
entral 
harge k = 1, [7,40℄. The
riti
al behavior of isotropi
 spin-s anti-ferromagneti
 
hains is des
ribed by the SU(2) WZWmodel with 
entral 
harge k = 2s, [40℄.New integrable models and universality 
lasses have been found due to CFT. A wholenew 
lass of SU(N) 
 SU(N)=SU(N) RSOS models has a 
riti
al behavior des
ribed by the
orresponding G=H CFT, [41℄.3.2 The CFT of a Free S
alar FieldIn this se
tion we will examine in some detail the CFT of a free s
alar �eld, whi
h willprove useful in the next se
tions. The theory is de�ned on the 
omplex plane, (Riemann sphere)and the target manifold will taken to be a 
ir
le of radius R, (in order to deal with a dis
reet



75spe
trum?. In 
omplex 
oordinates the free a
tion is,S = 12� Z d2z�z���z� (3:2:1)The 
lassi
al equation of motion is the 2-d wave equation,�z��z�(z; �z) = 0 (3:2:2)whi
h is solved by �(z; �z) = f1(z) + f2(�z) with f1, f2 arbitrary fun
tions. The 2-point fun
tionis, h�(z; �z)�(w; �w)i = �logjz � wj2 = �log(z � w)� log(�z � �w) (3:2:3)From now on we will talk separately about holomorphi
 and anti-holomorphi
 parts of 
orrelationfun
tions. We will put them together at the end. The holomorphi
 stress-energy tensor is givenby, T (z) = �12 : �z��z� : (3:2:4)The theory has a 
entral 
harge 
 = 1 as 
an be seen from the OPE,T (z)T (w) = 12 1(z � w)4 + 2 T (z)(z � w)2 + �wT (w)(z �w) + � � � (3:2:5)The (anti-) holomorphi
 part of � has the following Fourier expansion,�(z) = 12�0 + plog(z) +Xn6=0 ann zn (3:2:6a)��(�z) = 12�0 + �plog(�z) +Xn6=0 �ann �zn (3:2:6b)where p and �p talke the following values,(p; �p) = ( nR + 12mR; nR � 12mR) ; m; n 2 Z (3:2:7)The quantized value for the winding number, (p � �p), is due to the fa
t that sin
e � is de�nedmodulo 2�R the boundary 
ondition is �(�+2�; � ) = �(�; � )+ 2�mR. The quantized value forthe momentum, (12(p+ �p)), is due to requiring the single valuedness of eiq�? This model will be referred to as the torus model sin
e its target spa
e is a one-dimensional torus.



76As it 
an be seen from (3.2.3) the �eld � is not a good 
onformal �eld, ( its 
orrelationfun
tions grow with distan
e). Among operators that 
an be 
onstru
ted out of polynomialsin � and derivatives the only primary 
onformal �eld is �z�. This operator is a 
urrent with(�; ��) = (1; 0). It generates a U(1)L symmetry. There is also a right 
urrent, ��z� whi
hgenerates U(1)R. There are two additional Z2 symmetries,(�; ��)! (��;���) ; (�; ��)! (��; �) (3:2:8)Thus the total symmetry of the theory is O(2)L 
 O(2)R. There are other primary �elds inthe theory apart from the 
urrents. They are exponentials of �. They are the so 
alled vertexoperators, Vp(z) =: eip�(z) :. They are primary operators of dimension � = p22 sin
e they satisfy,T (z)Vp(w) = p22 Vp(w)(z � w)2 + �wVp(w)(z � w) + � � � (3:2:9)The U(1)L 
urrent J(z) = i�z� generates a U(1) Ka�
-Moody algebra,J(z)J(w) = 1(z �w)2 (3:2:10)The vertex operator Vp is a primary �eld of this U(1) algebra with U(1) 
harge p,J(z)Vp(w) = p Vp(w)(z �w) (3:2:11)Operator produ
ts of vertex operators are obtained using the well-known formula,Vp(z)Vq(w) = (z � w)pq : eip�(z)+iq�(w) : (3:2:12)and by expanding the exponential in the right hand side in powers of z � w. Using (3.2.12)
orrelation fun
tions of vertex operators are easily obtained,hVp1(z1)Vp2(z2):::VpN (zN )i =Yi<j(zi � zj)pipjÆp1+::+pN ;0 (3:2:13)Charge 
onservation for
es 
orrelation fun
tions with non-zero U(1) 
harge to vanish.We 
an 
onstru
t vertex operators with well de�ned momentum and winding number,V +m;n = p2 : 
os[p�(z) + �p�(�z)℄ : (3:2:14a)V �m;n = p2 : sin[p�(z) + �p�(�z)℄ : (3:2:14b)where p; �p are given in (3.2.7). The operators Vm;0 and V0;m are known as ele
tri
 and magneti
operators.



77The s
alar �eld theories above for di�erent 
ompa
ti�
ation radius R are related. Thereis an exa
tly marginal operator that drives a parti
ular theory to di�erent values of R. Let'sdigress a little and dis
uss marginal perturbations in 
riti
al models.Consider a set of operatorsMi whi
h are marginal, in other words primary �elds of dimension(1,1). We need marginality so that 
riti
ality and the value of the 
entral 
harge are preservedunder marginal perturbations. A perturbation generated by su
h operators 
an be written asan extra term in the a
tion, ÆS =Xi Ægi2� Z d2zMi(z; �z) (3:2:15)Correlation fun
tions of operators X are modi�ed as follows,ÆÆgi hXi = 12� Z d2zhMi(z; �z)Xi (3:2:16)Dimensions and operator produ
t 
oeÆ
ients 
hange in general under su
h perturbations. Usingthe standard formulas, h�i(z; �z)�j(w; �w)i = Æi;j(z � w)�2�i(�z � �w)�2 ��i (3:2:17)�i(z; �z)�j(w; �w) �Xk Cijk(z � w)�k��i��j(�z � �w) ��k� ��i� ��j�k(w; �w) (3:2:18)along with (3.2.16) we �nd,ÆÆgi h�j(z; �z)�j(w; �w)i = Cijj(z � w)�2�j (�z � �w)�2 ��j logjz � wj2 (3:2:19)By looking ba
k to (3.2.17) we �nd that,Æ�j = Æ ��j = �Xi CijjÆgi (3:2:20)For 
riti
ality to be preserved the dimension of the marginal operator must not 
hange under theperturbation. If there is only one marginal perturbation then from (3.2.20) we obtain Ciii = 0.If there are more than one marginal perturbations then Ciij = 0 where the indi
es refer tomarginal operators.Thus the neighborhood of a CFT 
an be parametrized by the 
ouplings gi of the marginaloperators. It has the stru
ture of a manifold. Sometimes it happens that at 
ertain pointsthere is a larger number of marginal operators. Su
h points are 
alled multi-
riti
al. At su
hpoints there are extra dire
tions that the theory 
an be deformed. There is usually an enhan
edsymmetry at su
h points that relates some of the marginal perturbations. Then the manifolddevelops an orbifold-type singularity at the multi-
riti
al point.



