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ABSTRACT

String theory provides the only consistent framework so far that unifies all

interactions including gravity. We discuss gravity and cosmology in string

theory. Conventional notions from general relativity like geometry, topology

etc. are well defined only as low energy approximations in string theory. At

small distances physics deviates from the field theoretic intuition. We present

several examples of purely stringy phenomena which imply that the physics at

strong curvatures can be quite different from what one might expect from field

theory. They indicate new possibilities in the context of quantum cosmology.
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1 Introduction

It is no accident that (super)string theory attracted the attention of theorists during the

last decade (for a review see [1]). It is the only theory we have so far, that contains a

consistent theory of quantum gravity, a feat impossible to reproduce using conventional

quantum field theory.

String theory is based on the idea that the elementary building blocks of matter, instead

of being point-like particles (with local interactions), are strings (one dimensional objects,

either closed or open∗). Conventional particles are identified with the eigenmodes of the

string. Thus, the string vibrating in two different modes, corresponds to two distinct

particles. Unlike field theory, there is automatically a mass scale inherent in string theory,

namely the tension of the string. Since the theory always turns out to contain a graviton,

it is natural to identify this scale with the Plank mass.

There are several attractive features of the theory. We list below some of them.

• String theory is a finite theory at short distances. This is due to the fact that string

interactions are not localized at a point.

• At large distances (much bigger than the Plank length ∼ 10−33 cm) strings look like

point-like objects and an ordinary particle description is valid. Gauge symmetries and

gravity appear naturally at low energy.

• A consequence of the above is that string theory contains a consistent (UV-finite)

theory of gravity. Moreover, it automatically unifies all interactions: gravitational, gauge

and Yukawa. This, so far, is not possible to achieve in the context of field theory.

• In order that string theory contains fermions, some form of (broken) spacetime su-

persymmetry seems to be needed. This is nice since we know that (spontaneously broken)

supersymmetry can help with hierarchy type of problems.

The most useful formulation of the theory so far is the first quantized formulation.

Although there have been attempts to construct string field theory, the problem is far

from solved. This explains our partial knowledge of the full symmetry of the theory.

The first quantized formulation of field theory as developed by Dirac and Feynman

rests on representing field theory amplitudes as a sum over paths of point particles

〈x|x′〉 ∼
∫ T

0
dτ
∫ x(T )=x′

x(0)=x
[Dx(τ)] eiS [x(τ)] (1.1)

with

S [x(τ)] =
∫ T

0
dτ [Gµν ẋ

µẋν + Aµẋµ + · · ·] (1.2)

where τ parametrizes the path, Gµν is the metric, Aµ a gauge field and the dots stand for

other interactions. The action here is that of a one-dimensional field theory defined over

the path of the particle.

∗From now on, for concreteness we will consider closed strings.
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In string theory, one can write a similar formula for the amplitude for string propaga-

tion. A closed string, when it propagates (classically) sweeps a two-dimensional cylinder,

(called the world-sheet) and the amplitude now is a two-dimensional generalization of the

field theory formula (1.1). A closed string is a ring whose position is described by xµ(σ),

where 0 ≤ σ ≤ 1 parametrizes the ring. Then,

〈x(σ)|x′(σ)〉 ∼
∫

[Dx(σ, τ)] eiS [x(σ,τ)] (1.3)

S [x(σ, τ)] =
1

4πα′

∫

dσdτ [Gµν(ẋ
µẋν − x′µx′ν) + Bµν(ẋ

µx′ν − (µ → ν)) + · · ·] (1.4)

where dot stands for derivative with respect to σ, Gµν is the metric, Bµν is an antisymmetric

tensor, and the dots contain interactions with other massless fields (gauge fields etc.)

Perturbative string theory contains two parameters.

• The first is the string tension α′, which appears in the action of the two-dimensional

σ-model (1.4). It has dimensions of inverse mass-squared. It sets the length (or mass) scale

of the theory. Note also that it is the coupling constant of the world-sheet σ-model (1.3,1.4)

which describes string propagation. For small values of α′ the σ-model is semiclassical.

• The second parameter is the string coupling constant gstring, which is dimensionless,

and governs the strength of string interactions. It is the loop-expansion parameter of

perturbative string theory.

Thus, α′, the σ-model coupling constant, controls stringy effects, in the sense that

when α′ → 0 the theory becomes equivalent to a field theory. On the other hand, gstring,

the string theory coupling constant, controls quantum effects (when gstring → 0 the theory

is classical).

