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The Corrigan-Ramond model for large-N QCD is analyzed in detail. The spectrum, leading-
order results for interactions, and an effective Lagrangian describing large-N interactions are de-
rived. This Lagrangian, when quantized, provides an effective quantum field theory for mesons and
baryons. The applicability of such a theory to low-energy nuclear phenomena is studied. The mod-
el has features that distinguish it clearly from standard large-N QCD.

1. INTRODUCTION

There is a plethora of indications by now that quantum
chromodynamics (QCD) is the theory that correctly de-
scribes the strong interactions. In QCD the fundamental
degrees of freedom are gluons and quarks, which become
free at asymptotically high energies (asymptotic free-
dom). However, at low energy the coupling becomes
strong and perturbative techniques do not apply. Unfor-
tunately this is the important region for nuclear physics.
In particular, mass spectra of asymptotic states, as well as
dynamics at very low energies (~1 Gev) are issues to
which no rigorous answer exists so far within QCD.

There are several methods that try to uncover the be-
havior of QCD at low energy (strong coupling). A stan-
dard one is lattice QCD which consists of evaluating the
path integral of QCD by brute force, converting it to a
finite-dimensional integral by taking spacetime to be a
finite lattice. Such an approach so far has had a restrict-
ed scope due to limitations in computer power. Exact an-
alytic results in lattice QCD do not exist, unlike some
two-dimensional (2D) examples, due to the complexity of
the 4D problem. Characteristically, the biggest lattice
sizes that can be used today have a physical scale that
can barely reach the nucleon size. Nonetheless, lattice
techniques gave some reasonable estimates of the hadron
spectrum.

As already mentioned, perturbation theory in the stan-
dard coupling of QCD gives reliable results only at high
energy. If one is interested in nuclear phenomena, this
kind of perturbation theory is of no practical use. There
is however another expansion parameter in QCD. Strict-
ly speaking this expansion parameter exists in a generali-
zation of QCD where the gauge group is SU(N) instead of
SU(3), that is the number of colors is N. From now on we
will use QCD, to denote the gauge theory with N colors.
The expansion parameter mentioned above is 1/N when
N is large. The structure of 1/N perturbation theory is
considerably different from ordinary perturbation
theory.! ™3 There is certainly some nonperturbative in-
formation in this alternative expansion since the leading
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order already contains an infinite number of diagrams,
the “planar” diagrams, that receive contributions from
an arbitrary number of loops. Thinking along this way,
the leading order of the 1/N expansion gives a sample of
the whole conventional perturbative series.

The 1/N expansion can also be thought of as a semi-
classical expansion. For N large there is a saddle point in
the QCDy path integral that becomes exactly Gaussian
at N=o0. Thus the leading nontrivial order in the 1/N
expansion is generated by small fluctuations around this
saddle point and large-N perturbation theory can be for-
mulated in a well-defined way.*

In QCDy the leading nontrivial contributions are al-
ready too hard to sum up. Despite this, we can extract
nontrivial information about the theory just from the
structure of the leading diagrams and the plausible as-
sumption of color confinement for all N. For example,
the physical degrees of freedom, mesons glueballs and
baryons, are explicit at large N. More than that, mesons
and glueballs have masses of order 1 and are noninteract-
ing at N = oo, whereas baryons have masses of order N,
etc.!

In the nuclear-energy regime, since our quantitative
understanding of QCD is far from sufficient, one usually
tries to describe physics using effective Lagrangians for
the relevant physical degrees of freedom, which in that
case are the low-lying mesons and baryons. One ignores
glueballs, taking into account the experimental fact that
they have not been seen in a certain energy regime which
could mean that either they are heavy and/or they are
very, very broad. In both cases one can neglect their
effects for all practical purposes. The reasoning for writ-
ing down effective Lagrangians is based on symmetries,
simplicity and ultimately, agreement with data. Various
approaches have been used to describe nuclear phenome-
na this way, including both relativistic and nonrelativistic
theories.’™® In Ref. 10 we used several results from
large-N QCDy, to construct effective Lagrangians for the
low-lying degrees of freedom. Effective actions of similar
form have been also considered in Ref. 11 for a somewhat
higher-energy regime. These theories are obviously rela-
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tivistic and of the Yukawa type. However, nucleon prop-
agation as well as Yukawa interactions should be nonlo-
cal in order to agree with large-N QCD,,.'°

As it was mentioned before, at large N we have a sad-
dle point where quantum fluctuations are suppressed.
When we move away from N = « the effects of fluctua-
tions are not negligible any more. The question is, what
is a tractable and at the same time physically reasonable
way of taking such fluctuations into account? (After all,
we eventually care about N=3.) At N= oo the theory is
classical. One can easily derive an effective Lagrangian
whose tree-level expansion reproduces the leading order
of the 1/N expansion. Of course, values of couplings can-
not be calculated directly but this is not a big concern be-
cause after all such couplings can be fit to data. General-
ly, this effective Lagrangian will contain arbitrary-
dimension operators. In the large-N QCD, case there
are only a few couplings that are nonlocal, the rest of
them being local. Thus, to describe fluctuations away
from N = oo the natural approach to follow is to quantize
the classical effective Lagrangian found at the large-N
limit.! However such a quantization should be done
with care, in order to be consistent with exact results ob-
tained directly from QCDy. For example, in standard
large-N QCDy, one should quantize the mesons but keep
the baryons classical, (alternatively speaking, there are no
baryonic loops, see also Ref. 12). There is an alternative
description of mesons which presumably becomes exact
at large N and this is the Skyrme model. In this model
the baryons are solitons, that is, extended, semiclassical
objects. This alternative description is in agreement with
our description since here baryons are treated as point-
like and thus the fact that they have nonlocal interactions
should come as no surprise. Since arbitrary dimension
operators appear in the large-N action, the quantum field
theory defined that way is nonrenormalizable. However,
this is not important for two reasons. The effective theory
already possesses a cutoff scale of order of the mass of the
heavy classical particles (nucleons). In addition, by
renormalization-group arguments, contributions from
high-dimension operators will be suppressed at low ener-
gy, their only effect being a renormalization of the cou-
pling constants of relevant operators. Thus, for all prac-
tical purposes one can limit attention to renormalizable
interactions if one wishes so.