78Let's now return to the s
alar theory. For any R there is always a (1,1) operator in thetheory, �z���z�. It is truly marginal in the sense dis
ussed above. The perturbation it indu
es
hanges the a
tion by, ÆS = Æg2� Z d2z�z���z� (3:2:21)whi
h amounds to a 
hange in the 
ompa
ti�
ation radius by ÆR2 = ÆgR2. This is true due to(3.2.20) whi
h in this 
ase reads,ÆÆg�m;n = �(m2R2 � n2R24 ) = 12R ÆÆR�m;n (3:2:22)Another interesting 
on
ept present in the theory is duality. This is the statement that thetheory at radius R is equivalent to the theory at radius 2R . This 
an be easily seen from thepartition fun
tion, Z(R) = Tr hqL0� 124 �q �L0� 124i = j�(q)j�2Xp;�p q p22 �q �p22 (3:2:23)where �(q) is the Dedekind �-fun
tion, [42℄. It is easy to see that Z(R) = Z(2=R). Under aduality transformation, Vm;n $ Vn;m ; �z���z�$ ��z���z� (3:2:24)Correlations fun
tions and operator produ
ts are invariant under duality.Let's now look for multi
riti
al points. In order to have extra marginal operators R, (orby duality 2R), must be a multiple of p2. But in order for the marginal operators to remainmarginal under the perturbation we end up with only two possible 
andidates, the self-dualpoint R = p2, and the point R = 1p2 . They will be analyzed in the next se
tions.3.3 Lo
al SU(2) Invarian
e in the S
alar TheoryAt R = p2 the model has an enhan
ed lo
al symmetry. This point is the �xed point ofthe duality transformation. There are extra operators of dimension (1,0) that appear in thespe
trum, as it 
an be seen from (3.2.7,9). They generate an SU(2)L 
 SU(2)R Ka�
-Moodyalgebra with a 
entral 
harge k = 1. The left 
urrents are,J1 =: 
os[p2�℄ : ; J2 =: sin[p2�℄ : ; J3 = ip2�z� (3:3:1)They generate the following algebra,Ja(z)J b(w) = i�ab
 J
(w)(z � w) + 12 Æab(z � w)2 + � � � (3:3:2)



79The stress-energy tensor is of the Sugawara form,T (z) = 13 : Ja(z)Ja(z) : (3:3:3)The in�nite set of primary operators of the 
onformal algebra in this 
ase is 
ontained injust two irredu
ible representations of SU(2)L 
 SU(2)R. The 
urrents and the stress-energytensor belong to the family of the unit operator. There is only one nontrivial representationwith spin 12 . It is generated by the following SU(2)L 
 SU(2)R multiplet,�� =: e 1p2 (�i��i��) : (3:3:4)of dimension (14 ; 14). The partition fun
tion (3.2.23) 
an be written in terms of the SU(2)
hara
ters, Z(p2) = j�(q)j�2 X(m;n)2Z2 q (m+n)24 �q (m�n)24 = �0(� )�0(� ) + � 12 (� )� 12 (� ) (3:3:5)where q = e2�i� and? �0(� ) = #3(0j2� )�(� ) ; � 12 (� ) = #2(0j2� )�(� ) (3:3:6)There are nine marginal operators at this point. They 
an be 
onstru
ted out of the SU(2)
urrents as Ja �J b. But due to SU(2) invarian
e they are equivalent among themselves and inparti
ular to J3 �J3 = �z���z�. Thus there is still one marginal operator that 
hanges the valueof the radius. At this point we also have ele
tri
-magneti
 duality sin
e �z���z� and ��z���z�are related by an SU(2) transformation.3.4 The One Dimensional OrbifoldAs it was mentioned in se
tion 3.2 the torus model has a Z2 symmetry: (�; ��)! (��;���).This is also a symmetry of the target spa
e, S1. One 
ould mode-out by this symmetry, thatis 
onsider 
on�gurations with opposite values for � as equivalent. This, when applied to thetarget manifold itself gives rise to a singular manifold, the Z2 orbifold, [43℄. The singularitiesappear at the �xed points of the symmetry transformation, � = 0; �R. Now apart from the? Details about #-fun
tions 
an be found in [42℄.



80states where the �eld � is periodi
 we will have also states whi
h are periodi
 up tp a symmetrytransformation, �(� + 2�; � ) = ��(�; � ) + 2�mR ; m 2 Z (3:4:1)The mode expansion in the twisted se
tor is,�(z; �z) = �0 +Xn "an+1=2n+ 12 zn+1=2 + �an+1=2n+ 12 �zn+1=2# ; n 2 Z (3:4:2)where �0 
an take only the values 0 or �R. Thus � is double valued around the origin, z = 0,of the z-plane. In analogy with the free fermion in the Ramond se
tor we introdu
e �elds, (thetwist �elds), in the presen
e of whi
h the �eld � is double valued around the origin. There aretwo su
h twist �elds, H0 and H1 
orresponding to the two di�erent values for the zero mode of�, (�0 = 0; �R). A twist �eld at zero and another ar in�nity 
reate a bran
h 
ut on the planearound whi
h the boson is double valued.The interpretation above 
an be made more spe
i�
 in terms of 
orrelation fun
tions asfollows, hYi Oi(zi)it � hH0;1(1)QiOi(zi)H0;1(0)ihH0;1(1)H0;1(0)i (3:4:3)where Oi are operators 
onstru
ted out of the �eld � itself and the pres
ription for 
al
ulatingthe left hand side is through the use of the mode expansion (3.4.2). The 2-point fun
tion of theboson in the presen
e of twist �eld 
an be easily 
al
ulated using the mode expansion (3.4.2),h�(z; �z)�(w; �w)it = log �pz +pwpz �pw�+ 
:
: (3:4:4)We 
an use (3.2.4) and (3.4.4) to 
al
ulate the expe
tation value of the stress- energy tensorin the presen
e of the twist �elds. A short 
omputation gives,hH0;1jT (z)jH0;1ihH0;1jH0;1i = 116 1z2 (3:4:5)This implies that the dimension of the twist �eld is 116 . The U(1) 
urrent is double valuedaround the twist �eld as shown by the following OPE,�z�(z)H0;1(w) = � 0;1(w)(z �w) 12 + ::: (3:4:6)where � 0;1 is a des
endant �eld of dimension 12 + 116 . What we have here is a twisted U(1) Ka�
-Moody algebra. The global U(1) symmetry is broken and the 
harge neutrality 
ondition of the
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orrelation fun
tions is not true any more. The states fall into representations of the twistedU(1) Ka�
-Moody algebra. The twist �elds, H0;1, in parti
ular are primary, that is they are hwvsof the algebra and they generate hw irredu
ible unitary representations. The des
endant statesin su
h representations are generated by a
ting on the hwv with the 
urrent modes, a�n+1=2,n = 1; 2; :::, (see (3.4.2)). For example the operator � 0;1 in (3.4.6) is obtained by a
ting a�1=2on the state jH0;1i. The primary �elds of the 
onformal algebra have dimensions given by�n = (2n+1)216 , [7,44℄. They are des
endants of the primary �elds H0;1 in the twisted U(1) vermamodule. To see this expli
itly 
onsider the partition fun
tion of the twisted U(1) algebray,�t(z) � Tr[zL0℄ = z1=16 1Yn=1 1(1 � zn�1=2) (3:4:7)The respe
tive partition fun
tion for the 
onformal algebra is,�
(z) = 1Yn=1 1(1� zn) (3:4:8)Their ratio will give us the primary 
onformal �elds that are des
endants in the twisted U(1)algebra. �t(z)�
(z) = z1=16 1Yn=1 1 � zn1� zn�1=2 = 1Xn=0 z(2n+1)2=16 (3:4:9)whi
h proves our previous assertion. Su
h primary 
onformal �elds 
an be 
onstru
ted out ofthe the jH0;1i by the a
tion of 
ertain lowering operators of the twisted U(1) algebra. As anillustration the �rst few ones are given below.jH1i = p2a�1=2jH0i ; jH2i = 3p2[a�3=2 � 2(a�1=2)3℄jH0i (3:4:10)Thus 
orrelation fun
tions of these �elds 
an be 
omputed from the 
orrelation fun
tions of H0;1in the presen
e of a U(1) 
urrent. Something worth of noti
ing is that the dimensions of theprimary states in the twisted se
tor do not depend on the radius of the orbifold.In the untwisted se
tor one has to proje
t out the states that are not invariant under �! ��.Thus from the set of operators in (3.2.14) only the ones in (3.2.14a) survive.Correlation fun
tions of the operators (3.2.14a) 
an be easily 
omputed in the presen
e oftwo twist �elds using the operator formalism and the 2-point fun
tion (3.4.4),h NYi=1 Vpi(zi)it = NYi=1 2�p2i z�p2i =2i NYi<j �pzi +pzjpzi �pzj ��pipj (3:4:11)and the same formula holds for the anti-holomorphi
 part.y See Appendix 2.B.



