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Outline

• Overview of the geometric description of the RG flow by

gauge/gravity duality

• Focus on the flow of a single coupling in bottom-up models

• I will review and present in a unified setting many known facts

and show some recent new results

• Part I: Characterisation and classification of holographic RG

flows

• Part II: Generating functional and local RG.

• Part III: Perspectives and further directions
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Setup

Simple setup: d+ 1-dimensional Einstein Gravity plus one scalar

field:

S = Md−1
p

∫

ddx

∫

dr
√−g

[

R− 1

2
(∂Φ)2 − V (Φ)

]

+ SGH

• Only one scalar ↔ focus on a single operator O in the field

theory.

• The potential V (φ) encodes the dimension of the operator and

the way the coupling runs.

• Work with the fully backreacted system.

• Take V (Φ) < 0 throughout (avoids transitions into

cosmological solutions).
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Field/Operator correspondence

• An operator O(x) corresponds to a bulk field Φ(x, r).

• Φ(x, 0) represents a source for O in the CFT:
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Field/Operator correspondence

• An operator O(x) corresponds to a bulk field Φ(x, r).

• Φ(x, 0) represents a source for O in the CFT:

Φ(x, r) ∼ α(x)r(d−∆)+. . . r → 0 ⇔ SCFT = S0+

∫

d4xα(x)O(x)

• The on-shell action with boundary conditions fixed by α(x) is

the QFT generating functional:

S [Φα(x, r)] = funcional of α(x), ZQFT [α(x)] = exp iS[Φα(x, r)]

• The ation must be supplemented with appropriate local

covariant boundary terms to obtain finite results (holographic

renormalization).
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Running away from AdS

• One can think of the bulk field Φ(x, u) as the scale-dependent

coupling, renormalized at a scale µ ≡ µ(r).
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Running away from AdS

• One can think of the bulk field Φ(x, u) as the scale-dependent

coupling, renormalized at a scale µ ≡ µ(r).

• α(x) represents the bare UV coupling:

µ = 1/r, Φ(µ) = αµ∆−d βUV (Φ) = (∆− d)Φ
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Running away from AdS

• One can think of the bulk field Φ(x, u) as the scale-dependent

coupling, renormalized at a scale µ ≡ µ(r).

• α(x) represents the bare UV coupling:

µ = 1/r, Φ(µ) = αµ∆−d βUV (Φ) = (∆− d)Φ

Turning on α 6= 0 for a relevant operator drives us away from the

conformal fixed point.
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Running away from AdS

• One can think of the bulk field Φ(x, u) as the scale-dependent

coupling, renormalized at a scale µ ≡ µ(r).

• α(x) represents the bare UV coupling:

µ = 1/r, Φ(µ) = αµ∆−d βUV (Φ) = (∆− d)Φ

Turning on α 6= 0 for a relevant operator drives us away from the

conformal fixed point.

• Classify RG-flow solutions (in a scheme-independent way).

• One encounters standard flows expected in field theory, but also

some exotic situations. Do these make sense from the FT point

of view? Are they acceptable gravity solutions?

• “Exotic” flows due to second order nature of Einstein’s

equations.
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Standard
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Standard

Exotic Old and new aspects of the holographic renormalization group – p.8



Deformations of AdS

Generic Poincaré-invariant solution:

ds2 = du2 + eA(u)ηµνdx
µdxν , Φ = Φ(u)
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Deformations of AdS

Generic Poincaré-invariant solution:

ds2 = du2 + eA(u)ηµνdx
µdxν , Φ = Φ(u)

The UV (IR) is represented by the region where eA(u) → +∞
(→ 0). Intuitively, we can think of eA as the energy scale.
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RG-flow solutions

A second extremum for V (Φ) ⇒ a different AdS solution ⇒ a

different conformal fixed point.
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RG-flow solutions

A second extremum for V (Φ) ⇒ a different AdS solution ⇒ a

different conformal fixed point.

• For V (Φ) fixed there is a continous family of inequivalent

flows. Only one hits the IR fixed point.
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RG-flow solutions

A second extremum for V (Φ) ⇒ a different AdS solution ⇒ a

different conformal fixed point.

• For V (Φ) fixed there is a continous family of inequivalent

flows. Only one hits the IR fixed point.

• the UV fixed point is an attractor, and is reached for a

continuous class of initial conditions. Old and new aspects of the holographic renormalization group – p.10



Superpotential

Write Einstein’s equations as first order flow equations, with an

auxiliary scalar function W (Φ) (′ = d/dΦ):

Ȧ = − 1

2(d− 1)
W (Φ) Φ̇ = W ′(Φ),

− d

4(d− 1)
W 2 +

1

2

(

W ′
)2

= V
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Superpotential

Write Einstein’s equations as first order flow equations, with an

auxiliary scalar function W (Φ) (′ = d/dΦ):

Ȧ = − 1

2(d− 1)
W (Φ) Φ̇ = W ′(Φ),

− d

4(d− 1)
W 2 +

1

2

(

W ′
)2

= V

• This system is equivalent to usual Einstein equations.

• System has 3 integration constants. One picks W (Φ).
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Superpotential

Write Einstein’s equations as first order flow equations, with an

auxiliary scalar function W (Φ) (′ = d/dΦ):

Ȧ = − 1

2(d− 1)
W (Φ) Φ̇ = W ′(Φ),

− d

4(d− 1)
W 2 +

1

2

(

W ′
)2

= V

• This system is equivalent to usual Einstein equations.