Of course, such a procedure can be in principle imple-
mented directly in QCD;. One has to define appropriate
composite operators, representing gauge-invariant (physi-
cal) degrees of freedom in terms of the fundamental fields
(quarks and gluons), and then derive the effective action
of these operators.!* Unfortunately, despite the fact that
such a procedure is well defined, it is computationally in-
tractable. The advantage of going through the large-N
limit is that without too much computation we can derive
the salient features of the effective theory.

So far we have been talking about the large-N limit of
QCDy. For a pure gauge theory the large-N generaliza-
tion is uniquely defined. However if one includes quarks
then the large-N extension is somewhat ambiguous. The
reason is the following. One has to assign the quarks into
some (in general reducible) representation of the color
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group SU(N), in such a way that at N =3 one can recover
the usual content of QCD, that is, six 3’s and six 3’s. The
simplest choice for general N would be to consider six
N’s and six N’s. This is the standard large-N model that
has been analyzed extensively in the literature.! ™3 In this
model the mesons are qg states whereas the baryons are
states containing N quarks. This feature is what makes
the baryons in the standard model behave rather
differently from the mesons. There are however alterna-
tive quark assignments with the same N=3 limit. In fact
if one wants to maintain asymptotic freedom for arbi-
trarily large N, then the only other representation that
one can add is the two-index antisymmetric tensor repre-
sentation of SU(N). Thus we are led to the model pro-
posed by Corrigan and Ramond!'* (CR), where we have
n, N’s and 6—n, antisymmetric tensor representations
[of dimension N(N —1)/2] along with their conjugate
ones. In Ref. 14 the “quarks” Q associated with the an-
tisymmetric tensor representation have been named
“larks,” a name that we will also use here. It is obvious
that for N=3 this model is the standard QCD model
since for N =3 the two-index antisymmetric tensor repre-
sentation is equivalent to the 3 of SU(3).

The original motivation for proposing this alternative
large-N limit was that, for any large N there exist baryons
which contain three elementary fermions, two quarks and
a lark, ggQ. This type of baryons is qualitatively different
than the baryons of the standard model which contain N
quarks.

Our own motivation for studying the CR model in
more detail is the following. As mentioned before from a
large-N extension of QCD we can derive an effective
quantum theory for mesons and baryons. The effective
action coming from the large-N limit of standard QCDy
was shown in Ref. 10 to contain nonlocal Yukawa cou-
plings, baryons were classical, and their propagation non-
local. Such features being crucial, it is reasonable to in-
vestigate to what extent they depend on the particular
large-N extension studied. The only other large-N exten-
sion of QCD which is asymptotically free, vectorlike, and
at N=3 coincides with QCD is the CR model. Thus we
embarked into its analysis, to investigate the universality
of certain features of the low-energy effective quantum
theory of mesons and baryons.

Our results can be summarized as follows. There are
three types of particles in the CR model: the standard
mesons gg or QQ, the I baryons g¢Q, and the h baryons
containing an O(N) number of quarks and/or larks.
First, since at large N the larks behave combinatorialy
like gluons, lark loops are unsuppressed. This fact in-
duces a mixing of the standard mesons with multiquark
exotics, such as gQ07 or QQQQ. This is not a welcome
feature since in the real world QCD multiquark exotic
mesons are highly unstable. The same is true for the /
baryons which mix with exotics such as ggQQQ. At lead-
ing order, mesons and / baryons are stable with local in-
teractions which have couplings that vanish as a negative
power of N. In particular there is a mixing term between
g7 and QQ mesons of order N ~!/2, The h baryons have
masses of O(N) and nonzero scattering cross sections
with the mesons and the / baryons as in standard QCD .
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One would like to argue that since the A baryons are
much heavier than the rest, by looking at low energies
and integrating out the A baryons, one could consider the
effective theory of mesons and / baryons which is a nicely
behaving field theory. This is unlike standard large-N
QCD where one is usually not attempting to integrate out
the baryons which are all heavy. Obviously such an at-
tempt is not bound to produce a local effective action in
the CR model as N—3 because the ! baryons and h
baryons become degenerate and such a split does not
make sense. Thus at small N both models lead always to
nonlocal couplings.

The shortcomings of the standard large-N limit of
QCD are well known. Glueballs have masses of order
one and vanishing widths contrary to experiment.
Baryons are much heavier than mesons, which could be
considered as a drawback although not in a clear-cut
way. The CR model has also several shortcomings in this
respect. The glueball problem is still the same as in the
previous model. Zweig’s rule is violated at order 1 due to
the mixing, discussed above, between various meson
states [violations of the Zweig rule in the former model
are O (1/N)]. Also the observed baryon widths are large
unlike what is happening with / baryons where the widths
vanish at large N. The baryonic interaction seems to be
strong, whereas / baryons interact weakly. Nuclear phe-
nomena would be quite different if the nuclear interaction
is weak. [/ baryons though, have masses that are of the
same order as meson masses. It seems from the above list
that one has more things to worry about in the CR model
but eventually preferring one model over the other de-
pends also on the particular aspect one focuses on, as well
as a certain amount of taste.

