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No matter fields allowed! Only “gluons”! 
Only the choice of the color group G.
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AdS/CFT 

Integrability 

Localization

Color group G = G1 x G2 x … x Gn 
and reps of the matter fields

N = 3 ?
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Outline
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The UV Lagrangian is fixed by N=2 susy:
In the UV: only marginal (conformal theories) 
 and relevant operators (mass deformations)

 All data are stored in quiver diagrams s.t. β(1) = 0

start at the ends of the trunk. In practice, it is more convenient to allow branches

where the current can be zero; this facilitates the analysis of what can be put at one

end of a long trunk. So we use this modified definition of branches below.

• The possible types of trunks can be easily found. It is either

– just a single node, either SU(m), SO(m), USp(m) or G2,

– an SU(m) chain m m m m ,

– an SO(m)-USp(m− 2) chain m m− 2 m m− 2 ,

– a mixture of these two when they involve SU(4) and SO(6).

One example is 4 4 4 6 4 6 where the two overlap-

ping nodes mean that they are to be identified.

We treat an end of the SU(2m) trunk terminated by a USp(2m) as a branch, as this

occurs only rarely.

Therefore, our remaining tasks are to classify branches and then to enumerate all

possible ways to combine branches. We do this in Sec. 4.3 and Sec. 4.4 in turn.

4.3 Branches

In this section we classify the branches. Our convention is to call the node of the branch

which is shared with the trunk the zero-th node. The length of a branch is the length of

the longest chain of the edges. We also assign a branch current to each branch, defined

as follows. We take the difference between h∨ of the zero-th node of the branch minus

the beta function contribution from the first node, and multiply the difference by 1, 1

and 2 depending on whether the zero-th node is of type SU, SO and USp, respectively.

For the branches starting with SU − SU, USp − SO, SO − USp, SU − USp and SU − SO

bifundamentals, it is equal to the current. A branch is called small when the branch current

is non-negative. Those whose branch current is negative are called large.

Now, let us list all possible branches. Clearly, we only need to find maximal branches, in

the sense that no further nodes can be added to the end farthest from the trunk. Therefore,

non-maximal branches are not necessarily listed, to make the presentation more concise. A

branch whose zero-th node represents a group X is called an X branch; similarly, a branch

which starts with groups X and Y is called an X-Y branch. We start from rare large

branches with length 1, and then visit each of X (or X-Y ) branches one by one.

4.3.1 Large branches with length 1

First, we list rare examples of large branches with length 1. Going over Table 1 and Table 2,

we find that they are

• symn ,

• asym37 ,
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 SU(m) chain 

 SO(m)-USp(m-2) chain 

 a mixture of the above  

 some sporadic

Bootstrap ideology: 

Classification of Lagrangian N=2 SCFTs 

N=2 theories are non-chiral (no arrows)

[Bhardwaj,Tachikawa 2013]
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Moduli space of vacua 

 Coulomb operators                   chiral     with 

 Higgs operators                           real     with
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N = 2 gauge theories have been of great interest in the past twenty-five years. While

N = 4 SYM has trivial non-perturbative physics

Z =

Z
D� e�S(�) (1.3)

The action must have a Grassmann odd symmetry � (supercharge Q) such that

Q2 = Bosonic symmetries (1.4)

�S(�) = 0 (1.5)

The symmetry must not be anomalous

And there should exist (we should be able to find) a Grassmann odd function V (�)

such that

�2V (�) = 0
⇣
�V (�)

⌘

B

� 0 (1.6)

the bosonic terms (Grassmann even) are possitive semidefinate.
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t ! 1 the integral localizes (it is given by the saddle point): it is non-zero only when
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�V (�)

⌘

B

= 0 (1.10)

this is called the zero locus

The same is true for an observable O(�) that is BPS

QO(�) = 0 (1.11)

hOi(t) =
Z

D�O(�) e�S(�)�t�V (�) (1.12)
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 Coulomb Branch: 

 Higgs Branch: 
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The action must have a Grassmann odd symmetry � (supercharge Q) such that

Q2 = Bosonic symmetries (1.5)

�S(�) = 0 (1.6)

The symmetry must not be anomalous

And there should exist (we should be able to find) a Grassmann odd function V (�)

such that
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⇣
�V (�)
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B

� 0 (1.7)

the bosonic terms (Grassmann even) are possitive semidefinate.
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D� e�S(�)�t�V (�) (1.8)
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⇣
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t ! 1 the integral localizes (it is given by the saddle point): it is non-zero only when
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= 0 (1.11)

this is called the zero locus

The same is true for an observable O(�) that is BPS

QO(�) = 0 (1.12)
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1. Introduction

V = | ⇥�, �̄⇤ |2 + |Q|4 + |�Q|2 + |mQ|2 = 0 (1.1)

v = x4 + ix5 s = x6 + ix10 t = e�s (1.2)

x = vt x2 = �1(t)x+ �2(t) x̃ = x� 1

2
�1(t) x2 = �G

2 (t) (1.3)

h
i

= �m2
i

hT (z)
Y

i

V
i

(z
i

)i =
X

j


h
j

(z � z
j

)2
+

@
j

z � z
j

�
h
Y

i

V
i

(z
i

)i (1.4)

�G

2 (z) = �hT (z)Q
i

V
i

(z
i

)i
hQ

i

V
i

(z
i

)i (1.5)

L ' 1

g2
⌧ =

4⇡i

g2
+

✓

2⇡
q = e2⇡i⌧ (1.6)

a (1.7)

⌧
ij

=
@2F(a)

@a
i

@a
j

, (1.8)

while the expectation values of the scalar fields in the dual (magnetic) theory are given by

a
D

i =
@F(a)

@a
i

. (1.9)

The electromagnetic duality acts on the Coulomb moduli as the modular transformation

 
a
D

i

a
i

!
!
 
a b

c d

! 
a
D

i

a
i

!
with

 
a b

c d

!
2 SL(2,Z) . (1.10)

The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.11)

together with a meromorphic di↵erential �
SW

. The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to

a
i

=

I

Ai

�
SW

and a
D

i =

I

B

i
�
SW

=
@F(a)

@a
i

. , (1.12)

where A
i

and B
i

are the basic cycles of the algebraic curve with intersection number

A
i

·Bj = �j
i

. The prepotential itself can be found by integrating (2.3). Moreover, contour

1The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =

htr�2i+ . . . .
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hOi(t) =
Z

D�O(�) e�S(�)�t�V (�) (1.13)

is independent of t.

hOiS4r1,r2 =

Z
daO(a) |Zpert(a)Zinst(a)|2 (1.14)

✏1,2 =
1

r1,2
h�i = diag (a1, . . . , aN ) (1.15)

W = Pe
H
iA+�ds �! W (a) =

1

N

X

i

e2⇡ai (1.16)

the more realistic N = 1 gauge theories are yet to be solved. N = 2 gauge theories

exhibit many interesting phenomena, such as confinement and monopole condensation.

Moreover, their topological sector gives access to their non-perturbative regime.

Seiberg and Witten derived the Wilsonian low energy e↵ective action of the N = 2

SU(2) gauge theory by encoding the problem into a two-dimensional (2D) holomorphic

curve [1]. Their work was soon after generalized to other gauge groups and matter contents

[2, 3, 4, 5]. Although for the paradigmatic SU(2) case the Seiberg-Witten (SW) curve was

derived from first principles [1], its construction becomes di�cult for generic quiver gauge

theories. Therefore, other methods have been employed, e.g., integrability [6], geometric

engineering [7, 8] and the type IIA/M-theory brane constructions [9, 10, 11]. The SW

curve was ally introduced as an auxiliary space [1], however, it was later understood that

it is part of the M-theory target space [9]. Using string theory, N = 2 gauge theories can

be realized as world volume theories on D4-branes, which are suspended between NS5-

branes. Uplifting this brane setup to M-theory, all the branes can be seen as one single

M5-brane with a non-trivial topology. The geometry of this M5-brane is encoded in the

SW curve. Therefore, the SW curve can also be derived by studying the minimal surface

of the M5-brane [9].

An alternative way to derive the Seiberg-Witten results was discovered by Nekrasov

[12]. He succeeded in finding the instanton partition functions of the N = 2 gauge theories

by introducing a special deformation called the ⌦ background. The deformed theory should

in fact be interpreted as a five-dimensional (5D) N = 1 gauge theory defined on the space

M4⇥S1. This class of 5D gauge theories was first studied by Seiberg [13] and their relation

to the four-dimensional (4D) N = 2 gauge theories on M4 was explored in [14]. Further,

it was found that the 5D N = 1 gauge theories can be realized using D5- and NS5-branes

[15, 16]. This D5/NS5 brane construction is T-dual to the D4/NS5 system discussed above

[9] as well as the original D3/NS5 Hanany-Witten set-up [17]. The 5D extension of the SW

curve has been studied in [10, 11]. The curve was obtained by compactifying one of the

directions along which the NS5-branes extend in the D4/NS5 setup. After T-duality along

the compactified direction, D4-branes turn into D5-branes, whose world volume theory is

a 5D N = 1 gauge theory.

An intriguing relation between the gauge theory partition function and topological

string theory was conjectured by Nekrasov [12]. String theory compactified on Calabi-Yau

threefold (CY3) yields N = 2 gauge theory on the 4D transverse space. The partition
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String/M-theory constructions 

IIB x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

ALE . . . . . . � � � �
N D3-branes � � � � . . . . . .

Table 1: Brane configuration in type IIA string theory

IIA x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 (x10)

M NS5-branes � � � � � � . . . . .

N D4-branes � � � � . . � . . . �
Table 2: Brane configuration in type IIA string theory

integrals of the meromorphic di↵erential �
SW

around its poles give linear combinations of

the bare quark masses (m
i

).

The SW curve and one-form can also be derived from M-theory [9]. To do this we

consider the brane setup in Table 1, where N D4-branes are suspended between M NS5-

branes. We introduce also 2N flavor branes attached to the two outermost NS5-branes

and extended to infinity. The theory described by this setup is 4D N = 2 SU(N)M�1

gauge theory, which is asymptotically conformal. The rotation of x4 and x5 coordinates

corresponds to U(1)
R

symmetry, while rotation of x7, x8, and x9 corresponds to SU(2)
R

symmetry.

Table 1 is a classical configuration from the gauge theory point of view. Taking the

tension of the branes into account, the configuration has to be modified to include the quan-

tum e↵ects. Uplifting to M-theory and minimizing the world volume of the corresponding

M5-brane under fixed boundary condition yields the SW curve. This curve describes a 2D

subsurface inside the space spanned by the coordinates {x4, x5, x6, x10}, where x10 is the

direction of the M-theory circle.

To obtain 5D N = 1 gauge theory we compactify the x5 coordinate. After T-duality

along x5, the system becomes an D5/NS5 brane system in type IIB string theory with a

5D N = 1 gauge theory living on the D5-branes (Table 2). This is the 5D N = 1 gauge

theory for which we are constructing the SW curve. The spacetime of this gauge theory is

M4 ⇥ S1 with the circumference of the IIB circle being

� =
2⇡↵0

R5
=

2⇡`3
p

R5R10
, (2.7)

where ↵0 = `2
s

=
`

3
p

R10
. Going back to the type IIA description, we define the complex

coordinates v and s according to

v ⌘ x4 + ix5 and s ⌘ x6 + ix10 . (2.8)

Due to the periodic nature of x5 and x10 it is natural to introduce another pair of complex

coordinates

w ⌘ e
�

v
R5 and t ⌘ e

�

s
R10 . (2.9)

The radius of the x5 circle is denoted as R5 and that of the M-theory circle as R10.
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IIB x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 (x10)

M NS5-branes � � � � � � . . . . .

N D5-branes � � � � . � � . . . �
Table 3: Brane configuration in type IIB string theory

The SW curve of the 5D SU(N)M�1 theory is now written as a polynomial of degree

N in w and degree M in t as

F (t, w) ⌘
NX

i=0

MX

j=0

C
p,q

wptq . (2.10)

The periodic boundary condition along the x5 coordinate makes the curve invariant under

a shift of the positions of the color branes (a0) and flavor branes (m0) by 2⇡R5. Therefore,

the coe�cients of the curve C
p,q

depend only on the gauge coupling q and

m̃ ⌘ e�m

0

/R5 = e��m ,

ã ⌘ e�a

0

/R5 = e��a ,
(2.11)

in which periodicity is manifest. Note that quantities that have dimension of mass are

related to the ones with dimension of length (primed) as

a =
a0

2⇡`2
s

and m =
m0

2⇡`2
s

. (2.12)

The coe�cients C
p,q

will be determined explicitly in Section 3.

The M-theory derivation of the SW one-form can be found in [30, 31, 32]. We sum-

marize it for pure SU(2) theory here. The extension to generic quiver theories is straight-

forward. The idea is to relate two di↵erent expressions of the masses of BPS states. On

one hand, the mass of a BPS particle is given by

mBPS
2 = |n

e

a+ n
m

a
D

|2 , (2.13)

where n
e

and n
m

are the electric and magnetic charges of the BPS state respectively. This

formula can be rewritten using the SW one-form as

mBPS
2 =

����
Z

neA+nmB

�SW

����
2

. (2.14)

On the other hand, a BPS state is interpreted as an open M2-brane attached to an M5-

brane whose volume is minimized. The boundary of a such minimal M2-brane with charge

(n
e

, n
m

) is the cycle n
e

A + n
m

B. Finally, the mass of this BPS state is calculated using

the volume-form of the M2-brane

! = ds ^ dv = d [log t (d logw)] (2.15)
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the partition function in a form in which the duality is manifest. It is unlikely that gauge

theory reasoning alone would lead to this rewriting. However, from the string theory point

of view it is natural. Due to the fact that the partition function is read o↵ from a toric

diagram, symmetries that arise from the CY geometry (and are obscured otherwise) are

manifest in this formalism.

In the previous section we used the type IIA D4/NS5 brane setup to realize the linear

quiver gauge theories. As we discussed in Section 2, the D4/NS5 brane configuration is

dual to type IIA string theory compactified on CY3. We are interested in the special class

of Calabi-Yau manifolds that satisfy the toric condition and lead to SU(N) gauge theory.

Theses CY3 are completely specified by their toric diagrams. In the case of linear quivers

the toric diagram is essentially same as the brane diagram.

Figure 7: The D4/NS5 system is T-dual to IIB (p, q) 5-brane system. The M/IIB duality

relates it to M-theory on the corresponding toric CY.

Following [16], the D4/NS5 brane setup in IIA theory is T-dual to IIB (p, q)-brane web

system (D5/NS5). When uplifting this system to M-theory via M/IIB duality, we obtain

M-theory on M4 ⇥ CY3 ⇥ S1 where CY is a toric three-fold whose (p, q)-cycle shrinks. In

this way the D4/NS5 system is equivalent to M-theory on toric CY, or IIA on CY which

is the usual geometric engineering setup. This connection is illustrated in Figure 7.

Given the toric diagram we can use the topological vertex formalism to calculate

Nekrasov’s partition function of 4D N = 2 gauge theories. We should stress again that

in this paper we study the Nekrasov partition function for the 5D uplift of the 4D gauge

theory. The 5D Nekrasov partition function is precisely equal to the topological string

partition function8; of course after the appropriate identification of the gauge theory pa-

rameters with the string theory parameters.

Writing down the topological string partition function is simple using the topological

vertex formalism. The procedure was reviewed in Section 2. What is quite tedious is to

bring the topological string partition function in the form given by Nekrasov. For that we

have to perform the sums. Such calculations have previously been done by [47, 19, 20, 48,

8To be precise, the obtained topological string partition function is the Nekrasov partition function for

the U(N) gauge theory whose Coulomb moduli parameters are constrained as a1 = �a2 = a. According

to [46], this constrained partition function is still not precisely SU(N). The di↵erence is the overall factor

which in [46] is called the U(1) factor and is independent of the Coulomb moduli. This U(1) factor does

not a↵ect the low-energy e↵ective coupling constants which we studied in the previous section.
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Writing down the topological string partition function is simple using the topological

vertex formalism. The procedure was reviewed in Section 2. What is quite tedious is to

bring the topological string partition function in the form given by Nekrasov. For that we

have to perform the sums. Such calculations have previously been done by [47, 19, 20, 48,

8To be precise, the obtained topological string partition function is the Nekrasov partition function for

the U(N) gauge theory whose Coulomb moduli parameters are constrained as a1 = �a2 = a. According

to [46], this constrained partition function is still not precisely SU(N). The di↵erence is the overall factor

which in [46] is called the U(1) factor and is independent of the Coulomb moduli. This U(1) factor does

not a↵ect the low-energy e↵ective coupling constants which we studied in the previous section.
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T-duality along x6

5D N=1 on M4 x S1:

T-duality along x5

 

IIB x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Z
M

. . . . . . � � � �
N D3-branes � � � � . . . . . .

Table 1: Brane configuration in type IIA string theory

IIA x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 (x10)

M NS5-branes � � � � � � . . . . .

N D4-branes � � � � . . � . . . �
Table 2: Brane configuration in type IIA string theory

The prepotential is determined using an auxiliary curve called the SW curve

F4D(t, v) = 0 (2.5)

together with a meromorphic di↵erential �
SW

. The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve3 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to

a
i

=

I

Ai

�
SW

and a
D

i =

I

B

i
�
SW

, (2.6)

where A
i

and B
i

are the basic cycles of the algebraic curve with intersection number

A
i

·Bj = �j
i

. The prepotential itself can be found by integrating (2.3). Moreover, contour

integrals of the meromorphic di↵erential �
SW

around its poles give linear combinations of

the bare quark masses (m
i

).

The SW curve and one-form can also be derived from M-theory [9]. To do this we

consider the brane setup in Table 2, where N D4-branes are suspended between M NS5-

branes. We introduce also 2N flavor branes attached to the two outermost NS5-branes

and extended to infinity. The theory described by this setup is 4D N = 2 SU(N)M�1

gauge theory, which is asymptotically conformal. The rotation of x4 and x5 coordinates

corresponds to U(1)
R

symmetry, while rotation of x7, x8, and x9 corresponds to SU(2)
R

symmetry.

Table 2 is a classical configuration from the gauge theory point of view. Taking the

tension of the branes into account, the configuration has to be modified to include the quan-

tum e↵ects. Uplifting to M-theory and minimizing the world volume of the corresponding

M5-brane under fixed boundary condition yields the SW curve. This curve describes a 2D

subsurface inside the space spanned by the coordinates {x4, x5, x6, x10}, where x10 is the

direction of the M-theory circle.

To obtain 5D N = 1 gauge theory we compactify the x5 coordinate. After T-duality

along x5, the system becomes an D5/NS5 brane system in type IIB string theory with a

5D N = 1 gauge theory living on the D5-branes (Table 3). This is the 5D N = 1 gauge

3The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =

htr�2i+ . . . .
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The Hanany Witten set up

Type IIA D4/NS5 description of 4D N = 2 gauge theories

[Hanany, Witten 1996] [Witten 1997]

N D4-branes are suspended between two NS5-branes �! pure SU(N)

world-volume theory on the D4-branes

S =

Z
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g2

Separating the D4-branes �! Coulomb branch.
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Type IIA D4/NS5 description of 4D N = 2 gauge theories

Semi-infinate D4-branes �! flavor (quarks in the fundamental)

N = 2 SuperConformal QCD with SU(N) color and U(Nf ) flavor Nf = 2N
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while the expectation values of the scalar fields in the dual (magnetic) theory are given by
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. (1.7)

The electromagnetic duality acts on the Coulomb moduli as the modular transformation
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The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.9)

together with a meromorphic di↵erential �
SW

. The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to

a
i

=

I

Ai

�
SW

and a
D

i =

I

B

i
�
SW

, (1.10)

where A
i

and B
i

are the basic cycles of the algebraic curve with intersection number

A
i

·Bj = �j
i

. The prepotential itself can be found by integrating (2.3). Moreover, contour

integrals of the meromorphic di↵erential �
SW

around its poles give linear combinations of

the bare quark masses (m
i

).

hQIi = 0 m
i

= 0 h�i = a = 0 (1.11)

E
r

with � = r

1The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =

htr�2i+ . . . .
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The Hanany Witten set up

Type IIA D4/NS5 description of 4D N = 2 gauge theories

M NS5-branes �! quiver theory with SU(N)M�1 gauge group

x4x5 rotation corresponds to U(1)R symmetry
x7x8x9 rotation corresponds to SU(2)R symmetry.
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Motivation – The main point

Study the duality between:

5D N = 1 line quiver SU(N)M�1  ! SU(M)N�1

⇣
4D N = 2 conformal line quiver SU(N)

M�1  ! SU(M)

N�1
⌘

[Katz, Mayer, Vafa 1997] [Aharony, Hanany, Kol 1997]

At a generic point of the Coulomb branch both �! U(1)(N�1)(M�1)

The IR e↵ective theories are the same up to parameter identification

⌧ , m , a  ! ⌧d , md , ad Duality map

Elli Pomoni (Humboldt Universität ) SU(N)M�1  ! SU(M)N�1 duality 13th June 2012 2 / 46

IIB x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

ALE . . . . . . � � � �
N D3-branes � � � � . . . . . .

Table 1: Brane configuration in type IIA string theory

IIA x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 (x10)

M NS5-branes � � � � � � . . . . .

N D4-branes � � � � . . � . . . �
Table 2: Brane configuration in type IIA string theory

integrals of the meromorphic di↵erential �
SW

around its poles give linear combinations of

the bare quark masses (m
i

).

The SW curve and one-form can also be derived from M-theory [9]. To do this we

consider the brane setup in Table 1, where N D4-branes are suspended between M NS5-

branes. We introduce also 2N flavor branes attached to the two outermost NS5-branes

and extended to infinity. The theory described by this setup is 4D N = 2 SU(N)M�1

gauge theory, which is asymptotically conformal. The rotation of x4 and x5 coordinates

corresponds to U(1)
R

symmetry, while rotation of x7, x8, and x9 corresponds to SU(2)
R

symmetry.

Table 1 is a classical configuration from the gauge theory point of view. Taking the

tension of the branes into account, the configuration has to be modified to include the quan-

tum e↵ects. Uplifting to M-theory and minimizing the world volume of the corresponding

M5-brane under fixed boundary condition yields the SW curve. This curve describes a 2D

subsurface inside the space spanned by the coordinates {x4, x5, x6, x10}, where x10 is the

direction of the M-theory circle.

To obtain 5D N = 1 gauge theory we compactify the x5 coordinate. After T-duality

along x5, the system becomes an D5/NS5 brane system in type IIB string theory with a

5D N = 1 gauge theory living on the D5-branes (Table 2). This is the 5D N = 1 gauge

theory for which we are constructing the SW curve. The spacetime of this gauge theory is

M4 ⇥ S1 with the circumference of the IIB circle being

� =
2⇡↵0

R5
=

2⇡`3
p

R5R10
, (2.7)

where ↵0 = `2
s

=
`

3
p

R10
. Going back to the type IIA description, we define the complex

coordinates v and s according to

v ⌘ x4 + ix5 and s ⌘ x6 + ix10 . (2.8)

Due to the periodic nature of x5 and x10 it is natural to introduce another pair of complex

coordinates

w ⌘ e
�

v
R5 and t ⌘ e

�

s
R10 . (2.9)

The radius of the x5 circle is denoted as R5 and that of the M-theory circle as R10.

– 5 –

which depend holomorphically on the gauge theory parameters. ⌧
UV

are the UV coupling

constants, mf are the mass parameters of the flavor hypermultiplets, mbif are the mass

parameters of the bifundamental hypermultiplets and a are the Coulomb moduli parame-

ters. The counting of the parameters for asymptotically superconformal SU(N)M�1 and

SU(M)N�1 gauge theories is summarized in TableSumming all the parameters shows that

there are in total [(N +1)(M +1)�3] parameters in both theories, allowing the possibility

to derive a map between them.