• System has 3 integration constants. One picks W (Φ).

• Once W (Φ) is given, the other field equations integrate to:

A(Φ) = A0 −
1

2(d− 1)

∫ Φ

Φ0

dφ
W (φ)

W ′(φ)
,

• Different solutions with the same W (Φ) all look the same up to

an additive consant in A.

• Last integration constant: choice of a reference point u0.
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Running coupling

A(Φ) = A0(Φ0)−
1

2(d− 1)

∫ Φ

Φ0

dφ
W (φ)

W ′(φ)
,

• Formally the same as:

lnµ(Φ) = lnµ0 +

∫ Φ

Φ0

dφ

β(φ)
, β ≡ −2(d− 1)

W ′

W
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Running coupling

A(Φ) = A0(Φ0)−
1

2(d− 1)

∫ Φ

Φ0

dφ
W (φ)

W ′(φ)
,

• Formally the same as:

lnµ(Φ) = lnµ0 +

∫ Φ

Φ0

dφ

β(φ)
, β ≡ −2(d− 1)

W ′

W

• Integrated version of the solution for the running coupling if we

identify µ = expA:

dΦ

d log µ
= β(Φ)

• If we identify Φ(u) with the running coupling, then the

identification µ = expA is the only consistent one (wait a few

slides). Old and new aspects of the holographic renormalization group – p.12



Flow direction

Φ̇ = W ′, Ȧ = − 1

2(d− 1)
W

− d

4(d− 1)
W 2+

1

2

(

W ′
)2

= V

• The geometry is completely encoded in the superpotential W .

Classifying RG flows is the same as classifying solutions of the

superpotential equation.

Old and new aspects of the holographic renormalization group – p.13



Flow direction

Φ̇ = W ′, Ȧ = − 1

2(d− 1)
W

− d

4(d− 1)
W 2+

1

2

(

W ′
)2

= V ⇒ W ′ = ±
√

d

2(d− 1)
W 2 + 2V

• The geometry is completely encoded in the superpotential W .

Classifying RG flows is the same as classifying solutions of the

superpotential equation.

• For generic initial condition W (Φ0) = W0 there are two

solutions W± corresponding to the ± choice.

• Two W+ or two W− solutions cannot cross (uniqueness in each

branch) at generic points.
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Flow direction

Φ̇ = W ′, Ȧ = − 1

2(d− 1)
W

− d

4(d− 1)
W 2+

1

2

(

W ′
)2

= V ⇒ W ′ = ±
√

d

2(d− 1)
W 2 + 2V

• The superpotential is monotonically increasing along the flow,

for either the W± solution

dW

du
= Φ̇

dW

dΦ
= (Φ̇)2 ≥ 0

• W provides a holographic c-function and an indication of the

direction of the flow.

• Equations symmetric under W → −W,u → −u. Assume

W > 0 for definiteness.
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Flow direction

Φ̇ = W ′, Ȧ = − 1

2(d− 1)
W

− d

4(d− 1)
W 2+

1

2

(

W ′
)2

= V ⇒ W ′ = ±
√

d

2(d− 1)
W 2 + 2V
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Flow direction

Φ̇ = W ′, Ȧ = − 1

2(d− 1)
W

− d

4(d− 1)
W 2+

1

2

(

W ′
)2

= V ⇒ W ′ = ±
√

d

2(d− 1)
W 2 + 2V
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HRG taxonomy

• Extremal points of W (Φ)

• Exterma of V (Φ)

• Non-extremal points of V (Φ)

• Asymptotic regions and regularity

• Bouncing solutions

• Examples of standard and exotic RG flows
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The critical curve

W ′(Φ) = ±Q
√

W 2(Φ)−B2(Φ), B ≡ 1

Q

√

−2V (Φ)

Q ≡
√

d

2(d− 1)
,

• Phase space bounded by W (Φ) ≥ B(Φ) (critical curve)

• On the critical curve, W ′ = 0
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The critical curve

W ′(Φ) = ±Q
√

W 2(Φ)−B2(Φ), B ≡ 1

Q

√

−2V (Φ)
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Maxima of V

V ≃ −d(d−1)+
m2

2
Φ2+. . . , m2 = ∆(∆−d) < 0 (∆ < d), V ′(0) = 0.
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Maxima of V

V ≃ −d(d−1)+
m2

2
Φ2+. . . , m2 = ∆(∆−d) < 0 (∆ < d), V ′(0) = 0.

• One solution (per branch) off the critical curve, W (0) 6= B(0)
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Maxima of V

V ≃ −d(d−1)+
m2

2
Φ2+. . . , m2 = ∆(∆−d) < 0 (∆ < d), V ′(0) = 0.

• One solution (per branch) off the critical curve, W (0) 6= B(0)

• A continuous family of solution such that W (0) = B(0):

W (Φ) = 2(d− 1) +
(d−∆)

2
Φ2 + . . .+ CΦd/(d−∆) + . . .

source flow.
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Maxima of V

V ≃ −d(d−1)+
m2

2
Φ2+. . . , m2 = ∆(∆−d) < 0 (∆ < d), V ′(0) = 0.

