
Holographic dictionary for non-relativistic theories

Ioannis Papadimitriou

SISSA and INFN - Sezione di Trieste, Italy

Review talk at the Heraklion Workshop on Theoretical Physics

Crete Center for Theoretical Physics, Heraklion, 5-10 September 2016

9 September 2016



Non-relativistic holography

An important tool to study strongly interacting non-relativistic systems, such as
quantum phase transitions.

Useful playground for better understanding holography in non-AdS backgrounds.

It may also provide insights into emergent symmetries (e.g Poincaré symmetry
or supersymmetry) in non-relativistic systems.
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Bottom up holography

symmetries sources
gauging

holographic dual
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Non-relativistic vacuum symmetries
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Galilean symmetry

A non-relativistic field theory in d spatial dimensions with Galilean symmetry is
invariant under the coordinate transformations

H : t→ t′ = t+ t0

Pa : xa → x′a = xa + xa0

Lab : xa → x′a + Labx
b, Lab ∈ SO(d)

Ca : xa → x′a = xa − vat

This algebra is a contraction of the of the Poincaré group in d+ 1 dimensions

It admits a central extension:

[Ca, P b] = Mδab

where M is the non-relativistic mass or the particle number
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Lifshitz symmetry

A homogeneous and isotropic field theory with Lifshitz symmetry is invariant under
the transformations

H : t→ t′ = t+ t0

Pa : xa → x′a = xa + xa0

Lab : xa → x′a + Labx
b, Lab ∈ SO(d)

Dz : xa → x′a = λxa, t→ t′ = λzt

This algebra is not a contraction or a subgroup of the conformal group and it does
not admit Galilean boosts or a central extension

It can be generalized to theories which are spatially homogeneous (Pa) but not
isotropic (��L

a
b ) by allowing for different dynamical exponents in each spatial

direction
Dza : xa → x′a = λzaxa, t→ t′ = t
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Schrödinger symmetry

Another non-relativistic and scale invariant symmetry algebra is the Schrödinger
algebra Schd(z), which can be realized in two ways, either in d+ 2 dimensions,
with d spatial (xa) and two lightcone (x±) coordinates, or in d+ 1 dimensions, with
d spatial (xa) and a time (t) coordinate.

In d+ 2 dimensions, besides the spatial translations Pa and spatial rotations Lab ,
it consists of the transformations

H : x+ → x′+ = x+ + x+
0

M : x− → x′− = x− + x−0

Ca : xa → x′a = xa − vax+, x− → x′− = x− − vaxa

Dz : xa → x′a = λxa, x+ → x′+ = λzx+, x− → x′− = λ2−zx−

For any z this is a subalgebra of the conformal algebra so(d+ 2, 2)

For z = 2 it can be extended to include spatial conformal transformation:

K : xa → x′a =
xa

1 + kx+
, x+ → x′+ =

x+

1 + kx+
, x− → x′− =

x− + kx · x/2
1 + kx+

where x · x = 2x+x− + xaxa
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In d+ 1 dimensions the Shrödinger algebra is realized as the centrally extended
Galilean algebra generated by H,Pa, Lab , C

a,M , together with the Lifshitz
Dilations Dz and the special conformal symmetry K when z = 2.

This can be related to the realization in d+ 2 dimensions by identifying x+ with
time t and the lightcone momentum along x− with the mass M .

In non-relativistic theories the mass M is discrete and so x− must be
compactified, leading to problems related to DLCQ.

An very similar situation arises with the Virasoro ⊕ û(1) algebra obtained from
Compère-Song-Strominger boundary conditions [CSS 2013] imposed on either 3D
gravity with Λ < 0, or on the 2D dilaton gravity theory obtained by circle reduction
[M. Cvetič, I. P. 2016].

Null reductions do not always give the correct holographic dictionary in lower
dimensions!
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Gravity duals
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Lifshitz backgrounds

The Lifshitz algebra can be realized as the algebra of isometries of the metric

ds2d+2 =
dr2

r2
−
dt2

r2z
+
dxadxa

r2

where Lifshitz dilations act as

Dz : r → r′ = λr, t→ t′ = λzt, xa → x′a = λxa

The null energy condition requires z ≥ 1

This metric does not have any curvature singularities, but it is geodesically
incomplete and infalling observers experience large tidal forces as r →∞.

Moreover, the initial value problem seems rather problematic in such spacetimes
[Copsey, Mann 2010; Keeler, Knodel, Liu 2010, 2014; Horowitz, Way 2011; Harrison, Kachru,
Wang 2012; Knodel, Liu 2013]
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Theories admitting Lifshitz vacua

The simplest theory that admits Lifshitz backgrounds is [M. Taylor 2008]

S =
1

2κ2

ˆ
dd+2x

√
−g
(
R+

d(d+ 1)

`2
−

1

4
F 2 −

1

2
m2A2

)
where

m2 =
d2(d+ 1)z

z2 + z(d− 1) + d2
, `2 =

z2 + z(d− 1) + d2

d(d+ 1)

The metric and gauge field take the form

ds2 = dr2 − e2zr/`dt2 + e2r/`dxadxa, A =

√
2(z − 1)

z
ezr/`dt

This model is equivalent to that considered in [Kachru, Liu, Mulligan 2008] involving a
massless gauge field and a d-form, coupled through a Chern-Simons term.

Lifshitz backgrounds and Lifshitz black holes also arise as solutions of various,
generically non-unitary, higher derivative theories.
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Lifshitz backgrounds with running scalars

Backgrounds with a Lifshitz metric can also be supported by a massless gauge
field in the presence of a running scalar, which breaks the scale invariance.

In particular, the model [M. Taylor 2008]

S =
1

2κ2

ˆ
dd+2x

√
−g
(
R− 2Λ−

1

2
(∂φ)2 −

1

4
eλφF 2

)
Λ = −

1

2
(d+ z)(d+ z − 1), λ2 =

2d

z − 1

admits the solution

ds2 = dr2 − e2zrdt2 + e2rdxadxa, eλφ = µe−2dr

Frt =
√

2(z − 1)(d+ z)/µ e(d+z)r

The limit z → 1 is not smooth since λ diverges in this limit.
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Hyperscaling violating Lifshitz backgrounds

A more general class of backgrounds with the same isometries as the running
dilaton Lifshitz solutions are the hyperscaling violating Lifshitz (hvLf) backgrounds
introduced in [Goutereaux, Kiritsis 2011, 2012; Huijse, Sachdev, Swingle 2011].