SU(N)M�1 SU(M)N�1

⌧
UV

M � 1 N � 1

mf 2N 2M

mbif M � 2 N � 2

a (N � 1)(M � 1) (M � 1)(N � 1)

Total (N + 1)(M + 1)� 3 (M + 1)(N + 1)� 3

Table 4: Counting of the gauge theory parameters

One of approaches we use is to match the coe�cients of the SW curves and the SW

one-form of the two dual theories. Before attempting that, we first count the degrees of

freedom that are encoded in the SW curve. The SW curve of the 5D SU(N)M�1 gauge

theory is a polynomial of degree M in the variable t and N in the variable w. We have

therefore [(M +1)(N +1)�1] complex coe�cients, where one has been subtracted to allow

an overall coe�cient. Moreover, there is the freedom to set the origins of the coordinates s

and v. Removing two more coe�cients we find [(M +1)(N +1)� 3] degrees of freedom in

total. Thus, the number of coe�cients in the SW curve is always the same as the number

of physical parameters.

If we exchange the role of the variables t and w, the SW curve (2.10) of the original

SU(N)M�1 theory can be read as the SW curve of the dual SU(M)N�1 theory. The

coe�cients C
p,q

in the original curve get reinterpreted as the coe�cients in the curve of

the dual theory (C
q,p

)
d

. In addition, the SW one-form (2.17) also remains the same up to

a minus sign (3.24). Using (2.6) the IR e↵ective coupling constant is given by

⌧
IR

=
@a

D

@u

@a

@u

=

R
B

!R
A

!
, (2.26)

where ! is the holomorphic di↵erential. Since the holomorphic di↵erential does not dis-

tinguish6 the cycle A (or B) of the original theory from A
d

(or B
d

) of the dual theory, we

get that the dual IR e↵ective coupling constant is equal to the original one. Therefore,

once the relation between the gauge theory parameters and the coe�cients C
p,q

in the SW

curve is established, it is straightforward to find the duality map. The map is obtained

by equating the coe�cients C
p,q

, written in terms of the gauge theory parameters of the

original SU(N)M�1 theory, with the coe�cients (C
q,p

)
d

, written in terms of the parameters

of the dual SU(M)N�1 theory.

6This is true because ! has no poles as opposed to the meromorphic �
SW

that does have poles.
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Parameterization        

Deformations of the web that do not change its asymptotic form = # of faces           
= Coulomb branch (a’s) 

Deformations that do change the asymptotic form = # of external branes - 3                     
= parameters that define the theory: masses and couplings (m’s and g’s)

the partition function in a form in which the duality is manifest. It is unlikely that gauge

theory reasoning alone would lead to this rewriting. However, from the string theory point

of view it is natural. Due to the fact that the partition function is read o↵ from a toric

diagram, symmetries that arise from the CY geometry (and are obscured otherwise) are

manifest in this formalism.

In the previous section we used the type IIA D4/NS5 brane setup to realize the linear

quiver gauge theories. As we discussed in Section 2, the D4/NS5 brane configuration is

dual to type IIA string theory compactified on CY3. We are interested in the special class

of Calabi-Yau manifolds that satisfy the toric condition and lead to SU(N) gauge theory.

Theses CY3 are completely specified by their toric diagrams. In the case of linear quivers

the toric diagram is essentially same as the brane diagram.

Figure 7: The D4/NS5 system is T-dual to IIB (p, q) 5-brane system. The M/IIB duality

relates it to M-theory on the corresponding toric CY.

Following [16], the D4/NS5 brane setup in IIA theory is T-dual to IIB (p, q)-brane web

system (D5/NS5). When uplifting this system to M-theory via M/IIB duality, we obtain

M-theory on M4 ⇥ CY3 ⇥ S1 where CY is a toric three-fold whose (p, q)-cycle shrinks. In

this way the D4/NS5 system is equivalent to M-theory on toric CY, or IIA on CY which

is the usual geometric engineering setup. This connection is illustrated in Figure 7.

Given the toric diagram we can use the topological vertex formalism to calculate

Nekrasov’s partition function of 4D N = 2 gauge theories. We should stress again that

in this paper we study the Nekrasov partition function for the 5D uplift of the 4D gauge

theory. The 5D Nekrasov partition function is precisely equal to the topological string

partition function8; of course after the appropriate identification of the gauge theory pa-

rameters with the string theory parameters.

Writing down the topological string partition function is simple using the topological

vertex formalism. The procedure was reviewed in Section 2. What is quite tedious is to

bring the topological string partition function in the form given by Nekrasov. For that we

have to perform the sums. Such calculations have previously been done by [47, 19, 20, 48,

8To be precise, the obtained topological string partition function is the Nekrasov partition function for

the U(N) gauge theory whose Coulomb moduli parameters are constrained as a1 = �a2 = a. According

to [46], this constrained partition function is still not precisely SU(N). The di↵erence is the overall factor

which in [46] is called the U(1) factor and is independent of the Coulomb moduli. This U(1) factor does

not a↵ect the low-energy e↵ective coupling constants which we studied in the previous section.

– 22 –

m1

m2 m3

a

m4

IIB x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

ALE . . . . . . � � � �
N D3-branes � � � � . . . . . .

Table 1: Brane configuration in type IIA string theory

IIA x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 (x10)

M NS5-branes � � � � � � . . . . .

N D4-branes � � � � . . � . . . �
Table 2: Brane configuration in type IIA string theory

integrals of the meromorphic di↵erential �
SW

around its poles give linear combinations of

the bare quark masses (m
i

).

The SW curve and one-form can also be derived from M-theory [9]. To do this we

consider the brane setup in Table 1, where N D4-branes are suspended between M NS5-

branes. We introduce also 2N flavor branes attached to the two outermost NS5-branes

and extended to infinity. The theory described by this setup is 4D N = 2 SU(N)M�1

gauge theory, which is asymptotically conformal. The rotation of x4 and x5 coordinates

corresponds to U(1)
R

symmetry, while rotation of x7, x8, and x9 corresponds to SU(2)
R

symmetry.

Table 1 is a classical configuration from the gauge theory point of view. Taking the

tension of the branes into account, the configuration has to be modified to include the quan-

tum e↵ects. Uplifting to M-theory and minimizing the world volume of the corresponding

M5-brane under fixed boundary condition yields the SW curve. This curve describes a 2D

subsurface inside the space spanned by the coordinates {x4, x5, x6, x10}, where x10 is the

direction of the M-theory circle.

To obtain 5D N = 1 gauge theory we compactify the x5 coordinate. After T-duality

along x5, the system becomes an D5/NS5 brane system in type IIB string theory with a

5D N = 1 gauge theory living on the D5-branes (Table 2). This is the 5D N = 1 gauge

theory for which we are constructing the SW curve. The spacetime of this gauge theory is

M4 ⇥ S1 with the circumference of the IIB circle being

� =
2⇡↵0

R5
=

2⇡`3
p

R5R10
, (2.7)

where ↵0 = `2
s

=
`

3
p

R10
. Going back to the type IIA description, we define the complex

coordinates v and s according to

v ⌘ x4 + ix5 and s ⌘ x6 + ix10 . (2.8)

Due to the periodic nature of x5 and x10 it is natural to introduce another pair of complex

coordinates

w ⌘ e
�

v
R5 and t ⌘ e

�

s
R10 . (2.9)

The radius of the x5 circle is denoted as R5 and that of the M-theory circle as R10.

– 5 –

q

m1

m2

m3
m4

m5

m6

a1

a2

q

1. Introduction

x = vt x2 = �1(t)x+ �2(t) x̃ = x� 1

2
�1(t) x2 = �G

2 (t) (1.1)

h
i

= �m2
i

hT (z)
Y

i

V
i

(z
i

)i =
X

j


h
j

(z � z
j

)2
+

@
j

z � z
j

�
h
Y

i

V
i

(z
i

)i (1.2)

�G

2 (z) = �hT (z)Q
i

V
i

(z
i

)i
hQ

i

V
i

(z
i

)i (1.3)

L ' 1

g2
⌧ =

4⇡i

g2
+

✓

2⇡
q = e2⇡i⌧ (1.4)

a (1.5)

⌧
ij

=
@2F(a)

@a
i

@a
j

, (1.6)

while the expectation values of the scalar fields in the dual (magnetic) theory are given by
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The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.9)

together with a meromorphic di↵erential �
SW

. The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to
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where A
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and B
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are the basic cycles of the algebraic curve with intersection number

A
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·Bj = �j
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. The prepotential itself can be found by integrating (2.3). Moreover, contour

integrals of the meromorphic di↵erential �
SW

around its poles give linear combinations of

the bare quark masses (m
i

).
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1The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =
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Uplift to M-theory
SW curve from M-theory (Witten 1997)

This is a classical configuration from the gauge theory point of view.

Taking in account the tension of the branes include the quantum e↵ects.

Uplift to M-theory �! a single M5-brane with non-trivial topology.
[Witten 1997]
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Uplift to M-theory: a single M5 brane with non trivial topology

[Witten 1997]

2D surface F(t,v)=0 in the 4D 
space {x4, x5, x6, x10}={v,t}.

Point particles in x0,1,2,3 will come from M2 branes ending on the M5

the maximal punctures. The minimal punctures require more work and will be addressed
in section 3.3.2.

We review shortly the N = 2 case as a warmup. The SW curve is obtained from (3.1)

(v �m1)(v �m2)t
2
+

��(1 + q)v

2
+ qMv + u

�

t+ q(v �m3)(v �m4) = 0 . (3.16)

With this curve at hand, we look for its simple poles (positions of the punctures) and study
its behavior close to them. To do so we view the curve as a polynomial in v

(t� 1)(t� q)v

2 � P1(t)v + P2(t) = 0 (3.17)

with

P1(t) = (m1 +m2)t
2 � qM t+ q(m3 +m4) , (3.18a)

P2(t) = m1m2t
2
+ u t+ qm3m4 . (3.18b)

and M = m1 +m2 +m3 +m4. Solving for v gives two solutions

v± =

P1(t)±
�

P1(t)
2 � 4(t� 1)(t� q)P2(t)

�1/2

2(t� 1)(t� q)

, (3.19)

which define a two-sheeted cover of a sphere parametrized by t. At t = 1, q these become

v± t=1 ⇠
⇢

m1 +m2

t� 1

,

P2(1)

P1(1)

�

and v± t=q ⇠
⇢

�q(m3 +m4)

t� q

,

P2(q)

P1(q)

�

. (3.20)

Consequently, v has a simple pole on only one sheet close to t = 1, q and it is regular on
the other sheet. The residues are

Res v± t=1 = {m1 +m2 , 0} and Res v± t=q = {�q(m3 +m4) , 0} . (3.21)

In the limits t ! 0,1 the solutions v± are

v± t!1 = {m1 , m2} , v± t!0 = {m3 , m4} . (3.22)

Gaiotto’s shift: It is possible to shift v by a t-dependent function,

ṽ = v � 1

2

P1

(t� 1)(t� q)

, (3.23)

such that ṽ is the solution to

ṽ

2
=

P

2
1 � 4(t� 1)(t� q)P2

4(t� 1)

2
(t� q)

2
. (3.24)

The SW differential �

SW

, as reviewed in section 2.1, is given by the uniquely defined
holomorphic two-from

! = ds ^ dv = d log t ^ dv = d (vd log t) = d�

SW

() �

SW

= v

dt

t

+ const(v) (3.25)
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Seiberg-Witten theory 

where Nk is the degree of (3.9) as a polynomial in v, b is the branching index

b =

X

vn

(⌫(v

n

)� 1) , (3.56)

v

n

are the ramification points on ⌃ and ⌫(v

n

) is the ramification index at v

n

, which is
the number of sheets that meet at v

n

. First for the N = 2 curve in (3.28) we have four
branching points t

i

. They correspond to 4k ramification points v

s

(t

i

) with ⌫(v

s

(t

i

)) = 2

and branching index b = 4k. The four additional branching points that appear because
of the orbifold, t• = 1, q and tF = t

b

,

˜

t

b

, correspond to v with ramification index k and
b = 2(k � 1). The genus of the curve (3.28) is thus 2k � 1. Then, the N = 3 curve (3.44)
is a degree 3k polynomial in v and has 8k points with ramification index 2 and four points
with ramification index k. Thus, its genus is 3k � 1. Finally, for arbitrary N the genus of
the curve (3.9) is Nk � 1.

3.5 Various cycles and their integrals

In this section we wish to clarify the structure of the non-trivial cycles in the spectral curve
and their relation to the physical parameters.

Let us begin with a rapid review of the SW solution for the N = 2 theory with SU(2)

and N

f

= 4: the moment the SW curve (3.16) and the SW differential (3.25) are known,
we can immediately obtain

a(u) =

1

2⇡i

Z

A

�

SW

, a

D

(u) =

1

2⇡i

Z

B

�

SW

and ⌧

IR

=

@a

D

@a

(3.57)

where the A- and B- cycles are depicted in figure 6. Note that A-cycle can be equivalently
defined either as the cycle around the cut (t1, t2) or (t3, t4) up to cycles around the poles
at t = 0, q, 1,1. In the massless limit, where the poles do not give any masses as their
residues, these two definitions become identical. For future comparison, we also define A1-
and A2- cycles on the upper and lower sheets, which are equivalent here (N = 2 case). The
relation a1(u) = �a2(u) reflects the difference of the sign of �

SW

on the upper and lower
sheets. This condition a1 = �a2 = a defines the zero on the v-plane and can always be

Figure 6. For the N = 2 theory with SU(2), Nf = 4 and with mi = 0 8 i = 1, . . . , 4 we depict here
the 2-sheeted cover of the four-punctured sphere with the A- and B-cycle defined by the red and the
blue contours.
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! = ds ^ dv = d log t ^ dv = d (vd log t) = d�

SW

Imposing the Z
k

orbifold breaks supersymmetry to N = 1 and the superpotential
becomes

WSk =

k

X

i=1

M�1
X

c=1

⇣

Q(i,c�1)�(i,c)
˜

Q(i,c�1) � ˜

Q(i,c)�(i,c)Q(i+1,c)

⌘

. (2.10)

A chiral field Q(i,c) corresponds to an arrow pointing left into the node (i, c) and ˜

Q(i,c)

corresponds to an arrow pointing right from the node (i, c). The chiral field �(i,c) points
from (i + 1, c) to (i, c). The transformation properties of all the fields in the Lagrangian
for the various gauge and global symmetries are summarized in table 2. In particular, in
class S

k

we have a large number of global U(1) symmetries [17], the action of which on the
various bi-fundamental fields (arrows) is depicted by grey, blue and red arrows in figure 2.

SU(N)(i,c�1) SU(N)(i,c) SU(N)(i+1,c) U(1)t U(1)↵c U(1)�i+1�c U(1)�i

V(i,c) 1 adj. 1 0 0 0 0
�(i,c) 1 ⇤ ⇤ �1 0 �1 +1

Q(i,c�1) ⇤ ⇤ 1 +1/2 �1 +1 0
e

Q(i,c�1) ⇤ 1 ⇤ +1/2 +1 0 �1

Table 2. The symmetries of the fields of the orbifolded linear quivers in class Sk. Apart from the
color structure that can be read from the quiver diagram in figure 2, there is a number of U(1) global
symmetries which can also be read from the extra arrows that intersect the bi-fundamentals.

2.3 Coulomb moduli parameters and mass parameters

From the study of N = 2 theories we are used to the fact that the SW curves are param-
eterized by the vacuum expectation values of gauge invariant operators htr�`i ⇠ u

`

that
parametrize the Coulomb branch of the theory. There, solving the theory amounts to cal-
culating the vev h�i = a of the Coulomb moduli as a function of the u, a(u), as well as their
magnetic duals a

D

(u). This is done by computing the A- and B-cycle integrals, see section
3.5 for a review, and at weak coupling we find a ⇠ p

u2. The a(u) in the IIA/M-theory
picture correspond to the positions of the D4/M5 branes.

After orbifolding, the gauge invariant operators whose vevs parameterize the Coulomb
branch of the theory are 3

htr ��(1,c) · · ·�(k,c)

�

`i ⇠ u

`k,c

, (2.11)

htr ��(1) · · ·�(k)

�i ⇠ u

k

, (2.12)

htr ��(1) · · ·�(k)

�2i ⇠ u2k , (2.13)

m

2
BPS

= |na+ma

D

|2 (2.14)

3
More rigorously, the Coulomb moduli parameters u which appear in the spectral curve in the later

sections are accompanied by a certain linear combination of the product of these operators with the same

total mass dimension together with the correction from the mass parameters. In (2.11) we omit these

corrections and write the relation symbolically.
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The spectrum of BPS dyons: 

n: electric charge, 
m: magnetic 
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The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.10)

together with a meromorphic di↵erential �
SW

. The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to
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where A
i

and B
i

are the basic cycles of the algebraic curve with intersection number

A
i

·Bj = �j
i

. The prepotential itself can be found by integrating (2.3). Moreover, contour

integrals of the meromorphic di↵erential �
SW

around its poles give linear combinations of

the bare quark masses (m
i

).

1The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =

htr�2i+ . . . .
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The SW Curve

the maximal punctures. The minimal punctures require more work and will be addressed
in section 3.3.2.

We review shortly the N = 2 case as a warmup. The SW curve is obtained from (3.1)

(v �m1)(v �m2)t
2
+

��(1 + q)v

2
+ qMv + U

�

t+ q(v �m3)(v �m4) = 0 . (3.16)

With this curve at hand, we look for its simple poles (positions of the punctures) and study
its behavior close to them. To do so we view the curve as a polynomial in v

(t� 1)(t� q)v

2 � P1(t)v + P2(t) = 0 (3.17)

with

P1(t) = (m1 +m2)t
2 � qM t+ q(m3 +m4) , (3.18a)

P2(t) = m1m2t
2
+ u t+ qm3m4 . (3.18b)

and M = m1 +m2 +m3 +m4. Solving for v gives two solutions

v± =

P1(t)±
�

P1(t)
2 � 4(t� 1)(t� q)P2(t)

�1/2

2(t� 1)(t� q)

, (3.19)

which define a two-sheeted cover of a sphere parametrized by t. At t = 1, q these become

v± t=1 ⇠
⇢

m1 +m2

t� 1

,

P2(1)

P1(1)

�

and v± t=q ⇠
⇢

�q(m3 +m4)

t� q

,

P2(q)

P1(q)

�

. (3.20)

Consequently, v has a simple pole on only one sheet close to t = 1, q and it is regular on
the other sheet. The residues are

Res v± t=1 = {m1 +m2 , 0} and Res v± t=q = {�q(m3 +m4) , 0} . (3.21)

In the limits t ! 0,1 the solutions v± are

v± t!1 = {m1 , m2} , v± t!0 = {m3 , m4} . (3.22)

Gaiotto’s shift: It is possible to shift v by a t-dependent function,

ṽ = v � 1

2

P1

(t� 1)(t� q)

, (3.23)

such that ṽ is the solution to

ṽ
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=

P

2
1 � 4(t� 1)(t� q)P2

4(t� 1)

2
(t� q)

2
. (3.24)

The SW differential �

SW

, as reviewed in section 2.1, is given by the uniquely defined
holomorphic two-from

! = ds ^ dv = d log t ^ dv = d (vd log t) = d�

SW

() �

SW

= v

dt

t

+ const(v) (3.25)
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1. Introduction

V = | ⇥�, �̄⇤ |2 + |Q|4 + |�Q|2 + |mQ|2 = 0 (1.1)

v = x4 + ix5 s = x6 + ix10 t = e�s (1.2)

x = vt x2 = �1(t)x+�2(t) x̃ = x�1

2
�1(t) x2 = �2(z) =

P (z)

(z � z1)2(z � z2)2(z � z3)2(z � z4)2
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(z)xN�` (1.4)

h
i

= �m2
i

hT (z)
Y

i

V
i

(z
i

)i =
X

j


h
j

(z � z
j

)2
+

@
j

z � z
j

�
h
Y

i

V
i

(z
i

)i (1.5)

�2(z) = �hT (z)Q
i

V
i

(z
i

)i
hQ

i

V
i

(z
i

)i (1.6)

L ' 1

g2
⌧ =

4⇡i

g2
+

✓

2⇡
q = e2⇡i⌧ (1.7)
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, (1.9)

while the expectation values of the scalar fields in the dual (magnetic) theory are given by

a
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i =
@F(a)
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i

. (1.10)

The electromagnetic duality acts on the Coulomb moduli as the modular transformation
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a
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a
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!
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a b

c d

!
2 SL(2,Z) . (1.11)

The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.12)

together with a meromorphic di↵erential �
SW

. The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to

a
i

=

I

Ai

�
SW

and a
D

i =

I

B

i
�
SW

=
@F(a)

@a
i

. , (1.13)

1The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =

htr�2i+ . . . .
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Figure 3. The spectral curve for N = 2 SCQCD with SU(2) gauge group and Nf = 4 flavors.
On the left we depict the SW curve ⌃. On the right we depict the four-punctured sphere C0,4, the
Gaiotto curve, whose double-cover is ⌃.

where

P

`

(t) = c(`,k)
L

t

2
+ (�1)

`

u

k

t+ qc(`,k)
R

(3.11)

with the parameters c
L

, c
R

defining the singlet combinations of the masses like in (3.2)

c(`,k)
L

=

X

1i1<i2<···<i`N

m

i1
k

m

i2
k · · ·m

i`
k

, (3.12)

c(`,k)
R

=

X

N+1j1<j2<···<j`2N

m

j1
k

m

j2
k · · ·m

j`
k

. (3.13)

Then we make the substitution v = xt in (3.10), reparametrize t ! az+b

cz+d

and x ! (cz+d)

2
x

and find6

x

Nk

=

N

X

`=1

p(`,2)(z)

(cz + d)

`k

(↵z + �)(⇣z + ⇠)(az + b)

`k

x

(N�`)k ⌘
N

X

`=1

�

`k

(z)x

(N�`)k
. (3.14)

This change of variables leaves invariant the SW differential for ad� bc = 1. Moreover, the
p(`,2)(z) are degree two polynomials in z

p(`,2)(z) = (�1)

`+1
(az + b)

2c(`,k)
L

� (az + b)(cz + d)u

`k

+ (�1)

`+1
(cz + d)

2
qc(`,k)

R

. (3.15)

Thus �
`k

(z) are meromorphic sections of the line bundle L⌦`k

v

of degree �2`k, deg(L
v

) = �2

and the space parametrized by z is a four-punctured sphere7 C(k)
0,4 in class S

k

.

3.2 Pole structure: Maximal and minimal punctures

Let us for simplicity begin with the SU(2) SCQCD
k

theory. As we will discover for the the-
ories in class S

k

, the distinction between maximal and minimal punctures already appears
for N = 2. This is in stark contrast with the SU(2) punctures of class S theories, which
are indistinguishable8. The generalization of what we will do below to any N is trivial for

6
with ↵ = a� c, � = b� d, ⇣ = a� cq, ⇠ = b� dq.

7
Recall that p+ q = 2(g � 1) + n and that for us c1 (Lw) = q = 0.

8
The SU(2) punctures in class S are indistinguishable only after we shift v appropriately, (3.23).
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N=4 SYM has EM/S-duality: SL(2,Z) symmetry

Take the 6D (2,0) SCFT and compactify on a torus.

S-duality is interpreted as  
the modular group of the torus.

Theorem: 6D (2,0) SCFT has no marginal deformations 
All coupling constants come form the moduli of the surface.

S-duality

[Cordova,Dumitrescu,Intriligator]

[Vafa 1997]

[Montonen,Olive 1977]



S-duality SU(2) SCQCD [Seiberg,Witten 1994]
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Figure 9.10: W bosons also come from monopoles.
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Figure 9.11: Triality

now given by

µ00
1 = µA + µD =

µ1 � µ2

2
+

µ3 � µ4

2
, (9.4.9)

µ00
2 = �µA + µD = �µ1 � µ2

2
+

µ3 � µ4

2
, (9.4.10)

µ00
3 = µC + µB =

µ3 + µ4

2
+

µ1 + µ2

2
, (9.4.11)

µ00
4 = µC � µB =

µ3 + µ4

2
� µ1 � µ2

2
. (9.4.12)

These are the weights of the conjugate spinor representation of SO(8).
Therefore, we learned that the strong-weak duality of the SU(2) gauge theory with four flavors,

q $ q0 = 1/q $ q00 = 1� q (9.4.13)

99

Weak coupling limit q -> 0 

q -> 00  limit q -> 1 limit 
strong coupling 19



20

Free trinions, gauging and S-duality 

are accompanied by the exchange of the representations of the SO(8) flavor symmetry,

V

S C
(9.4.14)

where V , S, C are eight dimensional irreducible representations (vector, spinor, conjugate spinor)
of SO(8). These exchanges of three irreducible eight dimensional representations are induced by
the outer automorphism, and are known as the triality of the group SO(8), whose Dynkin diagram
is also shown in Fig. 9.11. This triality was originally found in [3]. The exposition in this subsection
followed the one given in [8].