• One solution (per branch) off the critical curve, W (0) 6= B(0)

• A continuous family of solution such that W (0) = B(0):

W (Φ) = 2(d− 1) +
(d−∆)

2
Φ2 + . . .+ CΦd/(d−∆) + . . .

source flow.

• A single solution also arriving at W (0) = B(0)

W (Φ) = 2(d− 1) +
∆

2
Φ2 + . . . ∆ > d−∆

vev flow. (can be reached in the limit C → ∞):
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Maxima of V
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UV-Asymptotically AdS solutions

Continuous family:

W (Φ) = 2(d− 1) +
(d−∆)

2
Φ2 + . . .+ CΦd/(d−∆) + . . .

Φ = αe(d−∆)u+. . .+
d−∆

d
Ce∆u+. . . , eA(u) = e−u+A0+..., u → −∞
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UV-Asymptotically AdS solutions

Continuous family:

W (Φ) = 2(d− 1) +
(d−∆)

2
Φ2 + . . .+ CΦd/(d−∆) + . . .

Φ = αe(d−∆)u+. . .+
d−∆

d
Ce∆u+. . . , eA(u) = e−u+A0+..., u → −∞

• Solution describes the UV, with deformation by a relevant

operator (∆ < d)

• UV AdS is an attractor for these solutions, C is the integration

constant for the superpotential equation.

• α fixes the initial condition for the flow. Not part of W .

• C controls the vev: 〈O〉 ∝ Cα
∆

d−∆

Old and new aspects of the holographic renormalization group – p.21



UV-Asymptotically AdS solutions

Special solution:

W (Φ) = 2(d− 1) +
∆

2
Φ2 + . . .

Φ = αe∆u + . . . eA(u) = e−u+A0+..., u → −∞

• Solution describes the UV, with deformation by the vev but no

source

〈O〉 ∝ α∆

• This solution lies above the continous family ( ∆ > d−∆) but

below the solutions which do not reach the fixed point.
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Minima of V

V ≃ −d(d−1)+
m2

2
Φ2+ . . . , m2 = ∆(∆−d) > 0 (∆ > d)

• A single solution reaching the critical curve at W (0) = B(0):

W (Φ) = 2(d− 1)− ∆

2
Φ2 + . . .
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Minima of V

V ≃ −d(d−1)+
m2

2
Φ2+ . . . , m2 = ∆(∆−d) > 0 (∆ > d)

• A single solution reaching the critical curve at W (0) = B(0):

W (Φ) = 2(d− 1)− ∆

2
Φ2 + . . .

• The solution describes a vev in the IR:

Φ = αe−∆u + . . . eA(u) = eu+A0+..., u → +∞

• Operator is irrelevant (source not allowed).
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Minima of V
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Choosing the right W : IR regularity

• The superpotential equation fixes W (Φ) up to an integration

constant.

• Close to a UV extremum of V (Φ) there is a one-paramenter

family of W (Φ) that all correspond to the same UV AdS fixed

point but have different IR behavior.
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Choosing the right W : IR regularity

• The superpotential equation fixes W (Φ) up to an integration

constant.

• Close to a UV extremum of V (Φ) there is a one-paramenter

family of W (Φ) that all correspond to the same UV AdS fixed

point but have different IR behavior.

• One way to single out one of them is to impose IR “regularity”.

This holds e.g. for:

• AdS fixed point in the IR

• Potential dominated by a single exponential at large Φ.
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Choosing the right W : IR regularity

• The superpotential equation fixes W (Φ) up to an integration

constant.

• Close to a UV extremum of V (Φ) there is a one-paramenter

family of W (Φ) that all correspond to the same UV AdS fixed

point but have different IR behavior.

• One way to single out one of them is to impose IR “regularity”.

This holds e.g. for:

• AdS fixed point in the IR

• Potential dominated by a single exponential at large Φ.

• Strictly, generic solutions are singular except if the IR is AdS.

But some singularities are “good” and may be accepted in

holography.

• Roughly “regularity” means that the the solution does not need

to specify IR boundary conditions, but the UV data completely

specifies the theory.
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Large field behavior

• A solution can reach the region Φ → ∞. Typically this leads to

a singularity, where both W and V diverge.

• Curvature invariants:

R = aV + bW 2, RµνR
µν = a′V 2 + b′VW 2 + c′W 4 . . .

Assuming V is everywhere regular this can only diverge as

|Φ| → ∞ (as we will see, it generically will)
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Large field behavior

• A solution can reach the region Φ → ∞. Typically this leads to

a singularity, where both W and V diverge.

• Curvature invariants:

R = aV + bW 2, RµνR
µν = a′V 2 + b′VW 2 + c′W 4 . . .

