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Introduction

Superconformal symmetry plays a central role in modern

theoretical physics.

However, interacting SCFTs in D > 4 were discovered (and

appreciated) much later than for D ≤ 4.

⇒ YM coupling in 5D has dimensions of M−1/2 and no

Lagrangian descriptions of such SCFTs

⇒ Advent of 2nd superstring revolution in mid-90s acted as a

catalyst



Begin with the classification of superconformal algebras

[Nahm ’78]

In 5D ∃ only one superconformal algebra, F (4). This includes:

⇒ The bosonic subalgebra so(5, 2)× su(2)R

⇒ 8 Poincaré and 8 superconformal supercharges (N = 1)

Similarly for 6D ∃ only D(4, 1) ' osp(8|2) and D(4, 2) ' osp(8|4)

⇒ These are the 6D (1,0) and (2,0) SCFTs

N.B. : Notation comes from classification of Lie superalgebras

[Kac ’77]



Such theories allowed but do they actually exist?

Consider the following IIA system:

⇒ An O8 plane

⇒ Nf ≤ 8 D8-branes (2Nf on the covering space)

⇒ A D4-brane probe

⇒ k D0 branes

Close to the orientifold:

⇒ The D4 probe hosts an Sp(1) gauge symmetry

⇒ The Nf D8s host an SO(2Nf ) gauge symmetry

⇒ The D0s are instanton solitons in 5D gauge theory



⇒ At low energies one expects an N = 1 Sp(1) gauge theory

with Nf (massive) fundamental hypers plus instantons.

Instanton solitons carry a topological charge associated with

the conserved U(1)I current

J =
1

8π2
Tr ? (F ∧ F )

⇒ Global symmetry is SO(2Nf )×U(1)I

These gauge theories have Coulomb branch R/Z2 = R+ and

are not remormalisable.



The effective gauge coupling can be calculated to be

1

g2
eff

=
1

g2
0

+ 16φ−
Nf∑
i

|φ−mi| −
Nf∑
i

|φ+mi|

and φ > 0 is the Coulomb branch parameter.

�When Nf > 8 there are singularities in moduli space.

� But: when Nf < 8 one can take g0 →∞ and then φ→ 0.

⇒ This leads to the prediction of a 5D SCFT

� For Nf = 8 the metric on the Coulomb branch vanishes and

the 5D description is not meaningful.

⇒ The UV fixed point is a 6D SCFT



At the origin of the half line R+ there is a global symmetry

enhancement predicted from Type I’/Type I/E8 × E8 Heterotic

string theory: SO(2Nf )× U(1)I =⇒ ENf+1, where Nf = 0, ..., 7

and:

E8 ⊃ SO(14)×U(1)

E7 ⊃ SO(12)×U(1)

E6 ⊃ SO(10)×U(1)

E5 = Spin(10) ⊃ SO(8)×U(1)

E4 = SU(5) ⊃ SO(6)×U(1)

E3 = SU(3)× SU(2) ⊃ SO(4)×U(1)

E2 = SU(2)×U(1) ⊃ SO(2)×U(1)

E1 = SU(2) ⊃ U(1)



The 5D ENf+1 SCFTs can be coupled to a background U(1)I
vector multiplet and this global symmetry can be gauged. The

scalar component is the 5D gauge coupling m0 ∼ 1/g2
0.

⇒ Turning on m0 flow to 5D Sp(1) gauge theories with Nf

massive hypermultiplets.

One can also turn on relevant deformations mi for i = p, ..., Nf .

⇒ These flow to 5D Ep SCFTs

[Seiberg ’96]



The ENf+1 SCFTs can also be obtained from M-theory

compactifications on singular CYs and all interacting SCFTs

can be classified

[Morrison-Seiberg ’96, Intriligator-Morrison-Seiberg ’97]

These include Sp(N ), as well as SU(N ) generalisations, for

which one also needs to turn on 5D Chern–Simons terms.

⇒ Existence of these theories is surprising. Even then, they

are inherently strongly coupled⇒ ???

⇒ There should be a field-theoretic derivation of the symmetry

enhancement...