The Higgs branch of this system can be studied in any of these descriptions. Originally we
have hypermultiplets qaI , where a = 1, 2 and I = 1, . . . , 8. The gauge invariant combination is

M[IJ ] = qaI q
b
J✏ab. (9.4.15)

In the dual, we have hypermultiplets q̃ã
Ĩ
, where ã = 1, 2 are for dual SU(2) and Ĩ = 1, . . . , 8 are

for the spinor representation of the SO(8) flavor symmetry. The basic gauge invariant is then

M̃[Ĩ J̃ ] = q̃ã
Ĩ
q̃b̃
J̃
✏ãb̃. (9.4.16)

Both M[IJ ] and M̃[Ĩ J̃ ] are in the adjoint representation of SO(8), and can be naturally identified
using the outer automorphism of SO(8). We can check that the constraints satisfied by M[IJ ] and
M̃[Ĩ J̃ ] are invariant under the outer automorphism. This shows that the Higgs branch are the same
as complex spaces.

9.5 Generalization
9.5.1 Trivalent diagrams
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B

CA

B

C

0 ∞

q 1
A

B C

D
A

B C

D

q

Figure 9.12: Trivalent diagrams and corresponding ultraviolet curves
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The trifundamental hypermultiplet consisting of N=1 chiral multiplets qa↵u for a,↵, u = 1, 2
played the central role in the analysis so far. Let us introduce a shorthand notation for it, by rep-
resenting it by a trivalent vertex with labels A, B, C as in Fig. 9.12, signifying the symmetries
SU(2)A, SU(2)B, SU(2)C , acting on the indices a, ↵, u respectively.

The ultraviolet curve for this system is given by a sphere with three punctures A, B, C, and the
Seiberg-Witten curve is given by

⌃ : �2 � �(z) = 0 (9.5.1)

where �(z) is given by the condition that the coe�cients of the double poles are given by µ2
A, µ2

B,
µ2
C at each of the punctures A,B,C, as in (9.3.7).

Now, the SU(2) theory with four flavors can be obtained by taking two copies of trifundamen-
tals, and coupling an SU(2) gauge multiplet to them. We denote it by taking two trivalent vertices,
and connecting them by a line, as shown in Fig. 9.12. We put the exponentiated coupling q on the
connecting line.

Starting with this trivalent diagram, we can easily write down the Lagrangian of the theory.
The free parameters in the theory are the mass parameters µA,B,C,D and the UV coupling q. The
ultraviolet curve of this system is given by a sphere with four punctures A, B, C, D, and the
Seiberg-Witten curve is given by

⌃ : �2 � �(z) = 0 (9.5.2)

where �(z) is given by the condition that its residues are given by µ2
X at each of the punctures

X = A,B,C,D as in (9.2.10). The triality of the SU(2) theory with four flavors, shown already
in Fig. 9.11, can be depicted in terms of the trivalent diagrams as in Fig. 9.13.
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D

q
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D

1/q

A

C

B

1−q

D

Figure 9.13: Triality, using trivalent diagrams.

This way, we can regard the trivalent diagram as a shorthand to represent the UV Lagrangian.
The Seiberg-Witten solution to this given UV Lagrangian theory is given just by replacing each
trivalent vertex with a three punctured sphere, and a connecting line with a connecting tube. This
is a surprisingly concise method to obtain the Seiberg-Witten solutions to N=2 gauge theories.
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Trivalent diagrams 
for the UV curves 

S-duality looks like  
crossing equation!

3 33
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Figure 12.16: S-duality of SU(3) with 6 flavors involves the theory MN(E6).

and on the right, we have the extended Dynkin diagram of E6 with one node removed.16 We
clearly see subgroups SU(3)3 and SU(6) ⇥ SU(2). We already saw above that this theory has
only one Coulomb branch operator, and its dimension is three. This nicely fits the feature of a
rank-1 superconformal theory announced to exist in Sec. 10.4. This is equivalent to Minahan-
Nemeschansky’s theory MN(E6).

33

3

Figure 12.17: The theory MN(E6) = R3 = T3

We conclude that we have the following duality:

SU(3) theory with 6 flavors at the strong coupling q ! 1

,

weakly-coupled SU(2) gauge multiplet coupled to one doublet
and to the theory MN(E6) of Minahan-Nemeschansky.

(12.3.6)

We can give a few more checks to this duality. The first one concerns the current two-point
functions. Firstly, we computed the current two-point function for the SU(2) flavor symmetry in
(12.3.4). Then the whole E6 flavor currents, which include the SU(2) ones, should have the same

16There is a general theorem for any G stating that there is always a maximal subgroup whose Dynkin diagram is
given by the extended Dynkin diagram of G minus one node.
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S-duality of SU(3) SCQCD [Argyres,Seiberg 2007]
[Argyres,Wittig 2007]

we find that the residues of � in the tube region is given by a1, . . . , aN . Therefore, we find full
punctures after we split o� two spheres.

The resulting three-punctured sphere has one simple puncture and two full punctures. There-
fore it should carry U(1) ⇥ SU(N) ⇥ SU(N) symmetry. The four-punctured sphere represents
the SU(N) theory with 2N flavors. The tube region carries the SU(N) vector multiplet. Then
each three-punctured sphere just represents N flavors, i.e. hypermultiplets (Qa

i , Q̃
i
a) where a, i =

1, . . . , N . Then two SU(N) symmetries can be identified with those acting on the index a and i
respectively, and the U(1) symmetry is such that Q has charge +1 while Q̃ has charge �1.

The ultraviolet curve of the SU(N) theory with 2N flavors, shown in Fig. 12.1, is composed of
two copies of this three-punctured sphere. The 2N hypermultiplets are split intoN hypermultiplets
(Qa

i , Q̃
i
a) charged under SU(N)A and U(1)B, and another N hypermultiplets (Q0a

i , Q̃
0i
a) charged

under SU(N)D and U(1)C .

0 ∞

q 1
A

B C

D 0 ∞

1
A

C B

D

q'=1/q

Figure 12.3: S-duality of SU(N) 2N flavors

12.1.3 A strong-coupling limit

Let us consider what happens when q ! 1. As shown in Fig. 12.3, it just ends up exchanging
the puncture B and C, at the same time redefining the coupling q via q0 = 1/q. This means that
this strongly-coupled limit turns out to be another weakly-coupled SU(N) gauge theory with 2N
flavors. This time, the 2N hypermultiplets are split into N hypermultiplets (qai , q̃ia) and another N
hypermultiplets (q0ai , q̃0ia), but notice that the first N are charged under SU(N)A and U(1)C while
the second N are charged under SU(N)D and U(1)B. As we learned for the case of the SU(2)

theory with four flavors in Sec. 9.4, the new quarks are magnetic from the point of view of the
original theory.

0 ∞

1
A

D C

B

q'=1−q

Figure 12.4: Another limit of SU(N) 2N flavors:

We would like to understand the limit q ! 1 too. We need to split the four-punctured sphere
as shown in Fig. 12.4. But the configuration of punctures are not what we already know: we have
two full punctures on one side, and two simple punctures on the other side. We need to study more
about the 6d construction before answering what happens in the limit.
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12.2 SU(N) quiver theories and tame punctures
12.2.1 Quiver gauge theories

To this aim, we introduce a new diagrammatic notation for N=2 gauge theories. This notation is
related to but distinct from the trivalent one introduced in Sec. 9.5.

A diagram is composed of squares and circles with integers written in them, and edges con-
necting squares and circles. A square with N stands for a U(N) flavor symmetry, and a circle with
N an SU(N) gauge symmetry. An edge connecting two objects with N and M written within
them represents a hypermultiplet (Qa

i , Q̃
i
a) where i = 1, . . . , N and j = 1, . . . ,M . They are in the

tensor product of the fundamental representation of SU(N) and SU(M), and is called the bifun-
damental hypermultiplet. Such a diagram specifies an N=2 gauge theory. This class of theories
is often called quiver gauge theories.

N N

N NN
0 ∞

q 1

q

0 ∞

1qq' q'
N NN

q
N

q'

Figure 12.5: SU(N) quiver theory

The simplest cases are when all the squares and circles have the same number N written in
them, see Fig. 12.5. The first one in the figure is just a bifundamental hypermultiplet. The second
one is the SU(N) theory with 2N flavors. The last one is an SU(N)1 ⇥ SU(N)2 theory, so that

• there is a bifundamental hypermultiplet for SU(N)1 ⇥ SU(N)2, and

• there are N fundamental hypermultiplets for SU(N)1, and

• there are N fundamental hypermultiplets for SU(N)2.

Note that both SU(N)1 and SU(N)2 have zero beta function.
Their Seiberg-Witten solutions can be obtained by combining the knowledge we acquired so

far. Namely, each edge corresponds to the bifundamental hypermultiplet of SU(N) ⇥ SU(N),
which we know to come from a three punctured sphere of 6d theory of type SU(N), with two full
punctures and one simple puncture. All we have to do then is to prepare one such sphere for each
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Figure 12.16: S-duality of SU(3) with 6 flavors involves the theory MN(E6).

and on the right, we have the extended Dynkin diagram of E6 with one node removed.16 We
clearly see subgroups SU(3)3 and SU(6) ⇥ SU(2). We already saw above that this theory has
only one Coulomb branch operator, and its dimension is three. This nicely fits the feature of a
rank-1 superconformal theory announced to exist in Sec. 10.4. This is equivalent to Minahan-
Nemeschansky’s theory MN(E6).

33

3

Figure 12.17: The theory MN(E6) = R3 = T3

We conclude that we have the following duality:

SU(3) theory with 6 flavors at the strong coupling q ! 1

,

weakly-coupled SU(2) gauge multiplet coupled to one doublet
and to the theory MN(E6) of Minahan-Nemeschansky.

(12.3.6)

We can give a few more checks to this duality. The first one concerns the current two-point
functions. Firstly, we computed the current two-point function for the SU(2) flavor symmetry in
(12.3.4). Then the whole E6 flavor currents, which include the SU(2) ones, should have the same

16There is a general theorem for any G stating that there is always a maximal subgroup whose Dynkin diagram is
given by the extended Dynkin diagram of G minus one node.
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Gauging

There are two different types of punctures. One with SU(3) and one with U(1) symmetry

[Gaiotto 2009]

There are different types of 
punctures classified by Young 

diagrams.



22

Class S of 4D N=2 SCFT Tg,n by a compactification of the 6D (2,0) 
SCFT on Riemann surface Cg,n of genus g and with n punctures.

Riemann surface decomposition 
 in pairs of pants and tubes.

Building blocks of Gauge theories: Trinion theories and color factors

Generalized S-duality = modular transformations

[Gaiotto 2009]Class S of Gaiotto
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are accompanied by the exchange of the representations of the SO(8) flavor symmetry,
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(9.4.14)

where V , S, C are eight dimensional irreducible representations (vector, spinor, conjugate spinor)
of SO(8). These exchanges of three irreducible eight dimensional representations are induced by
the outer automorphism, and are known as the triality of the group SO(8), whose Dynkin diagram
is also shown in Fig. 9.11. This triality was originally found in [3]. The exposition in this subsection
followed the one given in [8].

The Higgs branch of this system can be studied in any of these descriptions. Originally we
have hypermultiplets qaI , where a = 1, 2 and I = 1, . . . , 8. The gauge invariant combination is

M[IJ ] = qaI q
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J✏ab. (9.4.15)

In the dual, we have hypermultiplets q̃ã
Ĩ
, where ã = 1, 2 are for dual SU(2) and Ĩ = 1, . . . , 8 are

for the spinor representation of the SO(8) flavor symmetry. The basic gauge invariant is then
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Theorem: 6D (2,0) SCFT has no marginal deformations 
All coupling constants come form the moduli of the surface.[Cordova,Dumitrescu,Intriligator]



Non-Lagrangian TN theories

 Isolated fixed points

 No Lagrangian description

 SU(N)3 global symmetry

Generalized Argyres Seiberg duality: 

we discover  the TN theories

3 “full” punctures 

Argyres Seiberg duality: we discovered the T3 theory with E6 symmetry. 

[Gaiotto 2009]
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Figure 12.26: Change of the type of the puncture.

The Seiberg-Witten curves are both given by

�4 + �2(z)�
2 + �3(z)�+ �4(z) = 0. (12.5.1)

In both cases, �k(z) has one full puncture at z = 0 and five simples punctures at z = zi. For the
first, the puncture at z = 1 was full and for the second, it is a simple puncture, of type (3, 1, 1).

For the first, the fields �k(z) are given by

�k(z) =
u(1)
k + u(2)

k z + u(3)
k z2 + u(4)

k z3Q5
i (z � zi)

dzk

zk�1
. (12.5.2)

For the second, they are given by

�2(z) =
u(1)
2 + u(2)

2 z + u(3)
2 z2 + u(4)

2 z3Q5
i (z � zi)

dz2

z
,

�3(z) =
u(1)
3 + u(2)

3 z + u(3)
3 z2Q5

i (z � zi)

dz3

z2
,

�4(z) =
u(1)
4 + u(2)

4 zQ5
i (z � zi)

dz4

z3
.

(12.5.3)

Here, u(i)
k is the dimension-k Coulomb branch operator of the i-th gauge group, and the way to

determine them from the pole structure was described around (12.2.17).
It is clear that �k(z) in (12.5.3) is obtained by setting u(3,4)

4 = u(4)
3 = 0 in (12.5.2). We will

explain below that we can start from the first theory, set the Coulomb branch parameters to this
subspace, and then move to the Higgs branch, realizing the second theory.

To facilitate the analysis of the Higgs branch, we introduce new names to the bifundamentals,
see Fig 12.27. We name the rightmost SU(N) flavor symmetry SU(N)0, and the gauge groups
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1. Introduction

N = 2 gauge theories have been of great interest in the past twenty-five years. While

N = 4 SYM has trivial non-perturbative physics

Z =

Z
D� e�S(�) (1.1)

The action must have a Grassmann odd symmetry � (supercharge Q) such that

Q2 = Bosonic symmetries (1.2)

�S(�) = 0 (1.3)

The symmetry must not be anomalous

And there should exist (we should be able to find) a Grassmann odd function V (�)

such that

�2V (�) = 0
⇣
�V (�)

⌘

B

� 0 (1.4)

the bosonic terms (Grassmann even) are possitive semidefinate.

Z(t) =

Z
D� e�S(�)�t�V (�) (1.5)

Z(t) is independent of t. Proof:

dZ(t)

dt
=

Z
D� e�S(�)�t�V (�)

⇣
� V (�)

⌘
=

Z
D�V (�) �

⇣
e�S(�)�t�V (�)

⌘
= 0 (1.6)

Z(0) = Z(1) (1.7)

t ! 1 the integral localizes (it is given by the saddle point): it is non-zero only when

⇣
�V (�)

⌘

B

= 0 (1.8)

this is called the zero locus

The same is true for an observable O(�) that is BPS

QO(�) = 0 (1.9)

hOi(t) =
Z

D�O(�) e�S(�)�t�V (�) (1.10)

is independent of t.

the more realistic N = 1 gauge theories are yet to be solved. N = 2 gauge theories

exhibit many interesting phenomena, such as confinement and monopole condensation.

Moreover, their topological sector gives access to their non-perturbative regime.

Seiberg and Witten derived the Wilsonian low energy e↵ective action of the N = 2

SU(2) gauge theory by encoding the problem into a two-dimensional (2D) holomorphic

curve [1]. Their work was soon after generalized to other gauge groups and matter contents

[2, 3, 4, 5]. Although for the paradigmatic SU(2) case the Seiberg-Witten (SW) curve was
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the more realistic N = 1 gauge theories are yet to be solved. N = 2 gauge theories

exhibit many interesting phenomena, such as confinement and monopole condensation.

Moreover, their topological sector gives access to their non-perturbative regime.

Seiberg and Witten derived the Wilsonian low energy e↵ective action of the N = 2

SU(2) gauge theory by encoding the problem into a two-dimensional (2D) holomorphic

curve [1]. Their work was soon after generalized to other gauge groups and matter contents

[2, 3, 4, 5]. Although for the paradigmatic SU(2) case the Seiberg-Witten (SW) curve was

derived from first principles [1], its construction becomes di�cult for generic quiver gauge

theories. Therefore, other methods have been employed, e.g., integrability [6], geometric

engineering [7, 8] and the type IIA/M-theory brane constructions [9, 10, 11]. The SW

curve was ally introduced as an auxiliary space [1], however, it was later understood that

it is part of the M-theory target space [9]. Using string theory, N = 2 gauge theories can

– 4 –

25



Supersymmetric Localization

1. Introduction

N = 2 gauge theories have been of great interest in the past twenty-five years. While

N = 4 SYM has trivial non-perturbative physics

Z =

Z
D� e�S(�) (1.1)

The action must have a Grassmann odd symmetry � (supercharge Q) such that

Q2 = Bosonic symmetries (1.2)

�S(�) = 0 (1.3)

The symmetry must not be anomalous

And there should exist (we should be able to find) a Grassmann odd function V (�)

such that

�2V (�) = 0
⇣
�V (�)

⌘

B

� 0 (1.4)

the bosonic terms (Grassmann even) are possitive semidefinate.

Z(t) =

Z
D� e�S(�)�t�V (�) (1.5)

Z(t) is independent of t. Proof:

dZ(t)

dt
=

Z
D� e�S(�)�t�V (�)

⇣
� V (�)

⌘
=

Z
D�V (�) �

⇣
e�S(�)�t�V (�)

⌘
= 0 (1.6)

Z(0) = Z(1) (1.7)

t ! 1 the integral localizes (it is given by the saddle point): it is non-zero only when

⇣
�V (�)

⌘

B

= 0 (1.8)

this is called the zero locus

The same is true for an observable O(�) that is BPS

QO(�) = 0 (1.9)

hOi(t) =
Z

D�O(�) e�S(�)�t�V (�) (1.10)

is independent of t.

the more realistic N = 1 gauge theories are yet to be solved. N = 2 gauge theories

exhibit many interesting phenomena, such as confinement and monopole condensation.

Moreover, their topological sector gives access to their non-perturbative regime.

Seiberg and Witten derived the Wilsonian low energy e↵ective action of the N = 2

SU(2) gauge theory by encoding the problem into a two-dimensional (2D) holomorphic

curve [1]. Their work was soon after generalized to other gauge groups and matter contents

[2, 3, 4, 5]. Although for the paradigmatic SU(2) case the Seiberg-Witten (SW) curve was

– 2 –

1. Introduction

N = 2 gauge theories have been of great interest in the past twenty-five years. While

N = 4 SYM has trivial non-perturbative physics

Z =

Z
D� e�S(�) (1.1)

The action must have a Grassmann odd symmetry � (supercharge Q) such that

Q2 = Bosonic symmetries (1.2)

�S(�) = 0 (1.3)

The symmetry must not be anomalous

And there should exist (we should be able to find) a Grassmann odd function V (�)

such that

�2V (�) = 0
⇣
�V (�)

⌘

B

� 0 (1.4)

the bosonic terms (Grassmann even) are possitive semidefinate.

Z(t) =

Z
D� e�S(�)�t�V (�) (1.5)

Z(t) is independent of t. Proof:

dZ(t)

dt
=

Z
D� e�S(�)�t�V (�)

⇣
� V (�)

⌘
=

Z
D�V (�) �

⇣
e�S(�)�t�V (�)

⌘
= 0 (1.6)

Z(0) = Z(1) (1.7)

t ! 1 the integral localizes (it is given by the saddle point): it is non-zero only when

⇣
�V (�)

⌘

B

= 0 (1.8)

this is called the zero locus

The same is true for an observable O(�) that is BPS

QO(�) = 0 (1.9)

hOi(t) =
Z

D�O(�) e�S(�)�t�V (�) (1.10)

is independent of t.

the more realistic N = 1 gauge theories are yet to be solved. N = 2 gauge theories

exhibit many interesting phenomena, such as confinement and monopole condensation.

Moreover, their topological sector gives access to their non-perturbative regime.

Seiberg and Witten derived the Wilsonian low energy e↵ective action of the N = 2

SU(2) gauge theory by encoding the problem into a two-dimensional (2D) holomorphic

curve [1]. Their work was soon after generalized to other gauge groups and matter contents

[2, 3, 4, 5]. Although for the paradigmatic SU(2) case the Seiberg-Witten (SW) curve was

– 2 –

For a BPS 
observable:

also

Z(t) is independent of t. Proof:

dZ(t)

dt
=

Z
D� e�S(�)�t�V (�)

⇣
� �V (�)

⌘
=

Z
D�V (�) �

⇣
e�S(�)�t�V (�)

⌘
= 0 (1.24)

Z(0) = Z(1) (1.25)

t ! 1 the integral localizes (it is given by the saddle point): it is non-zero only when
⇣
�V (�)

⌘

B

= 0 (1.26)

this is called the zero locus

The same is true for an observable O(�) that is BPS

QO(�) = 0 (1.27)

hOi(t) =
Z

D�O(�) e�S(�)�t�V (�) (1.28)

is independent of t.

Z =

Z
D� e�S(�)�t�V (�) '

X

i

e�S(�i
⇤

)
det

⇣
�V (2)

F

(�i

⇤

)
⌘

r
det

⇣
�V (2)

B

(�i

⇤

)
⌘ (1.29)

Z '
X

k

Z

Mk

Ztree[�⇤

(⇢)]Z1-loop[�⇤

(⇢)] (1.30)

hOiS4r1,r2 =

Z
daO(a) |Zpert(a)Zinst(a)|2 (1.31)

hOiS4r1,r2 =

Z
daO(a) ||Zpert(a)Zinst(a)||2 (1.32)

✏1,2 =
1

r1,2
h�i = diag (a1, . . . , a

N

) (1.33)

W = Pe
H
iA+�ds �! W (a) =

1

N

X

i

e2⇡ai (1.34)

the more realistic N = 1 gauge theories are yet to be solved. N = 2 gauge theories

exhibit many interesting phenomena, such as confinement and monopole condensation.
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theories. Therefore, other methods have been employed, e.g., integrability [6], geometric

engineering [7, 8] and the type IIA/M-theory brane constructions [9, 10, 11]. The SW
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theories. Therefore, other methods have been employed, e.g., integrability [6], geometric

engineering [7, 8] and the type IIA/M-theory brane constructions [9, 10, 11]. The SW

curve was ally introduced as an auxiliary space [1], however, it was later understood that

it is part of the M-theory target space [9]. Using string theory, N = 2 gauge theories can

be realized as world volume theories on D4-branes, which are suspended between NS5-

branes. Uplifting this brane setup to M-theory, all the branes can be seen as one single

M5-brane with a non-trivial topology. The geometry of this M5-brane is encoded in the

SW curve. Therefore, the SW curve can also be derived by studying the minimal surface

of the M5-brane [9].

An alternative way to derive the Seiberg-Witten results was discovered by Nekrasov

[12]. He succeeded in finding the instanton partition functions of the N = 2 gauge theories

by introducing a special deformation called the ⌦ background. The deformed theory should

in fact be interpreted as a five-dimensional (5D) N = 1 gauge theory defined on the space

M4⇥S1. This class of 5D gauge theories was first studied by Seiberg [13] and their relation

to the four-dimensional (4D) N = 2 gauge theories on M4 was explored in [14]. Further,

it was found that the 5D N = 1 gauge theories can be realized using D5- and NS5-branes

[15, 16]. This D5/NS5 brane construction is T-dual to the D4/NS5 system discussed above

[9] as well as the original D3/NS5 Hanany-Witten set-up [17]. The 5D extension of the SW

curve has been studied in [10, 11]. The curve was obtained by compactifying one of the

directions along which the NS5-branes extend in the D4/NS5 setup. After T-duality along

the compactified direction, D4-branes turn into D5-branes, whose world volume theory is

a 5D N = 1 gauge theory.