The metric takes the form

ds2d+2 = `2u−2(d−θ)/d
(
du2 − u−2(z−1)dt2 + dxadxa

)
with dynamical exponent z 6= 1 and hyperscaling violation exponent θ 6= 0

The scaling transformation

xa → λxa , t→ λzt , u→ λu

is a conformal isometry of this metric since

ds2d+2 → λ2θ/dds2d+2
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The null energy condition requires

(d− θ)(d(z − 1)− θ) ≥ 0, (d− θ + z)(z − 1) ≥ 0

whose general solution is [Chemissany, IP 2014]

I z ≤ 0 θ ≥ d
II 0 < z ≤ 1 θ ≥ d+ z

IIIa
1 ≤ z ≤ 2

θ ≤ d(z − 1)
IIIb d ≤ θ ≤ d+ z
IVa

2 < z ≤ 2d
d−1

θ ≤ d
IVb d(z − 1) ≤ θ ≤ d+ z

V z > 2d
d−1

θ ≤ d

For θ ≥ d+ z (cases I and II) the on-shell action does not diverge and hence there
is no well defined asymptotic expansion/holographic dictionary (cf. D6 branes).
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Theories admitting hvLf backgrounds

Like Lifshitz backgrounds with a running dilaton, hvLf backgrounds generically are
supported by matter fields that include such a dilaton field.

This allows us to go to the dual frame where the metric is asymptotically Lifshitz,
but may not be in the Einstein frame.

In the dual frame, hvLf backgrounds are Lifshitz solutions of the action

Sξ =
1

2κ2

ˆ
M
dd+2x

√
−gedξφ

(
R[g]− αξ(∂φ)2 − Zξ(φ)F 2 −Wξ(φ)B2 − Vξ(φ)

)
with a running dilaton and hypesrscaling violating exponent

θ = −dµξ

In this action Bµ = Aµ − ∂µω, where ω is a Stückelberg scalar transforming
non-trivially under U(1) gauge transformations, i.e.

Aµ → Aµ + ∂µΛ, ω → ω + Λ

such that Bµ is gauge invariant.
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This model admits Lifshitz solutions of the form

ds2 = dr2 − e2zrdt2 + e2rd~x2, A =
Q
εZo

eεrdt, φ = µr, ω = const.

provided the functions and parameters in the Lagrangian satisfy the relations

Vξ = Voe
2(ρ+ξ)φ, Zξ = Zoe

−2(ξ+ν)φ, Wξ = Woe
2σφ

as well as

ρ = −ξ, ν = −ξ +
ε− z
µ

, σ =
z − ε
µ

,

ε =
(αξ + d2ξ2)µ2 − dµξ + z(z − 1)

z − 1
, Q2 =

1

2
Zo(z − 1)ε,

Wo = 2Zoε(d+ z + dµξ − ε), Vo = −d(1 + µξ)(d+ z + dµξ)− (z − 1)ε

In the Einstein frame these solutions are hyperscaling violating Lifshitz
backgrounds with θ = −dµξ.

These solutions are characterized by three independent parameters, z, θ and µ,
with µ related to the beta function of a scalar operator in the dual theory.
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Schrödinger backgrounds

The Schrödinger algebra Schd(z) can be realized geometrically as the isometry
algebra of the metric [K. Balasubramanian, J. McGreevy 2008; D. Son 2008]

ds2d+3 = −
b2(dx+)2

r2z
+

1

r2

(
dr2 + dxadxa + 2dx+dx−

)
Dilatations act as

Dz : r → λr, xa → λxa, x+ → λzx+, x− → λ2−zx−

The parameter b can be removed by a rescaling of x±, but it is useful to keep this
parameter explicitly. For b = 0 this metric the Poincaré metric on AdSd+3, while
b 6= 0 corresponds to a (non-relativistic) deformation of the dual relativistic CFT.
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Theories admitting Schrödinger backgrounds
(z 6= 0)

For z 6= 0, Schrödinger backgrounds are solutions of the action [D. Son 2008]

S =
1

2κ2

ˆ
dd+2x

√
−g
(
R+ d(d+ 1)−

1

4
F 2 −

1

2
z(d+ z − 1)A2

)
where the massive gauge field necessary to support the geometry takes the form

A =

√
2(z − 1)

z

b

rz
dx+

For specific values of z Schrödinger backgrounds can be embedded in string
theory [Maldacena, Martelli, Tachikawa 2008; Herzog, Rangamani, Ross 2008; Kraus,
Perlmutter 2011] and can be realized as solutions of topologically massive gravity in
three dimensions [Guica, Skenderis, Taylor, van Rees 2010].
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Theories admitting Schrödinger backgrounds
(z = 0)

Schrödinger backgrounds with z = 0 cannot be realized as solutions of the above
massive vector model since the vector field becomes singular.

A minimal action admitting Schrödinger solutions with z = 0 is

S =
1

2κ2

ˆ
dd+2x

√
−g
(
R+ d(d+ 1)−

1

2
(∂φ)2

)
where the scalar field takes the form φ =

√
d− 1 bx+.

A slightly more general model which can be embedded in string theory and
M-theory is [Donos, Gauntlett 2010; Cassani, Faedo 2011; Halmagyi, Petrini, Zaffaroni
2011; Petrini, Zaffaroni 2012]

S =
1

2κ2

ˆ
dd+2x

√
−g
(
R+ d(d+ 1)−

1

2
(∂φ)2 −

1

2
e2φ(∂χ)2

)
The holographic dictionary for general AlAdS solutions of this model (which
include z = 0 Schrödinger solutions) was constructed in [IP 2011].
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z = 2 Lifshitz from null reduction of Schd(0)

Lifshitz backgrounds with z = 2 can be obtained by a null reduction of z = 0
Schrödinger backgrounds [K. Balasubramanian, K. Narayan 2010; R. C. Costa, M. Taylor
2010; K. Narayan 2011].

Reducing over the null direction x+ leads to a theory with a massive vector field
and the z = 2 Lifshitz background

ds2d+2 =
1

r2

(
dr2 + dxadxa −

(dx−)2

b2r2

)
, A =

1

b2r2
dx−

The fact that the reduction is null is problematic for various reasons. The most
important in the context of holography is that the lower dimensional theory is not a
consistent truncation, since an additional constraint must be imposed in order to
solve the higher dimensional equations [R. C. Costa, M. Taylor 2010].

The presence of a second class constraint in the lower dimensional theory
seems to be a generic property of null reductions and has significant implications
for the relation of the holographic dictionaries before and after the reduction.
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What is a holographic dictionary?