AdS6/CFT5

There is a natural candidate for a gravity dual in terms of the

near-horizon-limit of large-N D4s probing Nf < 8 D8s on the

O8 plane. [Ferrara-Kehagias-Partouche-Zaffaroni ’98]

This can be found to be a warped product of AdS6 × S4, with an

RR 6-form flux and isometries

SO(5, 2)× SU(2)R × SU(2)

This is a compactification of massive IIA SUGRA to the F (4)

gauged SUGRA in 6D. [Brandhuber-Oz ’99]



(More) Recent Developments

The study of 5D (and 6D) SCFTs was greatly boosted by the

introduction of nonperturbative techniques using:

⇒ The superconformal index

⇒ Supersymmetric localisation

⇒ Instanton operators

This allows the study of global symmetry structure purely from

field theory and also gives a handle on the BPS spectrum.



The 5D Superconformal Index

The superconformal index is an essential tool in the study of

SCFTs.

Consider such a theory in radial quantisation, such that

Q† = S and P† = K

The Hilbert space of the theory can be constructed using local

operators.

These fall into irreps of the superconformal algebra,

characterised by a higest weight state of the maximal compact

subalgebra.



In 5D we have that

F (4) ⊃ so(5)⊕ so(2)⊕ su(2)R

that is, each operator carries quantum numbers:

O|0〉 = |∆; l1, l2, k〉

⇒ ∆ is the conformal dimension

⇒ l1 ≥ l2 > 0 are Lorentz labels in the orthogonal basis

⇒ k is an R-symmetry label

The highest weights of the SCA are in 1-1 correspondence with

the superconformal primaries, which are annihilated by the S
and K generators.



The irrep can then be constructed by acting on the primary as∏
A,a

(QAa)
nA,a

∏
µ

P nµ
µ |∆; l1, l2; k〉hw

The ensuing unitary multiplets are called long and have

∆ > 3k + l1 + l2 + 4

For some values of the quantum numbers a subset of states

can become null giving rise to short multiplets.

This is equivalent to imposing∏
Q|∆; l1, l2; k〉hw = 0



The enumeration of shortening conditions and ensuing

classification of multiplets gives:

Multiplet Shortening Condition Conformal Dimension

A[l1, l2; k] Λ4
1Ψ = 0 ∆ = 3k + l1 + l2 + 4

A[l1, 0; k] Λ3
1Λ4

1Ψ = 0 ∆ = 3k + l1 + 4

A[0, 0; k] Λ1
1Λ2

1Λ3
1Λ4

1Ψ = 0 ∆ = 3k + 4

B[l1, 0; k] Λ3
1Ψ = 0 ∆ = 3k + l1 + 3

B[0, 0; k] Λ2
1Λ3

1Ψ = 0 ∆ = 3k + 3

D[0, 0; k] Λ1
1Ψ = 0 ∆ = 3k

where

Λa1 :=

a∑
b=1

Q1bλ
a
b



Long multiplets can split into short multiplets when

∆ + ε→ 3

2
K + d1 + d2 + 4

where we converted to the Dynkin basis

d1 = l1 − l2 , d2 = 2l2 , K = 2k

according to the recombination rules

L[∆ + ε; d1, d2;K]
ε→0−−→ A[d1, d2;K]⊕A[d1, d2 − 1;K + 1]

L[∆ + ε; d1, 0;K]
ε→0−−→ A[d1, 0;K]⊕ B[d1 − 1, 0;K + 2]

L[∆ + ε; 0, 0;K]
ε→0−−→ A[0, 0;K]⊕D[0, 0;K + 4]

This classification is complete and the multiplets have been

constructed explicitly. [Minwalla ’97, Buican-Hayling-CP ’16,

Córdova-Dumitrescu-Intriligator ’16]



We can finally define the superconformal index: Pick a

supercharge and calculate

δ := {Q14,S21} = ∆− 3

2
K − d1 − d2

then write

I(x, y, wa) = TrH(−1)F e−βδxK+d1+d2yd1
∏
a

wQa
a

This is a Witten-type index which:

⇒ Receives contributions only from δ = 0 states

⇒ x, y are a maximal set of fugacities, the exponents of which

commute amongst themselves, as well as with Q14 and S21



As a result:

⇒ Long multiplets do not contribute to the index

⇒ Short multiplets which recombine cancel out in the index

⇒ The index is invariant under continuous deformations that

preserve the susy

For theories with free limits this leads to simple evaluation.