An intriguing relation between the gauge theory partition function and topological

string theory was conjectured by Nekrasov [12]. String theory compactified on Calabi-Yau

threefold (CY3) yields N = 2 gauge theory on the 4D transverse space. The partition
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the more realistic N = 1 gauge theories are yet to be solved. N = 2 gauge theories

exhibit many interesting phenomena, such as confinement and monopole condensation.

Moreover, their topological sector gives access to their non-perturbative regime.

Seiberg and Witten derived the Wilsonian low energy e↵ective action of the N = 2

SU(2) gauge theory by encoding the problem into a two-dimensional (2D) holomorphic

curve [1]. Their work was soon after generalized to other gauge groups and matter contents

[2, 3, 4, 5]. Although for the paradigmatic SU(2) case the Seiberg-Witten (SW) curve was

derived from first principles [1], its construction becomes di�cult for generic quiver gauge

theories. Therefore, other methods have been employed, e.g., integrability [6], geometric

engineering [7, 8] and the type IIA/M-theory brane constructions [9, 10, 11]. The SW

curve was ally introduced as an auxiliary space [1], however, it was later understood that

it is part of the M-theory target space [9]. Using string theory, N = 2 gauge theories can

be realized as world volume theories on D4-branes, which are suspended between NS5-

branes. Uplifting this brane setup to M-theory, all the branes can be seen as one single

M5-brane with a non-trivial topology. The geometry of this M5-brane is encoded in the

SW curve. Therefore, the SW curve can also be derived by studying the minimal surface

of the M5-brane [9].

An alternative way to derive the Seiberg-Witten results was discovered by Nekrasov

[12]. He succeeded in finding the instanton partition functions of the N = 2 gauge theories

by introducing a special deformation called the ⌦ background. The deformed theory should

in fact be interpreted as a five-dimensional (5D) N = 1 gauge theory defined on the space

M4⇥S1. This class of 5D gauge theories was first studied by Seiberg [13] and their relation

to the four-dimensional (4D) N = 2 gauge theories on M4 was explored in [14]. Further,

it was found that the 5D N = 1 gauge theories can be realized using D5- and NS5-branes

[15, 16]. This D5/NS5 brane construction is T-dual to the D4/NS5 system discussed above

[9] as well as the original D3/NS5 Hanany-Witten set-up [17]. The 5D extension of the SW

curve has been studied in [10, 11]. The curve was obtained by compactifying one of the

directions along which the NS5-branes extend in the D4/NS5 setup. After T-duality along

the compactified direction, D4-branes turn into D5-branes, whose world volume theory is

a 5D N = 1 gauge theory.

An intriguing relation between the gauge theory partition function and topological

string theory was conjectured by Nekrasov [12]. String theory compactified on Calabi-Yau

threefold (CY3) yields N = 2 gauge theory on the 4D transverse space. The partition

– 6 –

Liouville theory (N = 2)

�(↵) = ↵(Q � ↵)

Three-point functions – DOZZ formula (’94-95):

C(↵1,↵2,↵3) =
⇣
⇡ µ �(b2) b

2�2b

2⌘Q�
P
↵

b ⇥

⇥ ⌥0(0)
Q3

i=1 ⌥(2↵
i

)

⌥(
P
↵ � Q)Q3

i=1 ⌥(
P
↵ � 2↵

i

)
.

⌥(x) ⇠ Reg
hQ

n1 ,n2�0 (x + b n1 + b

�1
n2) (�x + b (n1 + 1) + b

�1(n2 + 1))
i

satisfies the shift relations

8>><
>>:
⌥(x + b) = �(bx) b

1�2bx ⌥(x)

⌥(x + b

�1) = �(b�1
x) b

2b

�1
x�1 ⌥(x)

.

Mikhail Isachenkov DESY, Hamburg

Three-point Functions of the Toda CFT

Supersymmetric Localization

27



 Coulomb Branch Localization

[Pestun 2007]

[Hama,Hosomichi 2012]
hOi(t) =

Z
D�O(�) e�S(�)�t�V (�) (1.13)

is independent of t.

hOiS4r1,r2 =

Z
daO(a) |Zpert(a)Zinst(a)|2 (1.14)

✏1,2 =
1

r1,2
h�i = diag (a1, . . . , a

N

) (1.15)

W = Pe
H
iA+�ds �! W (a) =

1

N

X

i

e2⇡ai (1.16)

the more realistic N = 1 gauge theories are yet to be solved. N = 2 gauge theories

exhibit many interesting phenomena, such as confinement and monopole condensation.

Moreover, their topological sector gives access to their non-perturbative regime.

Seiberg and Witten derived the Wilsonian low energy e↵ective action of the N = 2

SU(2) gauge theory by encoding the problem into a two-dimensional (2D) holomorphic

curve [1]. Their work was soon after generalized to other gauge groups and matter contents

[2, 3, 4, 5]. Although for the paradigmatic SU(2) case the Seiberg-Witten (SW) curve was

derived from first principles [1], its construction becomes di�cult for generic quiver gauge

theories. Therefore, other methods have been employed, e.g., integrability [6], geometric

engineering [7, 8] and the type IIA/M-theory brane constructions [9, 10, 11]. The SW

curve was ally introduced as an auxiliary space [1], however, it was later understood that

it is part of the M-theory target space [9]. Using string theory, N = 2 gauge theories can

be realized as world volume theories on D4-branes, which are suspended between NS5-

branes. Uplifting this brane setup to M-theory, all the branes can be seen as one single

M5-brane with a non-trivial topology. The geometry of this M5-brane is encoded in the

SW curve. Therefore, the SW curve can also be derived by studying the minimal surface

of the M5-brane [9].

An alternative way to derive the Seiberg-Witten results was discovered by Nekrasov

[12]. He succeeded in finding the instanton partition functions of the N = 2 gauge theories

by introducing a special deformation called the ⌦ background. The deformed theory should

in fact be interpreted as a five-dimensional (5D) N = 1 gauge theory defined on the space

M4⇥S1. This class of 5D gauge theories was first studied by Seiberg [13] and their relation

to the four-dimensional (4D) N = 2 gauge theories on M4 was explored in [14]. Further,

it was found that the 5D N = 1 gauge theories can be realized using D5- and NS5-branes

[15, 16]. This D5/NS5 brane construction is T-dual to the D4/NS5 system discussed above

[9] as well as the original D3/NS5 Hanany-Witten set-up [17]. The 5D extension of the SW

curve has been studied in [10, 11]. The curve was obtained by compactifying one of the

directions along which the NS5-branes extend in the D4/NS5 setup. After T-duality along

the compactified direction, D4-branes turn into D5-branes, whose world volume theory is

a 5D N = 1 gauge theory.

An intriguing relation between the gauge theory partition function and topological

string theory was conjectured by Nekrasov [12]. String theory compactified on Calabi-Yau

threefold (CY3) yields N = 2 gauge theory on the 4D transverse space. The partition

– 3 –

hOi(t) =
Z

D�O(�) e�S(�)�t�V (�) (1.13)

is independent of t.

hOiS4r1,r2 =

Z
daO(a) |Zpert(a)Zinst(a)|2 (1.14)

✏1,2 =
1

r1,2
h�i = diag (a1, . . . , a

N

) (1.15)

W = Pe
H
iA+�ds �! W (a) =

1

N

X

i

e2⇡ai (1.16)

the more realistic N = 1 gauge theories are yet to be solved. N = 2 gauge theories

exhibit many interesting phenomena, such as confinement and monopole condensation.

Moreover, their topological sector gives access to their non-perturbative regime.

Seiberg and Witten derived the Wilsonian low energy e↵ective action of the N = 2

SU(2) gauge theory by encoding the problem into a two-dimensional (2D) holomorphic

curve [1]. Their work was soon after generalized to other gauge groups and matter contents

[2, 3, 4, 5]. Although for the paradigmatic SU(2) case the Seiberg-Witten (SW) curve was

derived from first principles [1], its construction becomes di�cult for generic quiver gauge

theories. Therefore, other methods have been employed, e.g., integrability [6], geometric

engineering [7, 8] and the type IIA/M-theory brane constructions [9, 10, 11]. The SW

curve was ally introduced as an auxiliary space [1], however, it was later understood that

it is part of the M-theory target space [9]. Using string theory, N = 2 gauge theories can

be realized as world volume theories on D4-branes, which are suspended between NS5-

branes. Uplifting this brane setup to M-theory, all the branes can be seen as one single

M5-brane with a non-trivial topology. The geometry of this M5-brane is encoded in the

SW curve. Therefore, the SW curve can also be derived by studying the minimal surface

of the M5-brane [9].

An alternative way to derive the Seiberg-Witten results was discovered by Nekrasov

[12]. He succeeded in finding the instanton partition functions of the N = 2 gauge theories

by introducing a special deformation called the ⌦ background. The deformed theory should

in fact be interpreted as a five-dimensional (5D) N = 1 gauge theory defined on the space

M4⇥S1. This class of 5D gauge theories was first studied by Seiberg [13] and their relation

to the four-dimensional (4D) N = 2 gauge theories on M4 was explored in [14]. Further,

it was found that the 5D N = 1 gauge theories can be realized using D5- and NS5-branes

[15, 16]. This D5/NS5 brane construction is T-dual to the D4/NS5 system discussed above

[9] as well as the original D3/NS5 Hanany-Witten set-up [17]. The 5D extension of the SW

curve has been studied in [10, 11]. The curve was obtained by compactifying one of the

directions along which the NS5-branes extend in the D4/NS5 setup. After T-duality along

the compactified direction, D4-branes turn into D5-branes, whose world volume theory is

a 5D N = 1 gauge theory.

An intriguing relation between the gauge theory partition function and topological

string theory was conjectured by Nekrasov [12]. String theory compactified on Calabi-Yau

threefold (CY3) yields N = 2 gauge theory on the 4D transverse space. The partition

– 3 –

hOi(t) =
Z

D�O(�) e�S(�)�t�V (�) (1.13)

is independent of t.

hOiS4r1,r2 =

Z
daO(a) |Zpert(a)Zinst(a)|2 (1.14)

✏1,2 =
1

r1,2
h�i = diag (a1, . . . , a

N

) (1.15)

W = Pe
H
iA+�ds �! W (a) =

1

N

X

i

e2⇡ai (1.16)

the more realistic N = 1 gauge theories are yet to be solved. N = 2 gauge theories

exhibit many interesting phenomena, such as confinement and monopole condensation.

Moreover, their topological sector gives access to their non-perturbative regime.

Seiberg and Witten derived the Wilsonian low energy e↵ective action of the N = 2

SU(2) gauge theory by encoding the problem into a two-dimensional (2D) holomorphic

curve [1]. Their work was soon after generalized to other gauge groups and matter contents

[2, 3, 4, 5]. Although for the paradigmatic SU(2) case the Seiberg-Witten (SW) curve was

derived from first principles [1], its construction becomes di�cult for generic quiver gauge

theories. Therefore, other methods have been employed, e.g., integrability [6], geometric

engineering [7, 8] and the type IIA/M-theory brane constructions [9, 10, 11]. The SW

curve was ally introduced as an auxiliary space [1], however, it was later understood that

it is part of the M-theory target space [9]. Using string theory, N = 2 gauge theories can

be realized as world volume theories on D4-branes, which are suspended between NS5-

branes. Uplifting this brane setup to M-theory, all the branes can be seen as one single

M5-brane with a non-trivial topology. The geometry of this M5-brane is encoded in the

SW curve. Therefore, the SW curve can also be derived by studying the minimal surface

of the M5-brane [9].

An alternative way to derive the Seiberg-Witten results was discovered by Nekrasov

[12]. He succeeded in finding the instanton partition functions of the N = 2 gauge theories

by introducing a special deformation called the ⌦ background. The deformed theory should

in fact be interpreted as a five-dimensional (5D) N = 1 gauge theory defined on the space

M4⇥S1. This class of 5D gauge theories was first studied by Seiberg [13] and their relation

to the four-dimensional (4D) N = 2 gauge theories on M4 was explored in [14]. Further,

it was found that the 5D N = 1 gauge theories can be realized using D5- and NS5-branes

[15, 16]. This D5/NS5 brane construction is T-dual to the D4/NS5 system discussed above

[9] as well as the original D3/NS5 Hanany-Witten set-up [17]. The 5D extension of the SW

curve has been studied in [10, 11]. The curve was obtained by compactifying one of the

directions along which the NS5-branes extend in the D4/NS5 setup. After T-duality along

the compactified direction, D4-branes turn into D5-branes, whose world volume theory is

a 5D N = 1 gauge theory.

An intriguing relation between the gauge theory partition function and topological

string theory was conjectured by Nekrasov [12]. String theory compactified on Calabi-Yau

threefold (CY3) yields N = 2 gauge theory on the 4D transverse space. The partition

– 3 –

hOi(t) =
Z

D�O(�) e�S(�)�t�V (�) (1.13)

is independent of t.

hOiS4r1,r2 =

Z
daO(a) |Zpert(a)Zinst(a)|2 (1.14)

✏1,2 =
1

r1,2
h�i = diag (a1, . . . , a

N

) (1.15)

W = Pe
H
iA+�ds �! W (a) =

1

N

X

i

e2⇡ai (1.16)

the more realistic N = 1 gauge theories are yet to be solved. N = 2 gauge theories

exhibit many interesting phenomena, such as confinement and monopole condensation.

Moreover, their topological sector gives access to their non-perturbative regime.

Seiberg and Witten derived the Wilsonian low energy e↵ective action of the N = 2

SU(2) gauge theory by encoding the problem into a two-dimensional (2D) holomorphic

curve [1]. Their work was soon after generalized to other gauge groups and matter contents

[2, 3, 4, 5]. Although for the paradigmatic SU(2) case the Seiberg-Witten (SW) curve was

derived from first principles [1], its construction becomes di�cult for generic quiver gauge

theories. Therefore, other methods have been employed, e.g., integrability [6], geometric

engineering [7, 8] and the type IIA/M-theory brane constructions [9, 10, 11]. The SW

curve was ally introduced as an auxiliary space [1], however, it was later understood that

it is part of the M-theory target space [9]. Using string theory, N = 2 gauge theories can

be realized as world volume theories on D4-branes, which are suspended between NS5-

branes. Uplifting this brane setup to M-theory, all the branes can be seen as one single

M5-brane with a non-trivial topology. The geometry of this M5-brane is encoded in the

SW curve. Therefore, the SW curve can also be derived by studying the minimal surface

of the M5-brane [9].

An alternative way to derive the Seiberg-Witten results was discovered by Nekrasov

[12]. He succeeded in finding the instanton partition functions of the N = 2 gauge theories

by introducing a special deformation called the ⌦ background. The deformed theory should

in fact be interpreted as a five-dimensional (5D) N = 1 gauge theory defined on the space

M4⇥S1. This class of 5D gauge theories was first studied by Seiberg [13] and their relation

to the four-dimensional (4D) N = 2 gauge theories on M4 was explored in [14]. Further,

it was found that the 5D N = 1 gauge theories can be realized using D5- and NS5-branes

[15, 16]. This D5/NS5 brane construction is T-dual to the D4/NS5 system discussed above

[9] as well as the original D3/NS5 Hanany-Witten set-up [17]. The 5D extension of the SW

curve has been studied in [10, 11]. The curve was obtained by compactifying one of the

directions along which the NS5-branes extend in the D4/NS5 setup. After T-duality along

the compactified direction, D4-branes turn into D5-branes, whose world volume theory is

a 5D N = 1 gauge theory.

An intriguing relation between the gauge theory partition function and topological

string theory was conjectured by Nekrasov [12]. String theory compactified on Calabi-Yau

threefold (CY3) yields N = 2 gauge theory on the 4D transverse space. The partition

– 3 –

Z(t) is independent of t. Proof:

dZ(t)

dt
=

Z
D� e�S(�)�t�V (�)

⇣
� �V (�)

⌘
=

Z
D�V (�) �

⇣
e�S(�)�t�V (�)

⌘
= 0 (1.24)

Z(0) = Z(1) (1.25)

t ! 1 the integral localizes (it is given by the saddle point): it is non-zero only when

⇣
�V (�)

⌘

B

= 0 (1.26)

this is called the zero locus

The same is true for an observable O(�) that is BPS

QO(�) = 0 (1.27)

hOi(t) =
Z

D�O(�) e�S(�)�t�V (�) (1.28)

is independent of t.

Z =

Z
D� e�S(�)�t�V (�) '

X

i

e�S(�i
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)
det

⇣
�V (2)

F

(�i
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)
⌘

r
det

⇣
�V (2)

B

(�i
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)
⌘ (1.29)

Z '
X
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Z
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Ztree[�⇤

(⇢)]Z1-loop[�⇤

(⇢)] (1.30)

Zinst(a) =
Y

i

Zvect
inst (ai)Zhyper

inst (a
i

, a
j

,m) (1.31)

hOiS4
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=

Z
daO(a) |Zpert(a)Zinst(a)|2 (1.32)
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=

Z
daO(a) ||Zpert(a)Zinst(a)||2 (1.33)

✏1,2 =
1

r1,2
h�i = diag (a1, . . . , aN ) (1.34)

W = Pe
H
iA+�ds �! W (a) =

1

N
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i

e2⇡ai (1.35)

in order to split away the Vandermonde determinant contribution. We get
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1-loop =

NY
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j
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j

)2
Q

s=±

⇥
�(sib(a

i

� a
j

))�(sib�1(a
i

� a
j

))
⇤
�2(

Q

2 )
4

(2⇡)2�2(i(ai � a
j

))2�2(�i(a
i

� a
j

))2

(1.36)
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and reads

mBPS
2 =

����
1

(2⇡)2`
p

3

Z

M2

!

����
2

, (2.16)

where 1/(2⇡)2`
p

3 is the tension of the M2-brane. Comparing we find that the SW one-form

takes the form

�SW = � i

(2⇡)2`
p

3
log t (d logw) . (2.17)

2.2 Partition function and topological vertex

The microscopic way to obtain the prepotential is via Nekrasov’s partition function

Z(a,m, q; ✏1, ✏2) = e
F(a)
✏1✏2

+···

, (2.18)

which contains the full low energy e↵ective description of N = 2 gauge theories in a

deformed background. More details can be found in point of Nekrasov’s derivation is 5D

N = 1 gauge theory on M4 ⇥ S1. This theory depends on two deformation parameters

(✏1, ✏2) and the circumference of the circle �. Taking the limit � ! 0 leads to the so called

⌦ deformed 4D N = 2 gauge theory. The deformation parameterized by ✏1 and ✏2 breaks

the SO(4) Lorentz symmetry down to SO(2)⇥SO(2). In this way the path integral is

localized to one point on M4 and the computation of the partition function is simplified

to supersymmetric quantum mechanics along S1.

Nekrasov’s partition function Z(a,m, q; ✏1, ✏2) of 4D N = 2 gauge theory is a function

of the set of moduli a parameterizing the Coulomb branch, the masses m of all the flavor

and bifundamental fields, the coupling constants q = e2⇡i⌧ and the two parameters ✏1 and

✏2. It can be factorized as

Z = ZpertZinst , (2.19)

where Zpert is the perturbative part containing tree-level and one-loop contributions, while

Zinst is the contribution from the instantons. The instanton part can be expanded with

respect to the instanton number k

Zinst =
X

k

qkZ
k

. (2.20)

As discussed previously, one way to realize 4D N = 2 gauge theories is the Hanany-

Witten setup in Table 2. Another way is to consider CY3 compactification of type IIA

string theory. These two di↵erent points of view are connected by a series of duality

transformations [39]. Starting from the Hanany-Witten setup, the transformations consist

of a T-duality along the x6 coordinate, followed by an S-duality involving x6 and x10 and

lastly another T-duality along the new x6 coordinate. The resulting theory is IIA string

theory on non-compact CY3 without any branes. The gauge symmetry of the 4D theory

is geometrically realized by the vanishing cycles inside CY3. A special class of CY3 which

yields N = 2 gauge theories is the toric type [40]. Its generic configuration is a fibration

of special Lagrangian T 2 ⇥ R over the base R3. For SU(N) gauge symmetry it is further
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Since we are only interested in the computation of the Wilson loops (??), we should be

able to rescale the partition function even by an b-dependent function, so that we can drop

the
�2(

Q

2 )4

(2⇡)2
part. Hence, we can use instead
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1-loop =

NY

i<j=1

(a
i

� a
j

)2
NY

i<j=1

�(ib(a
i

� a
j

))�(�ib(a
i

� a
j

))

�2(i(ai � a
j

))�2(�i(a
i

� a
j

))

NY

i<j=1

(b $ b�1) (1.40)

Using (??) and �(x) = e

��x

x

Q
1
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e

x

n

1+ x

n

, we find
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where s
�

was defined in (??). Hence it follows that we can write

Zvect
1-loop =
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i

� a
j
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NY
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i
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Second, let us look at the hyper multiplet contribution. We write down explicitly

⌥(ix+
Q

2
) =

�2(
Q

2 )
2

�2(
Q

2 + ix)�2(
Q

2 � ix)
(1.43)
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Q

2
) =

�2(
Q

2 )
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�2(
Q

2 + x)�2(
Q

2 � x)
(1.44)
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Ex. of a BPS observable 
circular Wilson loop:

Supersymmetric Localization

28
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From 5-brane web diagrams to Partition 
functions with topological strings

TN: No Lagrangian description: 
no Nekrasov Localization! 

Have to use topological strings

Use topological strings: refined 
topological vertex formalism

[Iqbal,Kozcaz,Vafa]
[Taki]

[Awata,Kanno]

the sole exception of the W
2

case, i.e. the Liouville case, whose three point structure constants

are given by the famous DOZZ formula [6, 7]. The AGT(-W) relation (1) holds after the mass

parametersm of the gauge theory, the UV coupling constants and the vacuum expectation values

a of the scalars in the vector multiplet (the Coulomb moduli) are appropriately identified with,

respectively, the external momenta ↵ of the primary fields, the moduli zi of the 2D surface

(i.e. the sewing parameters) and the internal momenta over which we integrate. Finally, the

IR regulators of the gauge theory, which are given by the Omega deformation parameters ✏
1,2,

are identified with the Toda dimensionless coupling constant via b = ✏

1

= ✏

�1

2

. The AGT

conjecture, i.e. the N = 2 case, was recently proven in [8–13], while a lot of evidence and even

proofs for specific cases exist) [14–16] in support of the AGT-W correspondence for N > 2.

Similarly, there exists a 5D version of the AGT(-W) relation1 [18, 19] (see also [1, 20–30])

which relates the 5D Nekrasov partition functions on S

4 ⇥ S

1 to correlation functions of q-

deformed Liouville (Toda) field theory:

ZS4⇥S1

=

Z
[da]

���Z5D

Nek

(a,m,�, ✏

1,2)
���2 / hV↵1(z1) · · ·V↵

n

(zn)iq-Toda , (2)

where � = � log q is the circumference of the S1. Importantly, the integral of the norm squared

of 5D Nekrasov partition function is the 5D superconformal index ZS4⇥S1

, which as discussed

recently in [31] can be computed using the topological string partition function

ZS4⇥S1

=

Z
[da] |Z5D

Nek

(a)|2 /
Z
[da] |Z

top

(a)|2 . (3)

Z
top

=
X
R

(three-vertices)⇥ (oriented lines) (4)

From both the 4D and the 5D AGT-W relations a very important element is missing: the

three point functions of the WN Toda CFT. Computing the three point functions of the WN

Toda CFT has been a long standing unsolved problem. From the the CFT side, the state of the

art is due to Fateev and Litvinov, who in [32–34], were able to compute the 3-point functions

of Toda primaries for the special case in which one of the fields is semi-degenerate, using [35].

On the gauge theory side, the 3-point functions correspond to the partition functions of the TN

theories, but since these theories lack2 any known Lagrangian description, the usual methods

of computing the partition functions are not applicable.

1Originally suggested in [17].
2After our paper, [36] discovered that the topological string partition functions of 5D mass-deformed TN

theories, before the removal of the decoupled content (86), can be rewritten as the partition function of the
linear quiver [SU(N)]�U(N�1)�U(N�2)� · · ·U(2)�U(1), where the bracket denotes flavor symmetry. This
led the authors of [36] to propose that the partition function of the linear quiver [SU(N)]�SU(N�1)�SU(N�
2) � · · ·SU(2) � SU(1) reproduces the partition function of the TN quiver after the removal of the decoupled
content. One may interpret this proposal as providing a Lagrangian description of the 5D TN theories through
these quivers.