82The non-trivial 
orrelation fun
tion in the orbifold model is the 4-point fun
tion of twist�elds. This has been 
al
ulated in [45,46℄. We quote here there result sin
e it will be useful inthe followingz. Let,F�1;�2(x; �x) = limz1;�z1!1 jz1j1=4hH0(z1; �z1)H�1(1)H�1+�2(x; �x)H�2(0)i (3:4:12)where �1, �2 should be added modulo 2. Proje
tive invarian
e was used to put three out of thefour points at 0; 1;1. Then,F�1;�2(x; �x) = jx(1� x)j� 112G�1;�2(x; �x) (3:4:13)where,G�1;�2(x; �x) = j#01(� )j� 23 m2ZXn22Z+�2(�1)m�1exp"i�2  � �mR + nR2 �2 � �� �mR � nR2 �2!#(3:4:14)and, x = �#3(� )#4(� )�4 (3:4:15)We 
an use the 4-point fun
tion of the twist �elds, (3.4.14) to obtain the appropriate OPEand OPE 
oeÆ
ients, [46,47℄.[H0℄
 [H0℄ = Xn;m2ZC2n;2m[V +2n;2m℄ + Xn;m2Z C2n+1;2m[V +2n+1;2m℄ (3:4:16a)[H1℄
 [H1℄ = Xn;m2ZC2n;2m[V +2n;2m℄� Xm;n2ZC2n+1;2m[V +2n+1;2m℄ (3:4:16b)[H0℄
 [H1℄ = Xm;n2ZC2n;2m+1[V +2n;2m+1℄ (3:4:16
)where, [C0;0℄2 = 1 ; [Cn;m℄2 = 2 � 8�(p2m;n+�p2m;n) (3:4:17)There is a D4 invarian
e in the theory generated by,(H0;H1; V +m;n)! (�H0;H1; (�1)nV +m;n) (3:4:18a)(H0;H1; V +m;n)! (H1;H0; (�1)mV +m;n) (3:4:18b)The invarian
e follows from the OPE, (3.4.16). All 
orrelation fun
tions must be invariant underz In fa
t all partition fun
tions and 
orrelation fun
tions of twisted and untwisted operators have been
al
ulated on any genus Riemann surfa
e, [47℄.



83the transformations above whi
h generate the dihedral group D4.The partition fun
tion of the orbifold model is the sum of the 
ontributions 
oming from theuntwisted and twisted se
tors. The part 
oming from the untwisted se
tor is half the partitionfun
tion of the 
orresponding torus model, (3.2.23), sin
e we proje
ted out half of the primaryoperators in (3.2.14). On the other hand the twisted part is independent of the radius R sin
eas we pointed out before the 
riti
al dimensions and the stru
ture of the representations of thetwisted se
tor are independent of R. The twisted part will be determined when we dis
uss themulti
riti
al point R = 1p2 .3.5 The Multi-Criti
al Point, R= 1p2In se
tion 3.2 we pointed out that the only other 
andidate in the set of torus models to bea multi
riti
al point is the model with R = 1p2 . Here we will show that this is indeed true.The model has half the radius of the SU(2) model. There is a well de�ned proje
tion inorder to get this model from the SU(2) model. This is done by proje
ting onto even momentumstates and adding extra states with half-integer winding number, (see (3.2.7)). Su
h states are
reated by the operators V +0; 12 . We would use the fa
ts above be
ause they are helpful to visualizethe 
onne
tion of this model with orbifold models.Consider the SU(2) model and introdu
e the operators �i whi
h are SU(2) elements anda
t on � as, �1��1 = �� ; �2��2 = ��+ �p2 ; �3��3 = �+ �p2 (3:5:1)They satisfy, �i�j = Æij + �ijk�k (3:5:2)The proje
tion operator that we mentioned before is P3 � 12(1 + �3��3). Out of the nine (1,1)operators of the SU(2) model only �ve survive the proje
tion P3. They are,J3 �J3 ; Ja �J b ; a; b = 1; 2 (3:5:3)The operators of the se
ond set are equivalent be
ause they are related by the U(1)L 
 U(1)Rsymmetry of the theory. On the other hand they generate perturbations whi
h are inequivalentto those generated by J3 �J3. Thus there exists a new 
ontinuous family of deformations of themodel. The model is indeed multi-
riti
al.In order to see the nature of the new dire
tion we noti
e that we 
ould have used P1 in orderto proje
t out unwanted states. This would have the e�e
t of identifying � with ��, as it isobvious from (3.5.1). So the model is in fa
t equivalent to the orbifold model at R = p2. Theoperator J3 �J3 generates perturbations that move along the line of the orbifold models.



84The aforementioned equivalen
e 
an be used to determine the twist partition fun
tion in theorbifold models as it was pointed out in the previous se
tion. That is,Zt = Z( 1p2)� 12Z(p2) = 12 j#2#3j+ j#2#4j+ j#3#4jj�j2 (3:5:4)where #i = #i(0j� ). Thus, Zorb(R) = 12Z(R) + Zt (3:5:5)There is a notion of duality for the orbifold models too. In the untwisted part of the spe
trumthe transformation is the same as in the torus model, (3.2.24). In order to see what happens inthe twisted se
tor it is easy to look at the self dual point R = p2. The twist �elds H0;1 in this
ase are equivalent to the vertex operators of the torus R = 1p2 model? V +0; 12 , V �0; 12 . Thus dualitymeans shifting ��! ��+ �p2 , �! �. The e�e
t of su
h a transformation on the twist �elds is,H0 $ 1p2(H0 +H1) ; H1 $ 1p2(H0 �H1) (3:5:6)There are no (1,1) operators in the twisted se
tor of the orbifold models. Thus the analysisof the existen
e of multi
riti
al points is the same as in the torus models.3.6 The 
 = 1 N=2 Super
onformal ModelIt was already mentioned in the previous 
hapter that there is a minimal N=2 super
onformalmodel with 
 = 1. In this se
tion we will analyze it in more detail. In fa
t we will show thatthere are two distin
t torus models with unbroken N=2 super
onformal invarian
e and twodistin
t orbifold models where N=2 super
onformal invarian
e is broken down to N=1 dueto the presen
e of the twisted se
tor. As we showed in Appendix 2.C the model, (in
ludingits twisted se
tor), is equivalent to one of the minimal models with N = 1 Super
onformalinvarian
e. In Appendix 2.E we showed that the model with unbroken N = 2 supersymmetryyis in fa
t the torus model with R = 1p3 or R = 2p3 . In this se
tion we are going to dis
uss thefull model in
luding the twisted se
tor too. We will use the formalism of N=1 supersymmetrywhi
h in this 
ase gives a more e
onomi
al way of des
ribing things, espe
ially in the twisted
ase.In most of our dis
ussion we will fo
us on the left se
tor only. At the end we will dis
ussthe 
ombination of left and right se
tors.? In fa
t after some manipulations of equation (3.4.14,15) one arrives at the power-like behavior present inthe 
orrelation fun
tions of vertex operatorsy That is the untwisted se
tors.



85In the NS se
tor of the model the dimensions of the primary N=1 super�elds are, 1, 16 and116 . The last one will 
ome from the twisted se
tor of the orbifold model.Let's start from the untwisted model.To �nd the superpartner of T (z), we have to �nd an operator with � = 32 . There are two
andidates, Vp3(z) and V�p3(z), as well as any linear 
ombination of the two, whi
h has the
orre
t dimension. For reasons that will be explained below, the 
orre
t form is:G(z) � ip3 h : eip3�(z) : � : e�ip3�(z) :i (3:6:1)Then the N = 1 super
onformal algebra 
loses 
orre
tly:G(z)G(w) = 23 1(z � w)3 + 2T (w)(z � w) (3:6:2)The primary operators in the NS se
tor are generated by primary super�elds a
ting onthe NS va
uum. A super�eld is a fun
tion in superspa
e:z �(z) = g(z) + � (z). If � is thedimension of the bosoni
 
omponent g(z), then the 
orresponding dimension for the fermioni
partner  (z) is �+ 12 . A primary super�eld operator is de�ned through the following OPE withthe super-stress-energy tensor:G(z)g(w) =  (w)(z � w) ; T (z)g(w) = �g(w)(z �w)2 + �wg(w)(z � w) (3:6:3)G(z) (w) = �wg(w)(z � w) + 2 g(w)(z �w)2 ; T (z) (w) = ��+ 12�  (w)(z � w)2 + �w (w)(z � w)The obvious 
andidate for the � = 1 primary operator is the U(1) 
urrent of the system,g1(z) � i�z�(z). It has an O.P.E. with G(z):G(z)g1(w) = �i : eip3�(w) : + : e�ip3�(w)(z � w) (3:6:4)From (3.6.3) we 
an infer that the superpartner of g1(z) is  1(z) = �i[Vp3(z) + V�p3(z)℄.It is an easy exer
ise to 
he
k that the rest of the relations (3.6.3) are satis�ed.z z and � are the 
oordinates in superspa
e denoted 
olle
tively with z.