The pattern of the realization of global symmetries of
the model is also different. The model has a mani-
fest Uln,) ®U(n,)g®U(6—n,), ®U(6—n,)g chiral
symmetry when the fundamental fermions are massless.
Instanton effects at large N in the standard model are
subleading so that the axial U(1) is still a symmetry.
Here, on the contrary, the axial U(1) corresponding to
larks is anomalous at the leading order so that the correct
global symmetry is Uln,), ®U(n,)g®SU(6—n,),
SU(6—n,)g®U(1),. Chiral-symmetry breaking occurs
to a vector subgroup, but we do not know if the
unbroken-symmetry group is maximal.

The structure of this paper is as follows. In Sec. II we
review the large-N results for the standard model and dis-
cuss how to use them to derive an effective quantum
theory for the physical degrees of freedom. In Sec. III we
analyze in detail the large-N behavior of the CR model.
In Sec. IV, we derive and analyze the low-energy effective
quantum theory of the physical degrees of freedom. Fi-
nally Sec. V contains our concluding remarks.

II. STANDARD LARGE-N QCD

In this section we are going to review the results of the
1/N expansion in QCD), with six quarks in the N+ N of
SU(N). Since both the basic features as well as the conse-
quences of this approach have been extensively discussed
in the literature,! 3 we will only give a brief account of
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the main results in order to acquaint the reader with the
methods of the large-N expansion in QCD. We will also
explain how one can use the results of the large-N expan-
sion to derive the effective, relativistic quantum theory of
mesons and baryons.!°

The main idea of the large-N expansion is based on the
fact that by generalizing the gauge group from SU(3) to
SU(N) we can formulate a well-defined perturbation series
in powers of 1/N.* At the level of conventional Feynman
diagrams the choice of 1/N as the expansion parameter
leads to a series of drastic simplifications, mainly due to
the proliferation of gluon degrees of freedom (~N?) over
quark degrees of freedom [~N when quarks are in the
fundamental of SU(N)]. The key observation is that since
the coupling constant between quarks and gluons behaves
as N 172 at large N (necessary in order for the theory to
have a regular limit), a Feynman diagram will survive the
large-N limit (N — o) only if sufficiently large color com-
binatorial factors can compensate for the suppression
coming from the coupling. As it turns out, there is a sim-
ple geometric classification of Feynman graphs that pro-
vide the leading contribution to a particular process.

The graphs that give subleading contributions in 1/N
to a particular process are of two kinds: (i) nonplanar di-
agrams, e.g., diagrams that cannot be drawn on the plane
without gluon lines crossing each other at points where
there are no interaction vertices; (2) diagrams containing
quark loops. Such diagrams are suppressed by factors of
1/N relative to diagrams where the quark loop is re-
placed by a gluon loop. In other words, the dominant di-
agrams at large N are planar diagrams with no quark
loops. It is important to emphasize that planar diagrams
have the same leading large-N behavior irrespective of
the number of loops. Therefore the leading order of the
1/N expansion certainly contains nonperturbative infor-
mation.

In order that useful results are obtained via large-N
techniques in QCD one must also assume confinement.
In particular we must assume that QCDy confines for ar-
bitrary N. This is certainly a reasonable assumption,
known to be true for N=2,3. There are cases where the
large-N limit is incompatible with confinement.!> In such
cases it has been argued that color is not confined and the
gauge symmetry is spontaneously broken. If confinement
is assumed then physical asymptotic states must be gauge
singlets, e.g., mesons, baryons, or glueballs.

As mentioned in the Introduction, leading-order re-
sults in QCDy, in four dimensions are still beyond our
calculational capabilities. There are however models in
0, 1, 2, and 3 spacetime dimensions where leading-order
results are calculable."'® However, if one assumes
confinement, and uses the selection rules for Feynman di-
agrams mentioned above, there is a whole series of quali-
tative results that emerges, which turn out to be extreme-
ly interesting.

To be more specific, in the mesonic sector we have the
following picture. (From now on we will consistently ig-
nore the glueball sector, since it is similar to the meson
section.) Meson states are generated by composite opera-
tors of the form ¢,§’ (where i is a color index summed
over and the spinorial structure is suppressed) and their
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perturbative approximations, g; A ;27 J, etc. An estimate
on their two-point function indicates that it is of order N
providing the normalization of the one-meson states,
which is N 7!/2. By cutting across the two-point function
one can show that the propagating degrees of freedom
are perturbative versions of a single one-meson state.
This implies that mesons at N = c are absolutely stable,
with masses which are of order 1, and using the
knowledge that the theory is asymptotically free, one can
also infer that their number must be infinite. Similar
analysis of the higher-point functions of mesons reveals
that they can be generated as tree graphs from a local
effective Lagrangian. This follows from the fact that the
relevant leading large-N diagrams contain only single-
particle poles in any possible channel. The n-point func-
tion of mesons vanishes as N'~*/?) for large N, as a sim-
ple counting shows. Thus the meson interactions in the
large-N limit are described by the tree diagrams of a local
effective Lagrangian which is of the form

As

S .. ,
Nl/NqS

A A
L, =1$(0—mM+ '+ 2ot+
@.1)

where ¢ denotes collectively the meson fields. The La-
grangian (2.1) is written in a schematic way. Locality of
(2.1) is equivalent to the statement that the couplings are
finite polynomials in derivatives. Also symmetries may
force some of the terms to be absent from (2.1).

Some important consequences of the analysis above are
the following.

(1) Meson decay amplitudes are of order N
Meson-meson scattering amplitudes are of order N .
Thus both are vanishing at N=o0. At finite but large N,
mesons have very small widths and they interact weakly.

(2) Zweig’s rule is exact in the large-N limit.

(3) The gqg sea as well as ggqqg exotic states are
suppressed. Therefore almost all mesons are approxi-
mately pure gg states in accordance with phenomenologi-
cal observations.