Assuming V is everywhere regular this can only diverge as

|Φ| → ∞ (as we will see, it generically will)

• Two main “good singularity” criteria:

1. Gubser: The singularity can be cloacked by a horizon by

turning on a black hole of arbitrarily small mass

2. Spectral Computability: The small fluctuation spectrum is

determined withour need of IR boundary condition beyond

normalizability
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Superpotential in the large Φ region

V (Φ) ∼ exp[bΦ] Φ → ∞
Two kinds of asymptotic solutions W (Φ):

• Continuos family:

WC ≃ C expQΦ (W ≫
√
V ) Φ → +∞

• Special solution (no free parameters)

W∗ = W0 exp

[

b

2
Φ

]

(W ∼
√
V ) Φ → +∞

These solutions exist only if b < 2Q.
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IR Regularity, Gubser’s bound and all that

Both regularity criteria are decided by the superpotential (not the

potential):

• Gubser: Only the W∗(Φ) solution can be approximated by

small black holes. Hence the Gubser bound b < 2Q

• Computability: Spectrum is computable if the supertpotential

grows no faster than

W ≤ K exp
Q√
2

Only the W∗(Φ) solution can satifsy this, and only if b <
√
2Q

(comutability bound).

What are the endpoints of the flow if b > 2Q ?
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IR Regularity, Gubser’s bound and all that
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Bouncing off the critical curve

W (Φ) can reach the critical curve at a non-extremal point of V .

W (Φb) = B(Φb), W ′(Φb) = 0

Here the solution stops being analytic:

W ≃ B(Φ) + (Φb − Φ)3/2 + . . . Φ < Φb
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Bouncing off the critical curve

W (Φ) can reach the critical curve at a non-extremal point of V .

W (Φb) = B(Φb), W ′(Φb) = 0

Here the solution stops being analytic:

W ≃ B(Φ) + (Φb − Φ)3/2 + . . . Φ < Φb

• What are the enpoints of the flow if b > 2Q ?

It never reaches Φ → +∞, but it stops before.
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Bouncing off the critical curve
At Φb the two branches can meet: can continue a W+ type solution

past Φb by glueing it with a W− type solution:

W± ≃ B(Φ)± (Φb − Φ)3/2 Φ < Φb

Old and new aspects of the holographic renormalization group – p.31



Regularity of bounces
• Although they look non-analytic in W , bounces are regular

when written in terms of u

A(u) = A0+A1(u−ub)+. . . , Φ(u) = Φb+
1

2
Φ2(Φ− Φb)

2+. . .

• Φ(u) has an extremum at Φb where it turns around.

• W (Φ(u)) is single-valued (and monotonic) as a function of u
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UV fixed point to IR fixed point
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UV fixed point to good IR singularity
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Exotic RG flows
E.Kiritsis,FN,L.Silva Pimenta, to appear
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Vev flow between maxima

• Only the vev deformation flows out of the UV

• Potential needs to be fine-tuned
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Skipping fixed points

• A flow can skip a fixed point and end up in a far IR extremum.

• The flow to the far IR point can exist if no flow from the near

UV exists.

• The two solutions are dual to different vacua (different vevs)

which affect the flow non-perturbativelyOld and new aspects of the holographic renormalization group – p.37



Bouncing RG flows

• Solution bounces several times before reaching the IR
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Bouncing in Field theory?

• Close to the bounce:

β(Φ) ∝
√

Φb − Φ

• Locally the same as some proposed RG flows with limit cycles

β(g) ∝
√

1− g2

• Toy models with limit cycles exist (e.g. Wilson and Glazek, ’93; Russian

Doll model), but either they are non-unitary or they are not full

field theories.

• Are there any full-fledge bouncing QFT examples?
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Part II

Generating functional and Local RG
(based on work with E.Kiritsis and W.Li)
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Part II

Generating functional and Local RG
(based on work with E.Kiritsis and W.Li)

• Generating functional

• Local RG
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On-shell action and counter-terms

For IR-regular solutions, the on-shell action is a UV-boundary term:

Son−shell =

∫

ddx
√−γW (Φ)

∣

∣

∣

uUV

γµν = eA(u)ηµν

As W → W (0) in the UV, this is divergent as A → +∞. Using A as

the radial coordinate:

SUV ≃
∫

ddxedAW (Φ(A)) + . . .
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On-shell action and counter-terms

For IR-regular solutions, the on-shell action is a UV-boundary term:

Son−shell =

∫

ddx
√−γW (Φ)

∣

∣

∣

uUV

γµν = eA(u)ηµν

As W → W (0) in the UV, this is divergent as A → +∞. Using A as

the radial coordinate:

SUV ≃
∫

ddxedAW (Φ(A)) + . . .

• The divergence can be cancelled by adding

Sct = −
∫ √

γWct(Φ) whereWct is any solution of the

superpotential equation. This works because the UV is an

attractor for the superpotential equation.

• Different choices of Wct correspond to different

renormalization schemes.
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Renormalized generating functional

We can define a UV-renormalized on-shell effective action by:

S(ren) = lim
uUV →−∞

∫

ddx
√
γ [W (Φ)−Wct(Φ)]

∣

∣

∣

uUV

From the near-boundary expansion of γµν and W (Φ):

S(ren)[α] =

∫

ddxC(ren)α
d

d−∆ , C(ren) = C − Cct

Papadimitriou ’07; Kititsis and Niarchos ’12

• To see the flow to the IR, one has to write it in terms of the field

at a finite scale Φ(u)

• For asymptotically non-AdS backgrounds, the UV source is not

even well defined. But we can still proceed as above if we write

S(ren)[Φ(u)]
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Renormalized on-shell action revisited

S(ren)[α] =

∫

ddxC(ren) α
d

d−∆

• Choosing α defines a particular flow solution (A,Φα(A)). We

can invert this relation and write

α = α[A,Φ(A)] ⇒ S(ren)[A,Φ(A)]
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Renormalized on-shell action revisited

S(ren)[α] =

∫

ddxC(ren) α
d

d−∆

• Choosing α defines a particular flow solution (A,Φα(A)). We

can invert this relation and write

α = α[A,Φ(A)] ⇒ S(ren)[A,Φ(A)]

• For any fixed A, we can see S(ren)[A,Φ] as an independent

funcion of Φ.