2

Read off the holomorphic half of the partition 
function of a theory from its web diagram:

[Bao,Mitev,EP,Taki,Yagi]
[Hayashi,Kim,Nishinaka]

the partition function in a form in which the duality is manifest. It is unlikely that gauge

theory reasoning alone would lead to this rewriting. However, from the string theory point

of view it is natural. Due to the fact that the partition function is read o↵ from a toric

diagram, symmetries that arise from the CY geometry (and are obscured otherwise) are

manifest in this formalism.

In the previous section we used the type IIA D4/NS5 brane setup to realize the linear

quiver gauge theories. As we discussed in Section 2, the D4/NS5 brane configuration is

dual to type IIA string theory compactified on CY3. We are interested in the special class

of Calabi-Yau manifolds that satisfy the toric condition and lead to SU(N) gauge theory.

Theses CY3 are completely specified by their toric diagrams. In the case of linear quivers

the toric diagram is essentially same as the brane diagram.

Figure 7: The D4/NS5 system is T-dual to IIB (p, q) 5-brane system. The M/IIB duality

relates it to M-theory on the corresponding toric CY.

Following [16], the D4/NS5 brane setup in IIA theory is T-dual to IIB (p, q)-brane web

system (D5/NS5). When uplifting this system to M-theory via M/IIB duality, we obtain

M-theory on M4 ⇥ CY3 ⇥ S1 where CY is a toric three-fold whose (p, q)-cycle shrinks. In

this way the D4/NS5 system is equivalent to M-theory on toric CY, or IIA on CY which

is the usual geometric engineering setup. This connection is illustrated in Figure 7.

Given the toric diagram we can use the topological vertex formalism to calculate

Nekrasov’s partition function of 4D N = 2 gauge theories. We should stress again that

in this paper we study the Nekrasov partition function for the 5D uplift of the 4D gauge

theory. The 5D Nekrasov partition function is precisely equal to the topological string

partition function8; of course after the appropriate identification of the gauge theory pa-

rameters with the string theory parameters.

Writing down the topological string partition function is simple using the topological

vertex formalism. The procedure was reviewed in Section 2. What is quite tedious is to

bring the topological string partition function in the form given by Nekrasov. For that we

have to perform the sums. Such calculations have previously been done by [47, 19, 20, 48,

8To be precise, the obtained topological string partition function is the Nekrasov partition function for

the U(N) gauge theory whose Coulomb moduli parameters are constrained as a1 = �a2 = a. According

to [46], this constrained partition function is still not precisely SU(N). The di↵erence is the overall factor

which in [46] is called the U(1) factor and is independent of the Coulomb moduli. This U(1) factor does

not a↵ect the low-energy e↵ective coupling constants which we studied in the previous section.
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while the expectation values of the scalar fields in the dual (magnetic) theory are given by

a
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@a
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The electromagnetic duality acts on the Coulomb moduli as the modular transformation
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!
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The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.15)

– 2 –



TN Web diagrams         
[Benini,Benvenuti,Tachikawa]

Deformations of the web that do not change its asymptotic 
form = # of faces = Coulomb branch (a’s) = (N-1)(N-2)/2  

Deformations that change the asymptotic form of the web  =    
# of external branes - 3 = parameters that define the theory: 
masses and couplings (m’s and g’s) = 3N-3 (No coupling)

SU(N)3 global symmetry 

The low energy dynamics of 5D TN theories is encoded in:

5D theories on S1

x

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

NS5-branes � � � � � � . . . .
D5-branes � � � � . � � . . .

Table 1: Brane configuration in type IIB string theory

Z
top

=
X
R

(three-vertices)⇥ (oriented lines) (4)

From both the 4D and the 5D AGT-W relations a very important element is missing: the

three point functions of the WN Toda CFT. Computing the three point functions of the WN

Toda CFT has been a long standing unsolved problem. From the the CFT side, the state of the

art is due to Fateev and Litvinov, who in [?,?,?], were able to compute the 3-point functions

of Toda primaries for the special case in which one of the fields is semi-degenerate, using [?].

On the gauge theory side, the 3-point functions correspond to the partition functions of the TN

theories, but since these theories lack2 any known Lagrangian description, the usual methods

of computing the partition functions are not applicable.

In [?] we computed the partition functions of the 5D TN theories on S

4⇥S

1 by using the web

diagram provided by [?] and by employing the refined topological vertex formalism of [?,?]. We

further argued that these partition functions should give the three point functions of q-deformed

Toda, which was also proposed earlier in [?]. Our results were checked by computing the 5D

superconformal index, i.e. the partition function on S

4 ⇥ S

1, using the prescription in [?] and

comparing it to the result obtained via localization in [?]. The same partition functions were

also obtained in [?] and the two computations agree. More comparisons with the superconformal

index were given in the recent work [?].

In this paper we show how to, in principle3, take the 4D limit, thus obtaining the 4D

TN partition functions. Through the AGT(-W) relation, they are identified with the usual,

undeformed Toda three point functions. Our formula has the correct symmetry properties,

zeros and reproduces the known answer for the Liouville CFT. Furthermore, we carefully study

the 5D AGT-W dictionary. For that, it was very important to examine the known q-Liouville

case [?, ?] for which for the first time we were able to write the formula with the complete

factors, thanks to the exact definition of the functions ⌥q, see appendix ??.

2After our paper, [?] discovered that the topological string partition functions of 5D mass-deformed TN

theories, before the removal of the decoupled content (??), can be rewritten as the partition function of the
linear quiver [SU(N)]�U(N�1)�U(N�2)� · · ·U(2)�U(1), where the bracket denotes flavor symmetry. This
led the authors of [?] to propose that the partition function of the linear quiver [SU(N)]�SU(N �1)�SU(N �
2) � · · ·SU(2) � SU(1) reproduces the partition function of the TN quiver after the removal of the decoupled
content. One may interpret this proposal as providing a Lagrangian description of the 5D TN theories through
these quivers.

3The specification “in principle” refers to the fact that there is still a missing ingredient which is to perform
the sums in (??). This work can be found in a separate [?] publication, where we compute some of the sums.

2

m1

m2

m3

n1

n2

n3

l2
l1

l3

a

Also the SW 
curves match!
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Extra degrees of freedom
[Bao,Mitev,EP,Taki,Yagi]

[Hayashi,Kim,Nishinaka]

[Bergman-Gomez-Zafrir]…

When the web diagram has parallel 

external legs, Ztop includes extra 
degrees of freedom. 

 They depend on the distance between the parallel external legs. 

 These extra d.o.f. do not transform as a correct representation of 5D 
Poincare. They are 6D d.o.f.

For the TN:

1. Introduction

ZS4⇥S1 / Ztop ZS4⇥S1 =
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Zextra
(1.1)
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while the expectation values of the scalar fields in the dual (magnetic) theory are given by
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. (1.13)

The electromagnetic duality acts on the Coulomb moduli as the modular transformation
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2 SL(2,Z) . (1.14)

The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.15)
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4D partition functions 
and 

2D correlators
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Two and three point functions of primaries are fixed by conformal symmetry.
Up to the 3-pt structure constants:

 Liouville CFT DOZZ 3pt:

Toda CFT (higher spin WN, N>2) the state of the art: [Fateev,Litvinov 2005]

2D CFT Review

[Dorn,Otto 94] [Zamolodchikov^2 94] [Teschner 95]

Primary with null 
vector at level 1

Liouville theory (N = 2)

�(↵) = ↵(Q � ↵)

Three-point functions – DOZZ formula (’94-95):

C(↵1,↵2,↵3) =
⇣
⇡ µ �(b2) b

2�2b

2⌘Q�
P
↵

b ⇥

⇥ ⌥0(0)
Q3

i=1 ⌥(2↵
i

)

⌥(
P
↵ � Q)Q3

i=1 ⌥(
P
↵ � 2↵

i

)
.

⌥(x) ⇠ Reg
hQ

n1 ,n2�0 (x + b n1 + b

�1
n2) (�x + b (n1 + 1) + b

�1(n2 + 1))
i

satisfies the shift relations

8>><
>>:
⌥(x + b) = �(bx) b

1�2bx ⌥(x)

⌥(x + b

�1) = �(b�1
x) b

2b

�1
x�1 ⌥(x)

.

Mikhail Isachenkov DESY, Hamburg

Three-point Functions of the Toda CFT
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Weyl Reflections and symmetry enhancement

It is possible to factor the structure constants to Weyl covariant and invariant part.

For Liouville (N=2):

[Fateev,Litvinov]

N=3 invariant part has E6 Symmetry Enhancement!!

C

our(↵
1

,↵
2

,{!N�1

) = C

F.L.(↵
1

,↵
2

,{!N�1

) (38)

C
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1

,↵
2

,↵
3

) = C

inv(↵
1

,↵
2

,↵
3

)Ccov(↵
1

,↵
2

,↵
3

) (39)

C(↵
1

,↵
2
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3

) = C

inv(↵
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2

,↵
3

)Ccov(↵
1

,↵
2
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3

) (40)

C
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,↵
2
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3

) = Z
extra

(41)

C
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1

,↵
2

,↵
3

) = ZT
N

(42)

C(↵
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2

,↵
3

) = C

inv(↵
1

,↵
2

,↵
3

)Ccov(↵
1

,↵
2

,↵
3

) (43)

↵ $ m,n, l zi = 0, 1,1 (44)

We remark that in the limit in which the degenerate field becomes the identity, i.e. { ! 0

one can show that the 3-point structure constants (37) converge to (29).

In the N = 2 case, the degeneration doesn’t matter since there is only one fundamental

weight anyway and (37) reduces to (we set { = 2↵
3

) the famous DOZZ formula8

C(↵
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,↵
2

,↵
3

) =
⇣
⇡µ�(b2)b2�2b2
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P3
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i
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Q
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P

3

i=1

↵i � 2↵j)
, (45)

which was conjecture by [6, 7] and derived by [46,47].

3.2 Enhanced symmetry of the Weyl invariant part

In this subsection, we shall make a couple of observations on the symmetries of the Weyl

invariant part of the structure constants that to our knowledge are not found in the literature.

In the Liouville case (N = 2) the Weyl invariant piece of the structure constants (34) take

the form
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) =
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)
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At this point, we use (11) and replace the ↵i by the m

1

, n
1

and l

1

as

↵

1

= m

1

+
Q

2
, ↵

2

= �n
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+
Q

2
, ↵
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= l
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+
Q

2
. (47)

Setting then

m

1

=
u

1

+ u

3

2
, n

1

=
u

2

+ u

3

2
, l

1

=
u

1

+ u

2

2
(48)

8For N = 2 we set ↵i = 2↵i!1, i.e. we omit the unnecessary second index and set ↵1
i ⌘ ↵i.
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and using the symmetries of the ⌥ functions leads to the following compact expression for the

Weyl invariant structure constants of the Liouville CFT

C

inv =
⌥0(0)Q

4
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⌥(ui +
Q
2

)
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4X
i=1

ui = 0 (49)
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3

) (50)

We We observe that the above is invariant under the SU(4) Weyl group that acts as the per-

mutation group S

4 on the variables ui. We have thus uncovered the presence of a “hidden”

symmetry group. In fact, in the next section, we shall find that the enhanced symmetry becomes

an SO(8), see (59).

The N = 3 case is considerably more involved. For reasons that will become apparent

shortly, we will label by an index j = 1, 2, 3 the weights h(j)
i of the three di↵erent SU(3)s that

appear, i.e. each ↵j lives in its own copy of the SU(3) weight space labeled by j. Using [34],

we know that C is invariant not only under SU(3) a�ne Weyl reflections of the ↵j ’s, but also

under the 27 new transformations
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We can now make the following set of observations. First, the a�ne SU(3) Weyl transformations

in the ↵i become the usual SU(3) Weyl reflections when expressed in the variables mi, ni and

li defined via (10), i.e. they act as the S

3 permutations. Using the parametrization (10), we

then observe that

&ijk = mi � nj � l
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3X
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◆
,

(54)

where no sum over i, j, k is to be taken. We now want to interpret the new transformations

(51) as being the result of the (non-a�ne) action of the Weyl group of E
6

. Since the Weyl group
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2
, ↵

3

= l

1

+
Q

2
. (48)

Setting then

m

1

=
u

1

+ u

3

2
, n

1

=
u

2

+ u

3

2
, l

1

=
u

1

+ u

2

2
(49)

8For N = 2 we set ↵i = 2↵i!1, i.e. we omit the unnecessary second index and set ↵1
i ⌘ ↵i.
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The invariant part is 
invariant under SU(4)

Analyzing the path integral of the theory (??), one can argue that the Toda CFT must have an
exchange symmetry b $ b

�1 on a quantum level which simultaneously sends the cosmological constant to
its dual µ̃, defined as

�
⇡µ̃�(b�2)

�b
!

=
�
⇡µ�(b2)

� 1
b =) µ̃ =

�
⇡µ�(b2)

�1/b2

⇡�(1/b2)
, (4)

where �(x) := �(x)
�(1�x) . As we mentioned in the introduction, the Toda CFT also has a WN higher spin

chiral symmetry generated by the fields W
2

⌘ T , W
3

, . . . ,WN of spins 2, . . . , N . The primaries under the
full symmetry algebra WN ⇥WN are the exponential fields of spin zero labeled by a weight of sl(N):

V↵ = e

(↵,') (5)

↵

In what follows, we will parametrize the fundamental weight decomposition of a weight ↵i as

↵i = N

N�1X

j=1

↵

j
i!j . (6)

By looking at the corresponding OPEs, one reads o↵ the central charge c of the Toda CFT and the
conformal dimensions �(↵) of its primary fields:

c = N � 1 + 12 (Q,Q) = (N � 1)
�
1 +N(N + 1)Q2

�
, �(↵) =

(2Q�↵,↵)

2
, (7)

with the anti-holomorphic conformal dimensions of the primary fields being equal to the holomorphic ones.
The conformal dimension, as well as the eigenvalues of all the other higher spin currents Wk are

invariant under the a�ne2 Weyl transformations (??) of the weights ↵i, which roughly means that several
exponential fields correspond to the same ’physical’ field. The primary fields of Toda CFT transform
under an a�ne Weyl transformations ↵ ! w �↵ given in (??) as

Vw�↵ = R

w(↵)V↵ (8)

with the reflection amplitude R given by the expression

R

w(↵) :=
A(↵)

A(w �↵)
(9)

in terms of the function

A(↵) :=
�
⇡µ�(b2)

� (↵�Q,⇢)
b

Y

e>0

� (1� b (↵�Q, e))�
�
�b

�1 (↵�Q, e)
�
. (10)

The two-point correlation functions of primary fields are fixed by conformal invariance and by the
normalization (??). They read

hV↵1(z1, z̄1)V↵2(z2, z̄2)i =
(2⇡)N�1

�(↵
1

+↵
2

� 2Q) +Weyl-reflections

|z
1

� z

2

|4�(↵1)
, (11)

where “Weyl-reflections” stands for additional �-contributions that come from the field identifications
(??).

2One should not confuse the a�ne Weyl transformation, i.e. Weyl reflections accompanied by two translations, with
Weyl reflections belonging to the Weyl group of the a�ne Lie algebra.
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2 Toda CFT: a recap and a proposal

In this section we briefly summarize some relevant facts about the Toda CFT, closely following [6–8].
Furthermore, we spell out the Fateev-Litvinov formula for a special subset of Toda structure constants
and present our proposal for the Toda 3-point functions of generic primary fields.

The Lagrangian of the AN�1

Toda CFT is given by

L =
1

8⇡
(@⌫', @

⌫
') + µ

N�1X

k=1

e

b(e
k

,')

, (1)

where '

:=
PN�1

i=1

'i!i, with ek, !k being the simple roots and the fundamental weights of sl(N) re-
spectively. The definition of the inner product (·, ·) along with other useful Lie-algebraic definitions and
notations are collected in appendix A.2 for the convenience of the reader. The parameter µ is called the
cosmological constant, in analogy to the Liouville case (N = 2) where it determines the constant curvature
of a surface described by the classical equation of motion. The normalization of the Lagrangian is chosen
in such a way that

'i(z, z̄)'j(0, 0) = ��ij log|z|2 + · · · at z ! 0. (2)

Following [7,8], we consider the correlators on a two-sphere, which prescribes putting a background charge
at the north pole in order to render the Toda action finite:

'(z, z̄) = �Q log|z|+ · · · at z ! 1, (3)

where Q := Q⇢ = (b+ b

�1)⇢ with the Weyl vector ⇢ defined in (A.8).
Analyzing the path integral of the theory (1), one can argue that the Toda CFT must have an exchange

symmetry b $ b

�1 on a quantum level which simultaneously sends the cosmological constant to its dual
µ̃, defined as

�
⇡µ̃�(b�2)
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� 1
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where �(x) := �(x)
�(1�x) . As we mentioned in the introduction, the Toda CFT also has a WN higher spin

chiral symmetry generated by the fields W
2

⌘ T , W
3

, . . . ,WN of spins 2, . . . , N . The primaries under the
full symmetry algebra WN ⇥WN are the exponential fields of spin zero labeled by a weight of sl(N):
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(↵,') (5)
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j
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By looking at the corresponding OPEs, one reads o↵ the central charge c of the Toda CFT and the
conformal dimensions �(↵) of its primary fields:

c = N � 1 + 12 (Q,Q) = (N � 1)
�
1 +N(N + 1)Q2
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with the anti-holomorphic conformal dimensions of the primary fields being equal to the holomorphic ones.
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Z(t) is independent of t. Proof:
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=

Z
D� e�S(�)�t�V (�)

⇣
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=

Z
D�V (�) �

⇣
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⌘
= 0 (1.24)

Z(0) = Z(1) (1.25)

t ! 1 the integral localizes (it is given by the saddle point): it is non-zero only when
⇣
�V (�)

⌘

B

= 0 (1.26)

this is called the zero locus

The same is true for an observable O(�) that is BPS

QO(�) = 0 (1.27)

hOi(t) =
Z

D�O(�) e�S(�)�t�V (�) (1.28)
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happened to the cosmological constant operator e2bφ, for instance? Is it not included in the theory?
This is the very peculiar point in the state-operator mapping in the Liouville theory. Generally,
the state corresponding to the operator e2αφ, even if α is real, is believed to exist but considered
as nonnormalizable one. Nonnormalizable as it is, there is a difficulty concerning the completeness
of the states for example, but introducing the cut-off into φ removes some of the difficulties. In the
minisuperspace approximation, this is equivalent to considering the wavefunction which formally has
an imaginary momentum. However, we do not allow every imaginary momentum state. Taking into
account that the asymptotic form of the wavefunction in the q → −∞ limit should be dominated
by e2ipq, the condition Re(α) ≤ Q

2 is required. This is what is called the Seiberg bound [1].
Seiberg [1] has named the normalizable states (operators) as nonlocal and the nonnormalizable

states (operators) as local. The root of this naming is the behavior of the world sheet metric (e2bφ)
under the inserted source in the WKB (semiclassical) approximation as we will see in the following.
In fact, the source corresponding to the nonnormalizable states can be seen as the local curvature
singularity from the world sheet point of view.

Leaving the canonical quantization, we next try to carry out the path integration by the WKB
(semiclassical) approximation to calculate the Liouville correlation functions. The semiclassical
limit corresponds to the b → 0 limit. Before doing this, let us first consider the Ward-Takahashi
(WT) identity which can be applied to any n-point function. The definition of the n-point function
is

⟨e2α1φe2α2φ · · · e2αNφ⟩ =

∫
Dφe2α1φe2α2φ · · · e2αNφe−S , (2.28)

where the action is given by

S =
1

4π

∫
d2z

√
g
(
gab∂aφ∂bφ+ QRφ+ 4πµe2bφ

)
. (2.29)

Shifting φ as φ → φ − log µ
2b , we can remove the µ dependence in front of the Liouville poten-

tial completely because we have made the path integral measure invariant under the translation
as we have considered in the last section. Then using the Gauss-Bonnet theorem which states
1
4π

∫
d2z

√
gR = 2 − 2g, we obtain the following exact µ dependence of the correlation function on

the genus g Riemann surface

⟨e2α1φe2α2φ · · · e2αNφ⟩g ∝ µ
(1−g)Q−

∑
i αi

b , (2.30)

which is what is called the Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling law [41].
Interestingly, if we consider the Liouville theory as the string theory, the string coupling constant

gs is multiplied to the genus g correlation function as g2(g−1)
s . However, looking at the way the

power of the string coupling constant enters into the amplitude, we observe that this is just the
same way in which the power of µQ/b does (without vertices). That is to say, the partition function
of the Liouville theory does not depend independently on gs and µ, but it actually depends only
on the particular combination µ−2

r = g2
sµ−Q/b. In addition, the power of the µr is determined as

µ2−2g
r in the usual manner. 12

Returning back to the semiclassical calculation on the sphere, we try to find the classical solution
φcl of the equation of motion and substitute back into the integrand of the path integral so that
we obtain the zeroth order approximation of the correlation functions. The classical equation of
motion (or the saddle point equation) for ⟨e2α1φe2α2φ · · · e2αNφ⟩ is given by

2

π
∂∂̄φ− 1

4π
RQ − 2µbe2bφ +

∑

i

2αiδ(z − zi) = 0. (2.31)

12Although for g = 0, 1, log correction is needed as the partition function diverges.
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12.2 SU(N) quiver theories and tame punctures
12.2.1 Quiver gauge theories

To this aim, we introduce a new diagrammatic notation for N=2 gauge theories. This notation is
related to but distinct from the trivalent one introduced in Sec. 9.5.

A diagram is composed of squares and circles with integers written in them, and edges con-
necting squares and circles. A square with N stands for a U(N) flavor symmetry, and a circle with
N an SU(N) gauge symmetry. An edge connecting two objects with N and M written within
them represents a hypermultiplet (Qa

i , Q̃
i
a) where i = 1, . . . , N and j = 1, . . . ,M . They are in the

tensor product of the fundamental representation of SU(N) and SU(M), and is called the bifun-
damental hypermultiplet. Such a diagram specifies an N=2 gauge theory. This class of theories
is often called quiver gauge theories.

N N

N NN
0 ∞

q 1

q

0 ∞

1qq' q'
N NN

q
N

q'

Figure 12.5: SU(N) quiver theory

The simplest cases are when all the squares and circles have the same number N written in
them, see Fig. 12.5. The first one in the figure is just a bifundamental hypermultiplet. The second
one is the SU(N) theory with 2N flavors. The last one is an SU(N)1 ⇥ SU(N)2 theory, so that

• there is a bifundamental hypermultiplet for SU(N)1 ⇥ SU(N)2, and

• there are N fundamental hypermultiplets for SU(N)1, and

• there are N fundamental hypermultiplets for SU(N)2.

Note that both SU(N)1 and SU(N)2 have zero beta function.
Their Seiberg-Witten solutions can be obtained by combining the knowledge we acquired so

far. Namely, each edge corresponds to the bifundamental hypermultiplet of SU(N) ⇥ SU(N),
which we know to come from a three punctured sphere of 6d theory of type SU(N), with two full
punctures and one simple puncture. All we have to do then is to prepare one such sphere for each
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The AGT-W correspondence

4D N=2 theories Tg,n of class S with SU(2)/SU(N) factors

2D Liouville/Toda CFT

A relation between:

4D gauge theory 2D CFT
instanton partition function conformal block

perturbative part 3-point function (Liouville)
coupling constants cross ratios

masses external momenta
Coulomb moduli internal momenta

generalized S-duality crossing symmetry
Omega background Coupling constant/central charge

[Alday,Gaiotto,Tachikawa] [Wyllard]
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Strategy

The AGT-W correspondence gives a new way of trying to solve Toda!
We need the three point functions (sphere with three punctures)
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TN partition functions
and Toda 3pt functions

 Very strong check:

by dividing out the piece that transforms non-trivially under Weyl transformations. The func-

tion C of the weights ↵ is independent of the cosmological constant µ and is invariant under

a�ne Weyl reflections in the ↵. Anticipating a bit, we will show in the later sections that the

Weyl invariant part of the 3-point structure constants has a higher symmetry than the naive

a�ne Weyl symmetry of SU(N)3. In particular, for N = 2 it is invariant under the SU(4) Weyl

group, while for N = 3 it is invariant under the E

6

Weyl group.