At tree level, the Plank mass (or Newton’s constant) is given in terms of these two

parameters as

M2
Planck ∼ 1

g2
string α′ (1.5)

Another interesting feature of (super)string theory is that, in principle, the dimension

of spacetime can be any integer between zero and ten. This gives the possibility that the

theory determines dynamically the dimension of spacetime to be four, although we do not

understand the mechanism so far. All ground states with a four-dimensional spacetime

contain some universal fields: The metric (graviton) Gµν , the antisymmetric tensor† Bµν

and a scalar field Φ, the dilaton. It is interesting that the string coupling gstring is related

to the expectation value of the dilaton as

gstring = 〈eΦ〉 (1.6)

which indicates that the coupling constant of string theory, although undetermined in

perturbation theory, could be determined by non-perturbative effects.

Since particles are in correspondence with the eigenmodes of the string, it is obvious,

that string theory describes the interactions of an infinite number of particles. Some

†In four dimensions Bµν is equivalent to a pseudoscalar, usually called the axion.
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of them are massless. We mentioned already, that a flat four-dimensional ground state

contains the “universal excitations”, Gµν , Bµν , Φ as well as gauge fields, fermions, and

scalars whose quantum numbers and detailed interactions depend on the ground state.

The theory also contains towers of massive states, most of them having masses of the

order of, or bigger than the Plank mass.

The classical equations of motion of string theory turn out be equivalent with the con-

formal invariance of the two-dimensional σ-model (1.3,1.4). Conformal invariance trans-

lates into the vanishing of the β-functions of the σ-model. For small α′, one can derive

the σ-model one-loop β-function equations and show that they come from the following

spacetime action‡

Sst = M2
Plank

∫ √
Ge−2Φ

[

R + 4(∇Φ)2 − 1

12
HµνρH

µνρ + · · · + O(α′)
]

(1.7)

with

Hµνρ = ∂µBνρ + cyclic permutations (1.8)

We have displayed only the bosonic universal fields, Gµν , Bµν , Φ (which we will call the

gravitational sector). The dots stand for the rest of the fields. As indicated, there are

higher order in α′ (stringy) corrections with more than two derivatives. There are, for

example, RµνρσRµνρσ terms.

This two-derivative effective action is valid when all relevant length scales are much

smaller that the string scale ∼ 1/α′. In particular, when curvatures become of the order

of the string scale, the α′-corrections (neglected here) are large and we cannot trust (1.7).

The natural question to address in this context is: Can we handle strong curvatures? Or,

can we sum-up the α′-expansion?

The answer to this question in given by the concept of Conformal Field Theory. It is a

formalism which is exact (non-perturbatively) in α′, and thus contains all (perturbative)

stringy effects. It should be thought of as an infinite dimensional analogue of fields like

the metric, the antisymmetric tensor, gauge and scalar fields etc. It also provides a handle

on the perturbative symmetries of string theory.

Since string theory contains a massless graviton, we certainly have diffeomorphism

invariance. Massless gauge fields indicate the presence of gauge invariance.

Is the symmetry of string theory the direct product of such field-theoretic symmetries?

Although we do not know the symmetries of string theory in their full glory, we certainly

know that the answer to the previous question is negative. We can find extra symmetries

that go beyond field theory. Such symmetries come under the name of duality symmetries.

We have examples where two different effective field theory solutions correspond to the

same string theory solution. Duality symmetries act in a non-perturbative way on the α′-

expansion. In this respect, they are stringy symmetries. What accounts for the difference

here is that our probes (strings) are extended objects.

‡ To be distinguished from the world-sheet σ-model action (1.4).
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It turns out that concepts like geometry, topology, gauge symmetry, dimension of space

etc. are low energy approximations in string theory. In view of this we can ask: can every

classical solution to string theory be described completely in terms of the standard fields,

like the metric Gµν etc.? The answer turns out again to be negative. We know of solutions

which have semiclassical regions where geometry is well defined, as well as regions that

are “fuzzy” (no geometric description). We also know of solutions where there is no

semiclassical region at all.

When do we have a good geometrical description? This exists only if solutions contain

parameters that can be varied in such a way that relevant scales (volume, curvature)

become much larger than the string scale.

2 A Simple Example: String Theory on a Circle

We will consider here a closed string moving on a manifold that contains a circle of radius

R. The part of the two-dimensional σ-model that describes the circle has the following

action:

Scircle =
R2

4πα′

∫

d2ξ ∂µφ∂µφ (2.1)

where we have explicitly displayed the radius dependence of the action and φ is a two

dimensional field that takes values in [0, 2π]. Note that R has dimensions of length since

the angle φ is dimensionless.