86G(z) and  1(z) are the two super
harges of the 
orresponding N = 2 minimal theory whi
h,along with T (z) and g1(z), 
omplete the N = 2 super-stress-energy tensor multiplet, [6,33℄. Asfar as the other representations are 
on
erned they 
an be built from the N=1 representationswithout adding new �elds in the super-multiplet. As it was shown in Appendix 2.E, for N=2representations degenerate at level 1/2 one of the fermioni
 
omponents vanishes identi
allywhile the se
ond bosoni
 
omponent is the derivative of the �rst one. Thus the N=2 super-multiplets 
ontain the same number of degrees of freedom as the N=1 super-multiplets. Usingthe remarks above the N=2 stru
ture 
an be easily re
onstru
ted from the N=1 stru
ture.There are two � = 16 operators with opposite U(1) 
harge: g�16 (z) � e� ip3�(z) . We 
an
al
ulate the superpartners of g�16 (z):  �1=6 = � ip3 : e� 2ip3�(z) . Thus apart from the � = 116operator, the above exhaust the set of primary operators in the NS se
tor. The identi�
ationsabove imply the following operator algebra:[1℄
 [1℄ = [0℄ ; [1℄
 �16� = �16� (3:6:5a)�16�
 �16� = [0℄� [1℄� �16 + 12� (3:6:5b)whi
h is in a

ord with the known \fusion rules," [48℄.In the Ramond se
tor the two ground states are generated from the NS va
uum by the
orresponding spin �eld operators, �(z) and ��(z) of dimension � = 124 , G0j �i =j ��i:One of them, j ��i is degenerate at level zero and thus de
ouples. Correspondingly,G(z)�(w) � O[(z � w) 12 ℄. �(z) 
an be also represented as a vertex operator: ��(z) =:e� i2p3�(z). We 
an expli
itly 
ompute:G(z)��(w) = � ip3 : e�i 52p3�(w) :(z � w) 12 (3:6:6)As expe
ted, ��(z) 
reate 
uts in the 
omplex plane around whi
h the fermioni
 
omponentsof the super�elds are double valued. The Ramond primary operators are generated from theRamond ground state by the a
tion of super�eld operators.The operator of dimension � = 38 in the R-se
tor 
an be represented by g�38 (z) = : e�ip32 �(z):.It is generated by the super�eld operator � 16 (z) a
ting on theR-va
uum. We 
an expli
itly verifythe following O.P.E.:



87�0 + 32� 
 � 124�+ = � 124 + 1�+ ;�16�+ 
 � 124�+ = �38�+ ;�16 + 12�+ 
 � 124�+ = �38�� ; �0 + 32� 
 �38�� = �38�+�16�+ 
 � 124�� = � 124���16 + 12�+ 
 � 124�� = � 124 + 1�+ (3:6:7)By repla
ing +$ �, (12) remains valid.The operators 
onstru
ted so far 
orrespond to all the operators of the NS and R se
torsof the 
orresponding N = 2 model.At this point we should be more 
areful 
on
erning putting together the left and right partsin order to have a well de�ned model. We 
an rewrite the partition fun
tion (3.2.23) using theN=2 
hara
ters derived in se
tion 2.3.Z( 1p3) = 12 hj�NS0+ j2 + j�NS0� j2 + 2j�NS16+ j2 + 2j�NS16� j2 + 4j�R38+j2 + 2j�R124+j2 + 2j�R124�j2i (3:6:8)The expli
it expression for the 
hara
ters is,�NS0� (� ) = 1�(� )Xn2Z(�1)nq 3n22 (3:6:9a)�NS16� (� ) = 1�(� )Xn2Z(�1)nq 32 (n+ 13 )2 (3:6:9b)�R38�(� ) = 12�(� )Xn2Z(�1)nq 32 (n+ 12 )2 (3:6:9
)�R124�(� ) = 1�(� )Xn2Z(�1)nq 32 (n+ 16 )2 (3:6:9d)where as usual q = e2�i� ?.? In fa
t �R38� = 0 and this is the reason that it does not appear in (3.6.8).



88The 
hara
ters with a minus subs
ript in (3.6.9) are de�ned with an insertion of the fermionnumber operator, (�1)F in the tra
e. Thus (3.6.8) implies that all the operators in the theoryhave even fermion number. Using the 
hara
ter de
omposition formulas from Appendix 2.C we
an write the partition fun
tion using N=1 
hara
ters. The model 
ontains the following N=1representations, (0; 0)NS , (16 , 16)NS, (1,1)NS , ( 124 , 124)R, (38 ,38)R of spin zero and (0; 1)NS , (1; 0)NSof spin �1. The N=2 supersymmetry is unbroken.There is another torus model with unbroken N=2 super
onformal invarian
e at R = 2p3 .The lo
al operator analysis is the same as above. The only di�eren
e is in the way left and rightpart are sewn together. In fa
t it is easy to show that Z( 2p3 ) 
an be written as in (3.6.8) withthe only di�eren
e that the �R124� term 
omes with a minus sign in front. This has a 
onsequen
ethat the Ramond ground state ( 124 , 124) is proje
ted outy.Let's now dis
uss super
onformal invarian
e in the orbifold models. As anti
ipated the twomodels with N=1 unbroken invarian
e haveR = 1p3 and R = 2p3 . We will start from the R = 1p3model. As in the torus 
ase the other model will be obtained by swit
hing the appropriate signin its partition fun
tion, (see (3.5.5)). In Appendix 2.C it was shown that the single operator ofthe twisted se
tor of the ~
 = 13 , N = 2 model with � = 116 de
omposes into the � = 116 operatorin the NS se
tor of the N = 1 system. Sin
e the operator in the T -se
tor twists one of the twobosoni
 
omponents of the N = 2 super�elds, it is natural to expe
t that a 
andidate for the� = 116 operator is the \twist" �eld H0;1(z), whi
h twists the s
alar �eld �(z).Thus we identify the dimension 116 operator in the NS se
tor with one of the twist �elds, H0.Using (3.4.16) one 
an as
ertain that from the primary operators in the NS se
tor, only g1(z)and G(z) have vanishing three-point fun
tions with two twist �elds. The three-point fun
tionof three twist �elds is automati
ally zero due to the D4 symmetry of the orbifold model.Thus we have the following O.P.E.z:� 116� 
 � 116� = [0℄ � �1 + 12� � �16� � �16 + 12� (3:6:10)The superpartner of H0 is given by:G(z)H0(w) = � 0(w)(z � w) ; ��0 = 116 + 12 (3:6:11)Let's now investigate the operator produ
t [1℄ 
 [ 116℄. Due to twist 
onservation, the onlyfamilies that are allowed to appear are [ 116 ℄ and [ 116 + 12 ℄.y Part of the representation it generates is still presentz We use N=1 representations.