While the general formula for the 3-point structure constants of Toda CFT is not known,

they have been computed in special cases. The formula for the structure constants of WN for

the degenerate case in which one of the three weights becomes proportional to the first or the

last fundamental weight, i.e. ↵
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We remark that in the limit in which the degenerate field becomes the identity, i.e. { ! 0 one

can show that the 3-point structure constants (29) converge to (23).

In the N = 2 case, the degeneration doesn’t matter since there is only one fundamental

weight anyway and (29) reduces to (we set { = 2↵
3

) the famous DOZZ formula8

C(↵
1

,↵
2

,↵
3

) =
⇣
⇡µ�(b2)b2�2b2

⌘Q�
P3

i=1 ↵

i

b

⌥0(0)
Q

3

i=1

⌥(2↵i)

⌥(
P

3

i=1

↵i �Q)
Q

3

j=1

⌥(
P

3

i=1

↵i � 2↵j)
, (31)

which was conjecture by [6, 7] and derived by [46,47].

3.2 Enhanced symmetry of the Weyl invariant part

In this subsection, we shall make a couple of observations on the symmetries of the Weyl

invariant part of the structure constants that to our knowledge are not found in the literature.

In the Liouville case (N = 2) the Weyl invariant piece of the structure constants (28) take

the form

C(↵
1

,↵
2

,↵
3

) =
⌥0(0)

⌥(↵
1

+ ↵

2

+ ↵

3

�Q)⌥(↵
1

+ ↵

2

� ↵

3

)⌥(↵
1

� ↵

2

+ ↵

3

)⌥(�↵

1

+ ↵

2

+ ↵

3

)
.

(32)

7In [34] a more general formula was derived for N = 3 for the case of semi-degenerate fields ↵3 = {!2�mb!1

with m integer. We will not need it here.
8For N = 2 we set ↵i = 2↵i!1, i.e. we omit the unnecessary second index and set ↵1

i ⌘ ↵i.
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 Can compute (read off)          from web diagrams                         
using the topological vertex formalism as long as we remove extra 
d.o.f            !

 Proposal for the 3pt functions of Toda: 3 generic primaries 

by dividing out the piece that transforms non-trivially under Weyl transformations. The func-

tion C of the weights ↵ is independent of the cosmological constant µ and is invariant under

a�ne Weyl reflections in the ↵. Anticipating a bit, we will show in the later sections that the

Weyl invariant part of the 3-point structure constants has a higher symmetry than the naive

a�ne Weyl symmetry of SU(N)3. In particular, for N = 2 it is invariant under the SU(4) Weyl

group, while for N = 3 it is invariant under the E

6

Weyl group.

While the general formula for the 3-point structure constants of Toda CFT is not known,

they have been computed in special cases. The formula for the structure constants of WN for

the degenerate case in which one of the three weights becomes proportional to the first or the

last fundamental weight, i.e. ↵
3

= {!
1

or ↵
3

= {!N�1

is known from [32] and reads7

C(↵
1

,↵
2

,{!N�1

) =
⇣
⇡µ�(b2)b2�2b2

⌘ (2Q�
P3

i=1 ↵
i

,⇢)
b ⇥

⇥ ⌥0(0)N�1⌥({)
Q

e>0

⌥((Q�↵
1

, e))⌥((Q�↵
2

, e))QN
i,j=1

⌥( {
N + (↵

1

�Q, hi) + (↵
2

�Q, hj))
.

(29)

C

our(↵
1

,↵
2

,{!N�1

) = C

F.L.(↵
1

,↵
2

,{!N�1

) (30)

C

our(↵
1

,↵
2

,↵
3

) = C

inv(↵
1

,↵
2

,↵
3

)Ccov(↵
1

,↵
2

,↵
3

) (31)

C

inv(↵
1

,↵
2

,↵
3

) = Z
extra

(32)

C

cov(↵
1

,↵
2

,↵
3

) = ZT
N

(33)

C(↵
1

,↵
2

,↵
3

) = C

inv(↵
1

,↵
2

,↵
3

)Ccov(↵
1

,↵
2

,↵
3

) (34)

We remark that in the limit in which the degenerate field becomes the identity, i.e. { ! 0 one

can show that the 3-point structure constants (29) converge to (23).

In the N = 2 case, the degeneration doesn’t matter since there is only one fundamental

weight anyway and (29) reduces to (we set { = 2↵
3

) the famous DOZZ formula8

C(↵
1

,↵
2

,↵
3

) =
⇣
⇡µ�(b2)b2�2b2

⌘Q�
P3

i=1 ↵

i

b

⌥0(0)
Q

3

i=1

⌥(2↵i)

⌥(
P

3

i=1

↵i �Q)
Q

3

j=1

⌥(
P

3

i=1

↵i � 2↵j)
, (35)

which was conjecture by [6, 7] and derived by [46,47].

7In [34] a more general formula was derived for N = 3 for the case of semi-degenerate fields ↵3 = {!2�mb!1

with m integer. We will not need it here.
8For N = 2 we set ↵i = 2↵i!1, i.e. we omit the unnecessary second index and set ↵1

i ⌘ ↵i.
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  N=2 Liouville case 
  symmetries, zeros

[Benini,Benvenuti,Tachikawa]

by dividing out the piece that transforms non-trivially under Weyl transformations. The func-

tion C of the weights ↵ is independent of the cosmological constant µ and is invariant under

a�ne Weyl reflections in the ↵. Anticipating a bit, we will show in the later sections that the

Weyl invariant part of the 3-point structure constants has a higher symmetry than the naive

a�ne Weyl symmetry of SU(N)3. In particular, for N = 2 it is invariant under the SU(4) Weyl

group, while for N = 3 it is invariant under the E

6

Weyl group.

While the general formula for the 3-point structure constants of Toda CFT is not known,

they have been computed in special cases. The formula for the structure constants of WN for

the degenerate case in which one of the three weights becomes proportional to the first or the

last fundamental weight, i.e. ↵
3

= {!
1

or ↵
3

= {!N�1

is known from [32] and reads7

C(↵
1

,↵
2

,{!N�1

) =
⇣
⇡µ�(b2)b2�2b2

⌘ (2Q�
P3

i=1 ↵
i

,⇢)
b ⇥

⇥ ⌥0(0)N�1⌥({)
Q

e>0

⌥((Q�↵
1

, e))⌥((Q�↵
2

, e))QN
i,j=1

⌥( {
N + (↵

1

�Q, hi) + (↵
2

�Q, hj))
.

(29)

C

our(↵
1

,↵
2

,{!N�1

) = C

F.L.(↵
1

,↵
2

,{!N�1

) (30)

C

our(↵
1

,↵
2

,↵
3

) = C

inv(↵
1

,↵
2

,↵
3

)Ccov(↵
1

,↵
2

,↵
3

) (31)

C

inv(↵
1

,↵
2

,↵
3

) = Z
extra

(32)

C

cov(↵
1

,↵
2

,↵
3

) = ZT
N

(33)

C(↵
1

,↵
2

,↵
3

) = C

inv(↵
1

,↵
2

,↵
3

)Ccov(↵
1

,↵
2

,↵
3

) (34)

We remark that in the limit in which the degenerate field becomes the identity, i.e. { ! 0 one

can show that the 3-point structure constants (29) converge to (23).

In the N = 2 case, the degeneration doesn’t matter since there is only one fundamental

weight anyway and (29) reduces to (we set { = 2↵
3

) the famous DOZZ formula8

C(↵
1

,↵
2

,↵
3

) =
⇣
⇡µ�(b2)b2�2b2

⌘Q�
P3

i=1 ↵

i

b

⌥0(0)
Q

3

i=1

⌥(2↵i)

⌥(
P

3

i=1

↵i �Q)
Q

3

j=1

⌥(
P

3

i=1

↵i � 2↵j)
, (35)

which was conjecture by [6, 7] and derived by [46,47].

7In [34] a more general formula was derived for N = 3 for the case of semi-degenerate fields ↵3 = {!2�mb!1

with m integer. We will not need it here.
8For N = 2 we set ↵i = 2↵i!1, i.e. we omit the unnecessary second index and set ↵1

i ⌘ ↵i.
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by dividing out the piece that transforms non-trivially under Weyl transformations. The func-

tion C of the weights ↵ is independent of the cosmological constant µ and is invariant under

a�ne Weyl reflections in the ↵. Anticipating a bit, we will show in the later sections that the

Weyl invariant part of the 3-point structure constants has a higher symmetry than the naive

a�ne Weyl symmetry of SU(N)3. In particular, for N = 2 it is invariant under the SU(4) Weyl

group, while for N = 3 it is invariant under the E

6

Weyl group.

While the general formula for the 3-point structure constants of Toda CFT is not known,

they have been computed in special cases. The formula for the structure constants of WN for

the degenerate case in which one of the three weights becomes proportional to the first or the

last fundamental weight, i.e. ↵
3

= {!
1

or ↵
3

= {!N�1

is known from [32] and reads7

C(↵
1

,↵
2

,{!N�1

) =
⇣
⇡µ�(b2)b2�2b2

⌘ (2Q�
P3

i=1 ↵
i

,⇢)
b ⇥

⇥ ⌥0(0)N�1⌥({)
Q

e>0

⌥((Q�↵
1

, e))⌥((Q�↵
2

, e))QN
i,j=1

⌥( {
N + (↵

1

�Q, hi) + (↵
2

�Q, hj))
.

(29)

C

our(↵
1

,↵
2

,{!N�1

) = C

F.L.(↵
1

,↵
2

,{!N�1

) (30)

C

our(↵
1

,↵
2

,↵
3

) = C

inv(↵
1

,↵
2

,↵
3

)Ccov(↵
1

,↵
2

,↵
3

) (31)

C

inv(↵
1

,↵
2

,↵
3

) = Z
extra

(32)

C

cov(↵
1

,↵
2

,↵
3

) = ZT
N

(33)

C(↵
1

,↵
2

,↵
3

) = C

inv(↵
1

,↵
2

,↵
3

)Ccov(↵
1

,↵
2

,↵
3

) (34)

We remark that in the limit in which the degenerate field becomes the identity, i.e. { ! 0 one

can show that the 3-point structure constants (29) converge to (23).

In the N = 2 case, the degeneration doesn’t matter since there is only one fundamental

weight anyway and (29) reduces to (we set { = 2↵
3

) the famous DOZZ formula8

C(↵
1

,↵
2

,↵
3

) =
⇣
⇡µ�(b2)b2�2b2

⌘Q�
P3

i=1 ↵

i

b

⌥0(0)
Q

3

i=1

⌥(2↵i)

⌥(
P

3

i=1

↵i �Q)
Q

3

j=1

⌥(
P

3

i=1

↵i � 2↵j)
, (35)

which was conjecture by [6, 7] and derived by [46,47].

7In [34] a more general formula was derived for N = 3 for the case of semi-degenerate fields ↵3 = {!2�mb!1

with m integer. We will not need it here.
8For N = 2 we set ↵i = 2↵i!1, i.e. we omit the unnecessary second index and set ↵1

i ⌘ ↵i.
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[Fateev,Litvinov]

 1

 2

 3

where the transformation acts as wi � ↵ = ↵ � (↵�Q, ei) ei. After that one uses ⌥(�x) =

⌥(x+Q) as well as equation (155) to show (30). As a final remark on Y (↵), we observe that

this function is zero if ↵ is a multiple of a fundamental weight and in particular it has a zero

of order (N�1)(N�2)

2

if we set ↵ = !

1

or ↵ = !N�1

.

Now, we can introduce the Weyl invariant part of the structure constants

C(↵
1

,↵
2

,↵
3

) :=
C(↵

1

,↵
2

,↵
3

)⇥
⇡µ�(b2)b2�2b2

⇤ (2Q,⇢)
b

Q
3

i=1

Y (↵i)
. (32)

by dividing out the piece that transforms non-trivially under Weyl transformations. The func-

tion C of the weights ↵ is independent of the cosmological constant µ and is invariant under

a�ne Weyl reflections in the ↵. Anticipating a bit, we will show in the later sections that the

Weyl invariant part of the 3-point structure constants has a higher symmetry than the naive

a�ne Weyl symmetry of SU(N)3. In particular, for N = 2 it is invariant under the SU(4) Weyl

group, while for N = 3 it is invariant under the E

6

Weyl group.

While the general formula for the 3-point structure constants of Toda CFT is not known,

they have been computed in special cases. The formula for the structure constants of WN for

the degenerate case in which one of the three weights becomes proportional to the first or the

last fundamental weight, i.e. ↵
3

= {!
1

or ↵
3

= {!N�1

is known from [32] and reads7

C

inv(↵
1

,↵
2

,↵
3

) (33)

C

inv({!N�1

,↵
2

,↵
3

) (34)

C(↵
1

,↵
2

,{!N�1

) =
⇣
⇡µ�(b2)b2�2b2

⌘ (2Q�
P3

i=1 ↵
i

,⇢)
b ⇥

⇥ ⌥0(0)N�1⌥({)
Q

e>0

⌥((Q�↵
1

, e))⌥((Q�↵
2

, e))QN
i,j=1

⌥( {
N + (↵

1

�Q, hi) + (↵
2

�Q, hj))
.

(35)

C

our(↵
1

,↵
2

,{!N�1

) = C

F.L.(↵
1

,↵
2

,{!N�1

) (36)

C

our(↵
1

,↵
2

,↵
3

) = C

inv(↵
1

,↵
2

,↵
3

)Ccov(↵
1

,↵
2

,↵
3

) (37)

C

cov(↵
1

,↵
2

,↵
3

) = Z
extra

(38)

C

inv(↵
1

,↵
2

,↵
3

) = ZT
N

(39)

C(↵
1

,↵
2

,↵
3

) = C

inv(↵
1

,↵
2

,↵
3

)Ccov(↵
1

,↵
2

,↵
3

) (40)

↵ $ m,n, l zi = 0, 1,1 (41)

7In [34] a more general formula was derived for N = 3 for the case of semi-degenerate fields ↵3 = {!2�mb!1

with m integer. We will not need it here.
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where the transformation acts as wi � ↵ = ↵ � (↵�Q, ei) ei. After that one uses ⌥(�x) =

⌥(x+Q) as well as equation (155) to show (30). As a final remark on Y (↵), we observe that

this function is zero if ↵ is a multiple of a fundamental weight and in particular it has a zero

of order (N�1)(N�2)

2

if we set ↵ = !

1

or ↵ = !N�1

.

Now, we can introduce the Weyl invariant part of the structure constants

C(↵
1

,↵
2

,↵
3

) :=
C(↵

1

,↵
2

,↵
3

)⇥
⇡µ�(b2)b2�2b2

⇤ (2Q,⇢)
b

Q
3

i=1

Y (↵i)
. (32)

by dividing out the piece that transforms non-trivially under Weyl transformations. The func-

tion C of the weights ↵ is independent of the cosmological constant µ and is invariant under

a�ne Weyl reflections in the ↵. Anticipating a bit, we will show in the later sections that the

Weyl invariant part of the 3-point structure constants has a higher symmetry than the naive

a�ne Weyl symmetry of SU(N)3. In particular, for N = 2 it is invariant under the SU(4) Weyl

group, while for N = 3 it is invariant under the E

6

Weyl group.

While the general formula for the 3-point structure constants of Toda CFT is not known,

they have been computed in special cases. The formula for the structure constants of WN for

the degenerate case in which one of the three weights becomes proportional to the first or the

last fundamental weight, i.e. ↵
3

= {!
1

or ↵
3

= {!N�1

is known from [32] and reads7

C

inv(↵
1

,↵
2

,↵
3

) (33)

C

inv({!N�1

,↵
2

,↵
3

) (34)

C(↵
1

,↵
2

,{!N�1

) =
⇣
⇡µ�(b2)b2�2b2

⌘ (2Q�
P3

i=1 ↵
i

,⇢)
b ⇥

⇥ ⌥0(0)N�1⌥({)
Q

e>0

⌥((Q�↵
1

, e))⌥((Q�↵
2

, e))QN
i,j=1

⌥( {
N + (↵

1

�Q, hi) + (↵
2

�Q, hj))
.

(35)

C

our(↵
1

,↵
2

,{!N�1

) = C

F.L.(↵
1

,↵
2

,{!N�1

) (36)

C

our(↵
1

,↵
2

,↵
3

) = C

inv(↵
1

,↵
2

,↵
3

)Ccov(↵
1

,↵
2

,↵
3

) (37)

C

cov(↵
1

,↵
2

,↵
3

) = Z
extra

(38)

C

inv(↵
1

,↵
2

,↵
3

) = ZT
N

(39)

C(↵
1

,↵
2

,↵
3

) = C

inv(↵
1

,↵
2

,↵
3

)Ccov(↵
1

,↵
2

,↵
3

) (40)

↵ $ m,n, l zi = 0, 1,1 (41)

7In [34] a more general formula was derived for N = 3 for the case of semi-degenerate fields ↵3 = {!2�mb!1

with m integer. We will not need it here.
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[Bao,Mitev,EP,Taki,Yagi] [Hayashi,Kim,Nishinaka]

[Mitev,EP]

[Isachenkov,Mitev,EP]

mi = (↵
1

�Q, hi) = N

N�1X
j=i

↵

j
1

�
N�1X
j=1

j↵

j
1

� N + 1� 2i

2
Q,

ni = � (↵
2

�Q, hi) = �N

N�1X
j=i

↵

j
2

+
N�1X
j=1

j↵

j
2

+
N + 1� 2i

2
Q,

li = � (↵
3

�Q, hN+1�i) = �N

N�1X
j=N+1�i

↵

j
3

+
N�1X
j=1

j↵

j
3

� N + 1� 2i

2
Q,

(7)

mi = (↵
1

�Q, hi)

ni = � (↵
2

�Q, hi)

li = � (↵
3

�Q, hN+1�i)

(8)

where hi are the weights of the fundamental representation of SU(N). In appendix B the reader

can find all the group theory conventions. In particular, for N = 2, we have

m

1

= �m

2

= ↵

1

1

� Q

2
, n

1

= �n

2

= �↵

1

2

+
Q

2
, l

1

= �l

2

= ↵

1

3

+
Q

2
, (9)

while for N = 3 we have

m

1

= 2↵1

1

+ ↵

2

1

�Q, m

2

= �↵

1

1

+ ↵

2

1

, m

3

= �↵

1

1

� 2↵2

1

+Q, (10)

with similar expressions for the ni and li.

Having set up the parametrization, we are ready to present our full claim. For that it is

important to stress that from the Toda CFT 3-point structure constants C, see (27), we can

extract the Weyl-invariant structure constants C as

C(↵
1

,↵
2

,↵
3

) =

 h
⇡µ�(b2)b2�2b2

i (2Q,⇢)
b

3Y
i=1

Y (↵i)

!
⇥ C(↵

1

,↵
2

,↵
3

), (11)

with

C

cov(↵
1

,↵
2

,↵
3

) =
h
⇡µ�(b2)b2�2b2

i (2Q,⇢)
b

3Y
i=1

Y (↵i) (12)

the functions Y (↵) defined in (28) encoding all the information about the Weyl transformation.

All the details needed are introduced in section 3. We claim that the exact AGT-W dictionary

relates the Weyl-invariant structure constants C to the 4D TN partition function on S

4 (ZS4

N )

as

C(↵
1

,↵
2

,↵
3

) = const⇥ ZS4

N (13)

where the constant part can be a function of N and of the Omega deformation parameters but

cannot be a function of the masses. The partition function on S

4 itself is obtained from the

5

m1

m2

m3

n1

n2

n3

l2
l1

l3

a
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 SW theory

 String theory/M-theory constructions

 Partition functions (Topological strings)

 Different BPS observables!

 AGT (4D partition functions = 2D correlators) and Toda 3pt 

 Superconformal Index (yet an other 4D/2D relation)

 Bootstrap, Correlation functions Schur Operators (Higgs branch)

 Correlation functions of Chiral Operators (Coulomb branch)

 AdS/CFT (Integrability), Exact anomalous dimensions

Ideal talk Conclusions 

[Beem,Lemos,Liendo,Peelaers,Rastelli,van Rees]

[Baggio,Niarchos,Papadodimas] [Gerchkovitz,Gomis,Ishtiaque,Komargodski,Pufu]

The web knows it all!

38 [Mitev,EP]

[Gadde,EP,Rastelli,Razamat]



 Superconformal Index = 2D TQF 

 4D partition functions = 2D correlators ?

 chiral correlators/tt* equations 

 Precision AdS/CFT (Integrability) 

 Magical novel relations

  Increase the list of Exact observables!!

Vision for the future (what I like)

  N=1 theories

  N=2

  N=3 theories

  Classification of N=2 theories (non Lagrangian)

[Zarembo Review 2016]

[Argyres,Lotito,Lu,Martone]

[Gaiotto,Razamat 2015]
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Class Sk 

6D (2,0) SCFT on Riemann surface: 4D N=2 theories of class S

6D (1,0) SCFT on Riemann surface: 4D N=1 theories of class Sk

x

0
x

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

9 (x10)
M NS5 branes � � � � � � . . . . .
N D4-branes � � � � . . � . . . �
A

k�1 orbifold . . . . � � . � � . .

Table 1. Type IIA brane configuration for the 4D N = 1 theories of class Sk.

plane corresponds to the U(1)

r

symmetry of the N = 2 theories, which is preserved in the
presence the orbifold singularity.
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in terms of which we write M = c(1)
L

+ c(1)
R

.
To implement the orbifold we follow [35, 36]. Orbifolding imposes the identification

v ⇠ e

2⇡i
k
v . (3.3)

For each mass m

i

there are k mirror images on the v-plane and thus we must replace

(v �m

i

) �!
k

Y

n=1

(v �m

(n)
i

) = (v

k �m

k

i

) . (3.4)

The equality follows because also the (mirror images of the) mass parameters obey the
orbifold condition and get identified as

m

(n)
i

= e

2⇡in
k

m

i

, n = 1, . . . , k (3.5)

Combining the replacement (3.4) with equation (3.1) gives

N

Y

i=1

(v

k �m

k

i

)t

2
+ P (v)t+ q

2N
Y

i=N+1

(v

k �m

k

i

) = 0 . (3.6)

The polynomial P (v) has degree Nk because of the orbifold

P (v) = �(1 + q)v

Nk

+ u1v
Nk�1

+ · · ·+ u

Nk�1v + u

Nk

, (3.7)

but its monomials must respect the orbifold Z
k

symmetry, as they must eventually be
matched to the vevs of the gauge invariant operators (2.11) that parameterize the Coulomb
branch.5 Any polynomial in X = v

k will do that, so P (v) = P

N

(X) with

P

N

(X) = �(1 + q)X

N

+

N

X

`=1

u

`k

X

N�`

. (3.8)

Thus the spectral curve that describes the Coulomb branch of SU(N) SCQCD
k

reads

N

Y

i=1

(v

k �m

i

k

)t

2
+

 

�(1 + q)v

Nk

+

N

X

`=1

u

`k

v

(N�`)k

!

t+ q

2N
Y

i=N+1

(v

k �m

i

k

) = 0 . (3.9)

We now want, following Gaiotto [7], to rewrite this curve as the four-punctured sphere
C(k)
0,4 in class S

k

. The first step in order to achieve this is to rewrite the spectral curve (3.9),
which is a polynomial in t, as a polynomial in v

v

Nk

+

N

X

`=1

(�1)

`

P

`

(t)

(t� 1)(t� q)

v

(N�`)k
= 0 , (3.10)

5
Note that in this paper we only study the Coulomb branch of the Sk theories. We do not turn on vevs

for the mesons or the baryons.
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where const(v) means a constant with respect to v, which can depend on t. The shifted
�

SW

in terms of ṽ has poles on both sheets. Parametrizing v = xt, we finally find that the
poles of the SU(2) four-punctured sphere are

x

t=0 ⇠ m3 �m4

2t

{+1,�1} , x

t=1 ⇠ t(m1 �m2)

2

{+1,�1} (3.26)

x

t=1 ⇠ m1 +m2

2(t� 1)

{+1,�1} , x

t=q

⇠ �(m3 +m4)

2(t� q)

{+1,�1} . (3.27)

The shift in v leaves the physics unchanged9 but reveals the full SU(2) flavor symmetry
of the punctures at t = 1, q. The poles have residues which sum to zero. They have the
properties of an element of the Cartan subgroup of SU(2) and thus get associated to its
fugacities, making the connection between the punctures and the SU(2) flavor symmetries.