• S[A,Φ] is constant along a radial flow:

d

dA
S(ren)[A,Φ(A)] =

[

∂

∂A
+

dΦ

dA

∂

∂Φ

]

S(ren)[A,Φ(A)] = 0

Old and new aspects of the holographic renormalization group – p.43



Renormalized on-shell action revisited

S(ren)[A,Φ] =

∫

ddxedA[W−Wct]A→+∞
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Renormalized on-shell action revisited

S(ren)[A,Φ] = C(ren)

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]
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Renormalized on-shell action revisited

S(ren)[A,Φ] = C(ren)

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

• This equation gives the explicit form of the renormalzied

generating functional at a finite scale A and renormalized

coupling Φ on any RG-glow trajectory.

• It can be used to derived trace identities for the renormalized

operators

Old and new aspects of the holographic renormalization group – p.44



Trace identity

S(ren)[A,Φ] = C(ren)

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

• Scale transformation xµ → λxµ:

〈Tµ
µ〉(ren) = d C(ren)edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

Old and new aspects of the holographic renormalization group – p.45



Trace identity

S(ren)[A,Φ] = C(ren)

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

• Scale transformation xµ → λxµ:

〈Tµ
µ〉(ren) = d C(ren)edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

• Renormalized vev:

〈O(ren)〉 = ∂S(ren)

∂Φ
= − d

2(d− 1)

W

W ′
C(ren)edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]
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Trace identity

S(ren)[A,Φ] = C(ren)

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

Renormalized trace identity:

〈Tµ
µ〉 = −2(d− 1)

W ′

W
〈O(ren)〉
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Trace identity

S(ren)[A,Φ] = C(ren)

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

Renormalized trace identity:

〈Tµ
µ〉 = −2(d− 1)

W ′

W
〈O(ren)〉

We can read-off the β-function:

β(Φ) = −2(d− 1)
W ′

W
=

dΦ

dA
,
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Trace identity

S(ren)[A,Φ] = C(ren)

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

Renormalized trace identity:

〈Tµ
µ〉 = −2(d− 1)

W ′

W
〈O(ren)〉

We can read-off the β-function:

β(Φ) = −2(d− 1)
W ′

W
=

dΦ

dA
,

• identification µ ≡ eA everywhere in the bulk.
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Trace identity

S(ren)[A,Φ] = C(ren)

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

Renormalized trace identity:

〈Tµ
µ〉 = −2(d− 1)

W ′

W
〈O(ren)〉

We can read-off the β-function:

β(Φ) = −2(d− 1)
W ′

W
=

dΦ

dA
,

• identification µ ≡ eA everywhere in the bulk.

• The β-function sees the whole geometry encoded in W .
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Trace identity

S(ren)[A,Φ] = C(ren)

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

Renormalized trace identity:

〈Tµ
µ〉 = −2(d− 1)

W ′

W
〈O(ren)〉

We can read-off the β-function:

β(Φ) = −2(d− 1)
W ′

W
=

dΦ

dA
,

[

∂

∂A
+ β(Φ)

∂

∂Φ

]

S(ren)[A,Φ] = 0

• identification µ ≡ eA everywhere in the bulk.

• The β-function sees the whole geometry encoded in W .

• RG-invariance ⇔ S(ren)[A,Φ] constant along the radial flow.
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Local RG flows

• The field theory data (coupling constants) Φ can be generalized

to xµ-dependent coupling functions (γµν(x),Φ(x))

(non-homogeneous sources for GI operators).

• On the gravity side, Einstein’s equations can be recast as first

order flow equations for running local couplings

(γµν(x, u),Φ(x, u)) by using a derivative expansion, in terms of

local covariant beta-functions:

Φ̇(x, u) = BΦ[Φ, γ], γ̇µν = Bµν [Φ, γ]
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Local RG flows

Kiritsis, Li, F.N, 1401.8888

The data will be the d-dimensional metric γµν(x, u) and scalar field

Φ(x, u) evaluated on a space-time slice in the bulk.

Changing the slice corresponds to changing the RG scale.
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Local RG flows

Kiritsis, Li, F.N, 1401.8888

The data will be the d-dimensional metric γµν(x, u) and scalar field

Φ(x, u) evaluated on a space-time slice in the bulk.

Changing the slice corresponds to changing the RG scale.

We take a solution with a general space-time metric γµν(x, u), in

ADM form:

ds2 = N2du2+γµν(x)(dx
µ+Nµdu)(dxν+Nνdu), Φ = Φ(u, x)

Old and new aspects of the holographic renormalization group – p.48



Local RG flows

Kiritsis, Li, F.N, 1401.8888

The data will be the d-dimensional metric γµν(x, u) and scalar field

Φ(x, u) evaluated on a space-time slice in the bulk.

Changing the slice corresponds to changing the RG scale.