89Sin
e the expe
tation value of g1(z) in the presen
e of two twist �elds is zero, [ 116 ℄ isnot present in the operator produ
t. To investigate the appearan
e of [ 116 + 12 ℄ we must �ndh0jH0(1)i�z�� 0(0)j0i: To evaluate this three-point fun
tion, we �rst 
ompute:F (z;w) � h0 j H0(1)i�z�(z)G(w)H0(0) j 0ih0 j H0(1)H0(0) j 0i = ip34 z 12(z � w) � w (3:6:12)Now, if we let w! 0, we 
an �nd h0 j H0(1)i�z�(z)� 0(0) j 0i as the residue of the 1w pole.This gives: h0 j H0(1)i�z�(z)� 0(0) j 0ih0 j H0(1)H0(0) ji = �ip34 z� 32 6= 0 (3:6:13)Consequently [1℄ 
 [ 116 ℄ = [ 116+ 12 ℄. The only remaining O.P.E. to 
ompute in the NS se
toris [16 ℄ 
 [ 116℄. Again, 
onservation of twist implies that only the families [ 116 ℄ and [ 116 + 12 ℄ 
anappear in the operator produ
t. Doing an analogous 
omputation as above we �nd indeed:�16� 
 � 116� = � 116� � � 116 + 12� (3:6:14)in a

ord with [48℄. Now the pi
ture of the NS se
tor is 
omplete.In the Ramond se
tor the twisted states will be generate by the a
tion of H0 on the Ramondva
uum. Indeed using (3.4.16) and the expli
it form of the Ramond va
uum it is easy to �ndthat the dimension 116 oparator in the Ramond se
tor is in fa
t H1 whereas the dimension 916operator is � 1. This is also supported by equation (2.C.5). Using the identi�
ations above and(3.4.16) we 
an verify the fusion rules whi
h are already known, [48℄,� 116�R 
 � 116�R = [0℄NS � �16�NS ; � 116�R 
 �38�R = � 116�NS (3:6:15a)� 916�R 
 � 116�R = [1℄NS � �16�NS ; � 916�R 
 � 916�R = [0℄NS � �16�NS (3:6:15b)� 116�R 
 � 124�R = � 116�NS ; � 916�R 
 � 124�R = � 116�NS (3:6:15
)What remains to be done is the des
ription of both left and right se
tors of the model. This
an be done by looking at its partition fun
tion. As it was already shown in se
tion 3.4 the



90partition fun
tion of the model 
an be written as,Zorb( 1p3) = 12Z( 1p3) + Zt (3:6:16)where an expli
it expression for Zt was given in (3.5.4) and the torus part was already shown tobe written in terms of the N=2 
hara
ters. What remains to show is how to write the twistedpart in terms of the N=2 twisted or N=1 
hara
ters. In terms of the N=1 
hara
ters we 
aneasily verify that, Zt = 12 j�NS0+ � �NS1+ j2 + j�NS116+j2 + j�NS116�j2 (3:6:17)where, �NS0� � �NS1� = 1�(� )Xn2Z(�1)nqn2 (3:6:18a)�NS116� = 1�(� )Xn2Z(�1)nq(n+ 14 )2 (3:6:18b)Thus the extra representations, ( 116 , 116)NS, ( 116 , 116)R, ( 916 , 916)R appear whi
h have all spinzero.3.7 The Bosoni
 Representation of the Criti
al Ising ModelIn this se
tion we are going to dis
uss a 
ertain bosonization of the 
riti
al Ising model, [8℄.We in
lude this in the present 
hapter for reasons that will be
ome obvious in the next se
tion.The 
riti
al Ising model is the �rst member of the 
onformal dis
reet series with 
 = 12 . It isthe 
ontinuum limit of a massless free Majorana fermion. The operator 
ontent is, (0; 0), �12 ; 12�,� 116 ; 116�. The operator of dimension 12 is the fermion whereas the operator of dimension 116 isthe spin �eld around whi
h the fermion is double-valued.One might wonder how 
an, a free s
alar �eld with 
 = 1 be equivalent to an Ising fermion(
 = 12 )? The answer is that the stress-energy tensor of the bosoni
 model does not have thestandard quadrati
 form. In parti
ular, as we shall see, it is far from obvious that the s
alar�eld is free.The 
onstru
tion that we are going to des
ribe is at the operator level. We will 
onsider as
alar �eld with radius R = 1. We will assume that the two point fun
tion is the free one:?h0j�(z)�(w)j0i = � ln(z � w): (3:7:1)Consider the most general operator of dimension two. It is a linear 
ombination of : �z��z� :; �2z�; V�2(z); �z�V�p2(z): Thus we will 
onsider a general linear 
ombination of the operators? This is indeed an assumption sin
e the stress-energy tensor is not the free one.



91above. If we impose (1.1.21), then there are two distin
t possibilities: The �rst is T (z) = �12 :�z��z� : +��2z�, whi
h has been known already from the work of ref. [49℄. The se
ond is:T (z) = �14 : �z��z� : +�V2(z) + ��V�2(z): (3:7:2)with � �� = 116 , and �; �� are otherwise arbitrary. In this 
ase a dire
t 
omputation shows that
 = 12 ! From now on we will fo
us on the se
ond 
ase.The value of the 
entral 
harge hints that somehow the theory des
ribed by (3.7.2) is theIsing model. Let's investigate, what are the primary operators in this theory.Re
all that a primary operator �(z), of dimension �, satis�es the following O.P.E.T (z)�(w) = � �(w)(z � w)2 + �w�(w)(z � w) + � � � (3:7:3)It is easy to show that derivatives of � 
annot be primary operators. But what about vertexoperators? Sin
e Va
Vb ' Va+b, only V�1 have a 
han
e of being primary. In fa
t, by imposing(4), we 
an dedu
e that  (z) = kV1(z) + �kV�1(z) is primary if and only if 4��k = k, and itsdimension is � = 12 . The dimension suggests that this operator represents the fermion of theIsing model. There is another operator that we have to look for, the spin �eld (order anddisorder operator), with � = 116 . In the standard free s
alar theory there is an operator, (infa
t two, H0;1(z)); of dimension 116 , the \twist �elds" of the boson. We need though to 
omputeagain the dimension of these operators using the new form of the stress-energy tensor, (3.7.2).A straightforward 
al
ulation gives, �H0 = 132 + �+��16 , �H1 = 132 � �+��16 . Thus in order for oneof H0;1 to have the 
orre
t dimension, � + �� = 12 , or � + �� = �12 whi
h �xes them 
ompletely,� = �� = 14 or � = �� = �14 . We will fo
us on the �rst possibility, and we will 
omment on these
ond later on. Thus �H0 = 116 and �H1 = 0. The operator H1 seems to de
ouple.Then,T (z) = �14 : �z��z� : +14(V2(z) + V�2(z)) � �14 : �z��z� : +12 : 
os(2�) : (3:7:4a) (z) = 1p2(V1(z) + V�1(z)) � p2 : 
os� : ; h0j (z) (w)j0i = 1z � w (3:7:4b)The next step is to verify the operator algebra of the Ising model:�12� 
 �12� = [0℄; �12�
 � 116� = � 116� ; � 116�
 � 116� = [0℄� �12� (3:7:5)That this is indeed true 
an be seen from (3.4.16). For example,h0jH0(z1) (z2)H0(z3)j0i = 1p2z� 1813 � z13z12z23 � 12 (3:7:6)The dihedral symmetry, (D4), of the bosoni
 system translates into the Z2 symmetry of the



92Ising model and its dual �Z2.Next we 
al
ulate the 4-point fun
tions in the bosoni
 theory. The following two are verysimple to 
al
ulate: h0j (z1) (z2) (z3) (z4)j0i = 1z14z23�x2 � x+ 1x � (3:7:7)
0j (z1) (z2)H0(z3)H0(z4)j0�h0jH0(z3)H0(z4)j0i = 12 z34z14z23 x� 2x p1 � x (3:7:8)where, x = z12z34z13z24 (3:7:9)The 
orrelation fun
tion of four twist �elds is the most non-trivial test. We 
an use equation(3.4.14). After some tedious algebra we 
an express the formula (3.4.14) for R = 1 expli
itly interms of x. The result is,h0jH0(z1; �z1)H0(z2; �z2)H0(z3; �z3)H0(z4; �z4)j0rangle ==12 jz12z34j� 14 jx(1� x)j� 14G(x; �x) (3:7:10)G(x; �x) =q1 �pxq1 �p�x+q1 +pxq1 +p�x(3.7.7), (3.7.8) and (3.7.10) 
oin
ide with the 
orrelation fun
tions of the Ising model.As a �nal 
he
k we 
ompute the partition fun
tion of the bosoni
 theory on a strip withperiodi
 boundary 
onditions (that is, on a torus).The method relies on 
omputing hT i and integrating with respe
t to the modulus of thetorus, � , to obtain the partition fun
tion.In order to 
ompute hT i in the bosoni
 theory we need the propagator for the s
alar �eldon the torus. We will employ the results on 
hiral bosonization, [50℄. The path integral overthe torus 
ontains also a sum over the instanton se
tors. Thus we split the s
alar �eld � into a
lassi
al, (instanton) part and a quantum part, � = �
l + �qu. Thenh0j�qu(z)�qu(w)j0i = � lnE(z;w); E(z;w) = #1(z;wj� )#01(0j� ) ; (3:7:11)where #1 is the standard #-fun
tion on the torus, [42℄.hT (z)i = �14 limw!z�h�z�(z)�w�(w)i + 1(z � w)2� (3:7:12)sin
e the expe
tation value of V�2(z) vanishes. A straightforward 
omputation gives hT (z)i = e�4 ,