Identification of physical observables on the two sides of a holographic duality

Local observables O(x) and their sources J(x) comprise a symplectic manifold
(cf. Local Renormalization Group [H. Osborn 1994]) with symplectic form

Ω ∼
ˆ
ddx δO(x) ∧ δJ(x)

QFT observables require renormalization.

(Renormalized) observables obey general Ward identities, which may exhibit
quantum anomalies.

symplectic space of
bulk asymptotic solutions ≡ symplectic space of

renormalized local observables
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The space of asymptotic solutions
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Non-linear asymptotic solutions

In order to have a familiar example as a reference point let us consider EH gravity:

S = −
1

2κ2

ˆ
M
dd+1x

√
g(R− 2Λ)−

1

2κ2

ˆ
∂M

ddx
√
γ2K

Any solution can (at least locally) be written in the Fefferman-Graham gauge

ds2 = dr2 + γij(r, x)dxidxj

and takes asymptotically as r → +∞ the form

γij(r, x) = e2r
(
g(0)ij(x)+e−2rg(2)ij(x)+· · ·+e−dr

(
−2rh(d)ij(x) + g(d)ij(x)

)
+· · ·

)
The arbitrary functions g(0)ij(x) and g(d)ij(x) satisfy the constraints

D(0)
iTij(x) = 0, T ii (x) = A[g(0)]

where Tij ∼ g(d)ij , and A[g(0)] is the conformal anomaly.
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Symplectic structure and the holographic dictionary

The space of asymptotic solutions is parameterized by g(0)ij(x) and g(d)ij(x).

This space is equipped with the symplectic form

Ω =

ˆ
ddx δπ(d)

ij ∧ δg(0)ij

where π(d)
ij ≡ √g(0) T ij ∼

√
g(0) g

ij
(d)

This symplectic form leads to the Poisson bracket{
π(d)

ij(x), g(0)kl(x
′)
}

= δi(kδ
j
l)
δ(d)(x− x′)

which is allows us to determine the asymptotic symmetry algebra.

The symplectic structure of the space of asymptotic solutions provides a
definition of the holographic dictionary.

This may not be unique: boundary conditions (equivalently holographic
dictionaries) classified by symplectic transformations.
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Generalized PBH transformations

The parameterization of the space of asymptotic solutions in terms of g(0)ij(x)

and π(d)
ij(x) is gauge redundant.

There are bulk diffeomorphisms (generally bulk local transformations) which
preserve the FG gauge, but transform g(0)ij(x) and g(d)ij(x).

Such Penrose-Brown-Henneaux transformations correspond to the gauging of the
global symmetries in the dual theory in the presence of arbitrary sources and lead
to the Ward identities.

For AdS gravity they comprise of bulk diffeomorphisms δξgµν = 2∇(µξν) with

ξr = σ(x), ξi = ξio(x) + ∂jσ(x)

ˆ ∞
r

dr′γji(r′, x)

where σ(x) and ξio(x) are arbitrary.
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Under PBH diffeomorphisms the g(0)ij(x) and π(d)
ij(x) transform as

δξg(0)ij = D(0)iξoj +D(0)jξoi + 2σg(0)ij

δξπ(d)
ij = D(0)k

(
π(d)

ijξko − π(d)
ikD(0)kξ

j
o − π(d)

jkD(0)kξ
i
o

)
+ 2σ(x)π(d)

ij

+
δ

δg(0)ij

ˆ
ddx

√
g(0)Aσ

These transformations are generated through the Poisson bracket by a constraint
function on the space of asymptotic solutions

C[ξo, σ] =

ˆ
ddx

√
g(0)

(
ξio(x)D(0)

jTij + σ(x)
(
T ii −A

) )
{
C[ξo, σ], g(0)ij(x)

}
= δξg(0)ij(x),

{
C[ξo, σ], π(d)

ij(x)
}

= δξπ(d)
ij(x)

The Poisson brackets of the constraints lead to the asymptotic symmetry
algebra once boundary conditions have been chosen.
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Equivalence classes and boundary counterterms

There are two ways to remove the gauge redundancy of the space of asymptotic
solutions: either by solving the constraints explicitly or by considering instead the
equivalence classes [g(0)] and [π(d)] under PBH transformations.

The local boundary counterterms are required in order to formulate the variational
problem in terms of these equivalence classes [I.P., Skenderis 2005].

A generic variation of the renormalized action takes the form

δSren =

ˆ
ddx

√
g(0) π(d)

ij(x)δg(0)ij(x)

For variations that coincide with PBH transformations this expression is
proportional to the conformal anomaly and, hence, provided the conformal
anomaly is numerically zero, Sren[g(0)] is a class function.

This imposes more stringent conditions on the boundary counterterms than the
simple requirement of finiteness (e.g. they should preserve the constraints).

Formulating the variational problem in terms of equivalence classes also leads to
well defined conserved charges and thermodynamics [I.P., Skenderis 2005; O. S. An,
Cvetič, I.P 2016; I.P., Skenderis to appear]
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Algorithmic construction of the
holographic dictionary
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Generalized holography

Any holographic duality can be understood in terms of the space of asymptotic
solutions of the bulk theory and has a qualitatively similar structure to AdS gravity.

Contrary to AdS gravity, in general the space of asymptotic solutions, including the
symplectic structure, the constraints and the boundary counterterms, must
be constructed from scratch.

There is an algorithmic procedure that allows one to do this for any bulk theory
and any boundary conditions.
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Step I: Radial Hamiltonian formulation

We start by decomposing all tensor fields in radial and transverse components as

ds2 = (N2 +NiN
i)dr2 + 2Nidrdx

i + γijdx
idxj

where N , Ni and γij are induced fields on the radial slice Σr ∼= ∂M.

This decomposition need only hold in an open neighborhood of the boundary ∂M
– no requirement of global hyperbolicity!