We take a solution with a general space-time metric γµν(x, u), in

ADM form:

ds2 = N2du2+γµν(x)(dx
µ+Nµdu)(dxν+Nνdu), Φ = Φ(u, x)

Set N = 1, Nµ = 0 (FG gauge)
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First order local flow equations

The flow equations tell how to go from one hypersurface at u to

another one nearby at u+ ξ, as a function only on the invariants on

the slice.

δξγµν = ξ£nγµν = ξBµν(γu,Φu)

δξΦ = ξ£nΦ = ξBΦ(γu,Φu)
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Flow equations and derivative expansion

We write an ansatz for Lie derivative of the slice metric and scalar as

a derivative expansion on the slice:

γ̇µν=g1γµν + g2R
(γ)
µν + g3γµνR

(γ) + g4∂µΦ∂νΦ+ g5(γ
ρη∂ρΦ∂ηΦ)γµν

+g6∇µ∂νΦ+ g7(γ
ρη∇ρ∂ηΦ)γµν + ... ,

Φ̇ = h1 + h2R
(γ) + h3γ

ρη∂ρΦ∂ηΦ+ h4γ
ρη∇ρ∂ηΦ+ ... ,

The functions gi(Φ) and hi(Φ) are determined using the constraints.
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First order local flow equations

Imposing the constraints, the 2-derivative order flow equations are

govenerd by only two functions W (Φ), f(Φ)

γ̇µν = − W

d− 1
γµν

Φ̇ = W ′
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First order local flow equations

Imposing the constraints, the 2-derivative order flow equations are

govenerd by only two functions W (Φ), f(Φ)

γ̇µν = − W

d− 1
γµν −

1

(d− 1)

(

fR+
W

2W ′
f ′(γρσ∂ρΦ∂σΦ)

)

γµν

+2fRµν +

(

W

W ′
f ′ − 2f ′′

)

∂µΦ∂νΦ− 2f ′∇µ∂νΦ+ . . .

Φ̇ = W ′ − f ′R+
1

2

(

W

W ′
f ′

)′

(γρη∂ρΦ∂ηΦ) +
W

W ′
f ′(γρη∇ρ∂ηΦ) + . . .
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First order local flow equations

Imposing the constraints, the 2-derivative order flow equations are

govenerd by only two functions W (Φ), f(Φ)

γ̇µν = − W

d− 1
γµν −

1

(d− 1)

(

fR+
W

2W ′
f ′(γρσ∂ρΦ∂σΦ)

)

γµν

+2fRµν +

(

W

W ′
f ′ − 2f ′′

)

∂µΦ∂νΦ− 2f ′∇µ∂νΦ+ . . .

Φ̇ = W ′ − f ′R+
1

2

(

W

W ′
f ′

)′

(γρη∂ρΦ∂ηΦ) +
W

W ′
f ′(γρη∇ρ∂ηΦ) + . . .

W (Φ) and f(Φ) are solutions of:

d

4(d− 1)
W 2 − 1

2
W

′2 = −V, W ′f ′ − d− 2

2(d− 1)
Wf = 1
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Dynamical flow equations

• Flow equations controlled by the (zeroth-order) superpotential

W (Φ), plus an additional scalar function f(Φ)

• The new superpotential f(Φ) is otained from W (Φ), up to an

integration constant, also fixed by IR regularity.

• The flow equations solve automaticaly the remaining

(dynamical) Einstein’s equation. Thus, the flow equation ansatz

is consistent and encodes the full bulk dynamics.

• Does it describe all solutions which admit a derivative

expansion around a Poincaré invariant background?
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Radial flow vs. Local RG transformation

£nγµν = Bµν (γµν ,Φ) , £nΦ = BΦ (γµν ,Φ)

The Lie derivative says how the coupling change under a change in

the slice. How is this related to a Weyl transformation?
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Radial flow vs. Local RG transformation

£nγµν = Bµν (γµν ,Φ) , £nΦ = BΦ (γµν ,Φ)

The Lie derivative says how the coupling change under a change in

the slice. How is this related to a Weyl transformation?

The change in the metric under £n can be divided up into:

• a Weyl transfomation with parameter σ(x) = (2d)−1γµνBµν

• a volume-preserving transformation B̂µν

£nγµν = 2σγµν + B̂µν , γµνB̂µν = 0
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Radial flow vs. Local RG transformation

£nγµν = Bµν (γµν ,Φ) , £nΦ = BΦ (γµν ,Φ)

The Lie derivative says how the coupling change under a change in

the slice. How is this related to a Weyl transformation?

The change in the metric under £n can be divided up into:

• a Weyl transfomation with parameter σ(x) = (2d)−1γµνBµν

• a volume-preserving transformation B̂µν

£nγµν = 2σγµν + B̂µν , γµνB̂µν = 0

On a functional of (γµν(x),Φ(x)):

£n =

∫

dxσ(x)∆(x), ∆(x) = 2γµν
δ

δγµν
+ βµν

δ

δγµν
+ βΦ

δ

δφ

βµν =
B̂µν

σ
, βΦ =

BΦ

σ
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Beta-functions

∆γµν = 2γµν + βµν , ∆Φ = βΦ

βΦ = −2(d− 1)
W ′

W
− 2(d− 1)

W

(

f ′ +
W ′

W
f

)

R+ . . .