93where e� = �4�i ��� ln �#�+1(0j� )�(� ) � ; � = 1; 2; 3 (3:7:13)and � labels the periodi
ity properties of the fermion operator and �(� ) is the Dedekind �-fun
tion. (In the bosoni
 theory, this is generated by an appropriate sum over instanton se
tors,[50℄.) � = 1; 2; 3 
orresponds to (P;AP ), (AP;AP ), (AP;P ) boundary 
onditions.Integrating with respe
t to � we obtainZ� / ���+1(0j� )�(� ) � 12 (3:7:14)Thus the partition fun
tion of the bosoni
 theory is given by the sum over the various se
tors,Ztot = 3X�=1Z�(� )�Z�(�� ) (3:7:15)whi
h is equal to the partition fun
tion of the Ising model?:ZIsing = j�0j2 + j� 12 j2 + j� 116 j2 (3:7:16)where �0; � 12 ; � 116 are the appropriate 
hara
ters of the Virasoro algebra for 
 = 12 .We mentioned previously that there is another set of values for �, �� in (3.7.2) so that wehave a 
onsistent spe
trum. The stress energy tensor in this 
ase isy,T�(z) = �14 : �z��z� : �12 : 
os(2�) : (3:7:17)In this 
ase the primary operator of dimension 12 is, �(z) = ip2 (V1(z)� V�1(z)) (3:7:18)The twist �eld H0 has dimension zero under T� whereas the dimension of H1 is now 116 . Com-bining this with the fa
t that, T+(z) + T�(z) = �12 : �z��z� : (3:7:19)we realize that in fa
t what we have done is we split the 
=1 orbifold model at R = 1 in a dire
tprodu
t of two Ising models. Till now it was known that this is true, and we 
ould 
onstru
t the? In Appendix 3.A we will show that this equivalen
e persists on an arbitrary 
ompa
t Riemann surfa
e.y We will use T+(z) to denote the stress energy tensor in (3.7.4a)



94fermions asl vertex operators, as in (3.7.4b,18), and the \spin" �elds that twisted both fermions,� = p2 : 
os �12(�� ��)� (3:7:20)of dimension 18 . Obviously � is the produ
t of the spin �elds of the two independent Isingmodels. But we 
ould not tell what the individual spin �elds looked like. The 
onstru
tionabove in fa
t answers this question. From (3.4.14) we learn,H0(z)H1(w) = �(w) + � � � (3:7:21)Another non-trivial 
he
k that points in the same dire
tion is the fa
t that the 4-point fun
tion oftwo H0 and two H1 
al
ulated from (3.4.14) in fa
t fa
torizesz in a produ
t of 2-point fun
tions,h0jH0(z1; �z1)H0(z2; �z2)H1(z3; �z3)H1(z4; �z4)j0iR=1 = jz12j� 14 jz34j� 14 (3:7:22)Finally the partition fun
tion of the orbifold model at R = 1 is easily shown to be the square ofthe partition fun
tion of the Ising model,�ZIsing�2 = 12Z(1) + Zt (3:7:23)We 
an see the 
onstru
tion above in another way using the vertex operator representation ofKa�
-Moody algebras and the 
onstru
tion of the Ising model as a G/H CFT. This 
onstru
tionseems to be generalized to all G/H CFTs and will be dis
ussed in Appendix 2.B.3.8 The Criti
al Ashkin-Teller Model and CFTIn this se
tion we are going to dis
uss the 
riti
al stru
ture of the Ashkin-Teller, (A-T), modeland des
ribe the usefulness of the previous se
tions in understanding this 
riti
al behavior.The A-T model is de�ned as the system of two Ising spins 
oupled with a 4-spin intera
tion,[51℄. The Hamiltonian is, H = �X<ij> [g2(sisj + titj) + g4(sisjtitj)℄ (3:8:1)where the spins take the values �1 and are positioned on the sites of a 2-d latti
e and theintera
tion is a nearest-neighbor intera
tion. When g4 = 0 then the model is equivalent tode
oupled Ising models.z After some tedious 
al
ulation



95The most ri
h phase diagram is obtained in the transfer matrix approa
h, [52℄. This involvesthe highly anisotropi
 hamiltonian latti
e. In this approa
h we obtain the A-T quantum 
hainwith a quantum Hamiltonian,Ĥ = � 12(1 + �) NXi=1 h(�i + �yi + ��2i ) + �(�i�yi+1 + �yi �i+1 + ��2i�2i+1)i (3:8:2)where the 
hain has N sites, � is a 
oupling 
onstant, � plays the role of the inverse temperatureand � = 0BBBB�1 0 0 00 i 0 00 0 �1 00 0 0 �i1CCCCA � = 0BBBB� 0 0 0 11 0 0 00 1 0 00 0 1 01CCCCA (3:8:3)The generi
 symmetry of the model is D4. It is generated by the transformations,~�mi =Mmn�ni ; m; n = 1; 2; 3 (3:8:4)where the eight matri
es Mmn are given by �l and �lC,�l =0B� e i�l2 0 00 e 2i�l2 00 0 e 3i�l2 1CA ; l = 0; 1; 2; 3 ; C = 0B� 0 0 10 1 01 0 01CA (3:8:5)There are eight di�erent spe
tra of the quantum hamiltonian (3.8.2) generated by boundary
onditions related to the various elements of the symmetry group D4. For most of our dis
ussionwe will fo
us on periodi
 boundary 
onditions.The phase diagram of the A-T quantum 
hain is knownx, [52℄. There a 
ontinuous line of
riti
al points with 
 = 1 and 
ontinuously varying 
riti
al exponents, � = 1, �1 < � � 1.This line terminates in a Z4 model and then splits into two lines of 
riti
al points belongingto the Ising universality 
lass. At the other end of the 
 = 1 line whi
h terminates in theKostelritz-Thouless point, start two lines that de�ne a \
riti
al fan", that is a whole area of
riti
ality. There is a paramagneti
 region, (I), whi
h is disordered and the expe
tation valuesof s+ t and st are zero. Region III is fully ordered and s+ t has an expe
tation value. RegionII is partially ordered. Here s+ t has zero expe
tation value unlike the expe
tation value of stwhi
h is non-zero. There is an anti-ferromagneti
 frozen region, (IV), in whi
h the system 
anbe divided in two sub-latti
es that behave di�erently. In one of them s + t and its 
onjugateoperator have eigenvalues respe
tively 1 and -1. In the other both eigenvalues are -1. In thisregion the expe
tation value of s+ t vanishes. For most of the rest we will fo
us on the 
=1 lineas well as the two Ising lines.x For 
onvenien
e and to �x notation it is presented in �g 17.