Back to class S
k

: After performing the orbifold, the spectral curve becomes

(v

k �m

k

1)(v
k �m

k

2)t
2
+ P (v)t+ q(v

k �m

k

3)(v
k �m

k

4) = 0 . (3.28)

When k > 1, the curve (3.28) has 2k solutions for v(t), which are given by

v

(n)
± = e

2⇡in
k

v± with v

k

± =

P1(t)±
p
�

2(t� 1)(t� q)

(3.29)

where n = 1 . . . k, � is the discriminant of the quadratic equation (3.28) for X = v

k

� = (P1(t))
2 � 4(t� 1)(t� q)P2(t) (3.30)

and P1,2 generalize the polynomials (3.18a)-(3.18b)

P1(t) = t

2c(1,k)
L

� u

k

t+ qc(1,k)
R

, P2(t) = t

2c(2,k)
L

+ u2kt+ qc(2,k)
R

. (3.31)

Let us begin by looking at (3.29) close to t = 0, where

v

k

± t=0
=

n

m

k

3 , m

k

4

o

) v

(n)
± t=0

=

n

m

(n)
3 ,m

(n)
4

o

(3.32)

for m

(n)
i

introduced in (3.5). Similarly, at t ! 1, v takes values

v

(n)
± t!1 =

n

m

(n)
1 ,m

(n)
2

o

. (3.33)

These are the maximal punctures of the curve parameterized by t in class S
k

. At these
punctures, the differential �

SW

has a simple pole on all 2k sheets of the spectral curve. The
maximal punctures are parameterized by k mirror images of U(2). The generalization to
the SU(N) case is immediate

lim

t!1
v

(n)
1,...,N =

n

m

(n)
1 ,m

(n)
2 , . . . ,m

(n)
N

o

, (3.34)

lim

t!0
v

(n)
1,...,N =

n

m

(n)
N+1,m

(n)
N+2, . . . ,m

(n)
2N

o

. (3.35)

9
The two-form dv ^ dt is invariant under the shift (3.23).
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We now want, following Gaiotto [7], to rewrite this curve as the four-punctured sphere
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Imposing the Z
k

orbifold breaks supersymmetry to N = 1 and the superpotential
becomes

WSk =

k

X

i=1

M�1
X

c=1

⇣

Q(i,c�1)�(i,c)
˜

Q(i,c�1) � ˜

Q(i,c)�(i,c)Q(i+1,c)

⌘

. (2.10)

A chiral field Q(i,c) corresponds to an arrow pointing left into the node (i, c) and ˜

Q(i,c)

corresponds to an arrow pointing right from the node (i, c). The chiral field �(i,c) points
from (i + 1, c) to (i, c). The transformation properties of all the fields in the Lagrangian
for the various gauge and global symmetries are summarized in table 2. In particular, in
class S

k

we have a large number of global U(1) symmetries [17], the action of which on the
various bi-fundamental fields (arrows) is depicted by grey, blue and red arrows in figure 2.

SU(N)(i,c�1) SU(N)(i,c) SU(N)(i+1,c) U(1)t U(1)↵c U(1)�i+1�c U(1)�i

V(i,c) 1 adj. 1 0 0 0 0
�(i,c) 1 ⇤ ⇤ �1 0 �1 +1

Q(i,c�1) ⇤ ⇤ 1 +1/2 �1 +1 0
e

Q(i,c�1) ⇤ 1 ⇤ +1/2 +1 0 �1

Table 2. The symmetries of the fields of the orbifolded linear quivers in class Sk. Apart from the
color structure that can be read from the quiver diagram in figure 2, there is a number of U(1) global
symmetries which can also be read from the extra arrows that intersect the bi-fundamentals.

2.3 Coulomb moduli parameters and mass parameters

From the study of N = 2 theories we are used to the fact that the SW curves are param-
eterized by the vacuum expectation values of gauge invariant operators htr�`i ⇠ u

`

that
parametrize the Coulomb branch of the theory. There, solving the theory amounts to cal-
culating the vev h�i = a of the Coulomb moduli as a function of the u, a(u), as well as their
magnetic duals a

D

(u). This is done by computing the A- and B-cycle integrals, see section
3.5 for a review, and at weak coupling we find a ⇠ p

u2. The a(u) in the IIA/M-theory
picture correspond to the positions of the D4/M5 branes.

After orbifolding, the gauge invariant operators whose vevs parameterize the Coulomb
branch of the theory are 3

htr ��(1,c) · · ·�(k,c)

�

`i ⇠ u

`k,c

, (2.11)

htr ��(1) · · ·�(k)

�i ⇠ u

k

, (2.12)

htr ��(1) · · ·�(k)

�2i ⇠ u2k , (2.13)

where the index c = 0, . . . ,M labels the different color groups in the IIA setup with M NS5
branes. Notice that the bi-fundamental field �(i,c) of the N = 1 orbifold daughter theory

3
More rigorously, the Coulomb moduli parameters u which appear in the spectral curve in the later

sections are accompanied by a certain linear combination of the product of these operators with the same

total mass dimension together with the correction from the mass parameters. In (2.11) we omit these

corrections and write the relation symbolically.
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corresponds to an arrow pointing right from the node (i, c). The chiral field �(i,c) points
from (i + 1, c) to (i, c). The transformation properties of all the fields in the Lagrangian
for the various gauge and global symmetries are summarized in table 2. In particular, in
class S

k

we have a large number of global U(1) symmetries [17], the action of which on the
various bi-fundamental fields (arrows) is depicted by grey, blue and red arrows in figure 2.

SU(N)(i,c�1) SU(N)(i,c) SU(N)(i+1,c) U(1)t U(1)↵c U(1)�i+1�c U(1)�i

V(i,c) 1 adj. 1 0 0 0 0
�(i,c) 1 ⇤ ⇤ �1 0 �1 +1

Q(i,c�1) ⇤ ⇤ 1 +1/2 �1 +1 0
e

Q(i,c�1) ⇤ 1 ⇤ +1/2 +1 0 �1

Table 2. The symmetries of the fields of the orbifolded linear quivers in class Sk. Apart from the
color structure that can be read from the quiver diagram in figure 2, there is a number of U(1) global
symmetries which can also be read from the extra arrows that intersect the bi-fundamentals.

2.3 Coulomb moduli parameters and mass parameters

From the study of N = 2 theories we are used to the fact that the SW curves are param-
eterized by the vacuum expectation values of gauge invariant operators htr�`i ⇠ u

`

that
parametrize the Coulomb branch of the theory. There, solving the theory amounts to cal-
culating the vev h�i = a of the Coulomb moduli as a function of the u, a(u), as well as their
magnetic duals a

D

(u). This is done by computing the A- and B-cycle integrals, see section
3.5 for a review, and at weak coupling we find a ⇠ p

u2. The a(u) in the IIA/M-theory
picture correspond to the positions of the D4/M5 branes.

After orbifolding, the gauge invariant operators whose vevs parameterize the Coulomb
branch of the theory are 3

htr ��(1,c) · · ·�(k,c)

�

`i ⇠ u

`k,c

, (2.11)

htr ��(1) · · ·�(k)

�i ⇠ u

k

, (2.12)

htr ��(1) · · ·�(k)

�2i ⇠ u2k , (2.13)

where the index c = 0, . . . ,M labels the different color groups in the IIA setup with M NS5
branes. Notice that the bi-fundamental field �(i,c) of the N = 1 orbifold daughter theory

3
More rigorously, the Coulomb moduli parameters u which appear in the spectral curve in the later

sections are accompanied by a certain linear combination of the product of these operators with the same

total mass dimension together with the correction from the mass parameters. In (2.11) we omit these

corrections and write the relation symbolically.
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The polynomial P(v) also has to respect the orbifold 

Is a function of the vevs of the gauge invariant  
glueballs that parameterize the Coulomb branch 

_ _

[Coman,EP,Taki,Yagi 2015]
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Novel N=3 theories
[Garcıa-Etxebarria,Regalado15]

  Multiplets must be CPT invariant: N=3 vector multiplet becomes N=4

  Non-Lagrangian N=3 theories (no description in terms of elementary fields)

Theorem: 4D N=3 SCFT have no marginal deformations! 
They are isolated fixed points.[Cordova,Dumitrescu,Intriligator]

  Generalization of Orbifold/Orientifold: S-fold

With this r*s operation being a Zk with k=3,4,6 

[Aharony,Evtikhiev15]
[Aharony,Tachikawa15]

[Argyres,Lotito,Lu,Martone16]
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Chiral correlators

  Zamolodchikov metric (metric on theory space: as we marginally deform)

[Baggio,Niarchos,Papadodimas]
[Gerchkovitz,Gomis,Ishtiaque,Komargodski,Pufu]

  Precision AdS/CFT

  Extremal correlations

and we have the obvious relation between OPE and 3-point coefficients

CIJK = CL
IJ gLK . (2.5)

So far we have defined the chiral ring for one particular N = 2 SCFT. In general, such

SCFTs may have exactly marginal coupling constants. In that case the elements of the chiral

ring (i.e. the corresponding 2- and 3-point functions) will become functions of the coupling

constants. The goal of our paper is to analyze this (typically non-trivial) coupling-constant

dependence of the chiral ring.

2.2 Marginal deformations

We are interested in N = 2 SCFTs with exactly marginal deformations. We parametrize the

space of marginal deformations (conformal manifold), called M from now on, by complex

coordinates λi,λ
i
. Under an infinitesimal marginal deformation the action changes by

S → S +
δλi

4π2

∫
d4xOi(x) +

δλ
i

4π2

∫
d4xOi(x) . (2.6)

It can be shown that the marginal deformation preserves N = 2 superconformal invariance,

if and only if the marginal operators are descendants of (anti)-chiral primaries with ∆ = 2

and R = ±4, more specifically

Oi = Q4 · φi , Oi = Q4 · φi , (2.7)

where φi is chiral primary of charge R = 4. The notation Oi = Q4 · φi means that Oi can

be written as the nested (anti)-commutator of the four supercharges of left chirality. Their

Lorentz and SU(2)R indices of the supercharges are combined to give a Lorentz and SU(2)R
singlet. The overall normalization of factors of 2 etc. is fixed so that equation (2.10) holds.

Notice that since the Q’s have U(1)R charge equal to −1 the marginal operators are U(1)R
neutral, as they should.

From now on in this section and the next we use lowercase indices i, j, ... to indicate

chiral primaries of R-charge equal to ±4. These are special since, via (2.7), they correspond

to marginal deformations. We use uppercase indices I, J, .. to denote general chiral primaries

of any R-charge.

The Zamolodchikov metric is defined by the 2-point function6

⟨Oi(x)Oj(0)⟩ =
Gij

|x|8 . (2.8)

The conformal manifold M equipped with this metric is a complex Kähler manifold (possibly

with singularities). The corresponding “metric” for the chiral primaries is

⟨φi(x)φj(0)⟩ =
gij
|x|4 . (2.9)

6Notice that 2-point functions of the form ⟨OiOj⟩ or ⟨OiOj⟩ are zero, as can be easily shown by supercon-

formal Ward identities.
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 Coulomb branch operators                    are chiral     with 

1. Introduction

E
r

with � = r

u
`

= htr�`i (1.1)

B̂
R

with � = 2R

µ
IJ

= htr �Q
{I

Q̄
J}

�i (1.2)

Ĉ
R(j,j̄) with � = 2R

D
R

N = 2 gauge theories have been of great interest in the past twenty-five years. While

N = 4 SYM has trivial non-perturbative physics

Z =

Z
D� e�S(�) (1.3)

The action must have a Grassmann odd symmetry � (supercharge Q) such that

Q2 = Bosonic symmetries (1.4)

�S(�) = 0 (1.5)

The symmetry must not be anomalous

And there should exist (we should be able to find) a Grassmann odd function V (�)

such that

�2V (�) = 0
⇣
�V (�)

⌘

B

� 0 (1.6)

the bosonic terms (Grassmann even) are possitive semidefinate.

Z(t) =

Z
D� e�S(�)�t�V (�) (1.7)

Z(t) is independent of t. Proof:

dZ(t)

dt
=

Z
D� e�S(�)�t�V (�)

⇣
� V (�)

⌘
=

Z
D�V (�) �

⇣
e�S(�)�t�V (�)

⌘
= 0 (1.8)

Z(0) = Z(1) (1.9)

t ! 1 the integral localizes (it is given by the saddle point): it is non-zero only when
⇣
�V (�)

⌘

B

= 0 (1.10)

this is called the zero locus

The same is true for an observable O(�) that is BPS

QO(�) = 0 (1.11)

hOi(t) =
Z

D�O(�) e�S(�)�t�V (�) (1.12)
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The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.16)

together with a meromorphic di↵erential �
SW

. The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to

a
i

=

I

A

i

�
SW

and a
D

i =

I

B

i

�
SW

=
@F(a)

@a
i

. , (1.17)

where A
i

and B
i

are the basic cycles of the algebraic curve with intersection number

A
i

· Bj = �j
i

. The prepotential itself can be found by integrating Moreover, contour

integrals of the meromorphic di↵erential �
SW

around its poles give linear combinations of

the bare quark masses (m
i

).

hQi = 0 hQIi = 0 m
i

= 0 h�i = a = 0 (1.18)

E
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I1 · · · OI

k

Ō
J

i O
I

=
⇣
tr�`tr�m · · ·

⌘
(1.19)
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ij̄
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= Q4tr�2
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(1.20)
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N = 2 gauge theories have been of great interest in the past twenty-five years. While

N = 4 SYM has trivial non-perturbative physics

Z =

Z
D� e�S(�) (1.22)

The action must have a Grassmann odd symmetry � (supercharge Q) such that

Q2 = Bosonic symmetries (1.23)

�S(�) = 0 (1.24)

The symmetry must not be anomalous

And there should exist (we should be able to find) a Grassmann odd function V (�)

such that

�2V (�) = 0
⇣
�V (�)

⌘

B

� 0 (1.25)

1The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =

htr�2i+ . . . .
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Ō
J

i O
I

=
⇣
tr�`tr�m · · ·

⌘
(1.19)

hO
i

(x)Ō
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Magical novel relations in N=2 theories

  A Sum Rule: 

  Schur index = BPS index

The BPS index = spectrum of BPS particles on the Coulomb branch. 

[Shapere,Tachikawa 2008]

[Cordova,Shao 2015]

[Cordova,Gaiotto,Shao 2016]

[Rastelli]

2. Central Charges and Anomalies

We begin by recalling some definitions and basic facts about the flavor and conformal

central charges of 4d superconformal field theories. We review the dependence of the
U(1)R anomalies on the central charges, and discuss how this dependence is modified

by topological twisting of N = 2 theories.

2.1 Definitions and basic relations

The central charges a and c of conformal symmetry in four dimensions are defined in
terms of operator product expansions (OPEs) of energy-momentum tensor operators,

but are more elegantly expressed as coefficients of terms in the conformal anomaly
of the trace of the energy-momentum tensor generated by a background gravitational

field,

⟨T µ
µ ⟩ =

c

16π2
(Weyl)2 − a

16π2
(Euler) (2.1)

where

(Weyl)2 = R2
µνρσ − 2R2

µν +
1

3
R2, (2.2)

(Euler) = R2
µνρσ − 4R2

µν + R2. (2.3)

The N = 1 superconformal algebra relates a and c to the U(1)R anomalies [22, 23]

a =
3

32

[

3 tr(R3
N=1) − tr(RN=1)

]

, c =
1

32

[

9 tr(R3
N=1) − 5 tr(RN=1)

]

(2.4)

where the trace is over all species of Weyl fermions, and RN=1 is the generator of

U(1)R symmetry in the N = 1 superconformal algebra. For example, by summing over
component fields we find

a =
1

24
, c =

1

12
(2.5)

for a free N = 2 full hypermultiplet, and we have

a =
5

24
, c =

1

6
(2.6)

for a free N = 2 vector multiplet.

The relations (2.4) can alternatively be written as an anomaly equation for the
U(1)R current

∂µRµ
N=1 =

c − a

24π2
RµνρσR̃µνρσ +

5a − 3c

9π2
V N=1

µν Ṽ µν
N=1. (2.7)

– 4 –

as the Coulomb branch chiral ring, the elements of which can be identified with the superconformal
primaries of E

r

multiplets. In all known examples, this ring is exceedingly simple, and it is natural to
formulate a conjecture that the ring is always as simple as it is in the examples:13

Conjecture 2 (Free generation of the Coulomb chiral ring) In any N = 2 SCFT, the Coulomb

branch chiral ring is freely generated.

This conjecture can in principle be translated into a statement about the OPE coe�cients of the E
r

multiplets. For instance, a simple consequence is that no E
r

superconformal primary can square to
zero in the chiral ring, so an E

2r

operator must appear with nonzero coe�cient in the OPE of the E
r

with itself. Precisely this kind of statement can be tested by numerical bootstrap methods, as we will
describe in Section 7.

The number of generators of the Coulomb branch chiral ring is usually referred to as the rank of
the theory. The set {r

1

, . . . r
rank

} of U(1)
r

charges of these chiral ring generators is one of the most
basic invariants of an N = 2 SCFT. Unitarity implies r > 1, with r = 1 only in the case of the free
vector multiplet, so we will always assume r > 1. In Lagrangian SCFTs, the r

i

are all integers, but
there are several non-Lagrangian models that possess E

r

multiplets with interesting fractional values
of r. We are not aware of any examples where U(1)

r

charges take irrational values.
It is widely believed that the Coulomb branch of the moduli space of any N = 2 SCFT is

parameterized by assigning independent vevs to each of the Coulomb branch chiral ring generators.
We will generally operate under the assumption that this statement is true, which amounts to assuming
the validity of the following conjecture.

Conjecture 3 (Geometrization of the Coulomb chiral ring) The Coulomb chiral ring is iso-

morphic to the holomorphic coordinate ring on the Coulomb branch.

We note that the union of Conjecture 2 and Conjecture 3 implies that the Coulomb branch of any
N = 2 SCFT just Cr, with r the rank of the theory.

At present we are not sure how one might establish Conjecture 3 using bootstrap methods due
to the obstacle of spontaneous conformal symmetry breaking discussed above. However, once one has
found their way onto the Coulomb branch, the powerful technology of Seiberg-Witten (SW) theory
becomes applicable. The e↵ective action for the low-energy U(1)rank gauge theory on the Coulomb
branch is characterized by geometric data (in the simplest cases, this is the SW curve, more generally
it is some abelian variety). There are well-developed techniques to determine the SW geometry, which
apply to most Lagrangian examples and to several non-Lagrangian cases as well. In turn, the SW
geometry determines a wealth of physical information, such as the spectrum of massive BPS states.
Unfortunately, how to translate this information into CFT data remains an unsolved problem.14

In [82], Shapere and Tachikawa (ST) proved a remarkable formula that relates the a and c central
charges to the generating r-charges {r

1

, . . . r
rank

},

2a � c =
1

4

rank

X

i=1

(2r
i

� 1) . (2.22)

The ST sum rule holds in all known examples, and it is tempting to conjecture that it is a general
property of all N = 2 SCFTs. The derivation of [82] requires that the SCFTs in question be realized

13To the best of our knowledge, this conjecture was first explicitly stated in the literature by Yuji Tachikawa in [80].
14See however [81] for a relation between the spectrum of BPS states on the Coulomb branch and a certain partition

function (evaluated at the conformal point), which appears to be closely related to the superconformal index.

– 12 –

 Sum over the generators that 

parametrize the Coulomb branch 

e.x. SU(N)M : rank=(N-1)M
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Thank you!
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TN partition functions

 (N-1)(N-2)/2 integrals = # of faces  

Figure 4: The left part of the figure shows the strip diagram, while the right one depicts
the dissection of the TN diagram into N strips. The partitions associated with the horizontal,

diagonal and vertical lines are ⌫

(j)
i , µ

(j)
i and �

(j)
i with j = 1, . . . , N � 1, i = 1, . . . , N � j

respectively. The Kähler parameters of the horizontal, diagonal and vertical lines are Q

(j)
n;i,

Q

(j)
m;i, Q

(j)
l;i respectively with the same range of indices.

where µL+1

= �

0

= ;. We refer to [39] for a definition of the topological vertex C�µ⌫ . The full

topological string partition function is then given by

Ztop

N =
X
⌫

NY
r=1

⇣
�Q(r)

n

⌘|⌫(r)|
Zstrip

⌫(r�1)⌫(r)(Q
(r)
m ,Q(r)

l ; t, q). (67)

The strip partition function (66) was computed in [1]. In appendix D, we show that it is useful

to redefine the strip slightly, i.e. to “cut” the TN junction in a di↵erent way by moving some

factors from one strip to its neighbors. These redefinitions do not change the full topological

string partition function of the TN junction. The technical details are left to appendix D.

Combining everything, we obtain

Ztop

N = Zpert

N Z inst

N , (68)

where we have defined the “perturbative” partition function

Zpert

N =
N�1Y
r=1

N�rY
ij=1

M
⇣

˜A
(r�1)
i

˜A
(r�1)
j

˜A
(r�1)
i�1

˜A
(r�1)
j+1

⌘
M

⇣q
t
q

˜A
(r�1)
i

˜A
(r)
j�1

˜A
(r�1)
i�1

˜A
(r)
j

⌘
M

⇣q
t
q

˜A
(r)
i

˜A
(r�1)
j

˜A
(r)
i�1

˜A
(r�1)
j+1

⌘ N�r�1Y
ij=1

M
⇣ t

q

Ã

(r)
i Ã

(r)
j

Ã

(r)
i�1

Ã

(r)
j+1

⌘
, (69)
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where  is the digamma function, � is the Euler - Mascheroni constant and ⇣H(s, q) is the

Hurwitz-⇣ function with (<(s) > 1 and <(q) > 0)

⇣H(s, q)

:

=

1X
n=0

1

(q + n)

s
. (170)

Finally, using the shorthands ↵

:

= Res(

�(s|!1,!2)

s�1

, s = 1) and �

:

= Res(

�(s|!1,!2)

s�2

, s = 2) +

Res(�(s|!
1

,!

2

), s = 2) we obtain

�
2

(x|!
1

,!

2

) =

e

�↵x+ �x

2

2

x

0Y
n1,n2�0

e

x

!1n1+!2n2
� x

2

2(!1n1+!2n2)2

1 +

x
!1n1+!2n2

. (171)

C.2 The q-deformed ⌥ function.

In this subsection, we wish to summarize some results involving the q-deformed ⌥ functions.

First we begin by defining the shifted factorials

20

(we require for convergence that |qi| < 1 for

all i)

(x; q

1

, . . . , qr)1 :

=

1Y
i1=0,...,i

r

=0

(1� xq

i1
1

· · · qirr ). (172)

We can extend the definition of the shifted factorial for all values of qi by imposing the relations

(x; q

1

, . . . , q

�1

i , . . . , qr)1 =

1

(xqi; q1, . . . , qr)1
. (173)

Furthermore, they obey the following shifting properties

(qjx; q1, . . . , qr)1 =

(x; q

1

, . . . , qr)1
(x; q

1

, . . . , qj�1

, qj+1

, . . . , qr)1
. (174)

We then define the function M(u; t, q) as

M(u; t, q) := (uq; t, q)�1

1 =

8>><>>:
Q1

i,j=1

(1� uti�1qj)�1

for |t| < 1, |q| < 1Q1
i,j=1

(1� uti�1q1�j
) for |t| < 1, |q| > 1Q1

i,j=1

(1� ut�iqj) for |t| > 1, |q| < 1Q1
i,j=1

(1� ut�iq1�j
)

�1

for |t| > 1, |q| > 1

, (175)

M(Q) =

1Y
i,j=1

(1�Qti�1qj)�1

(176)

converging for all u. This function can be written as a plethystic exponential

M(u; t, q) = exp

" 1X
m=1

u

m

m

qm

(1� tm)(1� qm)

#
, (177)

20A good source for the properties of the shifted factorials is [72].