The extension of large-N techniques in the baryonic
section is not straightforward. As mentioned before,
baryons, unlike mesons that are always gg bound states
irrespective of N, are formed out of N quarks, their in-
dices coupled with the completely antisymmetric € tensor
of SU(N). An obvious consequence of the above is that
they are bosons or fermions depending on N being even
or odd. This is not a very serious drawback since we can
consider SU2N +1), as N— « and have baryons which
are fermions for every N, without altering any of the
large-N results. More important, the presence of N
quarks in a baryon provides additional factors of N in
Feynman diagrams, obscuring the graphical analysis
since it seems that lots of diagrams diverge as N — .
However a different kind of analysis, using nonrelativisitc
Schrodinger equations, shows how to reorganize and use
diagrams in the baryon sector.?

Hamiltonian and path-integral methods are preferable
to diagrammatic techniques in this case. The baryon
mass turns out to be of O (N) and both its kinetic and in-
teraction energies are of the same order. Thus, its

—1/2
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scattering cross sections with mesons have finite nonzero
limits as N — o, as explained in detail in Ref. 2. Since
baryons are very heavy compared to mesons, they are
practically unaffected during scattering, whereas mesons,
having masses of 1 are scattered nontrivially off baryons.
In particular baryons at large N interact strongly unlike
mesons. A direct QCDy analysis also reveals that a
baryon-antibaryon annihilation process into mesons is ex-
ponentially suppressed in N. Thus since QCD is cross-
ing symmetric there should be nontrivial form factors
present in the meson-baryon interaction to restore the
crossing symmetry. The momentum behavior of such
form factors can be inferred from arguments such as the
one discussed above. This in particular implies that
meson-baryon interactions as well as baryon propagation
are nonlocal.

Another point is that QCDy analysis implies that
baryon loops are exponentially suppressed so that
baryons are classical particles to all orders in 1/N pertur-
bation theory. This can be easily understood. As it was
mentioned above an extra quark loop in a diagram costs
an extra factor of 1/N. Therefore a baryon loop, which
contains N quarks is suppressed by N ™. Thus a classi-
cal Lagrangian reproducing the leading large-N results is
of the form

Ly=9y[8A(0)+NB(D) Y+ VN gD+ - - -,
(2.2)

where we put explicit factors of N when appropriate and
the form factors A4, B, g should be exponentially
suppressing when the momentum transfer is of O (N ). !°

It is very interesting also to see how global symmetries
are realized at large-N QCDy, with six massless quarks
has a U(6); ® U(6), global symmetry. At leading order in
1/N the effects of instantons are negligible,” so that U(1) ,
is a genuine symmetry, unlike real QCD. One can ar-
gue,!” assuming confinement, that the chiral symmetry ei-
ther is unbroken or if it breaks, then it breaks to U(6),. It
is crucial in this argument, that quark loops are
suppressed at large N. The possibility of unbroken chiral
symmetry can be excluded by a combination of ’t Hooft’s
anomaly-matching conditions and some rigorous mass
inequalities valid in QCD.!8

Let us now discuss the implications of the above, on an
effective, relativistic quantum field theory of mesons and
baryons. As mentioned already, the N = o limit is an ex-
act saddle point of QCD, where the theory is Gaussian
(classical). This is a different ground state from the con-
ventional perturbative QCD vacuum since this one de-
scribes mesons propagating freely, and heavy baryons in-
teracting with mesons. An easy way to see the above is to
write the Yang-Mills action for SU(N) in the form

1
Sym=——= [ Tr(F?), (2.3)
™ 4gd /

where g is the bare Yang-Mills coupling [terms missing
from (2.3) such as coupling to fermions as well as ghost
and gauge fixing terms turn out to be irrelevant for the
following argument]. We can find out how g renormal-
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izes in the large-N limit. A simple way to do this is to
look at the one-loop vacuum-polarization diagram. This
diagram is proportional to g3 and has also a combinator-
ic factor of N due to the gluon loop. Therefore in order
that the diagram is finite at N=c0,g.,=gpN /% It
can be shown that this guarantees finiteness of all correla-
tion functions with a finite number of fields at large N.
Now the action looks like

N
Sym=— Tr(F?) .
4gr., !

(2.4)

It is obvious from (2.4) that in the quantum theory N
plays the same role as 1/4, so that the usual classical lim-
it, i—0 corresponds to N — o0.

When we move away from the saddle point, fluctua-
tions set in. To take these fluctuations into account we
should allow our classical fields to fluctuate; that is, they
should be quantized. Of course, such a quantization
should be in accord with large-N estimates.'® For exam-
ple, we showed before that, in QCDy baryon loops are
exponentially suppressed, thus baryons remain classical
perturbatively in 1/N. Consequently, the proper way to
quantize N = theory is to quantize the mesons but
keep baryons classical.'!> The Lagrangian of the
effective quantum theory is L,, + Ly, which are given in
(2.1) and (2.2). Of course, there is a nontrivial consisten-
cy check of this procedure. Quantum effects, computed
in the effective theory, should give subleading 1/N
corrections. Otherwise stated, tree results should dom-
inate over loop results, the latter being suppressed by ex-
tra powers of 1/N. This is precisely true in the effective
quantum theory formulated above. In fact we can easily
estimate,'® that a [ loop amplitude is suppressed relative
to the respective tree amplitude by a factor N~ !. The
Lagrangian above in general contains high-dimension
operators that would include nonrenormalizable interac-
tions. This is not a problem since the theory we are
describing is an effective theory and as such has a cutoff
which is a few times the nucleon mass. Furthermore,
such interactions would give contributions that are
suppressed by powers of the cutoff and can, in most cases,
safely be ignored.