Inserting this decomposition in the action leads to the radial Lagrangian

L = −
1

2κ2

ˆ
Σr

ddx
√
γN

(
R[γ]− 2Λ +K2 −Ki

jK
j
i

)
and the canonical momentum

πij =
δL

δγ̇ij
= −

1

2κ2

√
γ(Kγij −Kij)
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The Hamiltonian takes the form

H =

ˆ
Σr

ddxπij γ̇ij − L =

ˆ
Σr

ddx
(
NH+NiHi

)
where

H = 2κ2γ−
1
2

(
πijπ

j
i −

1

d− 1
π2

)
+

1

2κ2

√
γ (R[γ]− 2Λ)

Hi = −2Djπ
ij

Hamilton’s equations for N and Ni lead to the first class constraints

H = 0, Hi = 0

The symplectic form

Ω =

ˆ
Σr

ddx δπij ∧ δγij

is independent of the radial coordinate and leads to the Poisson bracket{
γij(r, x), πkl(r, x′)

}
= δ

(k
i δ

l)
j δ

(d)(x− x′)
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The constraints generate bulk diffeomorphisms through the Poisson bracket:

C[ξ] =

ˆ
Σr

ddx
(
ξH+ ξiHi

)
,

{C[ξ], γij} = δξ̃γij ,
{
C[ξ], πij

}
= δξ̃π

ij , ξ̃µ =
(
ξ/N, ξi − ξN i/N

)
The algebra of constraints closes, but with field dependent parameter:{

C[ξ], C[ξ′]
}

= C[ξ′′]

ξ′′µ =
(
ξi∂iξ

′ − ξ′i∂iξ, ξi∂iξ
j − ξ′i∂iξj − (ξDjξ′ − ξ′Djξ)

)
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Isomorphism of symplectic spaces

A sequence of symplectomorphisms:

phase space
on radial slice

∼=
symplectic space of
renormalized local
observables

∼=
symplectic space of
renormalized local
QFT observables

The symplectic map between phase space and the space of asymptotic solutions
is not diagonal (e.g. both γij and πij asymptotically proportional to g(0), with
g(d) entering in subleading terms)

Holographic renormalization: canonical transformation that diagonalizes this
symplectic map [I.P. 2010]

I. Papadimitriou Holographic dictionary for non-relativistic theories 35 / 77



Step II: Recursive solution of the constraints

The canonical transformation that diagonalizes the symplectic map can be
obtained by solving (suitable) Hamilton-Jacobi equations.

In most cases (see exceptions below) the relevant HJ equations are obtained by
writing the canonical momenta as gradients

πij =
δS
δγij

of Hamilton’s principal function S[γ] and inserting these in the constraints:

2κ2γ−
1
2

(
γikγjl −

1

d− 1
γijγkl

)
1
√
γ

δS
δγij

1
√
γ

δS
δγij

= −
1

2κ2

√
γ (R[γ]− 2Λ)

Dj

(
1
√
γ

δS
δγij

)
= 0
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Different types of solutions of the HJ equations

Exact solutions using an ansatz lead to RG flows.

Derivative expansion around RG flows that correspond to a VEV determines the
effective action.

Perturbative solution for γij = γBij + hij computes correlation functions.

Covariant asymptotic solution determines the boundary counterterms and the
asymptotic expansions of the fields.
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Asymptotic solutions of the HJ equations

In simple cases the general asymptotic solution of the HJ equations can be
obtained by making a local ansatz for S[γ], e.g. in the form of a covariant
derivative expansion [de Boer, Verlinde, Verlinde 1999; Martelli, Mück 2002; Elvang,
Hadjiantonis 2016].

However, such asymptotic solutions can be obtained through a recursive algorithm
in the form of a covariant expansion in eigenfunctions of suitable functional
operators [I.P., Skenderis 2004; I.P. 2011; Chemissany, I.P. 2014].

These recursive algorithms do not require any ansatz, which is particularly useful
when classifying all possible terms that can appear is not straightforward
(especially in non-relativistic theories).
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Recursive solution of the HJ equations

For pure AdS gravity a solution is sought in the form

S = S(0) + S(2) + · · ·+ log e−2rS̃(d)︸ ︷︷ ︸
−Sct

+S(d) + · · ·

where

δDS(2n) = (d− 2n)S(2n), δDS̃(d) = 0, δDS(d) = −2S̃(d)

and δD is the dilatation operator [I.P., Skenderis 2004]

δD =

ˆ
ddx 2γij

δ

δγij

This is an asymptotic expansion since ∂r ∼ δD

For AdS5 the counterterms are

Sct =
1

κ2

ˆ
d4x
√
γ

(
3 +

1

4
R[γ]− log e−2r 1

16

(
RijRij −

1

3
R2
))
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The renormalized on-shell action is

Sren = lim
r→∞

(S + Sct) = S(d)

and corresponds to an integration ‘constant’ of the asymptotic solution.

Sct is the generating function of the canonical transformation that diagonalizes the
symplectic map between phase space and the space of asymptotic solutions:(

πij

γij

)
→
(

Πij

γij

)
=

(
πij + δSct

δγij

γij

)
∼
(
e−2rπ(d)

ij

e2rg(0)ij

)
∼
(
e−2r√g(0) g(d)

ij

e2rg(0)ij

)
It preserves the symplectic form:

Ω =

ˆ
ddx δπij ∧ δγij =

ˆ
ddx δΠij ∧ δγij =

ˆ
ddx δπij

(d)
∧ δg(0)ij

πij
(d)
∼ δS(d)/δg(0)ij corresponds to the renormalized stress tensor.
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Step III: Asymptotic solutions from flow equations

Combining the Hamiltonian and Hamilton-Jacobi expressions for the canonical
momenta leads to first order flow equations:

γ̇ij = 4κ2

(
γikγjl −

1

d− 1
γklγij

)
1
√
γ

δS
δγkl

Inserting different types of HJ solutions S automatically leads to different types of
solutions of the second order eoms.

Conversely, for any solution of the second order equations there is a solution S of
the HJ equations such that this flow equation holds, at least locally in field space.

Inserting the general asymptotic solution for S gives the asymptotic solution of the
bulk fields (Fefferman-Graham expansions).

Inserting an ansatz without transverse derivatives gives an exact RG flow.

Inserting a derivative expansion for S around a solution with a length scale gives
low energy effective dynamics (hydrodynamics, Goldstone modes).

I. Papadimitriou Holographic dictionary for non-relativistic theories 41 / 77



Exceptional case studies
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Reversed asymptotics

The canonical transformation that diagonalizes the symplectic map is not always
generated by a local functional of the induced fields.

An example is p-form fields in AdSd+1, whose equaiton of motion takes the form

Äi1...ip + (d− 2p)`−1Ȧi1...ip ∼ 0

and so the general asymptotic solution is

Ai1...ip ∼ A(0)i1...ip (x) + · · ·+ e−(d−2p)r/`A(d−2p)i1...ip (x) + · · ·

For p < d/2 the canonical transformation that diagonalizes the symplectic map is

Sct[γ,A] = −
1

2κ2(d− 2p− 2)(p+ 1)!