In the field theory case, we know that for a particle moving on a circle the momentum

is quantized

p =
m

R
(2.2)

where m is an integer. In this case if an internal dimension is such a circle the 4-D mass of

such momentum excitations has a term proportional to p2 (in the Kaluza-Klein framework.

Thus, in field theory

M2 =
m2

R2
+ · · · (2.3)

where the dots summarize other contributions. Note that p2 is the spectrum of the Lapla-

cian operator 1
R2

∂2

∂φ2 on the circle. Knowing the spectrum of masses (or the Laplacian)

we can reconstruct the manifold. Thus here geometry alone determines the spectrum and

vice versa. In particular by measuring the low lying spectrum we can measure the size

(radius) of the circle.

In the string case, there are excitations that are not of the momentum type. The string

can also wrap (several times) around the circle. The “energy” of such winding excitations

depends on the string tension α′ and the total length of the winding string in a very simple

(linear) fashion:

Ewinding = n
R

α′ (2.4)
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where n is the winding number (an integer) and 2πnR is the total length of the string.

Such excitations give additional contributions to the 4-D masses and the full formula is

M2
string =

m2

R2
+

n2R2

α′2 + · · · (2.5)

Imagine that we have a circle of large radius, R2 >> α′. Then, from (2.5), we observe that

the low lying spectrum is given solely in terms of momentum (field theory-like) excitations.

The states with non-zero winding numbers are comparatively very massive, namely of the

order of the Plank mass. Thus an observation of the low energy spectrum is described by

geometry and we will measure the (large) value of the radius.

Consider however, the case where R2 ∼ α′. Then the low lying spectrum contains both

winding and momentum excitations, and in fact is not described by any (one-dimensional)

geometry. In this region, the geometric description breaks down.

Let us look now at the opposite limit, R2 << α′. Now the low energy spectrum is

composed solely in terms of the winding excitations and low lying masses are

M2
low−lying

∼−
n2

(
√

α′/R)2
(2.6)

Now this spectrum is similar to the field theory spectrum (2.3) , and there is again a

geometric description in terms of a circle. However, by comparing (2.3) and (2.6) we will

measure an effective radius

R̃ =

√
α′

R
(2.7)

which is obviously different from R. We can thus conclude that

Reff ≥
√

α′ (2.8)

and that there is an effective minimum size for the manifold in string theory. This

minimum length,
√

α′, is of the order of the Plank length.

The above discussion follows from the observation that there is a symmetry in the

stringy spectrum (2.5) of the circle, namely

R →
√

α′

R
(2.9)

and a simultaneous exchange of winding and momentum excitations. Such a symmetry

is known as “target space duality”. Another way to state the effect of this symmetry

is: the two σ-models associated to two distinct geometries, namely a circle of radius R

and a circle of radius
√

α′/R correspond to the same Conformal Field Theory, and thus

to the same classical string solution. Target space duality symmetry is particular to the

theory of strings but not to field theory, since the necessary ingredient, namely winding

modes do not exist in field theory∗. It is obvious from (2.9) that target space duality is

∗Sometimes field theories have effective excitations which are stringy, for example Nielsen-Olesen vor-

tices. In such cases one could in principle have such a behavior.
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not a symmetry order by order in α′ (the σ-model coupling constant). We need the exact

solution of the theory to see the symmetry. Thus target space duality is a non-perturbative

symmetry of the σ-model.

Another relevant observation concerns the self-dual radius R =
√

α′. At this point, the

symmetry of the σ-model is enhanced from U(1)L × U(1)R to SU(2)L × SU(2)R. Chiral

σ-model symmetries, are associated to gauge symmetries in string theory. Thus the theory

with R =
√

α′ has a SU(2)×SU(2) unbroken gauge symmetry. When R moves away from

this value, the gauge symmetry is broken to U(1) × U(1). In this respect, R is like the

expectation value of a Higgs field.

Although we indicated the simplest example of such a symmetry [2], it is more general,

[3]-[6]. It can be shown to be an exact symmetry order by order in string perturbation

theory [7]. In general, there are two parts of the spectrum which we will continue to

call momentum and winding modes, which are interchanged by target space duality The

effective geometry seen by the momentum modes is in general different from the one seen

by the winding modes (the dual geometry).