βµν =
f

W

[

Rµν −
1

d
γµνR

]

+ . . .
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Beta-functions

∆γµν = 2γµν + βµν , ∆Φ = βΦ

βΦ = −2(d− 1)
W ′

W
− 2(d− 1)

W

(

f ′ +
W ′

W
f

)

R+ . . .

βµν =
f

W

[

Rµν −
1

d
γµνR

]

+ . . .

• To zeroth order we recover the results of the homogeneous

calculation

• The metric gets an anomalous change beyond a Weyl rescaling

due to the curvature terms. This resembles the case of Ricci

flows.
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Generating functional for local sources

The on-shell action is a slice-covariant boundary term:

S =

∫

ddx

∫

du
√
g
(

R(g) − (∂Φ)2 − V
)

Papadimitriou ’11
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Generating functional for local sources

The on-shell action is a slice-covariant boundary term:

S =

∫

ddx

∫

du ∂u

{

√
γ

[

W − fR(γ) − 1

2

(

W

W ′
f ′

)

γµν∂µΦ∂νΦ+ ...

]}

Papadimitriou ’11
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Generating functional for local sources

The on-shell action is a slice-covariant boundary term:

S =

∫

ddx

{

√
γ

[

W − fR(γ) − 1

2

(

W

W ′
f ′

)

γµν∂µΦ∂νΦ+ ...

]}

UV

Papadimitriou ’11
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Generating functional for local sources

The on-shell action is a slice-covariant boundary term:

S =

∫

ddx

{

√
γ

[

W − fR(γ) − 1

2

(

W

W ′
f ′

)

γµν∂µΦ∂νΦ+ ...

]}

UV

Papadimitriou ’11

The order-two terms introduce a new divergence ∼ e(d−2)A.

• We can cancel the UV divergences with three independent

covariant boundary counterterms for the cosmological term,

Einstein term and scalar kinetic term. They are specified by

choosing three solutions Wct, f
(1)
ct , f

(2)
ct of the superpotential

equations.

• The divergence is cancelled provided the UV is an attractor (so

that a continous family of solutions with the same UV

asymptotics exists).
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Renormalized generating functional

• The generating functional has the local covariant form:

logZ(ren)[γ,Φ] =

∫

ddx
√
γ
[

C0Z0(Φ) + C1Z1(Φ)R+ C2Z2(Φ)(∂Φ)
2
]

+. . .

• Zi(Φ) are complicated but known functions of Φ, written in

terms of W and f . Up to the three scheme-dependent

multiplicative quantities Ci, the action is completely fixed and

gives the full non-linear result up to second derivative order.
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Renormalized generating functional

• The generating functional has the local covariant form:

logZ(ren)[γ,Φ] =

∫

ddx
√
γ
[

C0Z0(Φ) + C1Z1(Φ)R+ C2Z2(Φ)(∂Φ)
2
]

+. . .

• Zi(Φ) are complicated but known functions of Φ, written in

terms of W and f . Up to the three scheme-dependent

multiplicative quantities Ci, the action is completely fixed and

gives the full non-linear result up to second derivative order.

• By Legendre transform, this can be turned in the quantum

effective action Γ[γµν , O], that gives the dynamics of

condensates of composite operators.

Γ(ren)[γµν , O] =

∫

ddx
√
γ
[

C0Γ0(O) + C1Γ1(O)R+ C2Γ2(O)(∂O)2
]

in terms of known functions Γi(O) depending only on W .
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Renormalized generating functional

• The generating functional has the local covariant form:

logZ(ren)[γ,Φ] =

∫

ddx
√
γ
[

C0Z0(Φ) + C1Z1(Φ)R+ C2Z2(Φ)(∂Φ)
2
]

+. . .

• Zi(Φ) are complicated but known functions of Φ, written in

terms of W and f . Up to the three scheme-dependent

multiplicative quantities Ci, the action is completely fixed and

gives the full non-linear result up to second derivative order.

• logZ(ren) obeys the local RG equation up to local Weyl anomalies

∫
(

2γµν
δ

δγµν
− βµν

δ

δγµν
− βΦ

δ

δφ

)

Z(ren) = 0

with the holographic β-functions appearing.
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Applications and further developements
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Pheno

• Use the holographic quantum action functional to model 4d

strongly coupled sectors coupled to weakly interacting physics

to do pheno (semi-holography).

S = Sweak[φ] + Sstrong +

∫

d4xφOsc

⇓

Seff = Sweak[φ] + logZ[φ]

• The bulk is integrated out. Description purely 4d. W (Φ) only

input in the model
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Pheno

• Model building with condensates (as opposed to elementary

fields) via the quantum effective action:

Γ(ren)[γµν , O] =

∫

ddx
√
γ
[

C0Γ0(O) + C1Γ1(O)R+ C2Γ2(O)(∂O)2
]

• e.g. inflation driven by a condensate: better UV properties.
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Pheno

• Model building with condensates (as opposed to elementary

fields) via the quantum effective action:

Γ(ren)[γµν , O] =

∫

ddx
√
γ
[

C0Γ0(O) + C1Γ1(O)R+ C2Γ2(O)(∂O)2
]

• e.g. inflation driven by a condensate: better UV properties.