This enumeration of states in a BPS subsector of the theory

can e.g. be cross-checked with AdS/CFT.

[Romelsberger ’07, Kinney-Maldacena-Minwalla-Raju ’07,

Bhattacharya-Bhattacharyya-Minwalla-Raju ’08]



However, for inherently strongly-coupled theories like our 5D

SCFTs, such an approach is intractable. E.g. not clear which of

the 5D multiplets appear in the dynamics.

There is another way of formulating the index using the

state-operator map.

Operators in the radially quantised SCFT on RD can be

conformally mapped to states in the theory on R× SD−1.

The index of the SCFT is then mapped to a Euclidean path

integral with twisted boundary conditions for the fields.



Upon compactification of the Euclidean time direction

I =

∫
S1
β×S4

DΨe−SE [Ψ]

where the fermions satisfy periodic boundary conditions.

The fields satisfy

Ψ(τ + β) = e−(d1+d2+ 3
2
K)β−(d1+d2K)γ1−d1γ2−iQamaΨ(τ)

with

x = e−γ1 , y = e−γ2 , wa = e−ima

Then one can restore the usual boundary conditions

Ψ(τ + β) = Ψ(τ) upon replacing

∂τ → ∂τ +
β − γ1 − γ2

β
d1 +

β − γ1

β
d2 −

3
2β − γ1

β
K − ima

β
Qa



Supersymmetric Localisation

Evaluating this path integral exactly is usually not possible.

But for certain supersymmetric theories this can be done using

the method of supersymmetric localisation [Pestun et al. ’16]

Let Q be a fermionic symmetry of the theory, squaring to a

bosonic symmetry and leaving the action invariant, QS = 0.

Consider a functional V , such that Q2V = 0. Deforming the

action by the Q-exact term QV is a total derivative and does

not change the integral

d

dt

∫
eS+t QV =

∫
QV eS+t QV =

∫
Q
(
V eS+t QV

)
= 0



When t→∞ the one-loop approximation at the critical set of

saddle-point solutions QV = 0 becomes exact.

⇒ the PI localises

The path integral reduces to evaluating S at the critical points

and the 1-loop determinant! [Witten ’88, Witten ’91, Pestun ’07]

By identifying an appropriate Q, the localisation technique can

be applied to various backgrounds and any dimension.

Made easier by an algorithm which constructs rigid susy

theories on curved backgrounds from supergravity multiplets.

[Festuccia-Seiberg ’11]



Index + Localisation

Back to the 5D SCFTs, there is no action to work with...

So here one uses the properties of the index to make an

educated guess about which quantity to calculate.

The index is independent of all continuous deformations. One

such deformation is the 5D gauge coupling.

⇒ One should be able to calculate the PI in the weakly-coupled

5D gauge theory, while keeping track of all nonperturbative

effects, i.e. instantons. [Kim2-Lee ’12]



Shut up and calculate:

� Set up the index as a PI on S4 × S1

� Include global fugacities for SO(2Nf ) and U(1)I

� Include gauge fugacities

� Identify the fermionic symmetry as Q+ S
� Deform the 5D Lagrangian by tδε((δελ)†λ)

� Find critical points; (anti)instantons localise on the (N) S pole

� Calculate S on the critical points

� Calculate one-loop determinants

� Near the poles the space is locally R4 × S1. The instanton

contributions become Nekrasov partition functions



After a long calculation, the result is remarkably simple. For the
Sp(N) gauge theory with Nf flavours:

I(x, y,ma, q) =

∫
[dα]PE[fvec(x, y, e

iα) + fmatt(x, y, e
im, eiα)]×

× |ZNek((x, y, eim, eiα, q))|2

where

fvec = − x(y + 1/y)

(1− xy)(1− x/y)

∑
R

e−iR·α

fmatt =
x

(1− xy)(1− x/y)

∑
R,R′

χR(eim)χR′(eiα)

and

PE[g(t)] := exp
[ ∞∑
n=1

1

n
g(tn)

]



The Nekrasov partition functions admit an expansion

ZNek =

∞∑
k=1

qkZ
(k)
Nek

and there exist closed-form expressions for Z(k)
Nek.

The existence of these closed-form expressions suggests the

guess was legitimate.