Such effective relativistic theories have been extensive-
ly used in nuclear physics with reasonable success.’™°
What our large-N results indicate is that there is a good
reason for such good success. But in fact these results
imply more than that. First, that meson-baryon cou-
plings should be nonlocal in contrast with what is tradi-
tionally used. Second, one should not attempt to calcu-
late baryon loop corrections. This in retrospect explains
the fact that some attempts to calculate baryon loop
corrections obtained results which did not make sense
from the physical point of view.!” Therefore, in this
large-N approach the instruction is clear: do not calcu-
late baryon loops. Another issue that arises here con-
cerns the nonlocality of baryon-meson couplings. As a
matter of fact traditional relativistic approaches to nu-
clear physics favor local meson-baryon couplings.’ If one
had a model for QCDy where baryons would be con-
structed out of three quarks for any N, then it would al-
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most certainly follow that such baryons would have local
interactions with mesons. Corrigan and Ramond intro-
duced their model,'* motivated as above. In the next sec-
tion we will extensively analyze the CR model and try to
find the effective field theory of mesons and baryons that
this model suggests.

III. LARGE-N ESTIMATES IN THE CR MODEL

In this section we are going to analyze in detail the
large-N limit of the CR model,'* and the low-energy
effective field theory it implies. The model contains n = 1
quark fields in the fundamental of SU(N), g;, and 6—n
lark fields in the two-index antisymmetric tensor repre-
sentation of SU(N) of dimension N(N —1)/2, Qij, as well
as their conjugates, in order to have a vectorlike theory.
(The only indices that we will display are the color in-
dices. Flavor or spacetime indices will be suppressed for
simplicity.) There are large-N extensions of QCD that
are chiral gauge theories. We do not consider such mod-
els since their behavior is different and in fact very singu-
lar for our purposes. Such models, being chiral, should
contain massless quarks in order not to break the gauge
symmetry. At the low-energy limit there are solutions to
the ’t Hooft anomaly-matching conditions indicating the
presence of massless baryons. This is a feature true for all
N > 3, whereas at N=23 the baryons become massive since
the theory is vectorlike. We believe that the existence of
massless baryons is an indication that such an extension
for N> 3 does not have much to do with QCD.

An important difference with the standard large-N
model is that the number of lark degrees of freedom is
~ N2, like gluons. The rules given in the previous section
characterizing leading graphs are still true with one im-
portant modification: larks can propagate freely in loops,
their contributions not being suppressed. This fact
makes the model quite different from its standard coun-
terpart.

An important assumption we will again make is that of
confinement: All physical asymptotic states are gauge
singlets. The simplest mesons come in two kinds. The
first kind that we will collectively label by ¢ are of the
form ¢~gq;g’. The other kind that we label by y are of
the form )(~Q,-jQ-j. There are gauge singlets involving
two quarks and a lark, ¢;q;Q;;, which we call / baryons.
Finally there is a whole class of heavy baryons (baryons
containing ~N quarks), which we call h baryons. For
any two non-negative integers, x,y such that 2x +y =N,
there is a h baryon operator constructed by contracting
the invariant € tensor of SU(N) with x larks and y quarks.
This h baryon will be called of the type (x,y).

So let us first consider the two-point function of the ¢
mesons:

<¢¢> = :q,-(ji::qjqij:) .

The only difference now is that, since lark loops are un-
suppressed, if we cut the diagram we will find multimeson
exotics of the form

—ij, —i i

é.~q:Q lerl e Q "*lj"an.‘"q " (3.1)
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and their perturbative approximations (dressed with
gluons). Therefore, all such mesons, ¢,, k=0,1,...,
mix and the physical degrees of freedom are linear com-
binations of those that diagonalize the two-point func-
tion. This is already a bad feature of this model com-
pared with the standard one.

A similar argument, as in the standard case can be
made, showing that physical on-shell states propagating
in the ¢ two-point function are one-particle states. As an
example, consider a graph for the two-point function of a
¢ meson with a lark loop inside the external quark loop.
Cutting the graph indicates the presence of an intermedi-
ate state of the form q,-Q”ijcj * propagating. This is ob-
viously a one-particle state since we cannot write it as a
product of two (or more) gauge-singlet pieces. Of course
one can fill up the diagram with internal gluon lines
without changing its order in 1/N. The resulting states
that propagate in that case are again one-particle
(dressed) meson states. The whole set of ¢, states can be
obtained from cutting diagrams which contain k internal
lark loops.

We will establish now the proper normalization of the
¢, states. It is not difficult to show that the two-point
function of un-normalized ¢, states scales with N as
N?**1 From the contraction of each of the kQQ pairs
that exist in ¢, we obtain a factor of N? while an extra
factor of N comes from contracting ¢ with g. For k=0
we recover the standard result.!”3 Thus, the properly
normalized states are,

—i

k- = ij n—1Jn _ip
$:10)~N k “/2)1‘11' “leil Q! aninq 0,
<¢k¢k’>~1 .

Armed with ¢ states that have smooth limits for large
N we can investigate correlation functions among ¢ fields.
The analysis is almost parallel to the one for mesons in
the standard large-N model, the only difference here be-
ing the existence of a hierarchy of ¢-meson states labeled
by k. By a direct analysis using the large-N diagrammat-
ic rules we can establish that the general correlator of ¢
fields scales as

(3.2)

(i bi,- - b Y)=O(N'"""?) (3.3)

independent of the type k of mesons involved. This esti-
mate is the same as for the mesons on the standard large-
N model of the previous section. The rest of the proper-
ties are still there. ¢ mesons have masses of order 1, and
at N= oo they are absolutely stable. All poles in cut n-
point functions are one-particle poles, showing that again
we can reproduce the ¢-meson amplitudes from tree
graphs of a local Lagrangian

Ly=1¢(0+m)p+ 3 N7/, ¢" .

n>3

(3.4)

We will now focus our attention to the y mesons. A
similar thing happens here too. Since lark loops are un-
suppressed the simplest y mesons x,~Q;Q ” mix with a
hierarchy of multimeson exotics:
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- o i
Xe~N"! k:Qi QOO"'QikijkO: XX ) ~1,