ˆ
Σro

ddx
√
−γFi1i2...ip+1F

i1i2...ip+1+· · ·
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For p ≥ d/2 the canonical transformation that diagonalizes the symplectic map is

−
ˆ

Σro

ddx πi1...ipAi1...ip + Sct[γ, π]

with
Sct[γ, π] =

p!κ2

d− 2p

ˆ
Σro

ddx
1
√
−γ

πi1i2...ipπi1i2...ip + · · ·

The form of the counterterms for p ≥ d/2 can be obtained by Hodge dualizing the
standard counterterms for the Hodge dual (d− p− 1)-form fields.

This case covers gauge fields in AdS3 and AdS2 and it is important for AdS2

holography [Cvetič, I.P. 2016], including correlation functions in a holographic Kondo
model [Erdmenger, Hoyos, O’Bannon, I.P., Probst, Wu to appear].

Hodge dualizing is not always possible (e.g. AdS2) but the counterterms Sct[γ, π]
can be obtained by solving a Legendre transformed Hamilton-Jacobi equation.
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Second class constraints and irrelvant deformations

Another subtlety that is particularly relevant for non-relativistic holography is the
presence of (asymptotic) second class constraints on phase space.

Such constraints are of the form

C[γ,A, ϕ;πγ , πA, πϕ] ≈ 0

where C can be either an algebraic function, or it can involve derivatives along Σr .

Fluctuations orthogonal to the constraints correspond to (generically irrelevant)
deformations by an operator whose source is composite in terms of the original
symplectic variables.

The “no-tadpole” condition for such composite fluctuations leads to exotic scaling
dimensions (e.g. composite scalar in Lifshitz).

The counterterms take the form of a Taylor expansion in C, with the coefficient of
Cn determined by the n-point function of the composite operator.

Null (Kaluza-Klein or Scherk-Schwarz) reductions typically lead to such second
class constraints, but the precise relation is still to be determined.
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Outline

1 Non-relativistic holography

2 General aspects of the holographic dictionary

3 Lifshitz holography with and without hyperscaling violation

4 Non-relativistic RG flows and effective actions

5 Summary and open questions
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Lifshitz dictionary from (massive) vector models

Both Lifshitz and hvLf backgrounds in the Einstein frame can be obtained from
asymptotically Lifshitz solutions of the form

ds2 = dr2 − e2zrdt2 + e2rd~x2, A =
Q
εZo

eεrdt, φ = µr, ω = const.

in the dual frame.

The action in the dual frame is

Sξ =
1

2κ2

ˆ
M
dd+2x

√
−gedξφ

(
R[g]− αξ(∂φ)2 − Zξ(φ)F 2 −Wξ(φ)B2 − Vξ(φ)

)
Vξ ∼ Voe2(ρ+ξ)φ, Zξ ∼ Zoe−2(ξ+ν)φ, Wξ ∼Woe

2σφ

ρ = −ξ, ν = −ξ +
ε− z
µ

, σ =
z − ε
µ

, θ = −dµξ

ε =
(αξ + d2ξ2)µ2 − dµξ + z(z − 1)

z − 1
, Q2 =

1

2
Zo(z − 1)ε,

Wo = 2Zoε(d+ z + dµξ − ε), Vo = −d(1 + µξ)(d+ z + dµξ)− (z − 1)ε
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Radial Hamiltonian dynamics

ADM decomposition

ds2 = (N2 +NiN
i)dr2 + 2Nidrdx

i + γijdx
idxj

Radial ADM Lagrangian:

L =
1

2κ2

ˆ
dd+1x

√
−γN

((
1 +

d2ξ2

αξ

)
K2 −KijKij −

αξ

N2

(
φ̇−N i∂iφ−

dξ

αξ
NK

)2

−
2

N2
Zξ(φ)(Fri −NkFki)(Fr

i −N lFl
i)−

1

N2
Wξ(φ)

(
Ar −N iAi − ω̇ +N i∂iω

)2
+R[γ]− αξ∂iφ∂iφ− Zξ(φ)FijF

ij −Wξ(φ)BiB
i − Vξ(φ)− 2�γ

)
edξφ
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First class constraints

Hamiltonian:

H =

ˆ
dd+1x

(
γ̇ijπ

ij + Ȧiπ
i + φ̇πφ + ω̇πω

)
− L

=

ˆ
dd+1x

(
NH+NiHi +ArF

)
where

H = −
κ2

√
−γ

e−dξφ
(

2πijπij −
2

d
π2 +

1

2α

(
πφ − 2ξπ

)2
+

1

4
Z−1
ξ (φ)πiπi +

1

2
W−1
ξ (φ)π2

ω

)
+

√
−γ

2κ2

(
−R[γ] + αξ∂

iφ∂iφ+ Zξ(φ)F ijFij +Wξ(φ)BiBi + Vξ(φ) + 2�γ
)
edξφ

Hi = −2Djπ
ji + F ijπ

j + πφ∂
iφ−Biπω

F = −Diπi + πω
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Canonical momenta

From off-shell Lagrangian:

πij =
δL

δγ̇ij
=

1

2κ2

√
−γedξφ

(
Kγij −Kij +

dξ

N
γij
(
φ̇−Nk∂kφ

))
,

πi =
δL

δȦi
= −

1

2κ2

√
−γedξφZξ(φ)

4

N
γij
(
Frj −NkFkj

)
,

πφ =
δL

δφ̇
=

1

2κ2

√
−γedξφ

(
2dξK −

2αξ

N
(φ̇−N i∂iφ)

)
,

πω =
δL

δω̇
= −

1

2κ2

√
−γedξφWξ(φ)

2

N

(
ω̇ −N i∂iω −Ar +N iAi

)
From on-shell action:

πij =
δS
δγij

, πi =
δS
δAi

, πφ =
δS
δφ
, πω =

δS
δω
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Flow equations

Combining the two expressions for the momenta:

γ̇ij = −
4κ2

√
−γ

e−dξφ
((

γikγjl −
αξ + d2ξ2

dα
γijγkl

)
δ

δγkl
−

ξ

2α
γij

δ

δφ

)
S,

Ȧi = −
κ2

2

1
√
−γ

e−dξφZ−1
ξ (φ)γij

δ

δAj
S,

φ̇ = −
κ2

α

1
√
−γ

e−dξφ
(
δ

δφ
− 2ξγij

δ

δγij

)
S,

ω̇ = −
κ2

√
−γ

e−dξφW−1
ξ (φ)

δ

δω
S
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Recursive solution of the Hamilton-Jacobi
equation
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Zero derivative solution

The zero order solution of the HJ equation contains no transverse derivatives:

S(0) =
1

κ2

ˆ
dd+1x

√
−γU(φ,AiA

i)