Moreover, for special values of N and Nf one can expand the

answer in an x power series to get (say for N = 1 and Nf = 3):

I = 1 + (1 + χ
SO(6)
15 + qχ

SO(6)
4 + q−1χ

SO(6)

4̄
)x2 +O(x3)

= 1 + χ
SU(5)
24 x2 +O(x3)



What we used here is that

SO(6)×U(1)I ⊂ SU(5) = E4

10 + 150 + 41 + 4̄−1 = 24

This answer organises itself into characters of the E4 global

symmetry!

⇒ The index calculation sees the UV global symmetry

enhancement

This phenomenon holds for all values of N and Nf that can be

calculated (but this is possible up to a limited order in x)

[Kim2-Lee ’12, Hwang-Kim2-Park ’14]



One can argue for the global symmetry enhancement at all

orders for Sp(1). For generic Nf < 8 one gets

I = 1 + χ
ENf+1

adj x2 +O(x3)

⇒ This contribution could only come from the supermultiplet of

conserved currents [Bashkirov ’12]

The global-symmetry enhancement can be seen in a few more

cases. [Bergman-Rodrı́guez Gómez-Zafrir ’13,

Bao-Mitev-Pomoni-Taki-Yagi ’13, Hayashi-Kim-Nishinaka ’13,

Taki ’13]



Worth mentioning:

� The index of 5D n-node quiver SCFTs can be calculated and

seen to agree with the large-N gravity calculation on

AdS6 × S4/Zn [Bergman-Rodrı́guez Gómez-Zafrir ’13]

� ZNek can be independently shown to exhibit the global

symmetry enhancement using “fibre-base duality”

[Mitev-Pomoni-Taki-Yagi ’14]



� Susy 5D theories on S5 [Hosomochi-Seong-Terashima ’12,

Källén-Zabzine ’12, Källén-Qiu-Zabzine ’12]

� The 5D free energy matches the entanglement entropy of

AdS6 duals and reproduces the expected N5/2 scaling

[Jafferis-Pufu ’12]

� One also can use this to evaluate the vev of Wilson loops for

SCFTs on S5 [Assel-Estes-Yamazaki ’12]

� The exact evaluation of the 5D N = 2 SYM path integral on

S5 using localisation is related to the superconformal index of

the 6D (2,0) theory [Kim2 ’12, Kim3 ’12]



Instanton Operators

We have seen indirect ways for symmetry enhancement using

index calculations.

Can we find a simpler way? ⇒ Draw upon our knowledge of 3D

theories where local monopole operators play important role.

⇒ Global symmetry and susy enhancement in the IR

[Borokhov-Kapustin-Wu ’02, Gaiotto-Witten ’08, ABJM ’08, ...]

Q: Is there an analogue in 5D?

A: We can construct local instanton operators

[Lambert-CP-Schmidt Sommerfeld ’14]



We have already seen that 5D SYM has conserved current

J =
1

8π2
Tr ? (F ∧ F )

Charged BPS-particle solutions: instanton solitons

Both global and Lorentz symmetry enhancement is associated

with instanton charge.

Preliminary: An instanton operator is a local operator which

creates instanton solitons out of vacuum

The OPE of this current with In(0) is given by

Jµ(x)In(0) ∼ 3n

8π2

xµ

|x|5
In(0) + · · ·



More formally: Instanton operators, In(x), modify boundary
conditions for gauge field in Euclidean path integral:

〈In(x)O01(x1) . . .O0k(xk)〉 =

=

∫
1

8π2 Tr
∮
S4
x
F∧F=n

[DXDADψ] O01(x1) . . .O0k(xk)e−SE

Fields need to satisfy classical eom near insertion point in R5

DµFµν = 0 , D[µFνλ] = 0

but with non-vanishing

I =
1

8π2
Tr

∮
S4

F ∧ F



In spherical coordinates a simple solution is given by taking

Ar = Fri = 0 and the angular components satisfying

F = ± ?S4 F

A solution for SU(2) theory was found long ago by Yang, as

static SO(5)-symmetric particle in 6D⇒ Yang monopole ’78

A DBI generalisation for SU(N) later given by

[Constable-Myers-Tafjord ’01] in context of D1⊥D5 intersections

Alternatively: Instanton operators defined by the condition that

the gauge field has a Yang monopole singularity at the insertion

point



Instantons on S4 can be straightforwardly constructed by

stereographic projection from R4.