41

Figure 1: This figure depicts the identification of the ↵ weights appearing on the Toda CFT side with
the position of the flavor branes on the TN side, here drawn for the case N = 5.

which is reflected in the fact that the sum of the weights hi of the fundamental SU(N) representation is
zero. Then the structure constants of three primary operators in the q-Toda theory are given by the TN

partition functions on S

4 ⇥ S

1 as

Cq(↵1

,↵
2

,↵
3

) = const⇥

2

4
3Y

j=1

Yq(↵j)

3

5 (1� q)��
NZS4⇥S1

N , (25)

where by “const” we mean a function of ✏
1

, ✏
2

and � that is independent of the mass parameters of the

theory. We stress that the superconformal index ZS4⇥S1

N is invariant under the a�ne Weyl transformations
(A.12) and that all the non-trivial Weyl transformation properties of the structure constants are captured
by the following special functions:

Yq(↵) :=

2

4
�
1� q

b
�
2b�1�

1� q

b�1�
2b

(1� q)2Q

3

5
�(↵,⇢)

Y

e>0

⌥q ((Q�↵, e)) , (26)

with the functions ⌥q defined in (A.34) and the product taken over all positive roots e of SU(N). The
partition function on S

4 ⇥S

1, or the superconformal index, for the TN theory is given by an integral over
the refined topological string amplitude with an integration measure containing the refined MacMahon
function6 M(t, q) [29]

ZS4⇥S1

T
N

=
1

|Z
extra

|2
I Y

faces

[da] |Z
top

|2 (27)

ZS4⇥S1

N = |M(t, q)|(N�1)(N�2)

I N�2Y

i=1

N�1�iY

j=1

"
dÃ

(j)
i

2⇡iÃ(j)
i

# �����
Ztop

N

Z
extra

�����

2

. (28)

M(t, q) =
1Y

i,j=1

�
1� qitj�1

��1

(29)

Here, we have removed the decoupled degrees of freedom, referred to as “non-full spin content” in [12],

��Zdec

N

��2 :=
Y

1i<jN

���M(M̃iM̃
�1

j )M(t/qÑiÑ
�1

j )M(L̃iL̃
�1

j )
���
2

= const⇥
3Y

k=1

(1� q)N(↵
k

,↵
k

�2Q)

⇣�
1� q

b
�
2b�1�

1� q

b�1�
2b
⌘
(↵

k

,⇢)

Yq(↵k) ,

(30)

7

Figure 2: The figure illustrates the desired Higgsing procedure for the general TN diagram. We denote
7-branes by crossed circles. The left part of the figure shows the original TN 5-brane web diagram, while
the right one depicts the web diagram obtained by letting N � 1 of the left 5-branes terminate on the same
7-brane.

where the function M is defined in (A.29). Interestingly enough, as noted in [1], these degrees of freedom
are responsible for the Weyl covariance of the Toda structure constants. Here and elsewhere, we shall use
the shorthand notation

|f(U ; t, q)|2 = f(U ; t, q)f(U�1; t�1

, q�1) (31)

Inserting (28) into (25), we find the nice expression

Cq(↵1

,↵
2

,↵
3

) = const⇥
I N�2Y

i=1

N�1�iY

j=1

"
dÃ

(j)
i

2⇡iÃ(j)
i

|M(t, q)|2
#
��Ztop

N

��2
. (32)

The topological string amplitude is Ztop

N obtained from the TN web-diagram by using the refined topo-
logical vertex formalism and reads

Ztop

N = Zpert

N Z inst

N , (33)

Z
top

= Z
pert

Z
inst

(34)

where the “perturbative” partition function7 is

Zpert

N :=
N�1Y

r=1

Y

1i<jN�r

M
⇣

˜A
(r�1)
i

˜A
(r�1)
j

˜A
(r�1)
i�1

˜A
(r�1)
j+1

⌘

M
⇣q

t
q

˜A
(r�1)
i

˜A
(r)
j�1

˜A
(r�1)
i�1

˜A
(r)
j

⌘
M
⇣q

t
q

˜A
(r)
i

˜A
(r�1)
j

˜A
(r)
i�1

˜A
(r�1)
j+1

⌘
Y

1i<jN�r�1

M
⇣ t
q

Ã

(r)
i Ã

(r)
j

Ã

(r)
i�1

Ã

(r)
j+1

⌘
, (35)

and the “instanton” one is

Z inst

N :=

X

⌫

N�1Y

r=1

N�rY

i=1

 
ÑrL̃N�r

Ñr+1

L̃N�r+1

! |⌫(r)
i

|
2 N�1Y

r=1

Y

1ijN�r

2

64
N

�

⌫
(r�1)
i

⌫
(r)
j

⇣
a

(r�1)

i + a

(r)
j�1

� a

(r�1)

i�1

� a

(r)
j � ✏+

/2

⌘

N

�

⌫
(r�1)
i

⌫
(r�1)
j+1

⇣
a

(r�1)

i + a

(r�1)

j � a

(r�1)

i�1

� a

(r�1)

j+1

⌘

⇥
N

�

⌫
(r)
i

⌫
(r�1)
j+1

⇣
a

(r)
i + a

(r�1)

j � a

(r)
i�1

� a

(r�1)

j+1

� ✏+
/2

⌘

N

�

⌫
(r)
i

⌫
(r)
j

⇣
a

(r)
i + a

(r)
j�1

� a

(r)
i�1

� a

(r)
j � ✏

+

⌘

3

75 , (36)

6See (A.40) for the definition of the refined MacMahon function M(t, q).
7We put the words “perturbative” and “instanton” inside quotation marks because for the TN there is no notion of

instanton expansion, since there is no coupling constant.
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and the “instanton” one

Z inst

N =
X
⌫

NY
r=1

N�rY
i=1

 
ÑrL̃N�r

Ñr+1

L̃N�r+1

! |⌫(r)
i

|
2

⇥
NY
r=1

N�rY
ij=1

264N�
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(r)
j�1

� a

(r�1)

i�1
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(r)
j � ✏+

/2

⌘
N�

⌫
(r�1)
i

⌫
(r�1)
j+1

⇣
a

(r�1)

i + a

(r�1)

j � a

(r�1)

i�1

� a

(r�1)

j+1

⌘

⇥
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⌫
(r)
i

⌫
(r�1)
j+1

⇣
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(r)
i + a

(r�1)

j � a

(r)
i�1

� a

(r�1)

j+1

� ✏+
/2

⌘
N�

⌫
(r)
i

⌫
(r)
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⇣
a

(r)
i + a

(r)
j�1

� a

(r)
i�1

� a

(r)
j � ✏

+

⌘
375

where the a(j)i are defined via Ã

(j)
i = e

��a
(j)
i . We put the words “perturbative” and “instanton”

inside quotation marks because for the TN there is not really a notion of instanton expansion.

There is no coupling constant, since there is no gauge group. We recall that the boundary a

(j)
i

are related to the masses via (120). In writing (69) and (??) we have introduced the notation10

M(u; t, q) ⌘ M(u) =
1Y

i,j=1

(1� ut�iqj),

N�
�µ(m; t, q) ⌘ N�

�µ(m) =
Y

(i,j)2�

2 sinh
�

2

⇥
m+ ✏

1

(�i � j + 1) + ✏

2

(i� µ

t
j)
⇤

⇥
Y

(i,j)2µ

2 sinh
�

2

⇥
m+ ✏

1

(j � µi) + ✏

2

(�t
j � i+ 1)

⇤
.

(70)

We refer to appendix C.2, respectively C.3 for more details concerning M, respectively N�
�µ.

As in [1], we define the non-full spin content (also called U(1) factor in [5])

Zdec

N =
NY

i<j=1

M(M̃iM̃
�1

j )M(t/qÑiÑ
�1

j )M(L̃iL̃
�1

j ). (71)

We remark that for b = ✏

1

= ✏

�1

2

, we can write��Zdec

N

��2 =⇤
3N(N�1)

2 (1� q)
N(N�1)(2N2�2N�1)

8 Q2⇥

⇥
3Y

k=1

(1� q)N(↵
k

,↵
k

�2Q)

⇣�
1� q

b
�
2b�1�

1� q

b�1�
2b
⌘
(↵

k

,⇢)

Yq(↵k)
(72)

where we have used (7), the identity (134) and the q-deformed function (51). Thus, up to some

ambiguities, there is a clear identification of the decoupled part
��Zdec

N

��2 with the Weyl covariant

part (55) of the correlation functions, see (13).

The contributions (71) decouple from the gauge theory and need to be removed in order to

10We often drop the explicit dependence of these functions on the parameters t and q.
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From this formula we can then obtain an identity useful for the calculations of the main text. Let us
define the norm squared of the refined McMahon function following [29]:

|M(t, q)|2 := lim
U!1

|M(U ; t, q)|2

1� U

�1

= |M(q�1; t, q)|2 = (1� q)
(✏1�✏2)2

4✏1✏2 ⇤⌥q(✏1) . (A.40)

Then, from (A.35) and (A.39) we get for ✏
1

= b and ✏

2

= b

�1

|M(t, q)|2 =
1

�

(1� q)(
Q

2 )
2

⇤⌥0
q(0) . (A.41)

A.4 Combinatorial special functions

We shall use in the following

|�| :=
`(�)X

i=1

�i, ||�||2 :=

`(�)X

i=1

�

2

i , n(�) :=

`(�)X

i=1

(i� 1)�i =
||�t||2 � |�|

2
, (A.42)

where `(�) is the number of rows of the partition �. We also define the relative arm-length aµ(s), arm-
colength a

0
µ(s), leg-length lµ(s) and leg-colength l

0
µ(s) of a given box s of the partition � with respect to

another partition µ as:

aµ(s) := µi � j , a

0
µ(s) := j � 1 , lµ(s) := µ

t
j � i , l

0
µ(s) := i� 1 . (A.43)

It is of course also possible to have � = µ. The (q, t)-deformed factorial of U depending on a partition �

is then given as a following product over its boxes:

(U ; q, t)� :=

`(�)Y

i=1

(U t1�i; q)�
i

=
Y

s2�

(1� Uqa
0
(s)t�l0(s)) . (A.44)

The next piece of notation that we need are the (q, t)-deformations of the hook product of a Young
diagram �. There are two inequivalent ways for this number to be deformed to a two-variable polynomial,
namely:

h�(q, t) :=
Y

s2�

(1� qa(s)tl(s)+1) , h

0
�(q, t) :=

Y

s2�

(1� qa(s)+1tl(s)) . (A.45)

Our last definition is that of the 5D uplift of Nekrasov functions, which we write as

N

�
�µ(m) =

Y

(i,j)2�

2 sinh
�

2

⇥
m+ ✏

1

(�i � j + 1) + ✏

2

(i� µ

t
j)
⇤

⇥
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(i,j)2µ

2 sinh
�

2

⇥
m+ ✏

1

(j � µi) + ✏

2

(�t
j � i+ 1)

⇤
(A.46)

=
Y

s2�

2 sinh
�

2
[u+ ✏

1

(a�(s) + 1)� ✏

2

lµ(s)]
Y

s2µ

2 sinh
�

2
[u� ✏

1

aµ(s) + ✏

2

(l�(s) + 1)]

where the products are taken over boxes of partitions � and µ, respectively. By pulling some factors out
of the products, the definition can also be rewritten as

N

�
�µ(u; ✏1, ✏2) :=

✓r
t

q

1

U

◆ |�|+|µ|
2

t
||�t||2�||µt||2

4 q
||µ||2�||�||2

4

Y

(i,j)2�

✓
1� U tµ

t

j

�iq�i

�j+1

◆
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✓
1� U t��t
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+i�1q�µ
i

+j

◆
, (A.47)
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 N(N-1)/2 sums                                        
still left to perform 

[Hayashi,Kim,Nishinaka]
[Bao,Mitev,EP,Taki,Yagi]



Planar spectrum integrability
[EP 2013]
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[Mittev,EP 2014+15]

Every N=2 SCFT has a purely gluonic subsector with SU(2,1|2) 
symmetry that is integrable in the planar limit

  1

The main statement

1 Every N = 2 superconformal gauge theory has a purely gluonic
SU(2, 1|2) sector integrable in the planar limit

HN=2 (g) = HN=4 (g)

2 The Exact E↵ective coupling (relative finite renormalization of g)

g2 = f (g2) = g2 + g2 (ZN=2 � ZN=4)

we compute using localization
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Obtain any observable classically in the factor AdS5 ⇥ S1 of the
geometry by replacing g2 ! f (g2).

Elli Pomoni (DESY Theory) Integrability and Exact results in N = 2 May 12, 2016 8 / 39
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M4 C operator
2 0 minimal surface operator

M2 1 1 line operator
0 2 local operator, change 2d theory
4 0 change 4d theory

M5 3 1 domain wall
2 2 surface operator, change 2d theory

Table 6.1: Various types of defect on M5-branes. When M2 ends on M5, they share 2 di-
mensions so that M5 brane theory has 2-dimensional defect. When M5 and M5 intersects,
we have 4-dimensional defect.

configurations of M2-branes ending on M5-branes, or intersecting M5-branes.

Especially, there has been a lot of work regarding the surface operator. The quantum

Drinfeld-Sokolov reduction provides many construction of various types of W-algebras,

which does not belong to G “ A, D, E type. If we start with an affine Lie algebra of type ĝ,

we not only can get the Wpgq, but also other types. It is determined by embedding of slp2q

to g, which has one-to-one correspondence with the Levi subgroup of G. It is exactly the

subgroup which parametrizes the type of surface operator in a gauge theory with gauge

group G and therefore there must be a corresponding 2d CFT interpretation. It has been

studied in the papers [147, 148, 149, 150]. It would be interesting to extend these analyses

of non-local BPS operators to non-unitary gauge groups.

As we have discussed in the introduction, one way to under the 4d/2d correspondence

is through the M5-branes wrapped on M4 ˆ C. We have been exclusively focused on the

case where M4 is either R4 or S4. But what happens for other choices? Since we have

Z4d
TrG,CspM4q “ Z2d

T rG,M4spCq, (6.1)

we should find some appropriate relations for other choices as well. Not many examples

are known, but there has been some study for the following cases: When M4 “ S1
ˆ S3, the

4d partition function computes the superconformal index and the corresponding 2d side is

the topological field theory [151, 152, 153], where in certain limit reduces to the q-deformed

Yang-Mills theory [154]. When M4 “ R4
{Zp or S4

{Zp and G “ A1, it is conjectured to be

dual to para-Liouville theory [155]. The special case p “ 2 is (accidentally) the super-

Liouville theory [156, 157].

BPS observables from M-theory
11

In order to prove (2.21) one needs to show that the coefficients Z(k)(a,m; ϵ1, ϵ2) in (1.12) are
equal toF (k)

p

[

α3
α4

α2
α1

]

. This was done in [AGT] up order q11. A proof of this equality for all values
of k is now available [AFLT].

It furthermore follows easily from (2.21) that the partition function Z(m; τ ; ϵ1, ϵ2) defined in
(2.15) can be represented up to multiplication with an inessential, explicitly known function as

Z(m; τ ; ϵ1, ϵ2) ∝
〈

e2α4φ(∞)e2α3φ(1)e2α2φ(q)e2α1φ(0)
〉Liou

b
. (2.23)

The relations between certain N = 2 supersymmetric gauge theories and Liouville theory are
most clearly formulated in terms of the normalized expectation values of loop-observables

⟨⟨L ⟩⟩SS4 :=
⟨L ⟩SS4

⟨ 1 ⟩S
S4

. (2.24)

To this aim let us note that the counterparts of the loop observables within Liouville theory will
be certain nonlocal observables of the form

Lγ := tr

[

Pexp

(
∫

γ

Ay

)]

, (2.25)

where γ is a simple closed curve on C \ {0, q, 1}, and A is the flat connection

A :=
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2∂zφ 0

µebφ b
2∂zφ

)

dz +

(

b
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)
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Flatness of A follows from the equation of motion. Let us furthermore define normalized ex-
pectation values in Liouville theory schematically as

⟨⟨O ⟩⟩Lioub :=
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Liou
b , ⟨⟨ T ⟩⟩SS4 = ⟨⟨ Lγt ⟩⟩

Liou
b , (2.28)

where γs and γt are the simple closed curves encircling the pairs of points 0, q and 1, q on
C \ {0, q, 1}, respectively. A more detailed discussion can be found in [V:6] and [V:11].

2.3 Relation to topological quantum field theory

The localisation method is also applicable in the case when the manifold M4 has the form
M3 × S1 with supersymmetric boundary conditions for the fermions on the S1. In this
case the partition function coincides with a quantity called index [Ro, KMMR], a trace
tr(−1)F

∏

i µ
Ci
i e−β{Q,Q†} over the Hilbert space of the theory on M3 × R, with F being the
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M2-branes ending on M5-branes or intersecting M5-branes

Figure 1: Surface operators are supported on a surface S in R4 (shown on the left part of

the figure) and are localized at a point z in C (on the right). Similarly, line operators extend

along an (open or closed) curve C in R4 and wrap a 1-cycle γ in C.

surface operators and (iii) line operators bound to surface operators. In particular

we will illustrate how to compute the expectation value of these operators by using

Liouville CFT technology.

1.1 Surface, line and point operators

The six-dimensional perspective gives useful guidance in identifying and relating the

various gauge theory observables. The (2,0) theory of type A1 arises as the infrared

limit of the world-volume theory of a stack of two coincident M-theory five-branes

(together with a free 6d theory describing the center-of-mass motion). Each M5-brane

contains a two-form potential B with self-dual three-form field strength. An M2-brane

can attach to an M5-brane via an open boundary, that sweeps out a 2d surface S. It

is a source for B. The different ways of embedding S inside the 6d space-time C × R4

give rise to three different classes of gauge theory observables: (1) surface operators,

(2) line or loop operators, and (3) point or ‘vertex’ operators:

1. The surface operators are defined by considering an M2 boundary surface S to be

embedded1 in the 4d space-time R4 and localized as a point z on C. InN = 4 SYM

theory, the surface operators are identified [7] as operators that create a singular

vortex by allowing for a suitable singular boundary condition on the gauge and

scalar fields along S. For the most elementary class of surface operators, the

vortex singularity is parametrized by two real parameters α and η; here α is the

magnetic flux through the singular vortex and η is a suitable 2d theta-angle. Both

1Although in this paper we mainly take S = R2, in the topological version of the theory one might
consider more general space-time 4-manifolds M and embedded surfaces S ⊂ M , cf. [5, 6, 7, 8, 9].
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associated with the line operators that meet at the junction. In the simplest

case, when the boundary consists of three Wilson line operators in three adjacent

gauge group factors, the point operator represents a point charge transforming in

the corresponding trifundamental representation.

In this paper we will focus our attention on the surface and loop operators, and leave

the study of the point operators for future work.

1.2 Computation strategy

We now summarize the basic strategy of our calculation of the expectation value of

general Wilson-’t Hooft line operators on R4 and S4. Although the validity of the

actual computation does not rely on any unverified assumptions, it turns out that we

can gain some useful geometric intuition by first stating the following conjecture:

The expectation value in the N = 2 gauge theory of an elementary surface op-

erator, specified by its position z on C, is equal to the Liouville CFT cor-

relation function with the added insertion of a degenerate primary operator

Φ2,1(z) = e−(b/2)φ(z).

Although the complete proof of this conjecture goes beyond the scope of the present

paper, in Sections 2 and 3 we present several pieces of evidence that support this

proposed identification. For now, however, we will adopt it as a working hypothesis,

that will help us formulate a practical procedure for computing the expectation values

of Wilson-’t Hooft loops by means of the Liouville CFT correlation functions.

Let us state the conjecture a bit more precisely. As shown in [3], the Nekrasov

partition function on R4 is equal to a Liouville conformal block, i.e. a chiral half of the

full Liouville correlation function, while the partition function on S4 takes the form

of an integral of the absolute value squared of a conformal block. So it is natural

to identify the division of S4 into the northern and southern hemispheres with the

chiral decomposition of the Liouville CFT correlation functions into “left-moving” and

“right-moving” chiral halves. To make this somewhat more concrete, imagine choosing

hemispherical stereographic coordinates on S4 as indicated in fig 3. The upper and

lower halves of S4 are projected on two copies of R4. We parametrize each R4 ∼= C2 by

two complex coordinates (w1, w2) and (w̃1, w̃2), such that the north and south pole of

the S4 project to the origin of the corresponding R4 ∼= C2.

Now imagine adding a single elementary surface operator, inserted, say, on the lower

copy of R4. In the gauge theory set-up of [11] and [4], there are two natural locations

– 6 –
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Figure 7: The left Figure illustrates the Gaiotto curve C̃ of the conformal SU(2) quiver gauge theory
that is illustrated on the right. The Gaiotto curve is a four-punctured sphere with complex structure
parameter qU(2). The differential φ2 has second order poles at the four punctures. The SU(2) flavor
symmetries are encoded in the coefficients of the differential φ2 at these poles.

Figure 8: Illustrated on the left is an example of a D4/NS5 brane construction with O4± orientifold
branes realizing the Sp(1) quiver gauge theory illustrated on the right. The O4− branes (in yellow)
ensure that both flavor symmetry groups are SO(4), whereas the O4+ brane (in blue) ensures that
the gauge symmetry group is Sp(1). The brane embedding of the conformal SO(4) gauge theory is
found by swapping the inner and the outer D4 and O4 branes.

3.1.2 Symplectic/orthogonal gauge group

For symplectic or orthogonal gauge theories a similar description exists. Engineering

these gauge theories in type IIA requires orientifold O4-branes in addition to the D4 and

NS5-branes [41, 42, 43]. The orientifold branes are parallel to the D4 branes. They act on the

string background as a combination of a worldsheet parity Ω and a spacetime reflection in the

five dimensions transverse to it. The space-time reflection introduces a mirror brane for each

D4-brane, whereas the worldsheet parity breaks the space-time gauge group. More precisely,

there are two kinds of O4-branes, distinguished by the sign of Ω2 = ±1. The O4− brane

breaks the SU(N) gauge symmetry to SO(N), whereas the O4+ brane breaks it to Sp(N/2).

The brane construction that engineers the conformal Sp(1) gauge theory is schematically

14A detailed discussion of boundary conditions for this Hitchin system can be found in [46] and references

therein.
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The Lie algebra DN has a Z2 automorphism under which the invariants with exponent

2, . . . , 2N − 2 are even and the invariant of degree N is odd. On the level of the differentials

φk this translates into possible half-integer poles for the invariant ϕÑ . Going around such

a pole the differential ϕÑ has a Z2 monodromy. We will see explicitly in the examples. We

call the puncture corresponding to such a pole a half-puncture. The half-punctures introduce

Z2 twist-lines on the Gaiotto curve [48]. This is illustrated for the Sp(1) and SO(4) Gaiotto

curve in Figure 9 and Figure 10.

Figure 9: The left Figure illustrates the Gaiotto curve C of the conformal Sp(1) quiver gauge theory
that is illustrated on the right. The Sp(1) Gaiotto curve differs from the SU(2) Gaiotto curve by the
Z2 twist-line that runs parallel to the tube. We will discuss the precise relation between the Sp(1)
and the SU(2) Gaiotto curve in section 3.2.

Figure 10: The left Figure illustrates the Gaiotto curve C of the conformal SO(4) quiver gauge
theory that is illustrated on the right. The SO(4) Gaiotto curve differs from the Sp(1) Gaiotto curve
by a different configuration of Z2 twist-lines. In particular, the twist lines don’t run through the tube.

Lastly, let us make a few remarks on the worldvolume theory on a stack of M5-branes.

In the low energy limit this theory is thought to be described by a six-dimensional conformal

(2, 0) theory of type ADE. For the M-theory background (3.1) it is of type A, whereas for

the Z2-orbifolded M-theory background it is of type D. The (2, 0) theory has a “Coulomb

branch” parametrized by the vev’s of a subset of chiral operators whose conformal weights are

given by the exponents d of the Lie algebra g. These operators parametrize the configurations

of M5-branes in the M-theory background. In the Hitchin system they appear as the degree d

differentials. Boundary conditions at the punctures of the Gaiotto curve are expected to lift

to defect operators in the M5-brane worldvolume theory. We refer to [46] for a more detailed

description.

3.1.3 SO/Sp versus U geometries

Suppose that we have two models for the same physical gauge theory, who both can be
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