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An effective theory for low-energy nuclear interactions is proposed, based on results obtained from the
1/N, expansion of quantum chromodynamics. The Lagrangian is local in the meson sector, but in the
baryon sector it is nonlocal both in the meson-baryon Yukawa coupling and in the baryon propagators.
It satisfies an important consequence of the 1/N. expansion, the suppression of baryon loops. Our
findings are then shown to support the traditional approaches in nuclear physics and, more especially, the
relativistic nuclear many-body theories at baryon-tree level.
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Relativistic nuclear many-body theories !> have shown
surprisingly impressive, phenomenological success.
Though some underlying physics is not completely under-
stood,? these theories, together with the Bonn NN poten-
tial* and Dirac phenomenology,® have revealed interest-
ing relativistic degrees of freedom in nuclei.

Their success has been demonstrated by the use of the
mean-field approximation. Recently, however, it has be-
come fashionable to examine the nuclear effects of radia-
tive corrections of these Yukawa theories.®’ How the
Yukawa theories should be applied in nuclear problems
as field theories is an old problem. It is a problem be-
cause, though renormalizable, the theories are not
asymptotically free and possess no known ultraviolet
fixed points.® Furthermore, the B function evaluated
from one-loop diagrams indicates that perturbative ex-
pansions will fail near the nucleon mass scale where the
coupling constants become uncontrollably large.®

In this Letter, we examine the problem by demanding
that the theories be effective theories of quantum chro-
modynamics (QCD) and that they be applied in a way
consistent with it.!° We use a unified approach based on
a rigorously controlled approximation,'' 1/N, expansion,
where N, is the number of colors. We find that the tra-
ditional approach in nuclear physics and, more especial-
ly, the mean-field application of the relativistic many-
body theories are indeed consistent with QCD in the
large-N, limit. This itself is perhaps no surprise, but we
also find that the fashionable calculations of baryon
loops explicitly contradict QCD in this limit. This
finding seems to be supported by recent baryon-loop cal-
culations.”

Except for the lattice QCD, the 1/N, expansion is the
only possibly effective method in the nonperturbative
QCD for low-energy phenomena. There is no decisive
test of the method, but the previous theoretical and phe-
nomenological works'?"!> have amply demonstrated that
it provides fruitful results. As in these theoretical works,
we carefully apply the large-N, scheme together with
ideas of the renormalization group. Naturally, we do not

claim our results to be thoroughly rigorous; otherwise,
we would have solved QCD in the low-energy regime.

Our basic strategy is as follows: We first construct the
effective Lagrangian of the large-N, limit of QCD with
care so as to incorporate all the known symmetries of
QCD. We then investigate the consistency of the pertur-
bative expansion of the Lagrangian with its 1/N, expan-
sion. At each step, we compare a hadronic diagram to
corresponding QCD diagrams to ensure consistency.
This comparison is the vital part of our strategy and has
been used to test all of our discussions in this work.

Let us first examine a simpler case in the well-studied
meson sector.'® In the large-N, limit of QCD with the
confinement assumption, the meson interactions are de-
scribed as local, and the meson n-point functions contrib-
ute as O(NV!~"/?) in the leading order.'*'* The meson
Lagrangian is then written as
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where the N, dependence of the couplings is explicitly
shown; i.e., m,A;,Az,... =O(1), here and throughout
this Letter. As a continuum field theory, Eq. (1) is not
renormalizable and requires a cutoff. The method of the
renormalization group dictates higher-derivative (i.e., of
higher-mass dimensions) terms to be irrelevant in the
continuum limit, and thus these terms are suppressed. ¢
can be any meson field, provided that some interaction
terms are discarded to satisfy the symmetry properties
associated with each meson and to avoid double counting
among the terms. QCD for large N, does impose some
restrictions on ¢, however. (1) Chiral-symmetry break-
ing occurs'” in the leading order, so the flavor symmetry
is spontaneously broken to an anomaly-free subgroup,
UWNp)rxUWys),— U(Ny)y. The hadron spectrum is
parity doubled except for Goldstone bosons which are
parity odd. (2) In the next-to-leading order, the U(1) 4
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Goldstone boson (the 7 meson) becomes massive. Note
that in this work we neglect the gluon sector.

At tree level, .L,, is constructed to yield the leading-
order results of the 1/N. expansion of QCD. If one
quantizes this theory with a cutoff, since the N, depen-
dence appears through the coupling constants, loop con-
tributions will have an N, dependence, which can be
given by naive power counting. Such a power counting
based on topological arguments shows that the meson »n-
point function is OV} ~"/2~'), where I is the number of
loops. The 1/N, expansion of .L,, is thus equivalent to
its loop expansion. We conclude that perturbative sec-
tors of L, reproduce the qualitative features of QCD to
all orders in 1/N,, and are exact in leading order.