The solutions exhibit some amusing properties:

F ∧ F =
8ρ4

∑3
i=1 T

2
i(

1 + ρ2 + (1− ρ2) cos θ1
)4√γ d4θ

with [Ti, Tj ] = 2iεijkTk an N ×N representation of su(2)

When ρ = 1 this reduces to the SO(5)-symmetric

F ∧ F =
1

2

3∑
i=1

T 2
i

√
γ d4θ



� Instanton operators are 1
2 -BPS for ρ = 0 (at the poles of the

S4) but generically not BPS [Bergman-Rodrı́guez Gómez ’16]

� In N = 1 theories we can also add Chern-Simons terms

SCS =
k

24π2
Tr

∫
(F ∧F ∧A+

i

2
F ∧A∧A∧A− 1

10
A∧A∧A∧A∧A)

⇒ In the presence of such a term the instanton operators are

not always gauge invariant



Applications of Instanton Operators

Use them to construct the broken global symmetry currents in

5D IR theories with N = 1. [Tachikawa ’15]

Consider the multiplet of conserved currents in the 5D ENf+1

SCFT. This is the linear multiplet D[0, 0; 2]. It contains the

following conformal primary states

µa(ij) , ψaiα , Jaµ , Ma

with scaling dimensions 3, 3.5, 4, 4 and where i, j = 1, 2 are

SU(2)R-symmetry indices, a is an adjoint flavour index and α is

a spinor index of SO(5).



The 5D gauge theory in the IR is obtained by turning on a mass

deformation in the UV through a term δL = haM
a.

This leads to a partial breaking of the flavour current

∂µJaµ ∝ fabchbM c

The supermultiplet of broken currents can be identified as

µ+
(ij) , ψ+

iα , J+
µ



⇒ Take the Sp(1) gauge theory with no matter.

IR: in the presence of an instanton operator there are 8 fermion

zero modes, which reconstruct the broken-current multiplet J+
µ .

When combined with the IR instanton current

J0
µ ∝ εµνκλρTrF νκF λρ

(under which J+
µ carries charge +1) these form the E1 = SU(2)

in the UV.



⇒ Consider the theory with Nf flavours.

The fermion zero modes additionally transform in spinor reps of

SO(2Nf ).

When combined with the conserved SO(2Nf ) flavour currents

and the instanton current they again form the ENf+1 conserved

currents in the UV.



⇒ For the 5D IR theories with N = 2 the fermion zero modes

associated with the instanton operator lead to a 28-dim

multiplet: KK modes of 6D E-M supermultiplet

⇒ This indicates that the UV theory is a 6D theory

[Tachikawa ’15]

This method can be extended to show the UV symmetry

enhancement for a variety of 5D SCFTs

[Tachikawa ’15, Yonekura ’15, Zaffrir ’15 ]



Other developments

� The structure of deformations in 5D SCFTs has been studied:

⇒ No marginal deformations.

⇒ The only relevant deformations are the mass deformations

residing in the linear multiplet

[Córdova-Dumitrescu-Intriligator ’16]

� Duality walls separating different IR fixed-point theories

originating from the same UV theory constructed

[Gaiotto-Kim ’15]



� Use Inst. Op.s to probe Higgs branch of N = 1 SU(2) theory

at infinite coupling [Cremonesi-Ferlito-Hanany-Mekareeya ’15]

⇒ Employs Hilbert series and leads to modification of chiral

operator relations

� Interesting relation between 5D index and BPS spectrum on

the Coulomb branch found [CP-Pini-Rodrı́guez Gómez ’16]

� Body of work using topological strings to calculate the 5D

index [Iqbal-Vafa ’14]



Summary

� Discussed the existence of 5D SCFTs

� Described superconformal index

� Related this to supersymmetric localisation

� Introduces instanton operators



Open questions

� Proof of UV index calculation from the IR theory

� Spectroscopy of 5D (and 6D) SCFTs

� Find additional applications of instanton operators

� Expand on the connection between the 5D index and the BPS

spectrum on the Coulomb branch [Córdova-Shao ’15,

Córdova-Gaiotto-Shao ’16]