3 Implications for Effective Theories of Strings

The radius of the circle of the previous example was taken to be a (fixed) constant. In

string theory however it can vary, and it really corresponds to a field. Let us consider a

compactification of string theory, where part of the internal space is a circle with radius

R2 >> α′. As mentioned before, the low energy spectrum is composed of momentum

modes only. Thus when we derive the low energy effective field theory we must integrate

out the heavy (winding) modes.

Imagine now following this effective field theory, as the radius becomes smaller. It

is obvious that when we reach the region with R2 ∼ α′ we will encounter some strange

behavior, namely non-unitary and/or singularities. The reason is that at this region we

have integrated out fields that have comparable mass to the ones we kept, and this is

inconsistent. There is no singularity in the full string spectrum, just our approximation

broke down.

Such a change of R can happen in a cosmological context. There are exact solutions in

string theory where R changes with time [8]. The functional behavior can have the forms

R(t) ∼ t , R(r) ∼ 1/t , R(t) ∼ tan(at) (3.1)

R(t) ∼ coth(at) , R(t) ∼ tanh(at) (3.2)

Thus we have an example of a cosmological situation where a single effective field

theory is not enough to describe the entire evolution of the universe.
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4 Topology Change and Black Hole Singularities

As we mentioned earlier not all string solutions have a conventional geometrical interpre-

tation. Here we will examine situations in which the geometry of 3-space changes as a

function of time. Of particular interest are situations in which at early times curvatures

are weak in which there is a well defined geometry, at intermediate times curvature gets

strong and thus the geometrical interpretation is strong, and at late times the universe

flattens again so that geometry is again well defined but can be quite different from the

original one. In such cases 3-d topology can change.

In general relativity, topology cannot change without going through a singularity. We

will see that in string theory this can happen smoothly. If however we follow the evolution

through the effective field theory we will encounter singularities in the region of strong

curvatures. As argued however in the previous section this only indicates the breakdown

of the effective field theory. There is no singularity in the context of the full string theory.

Solutions exhibiting smooth topology change in string theory when some parameters are

varied have described in [9],[10]. Exact solutions for time-dependent topology change have

been described in [8]. We will describe here such an example.

At time t = 0 the 3-space has the topology of a line times a disk. The disk is not flat

and its metric is

ds2 = dr2 + tanh2 r dθ2 (4.1)

The space evolves at intermediate time to arrive at t = ∞ to a space with the topology of

a line times a cylinder with metric

ds2 = dr2 + coth2 r dθ2 (4.2)

Although this metric looks singular, the associated string theory is regular.

This brings us to the other interesting question, which is concerned with the nature of

singularities in string theory.

There are exact solutions in string theory which from the naive (effective field theory)

point of view have point-like singularities and associated horizons. In fact such apparent

singularities in string theory can be worse in the sense that we can have solutions with

singularities on higher dimensional hypersurfaces. As we argued above, close to the singu-

larity the curvature is large so the effective field theory breaks down. Can we use tools like

duality to say something about what is the nature of such black holes in string theory?

We will show first examples examples of euclidean manifolds which although geometrically

singular are absolutely regular in string theory.

The first example is what is known as the SU(2)/U(1) space. Its metric and dilaton

are

ds2 = dβ2 + tan2 βdα2 , Φ = log(1 + cos 2β) (4.3)

where α, β ∈ [0, 2π]. The curvature and dilaton are singular at β = π. However the

σ-model associate with this space can be solved exactly and all amplitudes are regular.
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The next example is given by the metric (4.2) along with the dilaton Φ = log(1 −
cosh 2r). Here also the curvature and dilaton are singular at r = 0. Although we cannot

solve this model exactly it can be shown [10] that it is dual to the one with metric (4.1)

and dilaton Φ = log(1 + cosh 2r) which is perfectly regular. This duality is relevant since

analytic continuation of these metrics gives an exact solution to string theory where the

four space has two flat directions while the other two have a metric (in Kruskal coordinates)

and dilaton given by [11],

ds2 =
du dv

1 − uv
, Φ = log(1 − uv) (4.4)

The Penrose diagram for this black hole is similar to the standard Schwarschild black hole.

The duality between the Euclidean spaces we described above has some peculiar conse-

quences for this black hole. It interchanges in particular the horizon and the singularity,

[12]. This implies that the physics here is quite different from a field theoretic black hole.