We now introduce baryon fields into the Lagrangian.
These may be viewed as a replacement of solitonic states
of mesons, which are expected to emerge at low energy,
as in the phenomenological Skyrme model.!*> Solitonic
sectors are orthogonal to perturbative sectors, and over-
counting can be avoided. The effective Lagrangian will
then contain the baryonic kinetic term and a meson-
baryon interaction term. Let us assume, for the time be-
ing, that such terms are local:

L=y —Nm)y+-/N.gyyo+.L,, 2)

where y denotes the baryons collectively, and the Yu-
kawa interaction term includes all possible bilinear co-
variants under the Lorentz transformation. The baryon
ground states with various quantum numbers are degen-
erate in energy, as in the Skyrme model, with
J=I=<N./2. Asin L,, through the explicit N, depen-
dence, L is constructed to yield, at tree level, the results
of the 1/N, expansion of QCD.

However, the loop contributions of L yield the N,
dependence that is different from the one expected by
naive power counting, as can be explicitly confirmed in
the case of one-loop diagrams.'® For illustrative pur-
poses, consider a meson propagator diagram with one
baryon loop. While the naive counting gives O(1/N,)
for this diagram, an explicit calculation yields O(V,),
with an O(NV.1In(V,.)) part that can be absorbed in the
counter term. Since the meson propagator at tree level is

of O(1), the perturbative expansion cannot be expected
to describe the 1/N, expansion. Actually, the large-N,
limit of QCD yields a strong suppression of oW, M),
since the baryon loop can be viewed as a two-point func-
tion of a quark bilinear with nested N, — 1 quark loops
inside. These different N, dependences show that .L is
not an effective Lagrangian of QCD beyond baryon-tree
level, and all baryon-loop diagrams must be discarded if
L is to be used.

The effective theory of QCD must also satisfy all
relevant symmetry properties of QCD. Consider cross-
ing symmetry: In the large-N, limit, a baryon annihila-
tion process is mapped under crossing into the corre-
sponding baryon-scattering process at a large momentum
transfer and vanishes as ~exp(—constxN,).!> The
large-N, limit of QCD thus demands that the meson-
baryon vertex depends on the momentum transfer.'®
Indeed, .L of Eq. (2) lacks an important consequence of
QCD, a baryon structure that appears as baryon sizes of
O(1) in the large-N, limit.'> The meson-baryon vertex
form factor must then be suppressed beyond the momen-
tum transfer ~O(1). However, could such a form fac-
tor emerge from radiative contributions in local field
theories such as Eq. (2)? Our large-N, expansion pro-
vides a simple negative proof to this often-discussed con-
jecture:2® Radiative corrections to the vertex always in-
clude one or more baryon propagators. Since each prop-
agator contributes O(1/N,), the vertex cannot swell up
to O(1).

The two preceding consequences show explicitly that
the perturbative expansion of .£ is consistent with the
1/N. expansion of both itself and QCD. That is, when
we compute a perturbative result of .L up to a certain or-
der, the result does not generally correspond to what
QCD yields in the large-N, limit. The underlying phys-
ics is that the composite structure of the baryons cannot
be neglected in nuclear phenomena, as previously em-
phasized.>?! The composite baryon structure will modi-
fy not only the vertex terms of .L but also the baryon
propagator. The resultant Lagrangian is nonlocal, in
contrast to .L,,.

Consider the Yukawa interaction. The most general,
nonlocal interaction that is Lorenz invariant and con-
serves momentum is (in momentum space)

L= [ d%kid*ko f et k2 ey k) Tk ) My ko) g(—ky —k2) (3)

where M is an appropriate product of the y matrices.
According to our previous discussion of crossing symme-
try, the general nonlocal coupling function f is of the
form f(|k,+k>|) and vanishes as exp(—aN.) for the
momentum ~O(V,). Thus Ly, in fact, contains a form
factor. Similarly, the general nonlocal form of the
baryon kinetic term can be written as

L= [ a*% gogOW+h( K DIv(=K), &)
where g=1 and A=mN, at |k | =mN., and counting
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I rules at large N, imply that g(k)~exp(constxN,) for
either | ko—mN,| or [k| ~O(N,).!* The baryon prop-
agator generated by L, thus suppresses baryon loops in
accordance with large-N. QCD. (Note that the conven-
tional vertex form factors do not suppress baryon loops.)