Inserting this ansatz into the Hamiltonian constraint yields a PDE for U(X,Y ),
where X := φ, Y := BiB

i = AiA
i (cf. superpotential equation)

1

2α
(UX − ξ(d+ 1)U + 2ξY UY )2 + Z−1

ξ (X)Y U2
Y

−
1

2d
((d+ 1)U + 2(d− 1)Y UY ) (U − 2Y UY ) =

1

2
e2dξX

(
Wξ(X)Y + Vξ(X)

)
This equation for the ‘superpotential’ U(X,Y ) determines the zero derivative
solution of the Hamilton-Jacobi equation: It can be used to holographically
renormalize any homogeneous background of the equations of motion and any
exact solution of this PDE leads to exact solutions of the equations of motion via
the flow equations.
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Constraints from Lifshitz asymptotics

Imposing Lifshitz boundary conditions requires that asymptotically the gauge
invariant vector field behaves as

Bi ∼ Boi =

√
z − 1

2ε
Z
−1/2
ξ (φ)ni

where ni is the unit normal to the constant t surfaces

This in turn implies that the superpotential U(X,Y ) must satisfy

U(X,Yo(X)) ∼ edξX (d(1 + µξ) + z − 1)

UY (X,Yo(X)) ∼ −εedξXZξ(X)

UX(X,Yo(X)) ∼ edξX
(
−µαξ + dξ(d+ z)

)
Hence, the asymptotic form of the zero order solution of the HJ equation is

S(0) ∼
1

κ2

ˆ
Σr

dd+1x
√
−γedξφ

(
d(1 + µξ) +

1

2
(z − 1)− εZξ(φ)BiB

i

)
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Taylor expansion of the superpotential

Since Lifshitz boundary conditions require that Bi ∼ Boi asymptotically, the
solution of the HJ equation can be expressed as a Taylor series in Bi −Boi

The zero derivative solution S(0) can be Taylor expanded in

Y − Yo = 2Bio(Bi −Boi) +O(B −Bo)2

where Yo ≡ BioBoi, as

U = e(d+1)ξφ
(
u0(φ) + Y −1

o u1(φ)(Y − Yo(φ)) + Y −2
o u2(φ)(Y − Yo(φ))2 + · · ·

)
Inserting this expansion in the superpotential equation for U(X,Y ) leads to a
tower of equations for the functions un(φ)
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An additional relation between the functions u0(φ) and u1(φ) is imposed by the
consistency of the Taylor expansion (“no-tadpole” condition), i.e. requiring that

Ẏ − Ẏo = O(Y − Yo)

In a bottom up approach these equations can be used to define the potentials
V (φ), Z(φ) and W (φ) in terms of u0(φ) and u1(φ), with all un(φ) for n ≥ 2 being
determined in terms of these functions.

Lifshitz boundary conditions require

u0(φ) ∼ (z − 1 + d(1 + µξ)) e−ξφ

u1(φ) ∼
1

2
(z − 1)e−ξφ

The function u2(φ) satisfies a quadratic (Riccati) equation and determines the
scaling behavior of the independent mode Y − Yo, while un(φ) with n ≥ 3 satisfy
linear equations.
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Recursive solution of the HJ equation

To summarize the above analysis, we have shown that the most general zero
derivative solution of the HJ equation takes the form

S(0) =
1

κ2

ˆ
Σr

dd+1x
√
−γU(φ,B2)

where for Lifshitz boundary conditions the superpotential U(X,Y ) admits a Taylor
expansion in Y − Yo. Moreover, this zero derivative solution is the asymptotically
leading one, with derivative terms entering only in asymptotically subleading
orders.

In order to systematically determine these asymptotically subleading derivative
terms of the solution of the HJ equation, we expand S in a covariant expansion in
eigenfunctions of a suitable operator.

For backgrounds with asymptotic scaling invariance one can use the dilatation
operator [I. P. & Skenderis 2004] but in the presence of an asymptotically running
dilaton, meaning that asymptotic scale invariance is broken, this is not sufficient.

Instead we need an operator such that S(0) is an eigenfunction for any
superpotential U(φ,B2).
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In fact there are two mutually commuting such operators:

δ̂ :=

ˆ
dd+1x

(
2γij

δ

δγij
+Bi

δ

δBi

)
, δB :=

ˆ
dd+1x

(
2Y −1BiBj

δ

δγij
+Bi

δ

δBi

)
which satisfy

δ̂S(0) = (d+ 1)S(0), δBS(0) = S(0), [δ̂, δB ] = 0

This allows us to seek a solution of the HJ equation in the form of a graded
covariant expansion in simultaneous eigenfunctions of both δ̂ and δB :

S =
∞∑
k=0

S(2k) =
∞∑
k=0

k∑
`=0

S(2k,2`) =
∞∑
k=0

k∑
`=0

ˆ
dd+1xL(2k,2`)

where

δ̂S(2k,2`) = (d+ 1− 2k)S(2k,2`), δBS(2k,2`) = (1− 2`)S(2k,2`), 0 ≤ ` ≤ k

The operator δ̂ counts derivatives

The operator δB annihilates the projection operator σij := δij − Y −1BiBj and
counts derivatives contracted with Bi, which asymptotically become time
derivatives since Bi ∼ Boi ∝ ni
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Linear recursion equations

Inserting the covariant expansion of S in simultaneous eigenfunctions of δ̂ and δB
in the Hamilton-Jacobi equation (Hamiltonian constraint) results in a system of
recursive first order functional linear equations for the higher derivative terms:

1

α
(UX − (d+ 1)ξU + 2ξY UY )

δ

δφ

ˆ
L(2k,2`)+(

(2Y + Z−1
ξ )UY +

1

dα

(
αξU − 2(αξ + d2ξ2)Y UY + dξUX

))
Bi

δ

δBi

ˆ
L(2k,2`)−(

1

dα

(
αξU − 2(αξ + d2ξ2)Y UY + dξUX

)
(d+ 1− 2k) + 2Y UY (1− 2`)

)
L(2k,2`) =

edξφR(2k,2`)

The inhomogeneous term R(2k,2`) involves derivatives of lower order terms as
well as the 2-derivative sources from the Hamiltonian constraint
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Lifshitz boundary conditions

The covariant expansion of S in simultaneous eigenfunctions of δ̂ and δB , and
hence the above recursion relations, is independent of the specific choice of
boundary conditions

In order to impose Lifshitz boundary conditions we must additionally expand
S(2k,2`) in Bi −Boi at each order of the covariant expansion as