(3.5)

where the proper normalization was determined the same
way from the appropriate two-point function. Now one
can establish again the same properties that hold for the
¢ mesons. In fact one does not even have to do any addi-
tional analysis but note that combinatorialy the Y mesons
behave exactly the same as the glueball operators in the
standard model. Thus one can use the known results to
establish that the mesonic sector containing ¢ and Y
mesons at N = oo is a free theory with meson masses of 1
and the leading large-N results are reproduced from the
tree graphs of the local Lagrangian

Lmeson:L¢+%X(D+m2)X+ 2 NZ_n}‘n,()Xn

nx3

—n,(n;/2) ny_n,
}"nl,nzd’ X .

oJo

+ 3 N

ny ZI,nZZI
(3.6

We should stress again that our way of writing Lagrang-
ians such as (3.6) is very schematic. One should take into
account that labels such as ¢ or Y denote collectively
mesons with different flavor quantum numbers, parity,
and (integral) spin, couplings are a shorthand for a finite
polynomial in derivatives (locality), and, depending on
the symmetry properties of mesons, some of the generic
couplings present in (3.6) might vanish. Some immediate
consequences of (3.6) are as follows.

(1) At large but finite N the ¢ mesons mix with the y
mesons with strength that scales as N~ /2. They are al-
most stable and weakly coupled.

(2) When computing the N dependence of a specific
correlation function of mesons, one in general will obtain
two possible types of large-N behavior due to the fact
that in (3.6) the coupling of x" is not a special case of the
general coupling x"¢™. Of course, of the two powers of N
the leading power is the correct one (the same remark ap-
plies to standard large-N QCD, in the meson-glueball sec-
tor).

We will now focus on the / baryon sector where the
simplest / baryons have the form 9,~g;g; 0Y. Again here
a look at the two-point function of ¢, reveals that these /
baryons are mixing with an infinite hierarchy of other /
baryons of the form

N1k oo . .. O’x'o.
Y ~N -QiO‘IjOQ Qikij i

<¢k¢kl>~1 5 (3.7)
where again we normalized the / baryon states appropri-
ately. The [ baryons are obviously fermions but have
similar properties to the mesons. In particular, by look-
ing at diagrams we can establish that / baryons have
masses of order 1, they are absolutely stable at N =0,
their amplitudes are the tree amplitudes of a local La-
grangian and their couplings can be estimated easily to be
such that the total Lagrangian describing mesons and /
baryons is
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L +(F+m)p+ S N

n1‘220,n321

tot = L meson

At this point we should say a few things about possible
realizations of global symmetries in the model. When the
quarks and larks are massless the model has a
Un),®@U(n)g®@U(6—n),®@U(6—n)g chiral symmetry.
However the U(1) , of larks is anomalous in the leading
order. Thus the honest symmetry is
U(n),®U(n)p®@SU(6—n), ®SU(6—n),®@U(1),. There
are two gauge-invariant order parameters for the symme-
try above which are bilmear in quarks or larks,
MY ~{qi(1+y>g’) for Un),M¥~{Q'(1+y°)Q’) for
SU(6—n). Because of the lark loops being unsuppressed
we cannot predict the exact way the symmetry is realized.
We can however predict that it is going to break to an
anomaly-free subgroup. The reason is that here, in analo-
gy with the standard QCDy, the theory is vectorlike so
that mass inequalities are applicable.!® Therefore, if some
axial symmetry remains unbroken, that would imply the
existence of massless fermions. The inequalities in that
case indicate the existence of massless bosons with the
right quantum numbers to be Goldstone bosons. Thus
axial symmetries must also break in this model. This is
all we can say about the realization of global symmetries.

IV. THE EFFECTIVE QUANTUM THEORY
OF THE CR MODEL

In this section we are going to investigate the effective
field theory of the CR model. For the moment we will as-
sume that we can forget about the 4 baryons, (we will re-
turn to this point later on). In this case (3.8) contains all
the dynamics governing the “classical” degrees of free-
dom. According to our analysis, discussed in the previ-
ous section, to take into account fluctuations that develop
when we move away from the N= o limit, we must
quantize the classical degrees of freedom ¢, ¥, 9.

We will show explicitly that this quantization prescrip-
tion is consistent with the 1/N expansion carried to non-
leading orders, as it should. A similar result is true for
the meson sector (but not the baryon sector) of standard
large-N QCD.!° The results of this section imply also
that the same is true for the glueball sector of standard
large-N QCD. We will first obtain large-N estimates in
the effective quantum theory given by the Lagrangian in
(3.8). All N dependence in graphs is due to the explicit N
dependence of the couplings in (3.8). We can use the usu-
al topological analysis of arbitrary graphs to estimate the
large-N behavior of loop graphs in comparison with tree
graphs. Let L be the number of loops in the graph, E,,
Ey, E the number of external lines of the respective
ﬁelds, I & I v Ly the number of the respectlve internal
lines, W; the number of vertices of the form y' and V, iyigiy
(i,i3)7(0,0) the number of vertices of the type
¢"'x2(¢$)" in (3.8) (there is an infinite number of them).
Then the standard topological relations are

L-1:I¢+IX+I'Z’_EM_ 2 l/ililil’ (4.13,)

fpoipety

I=ny—ny3—(n;/2)
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n n —-n
npngny® X (W) (3.8)
T
S iV =2UstEs, (4.1b)
i\igniy
2 LVt 2iWi:21x+Ex (4.1¢)
i)rigniy i
2 i3Vini, =y tE (4.1d)

i,dy,04

Using (4.1) and the large-N order of elementary couplings
in (3.8) we obtain that the order for a graph with L loops
and (E ¢’ external lines is NN LR where

Niree= 'E'”ﬂ} Ex"Fui and R =1,—3;W,. Another
way to obtam the result above is to redefine fields in (3.8)
in such a way that L =NL and inside L the y propagator
and W vertices are proportional to N, everything else be-
ing N independent.