Since terms of higher-mass dimensions are suppressed
as in .L,,, the combination of Ly and Ly serves as an
effective Lagrangian of QCD: As used as a field theory,
it yields the leading- and subleading-order results con-
sistent with the large-N, QCD. This is our major result.
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The nonlocal forms of Ly and Ly are technically com-
plicated and cumbersome to use. We have found, how-
ever, that once baryon loops are omitted, .L of Eq. (2)
with form factors yields, for a given hadronic diagram,
the same leading-order result as both the corresponding
QCD diagram and the nonlocal Lagrangian. This pro-
cedure of using .L does not guarantee consistency with
the large-N, QCD in the subleading order, but such a
defect perhaps can be compensated by properly adjusting
parameters in the theory. This procedure, intrinsically
phenomenological, can serve as a pragmatic alternative
to the use of the nonlocal Lagrangian. The procedure is
the same as the traditional approaches in nuclear phys-
ics, including the relativistic many-body theories'? used
at the baryon-tree level. Some recent phenomenological
works indeed show unphysical consequences emerging
from baryon loops.’

Let us discuss some examples to illustrate that our
pragmatic procedure yields results consistent with the
1/N. expansion of QCD. Consider the meson-baryon in-
teraction: The proper vertex (self-energy) diagram con-
sists of two Yukawa couplings with a baryon propagator
between them. By inspection of L, i.e., by a naive N,
counting, we see that each coupling contributes as

OGJN.) and each baryon propagator as O(1/N.).
Thus, this hadronic diagram is of O(1), just as corre-
sponding QCD diagrams (describing the same process)
contribute in the large-N, limit.'*> In turn, the hadronic
diagram yields a scattering amplitude and cross section
of O(1). Actually, this step involves a sublety. External
baryon lines force the baryon propagator to contribute
0O(1), and external meson lines contribute in two ways:
crossed and uncrossed. Each amplitude diagram then
contributes O(V.), but the sum of the cross and un-
crossed diagrams yields O(1) after cancellation.?? In or-
der to avoid such a sublety, we restrict our discussion to
proper vertices, except where crossing properties are ex-
amined.

Consider next the two-baryon interaction. At tree lev-
el, one-meson exchanges consist of two Yukawa cou-
plings and a meson propagator. Since the meson propa-
gator contributes as O(1), the diagrams are of O(NV,)
and again correspond to QCD diagrams in the large-N,
limit.!> Beyond the tree level (but still at the baryon-
tree level), all of the naive N, counting and the explicit
loop calculations with or without cutoffs yield two-meson
exchange diagrams of O(1). An extension of Witten’s
method!? tells us that the corresponding large-N, QCD
diagrams are those of exchanges of two quark-antiquark
pairs and give the same order. Note that the QCD dia-
grams must be one-particle irreducible and must contain
baryons in the color-singlet state. In the same way, m-
meson exchange diagrams of two-baryon interactions are
found to be of O(N2 ™).

These strong two-baryon interactions generally agree
with the descriptions based on the relativistic many-body
theories. As in these theories, our NN interactions of

O(N.) must cancel to yield the small nuclear binding en-
ergy, so as to agree with the large nuclear sizes. We also
find that three- and four-baryon forces contribute to
O(N.), as strong as those by conventional meson-
exchange calculations.?> As in these calculations, sub-
stantial cancellations must then exist among various dia-
grams (but without baryon loops).

Our pragmatic procedure agrees with that of Brodsky,
obtained in the perturbative regime of the large
momentum-transfer phenomena.?! In addition, his La-
grangian includes the suppression of the NN pair terms.
In the low energy, it is also desirable to suppress the so-
called #IV Z graph with the pseudoscalar coupling. Con-
trary to his high-energy case, this graph cannot be
suppressed by a conventional vertex form factor. Our
effective nonlocal Lagrangian suppresses it by the L,
and we expect that the generation of N, quark-antiquark
pairs is indeed strongly suppressed in the corresponding
QCD diagram. This problem, however, may be a special
case in that the suppression is a direct consequence of
QCD symmetry, such as chiral symmetry, as it has been
demonstrated by the use of o models. Since dropping a
tree-level diagram by hand generally violates unitarity, it
must be treated with care. This problem is under further
study.

How far can we apply our effective Lagrangian?
While it should be applicable for the momentum of
O(1), it may be applicable even to O(N,), once the
baryon form factors are included. Indeed, recent deute-
ron photodisintegration data deviate from a perturbative
QCD estimate but agree with meson-exchange calcula-
tion below 1 GeV.?*

A general note. The baryon loops discussed in this
work are vacuum fluctuations appearing in field theories,
but are not particle-hole states appearing in many-body
theories. Since no distinctly different QCD diagrams
correspond to such states, the latter requires no special
treatment. The actual amount of their contributions
would be somewhat altered, however, by the introduction
of the form factors due to the relatively small Fermi
momentum of about 720 MeV/c.