Using our previous experience with the effects of duality we can speculate about the

physics of such a black hole. An example of how this type of symmetry can affect string

propagation, can be given (heuristically) as follows [13]. Consider a string background

which is singular (semiclassically) in a certain region. In the asymptotic region, (which

is obtained by some spacetime-depended radius becoming very large), one has quantum

numbers for asymptotic states that correspond roughly to windings and momenta. Mo-

mentum states are the only low energy states in this region. An experimenter sitting at

the asymptotic region, far away from the black hole would like to probe its nature. He can

do this using the low lying (momentum) modes available to him. Consider a momentum

mode travelling towards the high curvature region. Its effective mass starts growing as

it approaches large curvatures. At some point it becomes energetically possible for it to

decay to winding states which, in this region, start having effective masses that are lower

than momentum modes. In such backgrounds (unlike flat ones) winding and momentum

are not separately conserved so that such a transition is possible. The reason for this is

that there is a non-trivial dilaton field and thus, winding and momentum conservation is

broken by the screening operators which transfer it to discrete states localized at the high

curvature region.

In fact it is a general property of string theory that classical singularities have always

associated with them states localized at the singularity. These can be interpreted as

internal states of the (would be) singularity. A useful picture here is that of the hydrogen

atom where the localized states are the bound states, while the scattering states above

form the continuum. Thus we could say that particles interact with such localized states

loosing momentum (in discrete steps) and gaining winding number.

Once such a momentum to winding mode transition happens in the strongly curved

region, the winding state sees a different geometry, namely the dual one and thus continues

to propagate further into the strong curvature region since it feels only the (weak) dual

curvature.
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5 On Cosmological Singularities

We believe today that our universe underwent a big bang and continued expending there-

after. We certainly do not trust Einstein’s equations beyond a time of the order of the

Plank scale. If we naively extrapolate however we will find a (time-like) singularity at t=0

where the universe squeezes at zero volume.

Using the duality ideas we can analyze a similar situation in the context of string

cosmology.

Let us consider an expanding universe in string theory. For simplicity we will consider

the spatial slice to be a three torus with a time dependent volume. A solution of this kind

(to lowest order in α′) is given by [14]

ds2 = −dt2 +
3
∑

i=1

a2
i t2bi dσ2

i (5.1)

Bµν = 0 , Φ =
1

2
(

3
∑

i=1

bi − 1) log t ,
3
∑

i=1

b2
i = 1 (5.2)

where σi ∈ [0, 2π] and we can choose bi > 0 so the universe is expanding. As t → 0+ the

universe is collapsing to zero volume, and there is a curvature singularity there.∗ We can

also make the solution isotropic by choosing ai = a and bi = 1/
√

3.

ds2
iso = −dt2 + a2 t

2√
3

3
∑

i=1

dσ2
i (5.3)

Φ =

√
3 − 1

2
log t (5.4)

In this example space is a torus with a radius that changes with time. At late times the

radius is large and geometry is well defined with the low lying states being the momentum

states. When however the volume becomes of the order of the string length, t ∼ a−
√

3,

the geometrical picture breaks down since winding states have energies comparable to the

momentum states. If we continued naively to T → 0 we would think that the universe

shrinks to zero volume, with a curvature singularity.

The correct approach however is that for t < a−
√

3 to use the metric seen by the winding

modes that now dominate the low energy spectrum.

ds̃2
iso = −dt2 + a−2 t

− 2√
3

(

3
∑

i=1

dσ2
i

)

(5.5)

Φ = −
√

3 + 1

2
log t (5.6)

For these modes the universe is expanding as t → 0. Thus the correct picture is the

following: As we go back in time the universe shrinks until it becomes of Plank size at

which point it starts re-expanding again. This idea is central in pre-big bang type of

cosmologies in the context of string theory [15].
∗There are solutions exact to all orders in α

′ with a similar behavior, but we chose one with the simplest

interpretation.
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6 Conclusions

We have presented some ideas on how physics concerning gravity, the structure of spacetime

(black holes and cosmological singularities being the focus) can be quite different in string

theory compared to point-particle field theory. We noted in particular the role played by

stringy symmetries, known as dualities in establishing this non-field theoretic behavior.

However it should be obvious that we are in the beginning of a long road towards

establishing string theory (or maybe a variant thereof) as the theory that describes nature.

The low energy properties of string theory (in the matter sector) are now a subject of active

investigation and we hope to be able soon to tell whether some ground state of string theory,

looks like the standard model at low energy and agrees with the experimental data.

The gravitational sector gives another window both to test the theory, but also indicates

the existence of a host of new phenomena (some of them described in this talk) which might

indicate that Nature is always richer than we think.
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