We can now prove the following: for a fixed correla-
tion function (fixed E,, E,, E w) the L-loop contribution
is suppressed compared to the tree contribution by a fac-
tor N~ =" where n is a non-negative integer. The above
amounts to showing that R 20 for any diagram with
E, +EMZO and R=—1 for any diagram with
Ey=E ;=0

Before proving the general statement above we will
look at some special cases to give a feeling of the situa-
tion. Consider first, ignoring the y fields completely.
That is, they do not appear either in external or internal
lines. Using again (4.1) we can now derive that an arbi-
trary L-loop contribution to an amplitude is suppressed
compared to the tree contribution by a factor N L. In
the opposite case where we completely ignore ¢-mesons
and / baryons a similar analysis implies that the extra fac-
tor suppressing a loop contribution is N .. The two
different kinds of behavior should be attributed to the
fact that the y self-interactions in (3.8) scale differently
from the interactions of y’s with other particles. As we
have mentioned before a similar thing happens already at
the tree level.

Let us now prove our assertion. We have to distin-
guish two cases.

(1) E,=E ;=0. In this case we would like to prove
that R 2 —1. To find the minimum R we have to find the
maximum of W=3,W,; and the minimum of 7,. When
W=0,1 the inequality is trivially true. When W=2 then
I, =1 otherwise the diagram will be disconnected. Thus
R = —1 here. When W=k then I, 2k —1 in order for
the diagram to be connected, QED.

(2) E4+E ;5;20. Here we want to show that R =0.
The argument goes again as above. The only difference is
that since there are other external lines we would need
one more Y propagator to connect the W vertices to the
rest of the diagram which accounts for the different
minimum value of R by one, QED.

To recapitulate, we have proven that in the quantum
theory defined by the Lagrangian (3.8) L-loop contribu-
tions to a given correlation function are suppressed rela-
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tive to the tree contribution by an extra factor of N £ "
where n is a non-negative integer.

We now know how diagrammatic contributions scale
with N in the effective quantum theory defined by the La-
grangian (3.8). It is important to show that the 1/N ex-
pansion of the effective theory is consistent with the
large-N expansion in the CR model. To be more precise,
consider any diagram in the CR model, subleading in N
with external lines that are contracted in a gauge singlet
(for leading ones this is true de facto, by the very ex-
istence of a classical Lagrangian that reproduces the lead-
ing amplitudes). By cutting it in all possible ways and
identifying the physical degrees of freedom propagating
in various channels we can uniquely map it to a single di-
agram of the effective theory (not necessarily a tree dia-
gram). Consistency states that the N behavior of the
QCDy diagram should be the same with the one of the
effective theory diagram onto which it is mapped.

Consider, for example, the two-point function of ¢. If
there is a single quark loop inside the diagram, then, as
mentioned before, the diagram is down by 1/N. If we cut
the diagram with one quark loop, on the other hand, we
can verify that this corresponds in fact to a ¢ meson go-
ing around a loop. This is consistent so far with the gen-
eral result for ¢ mesons only, N ~!°°PS_ An iteration of the
previous argument verifies the above for an arbitrary
number of ¢ loops.

Now yx loops have a similar effect as ¢ loops. Consider
a Y loop in the two-point function for y. In order to gen-
erate a Y loop, we have to break planarity, consequently
there is a cost of a factor N 2. Planarity has to be bro-
ken since we have already shown that planar graphs with
an arbitrary number of lark loops when cut exhibit only
one-particle states and not two as one would expect in the
presence of a x loop. Again, iteration of this argument
gives the same result we obtained for the effective theory
of x, namely N ~ 2L,

Another case to consider is that of /-baryon loops. For
example, to generate an /-baryon loop in the ¢ two-point
function we need to create a quark and a lark loop. This
would cost as a factor of 1/N as expected. This is in
agreement with the effective theory estimate.

The general argument proving that the large-N esti-
mates coming from the QCD diagrams are in agreement
with those coming from the classical Lagrangian, (3.8) is
very simple if we use the results we proved so far. The
basic idea is that the equivalence is trivially true for tree
graphs (almost by definition) and an arbitrary loop graph
can be constructed by sewing tree graphs. Namely, if one
considers tree graphs where the external states are of the
minimal form, e.g., ¢ mesons to be represented by the
operators in (3.1), then the statement is true by definition.
However, the external particles can be perturbative ap-
proximations, e.g., the ¢ meson ¢,§' can be also
represented by g; 4 ;17’. One has to make sure that replac-
ing the simplest form of the external state with a more
complicated one does get the same large-N behavior.
This is indeed true when gluons are taken into account
and we have shown it to be true also when larks are also
involved. To make the previous argument precise, con-
sider any QCD diagram. There is always a way to cover

it with nonoverlapping boxes in such a way that lines
coming out of every box can be assembled into represen-
tations of physical states and any cut through the box re-
veals one-particle states. This representation exists since
this is the explicit form of the map between QCD dia-
grams and effective field theory diagrams. Now, since we
know that the estimates for each individual box coincide
(they are tree components where we know it to be true),
the same will be true for the entire diagram.

We should pause for a moment to remind the reader
what we are after. In Ref. 10 a procedure was described
to obtain effective quantum field theories for mesons and
baryons out of the 1/N expansion. Such a theory was de-
scribed in Ref. 10 by using the results from the standard
large-N extension of QCD. This effective theory had
nonlocal Yukawa couplings and baryons remained classi-
cal. The question we are investigating is: Are such
features of the theory above generic, or do they depend
on the large-N extension of QCD. To answer this ques-
tion we note that the CR model is the only other large-NV
extension of QCD which is asymptotically free and vec-
torlike.