96On the 
=1 
riti
al line the model redu
es to a free gaussian model with Hamiltonian, [53℄,H = �2 X<ij>(�i � �j)2 (3:8:6)where �i is a periodi
 s
alar variable with period 2�. The 
ontinuum a
tion is,S = �2 Z d�d��(�2� + �2�)� (3:8:7)where � is given in terms of the 
oupling 
onstant{,� = 2� (1 � 1�ar

os(�)) (3:8:8)If we res
ale the �eld � so that the 2-point fun
tion is given by (3.2.3) then � is periodi
 modulo2�p�� . Thus the radius of the torus is given by,R(�) = �2(1 � 1�ar

os(�))�� 12 (3:8:9)It varies between the limits, 1p2 � R < 1. It is known that at the point � = 0 the two Isingspins de
ouple. Then the partition fun
tion has to be the square of the Ising partition fun
tion.This in fa
t along with modular invarian
e �xes the partition fun
tion of the A-T model to bethe orbifold partition fun
tion (3.5.5).Thus the whole dis
ussion of the previous se
tions applies to this 
riti
al line.The line � 1p2 � � � 1 is a 
riti
al line 
orresponding to 1p2 � R � p2. It 
ontains thefollowing well known points. The 4-state Potts model at � = 1, the Z4 parafermioni
 model at� = 1p2 , two de
oupled Ising models at � = 0, an N=1 super
onformal model� at � = �qp2�12p2 ,and the Kosterlitz-Thouless model at � = � 1p2 .This line 
ontinues into the 
riti
al fan, �1 < � < � 1p2 , or p2 < R < 1. In thereappear the dual models of the above with one ex
eption. There is the N=1 super
onformalmodel at � = �p32 , two de
oupled Ising models at � = �qp2+12p2 , the Z4 parafermioni
 modelat � = �p3+12p2 , the 4-state Potts model at � = �r12 + 12qp2+12p2 , and a N=1 super
onformalmodel�� at � = �12q2p2+p3+1p2 . At the end of this line, � = �1 the gaussian analysis breaksdown. There is a �rst-order phase transition there. This model 
ould be des
ribed as an \anti-ferromagneti
" 4-state Potts model.{ This is known by maping the A-T model to the six-vertex model, [54℄.� That is the twisted N=2 model.�� This is distin
t from the previous two.



97For the whole 
riti
al line above we know, (thanks to the previous se
tions), the exa
tpartition fun
tion, the spe
trum and the 
orrelation fun
tions. In parti
ular we showed thatthere are operators 
oming from the twisted se
tor of the s
alar theory with 
riti
al indi
eswhi
h are 
onstant along the line. The most relevant one 
orresponds to the � 116 ; 116� family
oresponding to the leading magneti
 exponent xH = 18 . Our analysis predi
ts the existen
eand value of the se
ond magneti
 exponent ~xH = 98 whi
h 
orresponds to the presen
e of thefamily � 916 ; 916� in the spe
trum.It remains to des
ribe the two Ising lines in terms of the s
alar theory. In fa
t the renor-malization group analysis of [52℄ derived the form of the Hamiltonian for those lines. Up tonormalization it 
oin
ides with the stress-energy tensors, T� we presented in se
tion 3.7. Thusthe \bosonization" des
ribed in 3.7 in fa
t gives the 
orre
t mapping between the bosoni
 vari-ables of the A-T model and the nature of the Ising 
riti
al lines.The 
riti
al points of the A-T model have phenomenologi
al importan
e sin
e they seem todes
ribe the super
uid-to-normal transition of He4 �lms, [55℄ and possibly the 
riti
al behaviorin planar magnets, [56℄ and liquid 
rystals, [57℄.3.9 Con
lusions and Prospe
tsIn this 
hapter we analyzed in detail CFTs with 
 = 1. We subsequently used them toanalyze the 
riti
al behavior of the quantum A-T 
hain. We were able to explain all important
riti
al lines and 
al
ulate the 
riti
al partition fun
tions, the spe
trum and the 
orrelationfun
tions. All the 
al
ulations above are exa
t.There is a potentially 
omplete 
lassi�
ation of 
 = 1 CFTs, [58℄. A large part of themappear in the 
riti
al A-T model. One of 
ourse would like to solve more 
ompli
ated 
riti
alsystems and to �nd new ones. Su
h hopes seem well founded in the 
ontext of CFT. As itwas already mentioned in the introdu
tion, there are new statisti
al models that were foundby knowing their 
riti
al points. On the other hand their 
riti
al points were found using CFTte
hniques. The models in question are the G/H RSOS models whi
h turn out to be integrableeven outside the 
riti
al regime. In Appendix 3.B we point out that su
h 
riti
al points willappear in multi-
omponent s
alar models whi
h are not in general free.It is 
on
eivable that a lot of progress will be a
hieved in the 
oming years along these lines.



98APPENDIX 3.AThe Bosonized Ising Model at Higher GenusIn this appendix we prove the equivalen
e of the bosoni
 and fermioni
 versions of the Isingmodel on an arbitrary 
ompa
t Riemann surfa
e.We will show that the two theories possess the same partition fun
tion on any 
ompa
tRiemann surfa
e. To a
hieve that we will show that the expe
tation value of the stress-energytensor is the same in both theories and thus their partition fun
tion are the same up to trivial
onstant.?Let's �rst 
ompute hT i in the fermioni
 
ase. The two-point fun
tion of the fermion on a
ompa
t Riemann surfa
e of genus g � 2 is given by the Szego kernelyh0j	(z)	(w)j0i = � �ab � (R zw �)� �ab � (0) � 1E(z;w) � P habi (z;w) (3:A:1)where the pair (a; b), (a; b are g-dimensional ve
tors whose 
omponents are either 0 or 12),spe
i�es an arbitrary even spin-stru
ture on the surfa
e, E(z;w) is the prime form, and �i,i = 1; 2; :::; g, is a basis of holomorphi
 one-forms.hT (z)iF = �12 limw!z�h	(z)�w	(w)i � 1(z �w)2� (3:A:2)The Szego kernel satis�es the following identity, [59℄,hP habi (z;w)i2 = !(z;w) + gXi;j=1Aij�i(z)�j(w) (3:A:3)Aij � �2 ln � �ab ��zi�zj [0℄; !(z;w) = �2�z�w lnE(z;w): (3:A:4)We need also the short distan
e expansion of the prime form.E(z;w) = (z � w)� (z � w)312 S(w) +O[(z � w)5℄ (3:A:5)where S is the proje
tive 
onne
tion, [59℄. Using (3.A.3), (3.A.4), (3.A.5) we 
an easily show? We will only dis
uss even spin stru
tures where there are no zero modes for the fermion.y For notation and more details see ref. [59℄.



99that hT (z)iF = 14 gXi;j=1Aij�i(z)�j(z)� S(z)24 (3:A:6)Note that hT (z)iF depends on z, sin
e translation invarian
e is not a symmetry of the
orrelation fun
tions for g > 1.The 
orresponding 
al
ulation in the bosoni
 model pro
eeds along the same lines.hT (z)iB = �14 limw!z�h�z�(z)�w�(w)i+ 1(z � w)2� (3:A:7)�(z) � gXi=1 pi zZPo �i + �qu(z)where the winding number pi takes the appropriate values, pi = 2m + ai; m 2 Z, P0 is anarbitrary point on the surfa
e andh�z�qu(z)�w�qu(w)i = ��z�wlnE(z;w) = �!(z;w) (3:A:8)The sum over instanton se
tors is weighed by the holomorphi
 instanton a
tion, Sm � 12(m +a)i
ij(m + a)j + 2�ibi(m + a)i, where 
ij is the period matrix of the surfa
e. The instantonsum 
ontributes a fa
tor �2 ��
ij ln � �ab � (0)�i(z)�i(z) whi
h by the heat equation satis�ed bythe �-fun
tions is equal to �Pgi;j=1Aij�i(z)�j(z). Thus hT (z)iF = hT (z)iB whi
h 
ompletesthe proof.