After this work was submitted for publication, we
were informed of work by T. Cohen,?* who has noted
baryon-loop suppression (but restricted to the one-
nucleon-loop level) in the large-N, limit of QCD.
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This work was supported in part by DOE (Grant No.
DE-FG03-87ER40347) at California State University,
Northridge (CSUN) and by NSF (Grants No. PHY85-
05682 and No. PHY86-04197) at Caltech.

(@)present address: Department of Physics, University of
California, Berkeley, CA 94720.

955



VOLUME 63, NUMBER 9

PHYSICAL REVIEW LETTERS

28 AUGUST 1989

IB. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1
(1986).

2].. S. Celenza and C. M. Shakin, Relativistic Nuclear
Physics (World Scientific, Singapore, 1986).

3J. W. Negele, Comments Nucl. Part. Phys. 14, 303 (1985).

4R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149,
1 (1987); R. Machleidt, in Relativistic Dynamics and Quark-
Nuclear Physics, edited by M. B. Johnson and A. Picklesimer
(Wiley, New York, 1986), p. 71.

5B. C. Clark and S. J. Wallace, in Relativistic Dynamics and
Quark-Nuclear Physics, edited by M. B. Johnson and A. Pick-
lesimer (Wiley, New York, 1986), pp. 302 and 418, respective-
ly.

6Reference 1 and references therein; R. J. Perry, Phys. Lett.
B 182, 269 (1986); 199, 489 (1987); T. D. Cohen, M. J. Ban-
erjee, and C.-Y. Ren, Phys. Rev. C 36, 1653 (1987); N. K.
Glendenning, Phys. Lett. B 208, 335 (1988); X. Ji, Phys. Lett.
B 208, 19 (1988); D. A. Wasson, Phys. Lett. B 210, 41 (1988);
S. Ichii, W. Bentz, and A. Arima, Nucl. Phys. A487, 493
(1988); C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett. 62,
391 (1989).

’T. D. Cohen, Phys. Lett. B 211, 384 (1988); D. Wasson
(private communication); R. J. Furnstahl, R. J. Perry, and B.
D. Serot, Indiana University Report No. [U/NTC 88-18, 1989
(to be published).

8S. Coleman and D. J. Gross, Phys. Rev. Lett. 31, 851
(1973).

91. Zahed, Phys. Rev. C 37, 409 (1988).

10The method and the objective of the previous application of
the large-N. limit in nuclear physics [H. Muther, C. A. Engel-
brecht, and G. E. Brown, Nucl. Phys. A462, 701 (1987)] differ
substantially from ours.

113, Lott, Commun. Math. Phys. 100, 133 (1985).

12G. *t Hooft, Nucl. Phys. B72, 461 (1974); B75, 461 (1974).

956

13E. Witten, Nucl. Phys. B160, 57 (1979).

148, Coleman, in Pointlike Structures Inside and Outside
Hadrons, edited by A. Zichichi (Plenum, New York, 1982), p.
11.

I5ST, H. R. Skyrme, Nuc. Phys. 31, 556 (1962), and refer-
ences therein; G. S. Adkins, C. R. Nappi, and E. Witten, Nucl.
Phys. B228, 552 (1983).

I6E. Eichten, R. D. Peccei, J. Preskill, and D. Zeppenfeld,
Nucl. Phys. B268, 161 (1986).

17S. Coleman and E. Witten, Phys. Rev. Lett. 45, 100 (1980).

18Note that if N, were to appear as an overall factor in the
baryon propagator, the bare and counter terms would have the
same N, dependence, and the perturbative expansion of .L
would have been equivalent to its 1/N. expansion, yielding the
same results as those in the large-N. limit of QCD. In this
case, the V. dependence of a given diagram would simply have
been computed by a naive power counting. For example, we
obtain the meson n-point and baryon n'-point function to be of
O(N/}~"271) independent of n', in agreement with that by to-
pological arguments.

198, L. Ioffe and M. A. Shifman, Nucl. Phys. B202, 221
(1982).

20G. E. Brown and A. D. Jackson, The Nucleon-Nucleon In-
teraction (North-Holland, Amsterdam, 1976), Sect. IV.C.

21, L. Brodsky, Comments Nucl. Part. Phys. 12, 213 (1984).

22J.-L. Gervais and B. Sakita, Phys. Rev. Lett. 52, 87 (1984);
Phys. Rev. D 30, 1795 (1984).

23S, Barshay and G. E. Brown, Phys. Rev. Lett. 34, 1106
(1975); T. D. Lee and M. Margulies, Phys. Rev. D 11, 1591
(1975); E. M. Nyman and M. Rho, Nucl. Phys. A268, 408
(1976).

24), Napolitano et al., Phys. Rev. Lett. 61, 2530 (1988), and
references therein.

25T. D. Cohen, Phys. Rev. Lett. 62, 3027 (1989).