What we have shown so far is that the effective quan-
tum theory we have derived for the low-energy physical
particles of the CR model is in fact consistent in a non-
trivial way with the large-NV diagrammatic expansions to
all orders. It is thus a local, effective, relativistic field
theory for mesons and ! baryons. To what extent one can
consider the CR model and its effective field theory seri-
ously depends on the assessment of the importance of
various shortcomings of the model.?> We give below a
list of points which the CR model seems problematic in
dealing with.

The CR model, unlike standard large-N QCD contains
a tower of multiquark exotics that are not suppressed and
they mix strongly with the usual mesons. One conse-
quence of the above is that Zweig’s rule is violated to
leading order.

Baryons and baryonic resonances in general tend to be
heavier than mesons and their resonances. However this
is an issue that cannot point clearly into one direction be-
cause at N=23 there are some mesons that happen to be
heavier than baryons. Thus it may be argued that the CR
model behaves more realistically than standard large-N
QCD in this respect. The observed baryon widths are
large. This is in contradiction with the widths of the /
baryons in the CR model which are of order N —12
which are very small at large N.

The nuclear interaction is observed to be strong. Both
phase-shift analyses of nucleon-nucleon scattering and
data on the spin-orbit coupling in nuclear interactions
confirm this result. The / baryon self-interactions in the
CR model are weak at large N. The nuclear world would
look very different if it was made out of (large-N) [
baryons.

Apart from the previous possible objections we have
neglected h baryons and their effects on the previous pic-
ture.

Let us now turn our attention to 4 baryons, to see un-
der what circumstances we can neglect them, if any. Us-
ing the same arguments as in Ref. 2 we can immediately
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infer that A baryons have masses of O(N); therefore, at
large N they are much heavier than the other physical de-
grees of freedom. This gives us the hope that at large N
we can integrate them out leaving behind only an
effective theory for the light degrees of freedom. This
turns out to be feasible at large N since the energy
difference of these particles is large so that they can be
consistently ignored as we will argue below. If however
we want to look at small NV this is not possible since these
particles will be pair produced. Of course, the same thing
would happen if we tried to integrate out baryons in stan-
dard large-N QCD at small N.

Independent of the above, there is another issue which
is interesting: Whether h-baryons loops are suppressed
exponentially in the CR model. Despite the fact that lark
loops are unsuppressed, h-baryons loops scale exponen-
tially with N. This behavior can be inferred from the fact
that the amplitude for a light particle to create a heavy
baryon-antibaryon pair is exponentially suppressed and
this depends only on the fact that an h baryon contains
O (N) constituents. Thus again in the effective quantum
theory the A baryons are still classical objects. If we are
at large enough N it makes sense to integrate out the A
baryons. If the % baryons were not classical then the
effect of integrating them out would be that the new
effective quantum theory for the light degrees of freedom
would become horribly nonlocal. However, “integrating
out” classical particles simply means drop them for the
Lagrangian.

Thus, at large N, the effective quantum theory at ener-
gy scales of order 1 would just be the local one described
by (3.8). At low N such a split between light and heavy
particles is no longer feasible and the theory is nonlocal,
again as for standard QCD.

Therefore the answer to our ‘“‘universality” question
about effective actions could be phrased as follows. If
one considers the shortcomings of the CR model serious-
ly (they are definitely more numerous than those of
large-N QCD) then one could argue that the CR model is
poorer in describing salient features of QCD and conse-
quently the sounder approach is that implied by the stan-
dard large-N limit. In the sense above the standard
large-N effective action could be called universal. How-
ever, it should be stressed that the evaluation of the
shortcomings depends also on what particular feature one
would like to focus upon and it is certainly also an issue
of opinion on whether to prefer the CR description of ha-
drodynamics.

3

V. CONCLUSIONS

In this paper we have analyzed in detail the CR model
for large-N QCD. At N =, QCD is described by a clas-
sical Lagrangian, which can be determined from an
analysis of large-N perturbation theory. Appropriate
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quantization of the physical degrees of freedom with clas-
sical dynamics governed by the N= o Lagrangian de-
scribes effects subleading in 1/N which describe the finite
N theory. This effective quantum theory should describe
low-energy interactions of physical degrees of freedom
(mesons baryons). In Ref. 10 standard large-N QCD was
used to derive this theory which is of the usual relativistic
Yukawa type, but with nonlocal Yukawa couplings and
classical baryons (no baryon loops). What we have pri-
marily investigated in this paper is if conclusions such as
the nonlocality of Yukawa couplings and baryons being
classical depend on the particular large-N extension of
QCD or if they are universal.

The only other model for large-N QCD which is
asymptotically free, vectorlike and at N=3 coincides
with standard QCD is the CR model.!* Thus we em-
barked in an effort to analyze in detail the spectrum and
other large-N estimates in this model. The spectrum con-
sists of two kinds of mesons and light baryons, all of
which have masses 1 and heavy baryons having masses
O(N). At N— o the classical effective theory of the
light sector (mesons, light baryons) is a local field theory.
Away from N =« the effective quantum field theory is
obtained by quantizing the light degrees of freedom but
leaving the heavy baryons classical since it is directly im-
plied by diagrammatic analysis.

At finite but large N, it is physically consistent to in-
tegrate out the heavy baryons, which in that case means
simply to ignore them. Then at low energy the effective
quantum theory for the light degrees of freedom is a local
quantum field theory with baryons that can go around
loops. Thus it provides an alternative model of large-N
QCD with a local effective meson-baryon theory.

To what extent the standard model can be preferred to
the CR model rests on a critical assessment of the seri-
ousness of the shortcomings of the models which have
been parallel in the previous section.

In the author’s opinion the CR model seems to be at
odds with observation on more issues than the standard
model. We are tempted then to suggest that the effective
field theory implied by standard large-N QCD,!° is the
only viable theory at large N. However such a conclusion
is not entirely robust and more detailed investigation
seems to be needed in that direction.
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