L(2k,2`) = L0
(2k,2`)[γ(x), φ(x)]

+

ˆ
dd+1x′(Bi(x

′)−Boi(x′))L1i
(2k,2`)[γ(x), φ(x);x′] +O (B −Bo)2

Inserting this Taylor expansion in the above recursion relations eliminates the
derivative with respect to Bi, resulting in first order linear functional differential
equations in φ only. Such functional differential equations appear in the relativistic
case as well, e.g. for non-conformal branes or Improved Holographic QCD, and
they can be solved systematically [I.P. ’11].
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Solution of the recursion relations up to O(B −Bo)

The inhomogeneous solution of these linear functional differential equations takes
the form

L0
(2k,2`) = e−Ck,`A(φ)

ˆ φ
dφ̄K(φ̄)eCk,`A(φ̄)R0

(2k,2`),

�ijL
1j
(2k,2`)

= Z
1
2
ξ e
−Ck,`A(φ)

ˆ φ
dφ̄K(φ̄)eCk,`A(φ̄)Z

− 1
2

ξ �ijR
1j
(2k,2`)

,

Boj(x)L1j
(2k,2`)

= Ω−1e−Ck,`A(φ)

ˆ φ
dφ̄K(φ̄)eCk,`A(φ̄)ΩBojR̂1j

(2k,2`)

where Ck,` := d+ 1− 2k + (z − 1)(1− 2`),

K(φ) :=
α

eξφ
(
u′0 + Z′

Z
u1

) ∼ − 1

µ
, eA(φ) = Z

− 1
2(ε−z)

ξ ∼ eφ/µ

and the Ω(φ) can be expressed in terms of u0, u1 and u2.

If µ = 0 (e.g. for Einstein-Proca theory) the corresponding solutions can be
expressed algebraically in terms of the source terms.
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Structure of the HJ solution & the holographic
dictionary
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Structure of the HJ solution

The solution of the HJ equation obtained via the above algorithm is of the form

S =
∑

k,`,m | Ck,`+θ−m∆−≥0

ˆ
· · ·
ˆ

(B −Bo)mSm(2k,2`) + Ŝren + · · ·

where ∆+ = d+ z − θ −∆− (with ∆− a complicated function of the parameters)
is the dimension of the scalar operator dual to the composite mode

ψ := Y −1
o Bjo(Bj −Boj)

(B−Bo)mSm(2k,2`) has dilatation weight Ck,` + θ−m∆−, and Ŝren has weight 0.

All terms (B −Bo)mSm(2k,2`) for Ck,` + θ −m∆− ≥ 0 are recursively determined.

For Ck,` + θ −m∆− < 0 these terms are powerlike divergent in the UV, while
terms with Ck,` + θ −m∆− = 0 have a pole which via dimensional regularization
leads to a logarithmic divergence.

Such logarithmically divergent terms give rise to the conformal anomaly when
µ = 0, but they can be absorbed in the dilaton when µ 6= 0.
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The local covariant counterterms that render the on-shell action finite and the
variational problem with Lifshitz boundary conditions well posed are

Sct := −
∑

k,`,m | Ck,`+dµξ−m∆−≥0

ˆ
· · ·
ˆ

(B −Bo)mSm(2k,2`)

The renormalized part of the on-shell action is therefore given by the UV-finite
term Ŝren, which corresponds to an independent contribution to the HJ solution
and can be parameterized as

Ŝren =

ˆ
dd+1x

(
γij π̂

ij +Biπ̂
i + φπ̂φ

)
where π̂ij , π̂i and π̂φ are undetermined integration functions of the HJ equation.
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Asymptotic expansions and symplectic variables

The non-linear asymptotic solutions of the fields, with all modes parameterizing
the symplectic space of such solutions, is obtained by inserting the asymptotic
solution of the HJ equation in the first order flow equations.

The sources modes correspond to integration constants of the flow equations,
while the one-point functions are related to the integration constants of the HJ
solution in Ŝren.

In order to identify the modes that parameterize the space of asymptotic solutions
it is necessary to decompose the induced fields on Σr as

γijdx
idxj = −(n2−nana)dt2+2nadtdx

a+σabdx
adxb, Aidx

i = adt+Aadx
a,

where the indices a, b run from 1 to d.

The sources appear as the leading modes in the expansions of n, na, σab, φ and
ψ, while the corresponding one-point functions are given by the combinations

T̂ ij := −
e−dξφ
√
−γ

(
2π̂ij + Y −1

o BioB
j
oBokπ̂

k
)
, Êi :=

e−dξφ
√
−γ

√
−Yo�ij π̂j

Ôφ :=
e−dξφ
√
−γ

(
π̂φ + (ν + ξ)Boiπ̂

i
)
, Ôψ :=

e−dξφ
√
−γ

Boiπ̂
i
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one-point function source

spatial stress tensor Π̂ij := �ik�jlT
kl ∼ e−(d+z−θ)rΠij(x) σ(0)ab

momentum density P̂i := −�iknlT
kl ∼ e−(d+2−θ)rPi(x) n(0)a

energy density Ê := −nknlT kl ∼ e−(d+z−θ)rE(x) n(0)

energy flux Êi ∼ e−(d+2z−θ)rEi(x) 0

dilaton Ôφ ∼ e−(d+z+dµξ)rOφ(x) φ(0)

composite scalar Ôψ ∼ e−∆+rOψ(x) ψ−

This agrees with the energy-momentum complex discussed in [Ross ’09]

Note that there is no U(1) current operator!
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Holographic Ward identities

The momentum constraint of the radial Hamiltonian formalism leads to the
diffeomorphism Ward identities

DjΠ̂
i
i + qjΠ̂

j
i + njDjP̂i + KP̂i + KiiP̂j + niqjP̂j − Êqi + ÔφDiφ+ ÔψDiψ = 0

niDiÊ + KÊ − KijΠ̂
j
i + DiÊi + ÔφniDiφ = 0

DiP̂i + 2qiP̂i = 0

where Di is the covariant derivative w.r.t. �ij , Kij = Dinj is the extrinsic
curvature of the constant time slices, and qi = nkDkni.