100APPENDIX 3.BThe Ising Bosonization as a G/H Constru
tionIn this appendix we will show that the bosonized version of the Ising model presented inse
tion 3.7 
an be understood through its G/H 
onstru
tion.Let's 
onsider the tensor produ
t of two SU(2) Ka�
-Moody algebras at level one. The
urrents satisfy the following algebra,Jai (z)J bi (w) = i�ab
 J
i (w)(z � w) + 12 Æab(z � w)2 + � � � ; i = 1; 2 (3:B:1)and the two algebras for i = 1; 2 
ommute. The stress-energy tensor of this theory is of theSugawara form and the 
entral 
harge is 
 = 2,TG(z) = 13 2Xi=1; 3Xa=1 : Jai (z)Jai (z) : (3:B:2)Let's 
onsider the diagonal SU(2) subalgebra, generated by Ja1 + Ja2 . This is an SU(2) Ka�
-Moody algebra at level two. There is an asso
iated stress-energy tensor with it with 
entral
harge 
 = 32 , TH(z) = 14 3Xa=1 : (Ja1 (z) + Ja2 (z))(Ja1 (z) + Ja2 (z)) : (3:B:3)If we form the di�eren
e TG(z)�TH(z) we 
an show that it is a stress-energy tensor with 
 = 12and that it 
ommutes with TH . Thus we 
an write SU(2)k=1
SU(2)k=1 = SU(2)k=2
MG=H ,[60℄. This expresses the fa
t that the initial CFT 
an be written as a dire
t produ
t of twoother CFTs. The pie
e MG=H generated by TG=H = TG � TH is the 
riti
al Ising model as it issuggested by the value of the 
entral 
harge.We will now use the fa
t that the SU(2) Ka�
-Moody algebra at level one 
an be 
onstru
tedout of free boson of radius R = p2?. We will need two su
h bosons, �1 and �2 in order to makethe produ
t. We normalize as usualy,h0j�i(z)�j(w)j0i = �Æijlog(z �w) (3:B:44)? As it was shown in se
tion 3.3.y In this appendix we will deal only with holomorphi
 aspe
ts



101Then the SU(2) 
 SU(2) 
urrents arez,J3i (z) = ip2�z�i(z) ; J�i (z) � 1p2 �J1i (z)� iJ2i (z)� = 1p2e�ip2�i(z) (3:B:5)The Sugawara stress-energy tensor is just the sum of the stress-energy tensors of the two bosons,TG(z) = �12�z�1�z�1 � 12�z�2�z�2 (3:B:6)The 
urrents of the diagonal subalgebra 
an be written in terms of the bosons,J3H = ip2(�z�1 + �z�2) ; J�H = 1p2 he�ip2�1 + e�ip2�2i (3:B:7)Now we 
an use 
an use (3.B.3) in order to 
al
ulate the stress-energy tensor for the subalgebra.The result is,TH(z) = �18(�z�1 + �z�2)2 � 14 [(�z�1)2 + (�z�2)2℄ + 14 heip2(�1��2) + e�ip2(�1��2)i (3:B:8)We will use another basis for the bosons in su
h a way that the formulas be
ome more trans-parent. De�nex, �1 = 1p2(�1 + �2) ; �2 = 1p2(�1 � �2) (3:B:9)The 2-point fun
tions are still diagonal,h0j�i(z)�j(w)j0i = �Æijlog(z � w) (3:B:10)In this basis, TH(z) be
omes,TH(z) = �12(�z�1)2 � 14(�z�2)2 + 14 �e2i�2 + e�2i�2� = �12(�z�1)2 + T+ (3:B:11)and, TG=H(z) � TG(z)� TH(z) = �14(�z�2)2 � 14 �e2i�2 + e�2i�2� = T� (3:B:12)whi
h is exa
tly the expression we used for the Ising model in se
tion 3.7. It is instru
tive towrite also the SU(2)k=2 
urrents in the new basis{ ,J3H = i�z�1 ; J�H = 1p2e�i�1 �ei�2 + e�i�2� = e�i�1 + (3:B:13)It is known that the level two SU(2) algebra 
an be 
onstru
ted out of three free fermions. We
an 
ombine two of them to make a boson. Then (3.B.13) and (3.B.11) is written in terms ofz We will omit normal ordering symbols. All operators should be taken to be normal ordered.x The radius of the new bosons be
omes now R = 1.{ The notations, T�,  � are the same as in se
tion 3.7.



102the boson �1 and the fermion in its bosonized form in terms of �2. The same remarks aply inde
omposing the SU(2)1 
 SU(2)1 representations into representations of SU(2)2 
 Ising.The 
onstru
tion above suggests that this 
ould be done for any pair (G,H) by startingfrom level one algebras that have a bosoni
 form whi
h is well understood�. We will presentan example by 
onstru
ting the level N SU(2) algebra and thus the asso
iated ZN parafermiontheory, [61℄.The level N SU(2) algebra will be 
onstru
ted as the diagonal subgroup of the produ
t ofN level one SU(2) algebras. We will need N free s
alar �elds �i of radius R = p2 in order to
onstru
t N 
opies of SU(2)1. We will normalize them as usual,h0j�i(z)�j(w)j0i = �Æijlog(z � w) ; i; j = 1; 2; � � � ; N (3:B:14)The individual SU(2)1 
urrents are as in (3.B.5). The 
urrents of the diagonal SU(2)N be
ome,J3N = ip2 NXi=1 �z�i ; J�N = 1p2 NXi=1 e�ip2�i (3:B:15)while the Sugawara stress-energy tensor is,TN(z) = 1N + 2 24�12  NXi=1 �z�i!2 � NXi=1(�z�i)2 + NXi<j �eip2(�i��j) + e�ip2(�i��j)�35 (3:B:16)We must now make a transformation on our basi
 variables �i to make things more transparent.Let's de�ne, �i = �pN +p2~�i � ~� (3:B:17)where ~� is an (N-1)-dimensional ve
tor of s
alar �elds. The ~�i are the weights of the fundamentalrepresentation of SU(N). They are (N-1)-dimensional ve
tors and there are N of them. Theyare normalized as follows, ~�i � ~�j = � 12N + 12Æij (3:B:18)The roots of SU(N) are ~�ij = ~�i � ~�j. They are normalized to ~� � ~� = 1. The ~�i = ~�i � ~�i+1� There are indi
ations that one 
ould 
onstru
t theories in this formalism that are of a wider variety thanG/H theories.



103are the simple roots. The new basis for the bosons de�ned by (3.B.17) is still orthonormal,h0j�i(z)�j(w)j0i = �Æijlog(z � w) ; h0jj�(z)�(w)j0i = �log(z � w) (3:B:19)The SU(2) 
urrents now be
ome,J3N = irN2 �z� ; J�N = 1p2e�ip 2N� " NXi=1 e�2i~�i�~�# (3:B:20)whereas the stress-energy tensor is,TN(z) = �12(�z�)2 + T parN (z) (3:B:21a)T parN (z) = � 1N + 2 "�z~� � �z~� +X~� e2i~��~�# (3:B:21b)The sum is over all roots of SU(N)��. From (3.B.20) one 
an easily identify the ZN parafermionoperators���.  1(z) = 1pN " NXi=1 eip2~�i�~�# (3:B:22)One then using the OPE among vertex operators 
an 
onstru
t expli
itly the whole parafermionalgebra���� ,  k(z) k0(w) = Ck;k0(z � w)� 2kk0N [ k+k0(w) +O[(z � w)℄℄ (3:B:23)with,  k(z) =  Nk !� 12 NXi1<i2<���<ik eip2(~�i1+���+~�iN )�~� (3:B:24)and C2k;k0 = (k + k0)!(N � k)!(N � k0)!(k!k0!(N � k � k0)!N ! (3:B:25)The spin �elds of the parafermioni
 theory are twist �elds for the vertex operators  �1. The�� The reason for the appearen
e of the roots of SU (N ) is the fa
t that the SU (2)N parafermions 
an also be
onstru
ted as the 
oset spa
e SU (N )1 
 SU (N )1=SU (N )2.��� T parN is the stress-energy tensor for the ZN parafermion theory.���� The indi
es k, k0, k + k0 are always understood modulo N.



104fa
t that �k twists  �1 by � kN 
ompletely determines the 
orrelation fun
tion,h0j�yk (1) 1(z) �1(w)�k(0)j0ih0j�yk (1)�k(0)j0i = z�1+ kNw� kN(z � w)2� 2N ��1 � kN� z + kNw� (3:B:26)Using,  �1(z) 1(w) = (z � w)�2+ 2N �1+ N + 2N T parN (w)(z � w)2 + � � �� (3:B:27)we �nd the dimension of the spin �eld �k to be �k = k(N�k)2N(N+2). Unfortunately we do nothave a 
omplete des
ription of these �elds in the bosoni
 language but is 
on
eivable that their
orrelation fun
tions 
an be 
omputed with te
hniques similar to those of ref. [46℄.The 
onstru
tion above 
an be done for any G/H CFT by starting �rst from level onealgebras. It is obvious that the bosoni
 
oordinates are 
ompa
ti�ed on latti
es that are dire
tprodu
ts of root latti
es of Lie algebras.