The transformation of the renormalized action under local anisotropic boundary
Weyl transformations leads to the trace Ward identity

zÊ + Π̂ii + ∆−ψÔψ − µÔφ = 0, µ 6= 0,

zÊ + Π̂ii + ∆−ψÔψ = A, µ = 0,

where A is the conformal anomaly, corresponding to all terms satisfying
Ck,` + θ −m∆− = 0.
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RG flows with Lifshitz or hvLf at the UV

Non-relativistic RG flows with Lifshitz or hvLf at the UV can be obtained from the
above action and take the form

ds2 = dr2 − e2f(r)dt2 + e2h(r)δabdx
adxb, A = a(r)dt, φ = φ(r), ω = ω(r)

Such flows can be described in a first order formalism through the HJ ansatz

Seff =
1

κ2
ef+dhU(X,Y ), X := φ, Y := −e−2fa2

Inserting this in the HJ equation gives the ‘superpotential’ equation

1

α
(UX − ξ(d+ 1)U + 2ξY UY )2 −

1

d
(U − 2Y UY )2 − (U + 2Y UY ) (U − 2Y UY )

+ 2Z−1
ξ Y U2

Y = e2dξX
(
WξY + Vξ

)
as well as the flow equations

ḟ = 2e−dξX
(
Y UY +

(
αξ

2dα
U +

ξ

2α
UX −

αξ + d2ξ2

dα
Y UY

))
ḣ = 2e−dξX

(
αξ

2dα
U +

ξ

2α
UX −

αξ + d2ξ2

dα
Y UY

)
ȧ = −e−dξXZ−1

ξ (X)UY a ω̇ = 0
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Solvable classes

The ansatz
U(X,Y ) = edξXw

(
Y Zξ(X)

)
for some function w(y) of y ≡ Y Zξ(X) leads to the ODE

(α2y + α1)yw′2 + βyww′ + γw2 = δy + ε

where α1, α2, β, γ, δ and ε depend of the parameters of the model.

The ansatz
U(X,Y ) = ε0e

dξX
√
ε1e2ξXu2(X) + ε2v2(X)Y

where ε0,1,2 = ±1 are independent signs, leads to a set of equations for u(X)
and v(X) that can be solved exactly.
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RG flows with Lifshitz or hvLf at the IR

Non-relativistic RG flows with AdS in the UV can be obtained from the action

S =
1

2κ2

ˆ
M

dd+1x
√
−g
(
R[g]− (∂φ)2 − Z(φ)(∂χ)2 − V (φ, χ)− Σ(φ)F 2

)
Such flows take the form

ds2B = dr2 + e2A(r)
(
−f(r)dt2 + dx2 + dy2

)
AB = α(r)dt+

H

2
(xdy − ydx)

φB = φB(r) χB = χB(r)

They are in general dyonic, finite density and finite temperature solutions.
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Superpotential and flow equations

These RG flows can be described in terms of a ‘superpotential’ via the HJ ansatz

S = −
1

κ2

ˆ
ddx

(
edAf1/2W (A, φ, χ) + 2Qα

)
Inserting this in the HJ equation gives the superpotential equation

W 2
φ + Z−1(φ)W 2

χ −
1

d− 1
(d+ ∂A)W 2 = Veff (A, φ, χ)

Veff (A, φ, χ) ≡ V (φ, χ) + 2Σ(φ)e−4AH2 + 2Σ−1(φ)e−2(d−1)AQ2

The radial profile of the fields is determined by the first order flow equations

Ȧ = −
1

d− 1
W,

ḟ

f
= −

2

(d− 1)
WA, φ̇ = Wφ, χ̇ = Z−1Wχ

α̇ = −Σ−1e−(d−2)Af1/2Q
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A class of exact solutions

A class of exact solutions is obtained by the separable ansatz

W (A, φ) = Wo(φ)
√

1 + q2e−4A

where Wo(φ) is arbitrary and the parameter q is defined through

H2Σ0 +Q2Σ−1
0 = q2L−2

The scalar potentials V (φ) and Σ(φ) are determined in terms of Wo(φ) as

V (φ) = W ′2o −
3

2
W 2
o

H2Σ(φ) +Q2Σ−1(φ) =
q2

2

(
W ′2o +

1

2
W 2
o

)
Depending on the choice of Wo(φ), these solutions flow to a hyperscaling
violating Lifshitz background in the IR, with

θ = z + 1, 1 < z < 3
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Embedding in U(1)4 gauged supergravity

Two purely magnetic cases (i.e. Q = 0, H 6= 0) can be embedded in the U(1)4

gauge supergravity in 4D.

z = 2, θ = 3:

Wo(φ) = −
2

L
cosh(φ/

√
2)

V (φ) = −
2

L2

(
2 + cosh(

√
2φ)
)
, Σ(φ) = Σ0 cosh(

√
2φ)

z = 3/2, θ = 5/2:

Wo(φ) = −
1

2L

(
3e−φ/

√
6 + e

√
3
2
φ
)

V (φ) = −
6

L2
cosh

(√2

3
φ
)
, Σ(φ) =

1

4
Σ0

(
e
√

6φ + 3e
−
√

2
3
φ
)
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Outline

1 Non-relativistic holography

2 General aspects of the holographic dictionary

3 Lifshitz holography with and without hyperscaling violation

4 Non-relativistic RG flows and effective actions

5 Summary and open questions
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Summary

The space of sources and local operators in QFT admits a symplectic structure,
which arises naturally in the context of the Local Renormalization Group.

A holographic dictionary amounts to identifying the symplectic space of bulk
asymptotic solutions with the space of sources and operators in the dual QFT.

Given a bulk theory, the symplectic space of asymptotic solutions can be
constructed algorithmically using general techniques, which apply equally well to
non-relativistic backgrounds.

The same techniques allow one to describe any solution of the second order
equations in terms of first order flow equations, which provides an efficient tool for
a number of different approximations relevant in holography and cosmology.
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Open questions

Non-relativistic theories are not as well understood as their relativistic siblings,
both on the field theory and on the holographic sides.

On the field theory side, it would be instructive to know more about, e.g.,
correlation functions at strong coupling (e.g. Lifshitz symmetry is not sufficient
to fix the two- and three-point functions), quantum anomalies, hydrodynamics,
or to what extent Newton-Cartan geometry is general or necessary in the context
of Lifshitz theories.

On the bulk side, it would be interesting to see the effect of higher derivatives or
non-relativistic gravity (e.g. Horava gravity) on the holographic dictionary, as
well as to develop real-time holography and address the initial value problem.

It would also be interesting to better understand the UV completions of such
theories, e.g. through string embeddings.

On a more technical level, it would be useful to clarify the connection between null
reductions and second class constraints, as well as understanding the match
or mismatch between Newton-Cartan geometry and the holographic dictionary
obtained from bulk relativistic gravity in the metric formulation.

Finally, as for the entire AdS/CMT program, it would be highly desirable to
compare the holographic results to experimental data.
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