• Example: Quantum effective potential for RG-invariant gluonic

operator in holographic YM (Kiritsis, Li, FN ’14)

Γ0[T ] =

∫

d4x
T
4

(

log
T
Λ4

− 1

)

T ≡ β(λ)

λ2
TrF 2
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Non-vacuum RG-flows

• The solutions we have seen preseve Poincaré invariance. Can

generalize the flow equation formalism to less symmetric

situations:

• Finite temperature and density

• Time-dependent solutions

• Curved slice geometries
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Temperature

The vacuum (homogeneous) solution breaks Poincaré invariance

ds2 = du2 +
[

f(u)dt2 + eA(u)dx2i

]

• Must have a different flow in the tt and ij directions.

• Three superporentials Wt,Wx,WΦ, or a single one with

A-dependence, W (Φ, A) (Papadimitriou, ’15)
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Temperature

The vacuum (homogeneous) solution breaks Poincaré invariance

ds2 = du2 +
[

f(u, x)dt2 + γijdx
idxj

]

• Must have a different flow in the tt and ij directions.

• Three superporentials Wt,Wx,WΦ, or a single one with

A-dependence, W (Φ, A) (Papadimitriou, ’15)

• Challenges: covariantize w.r.t. to the spatial metric γij ;

Einstein’s constraints imposing momentum conservation

become non-trivial.

• A covariant approach with spacetime-dependent fields and a

derivative expansion would generalize fluid/gravity beyond

dynamics of (pseudo-)goldstone bosons.
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Curvature

• Look at RG flows where the spacetime metric has a (not

necessarily small) curvature

ds2 = du2 + γµν(u, x)dx
µdxν

• Same symmetries as the black hole background.

• Possibly relevant for dual gravity duals of cosmologically active

strongly coupled sectors

• Cosmology as an RG-flow ?
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Wilsonian picture

So far we have computed the quantum effective action by integrating

the solution from a UV cutoff to the IR.
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Wilsonian picture

So far we have computed the quantum effective action by integrating

the solution from a UV cutoff to the IR.

What about the Wilsonian action?
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Wilsonian generating functional

We can indtruduce a variable IR cut-off slice at uIR = u(Λ)

S =

∫ u(Λ)

uUV

duLgrav + Sct

∣

∣

∣

uUV

The generating functional receives an extra contribution from u(Λ):

SWilson = S(ren) + SΛ
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Wilsonian generating functional

We can indtruduce a variable IR cut-off slice at uIR = u(Λ)

S =

∫

ddx

[

√
γ

(

W̃ − f̃R−
(

W̃

W̃ ′
f̃ ′

)

1

2
γµν∂µΦ∂νΦ+ ...

)]u(Λ)

uUV

+ Sct

∣

∣

∣

uUV

The generating functional receives an extra contribution from u(Λ):

SWilson = S(ren) + SΛ

SΛ =

∫

ddx
√
γ

(

W̃ − f̃R−
(

W̃

W̃ ′
f̃ ′

)

1

2
γµν∂µΦ∂νΦ+ ...

)

Λ

In this case the superpotentials are chosen based on IR

boundary conditions at Λ. According to Polchinksi et

Heemskerk we should integrate over possible W .
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Emergent gravity from Quantum local RG

(S.S. Lee, 2013)

• Quantum RG: projecting the RG on the submanifold of

single-trace couplings.
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Emergent gravity from Quantum local RG

(S.S. Lee, 2013)

• Quantum RG: projecting the RG on the submanifold of

single-trace couplings.

• The coupling constants acquire kinetic terms w.r.t. the

RG-direction: sources become dynamical field in a higher

dimensional space. ⇒ Holography!

• How does one recover Einstein’s gravity? How do large-N and

strong coupling play a role (except for the fact that multitrace

are suppressed) ?

• Study the structure of local holographic RG to connect with FT

quantum RG

• How much can we reconstruct of the gravity theory from

knowing the covatiant β-functions only?
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Understanding regularity

• How exactly does the IR regularity condition select a solution?

• Is the mechanism dynamical (suppression in the full bulk

path integral)?

• Is it related to UV completions (or lack thereof) ? E.g, only

the regular solutions may have a string theory uplift.

• How does this play out in the Wilsonian framework, where

IR regularity is not imposed?

• Possible role played by Gubser-like criteria for singularities.
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A new type of σ-model?

Let us take another look at the flow equations:

γ̇µν = W γµν + fRµν + g∂µΦ∂νΦ+ . . .

Φ̇ = W ′ + hR+ k(∂Φ)2 + . . .

• They have a striking similarity to the worldsheet β-function

equations of perturbative string theory. There, setting the r.h.s.

to zero enforces conformal invariance. Here, it enforces

translation invariance along the space-time slices.

• γµν(x, r) and Φ(x, γ) are spacetime-dependent coupling of the

dual four-dimensional field theory. The r.h.s. of the flow eqs.

are their beta-functions
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A new type of σ-model?

Let us take another look at the flow equations:

γ̇µν = W γµν + fRµν + g∂µΦ∂νΦ+ . . .

Φ̇ = W ′ + hR+ k(∂Φ)2 + . . .

• The fixed points of these equations solve the equations of

motion derived from the effective action. In string theory, they

determine consistent string background. What is their meaning

here? We already know some fixed points: they are the AdS

fixed points corresponding to conformal theories. Are

non-homogeneous solutions some kind of new CFTs ?

• Are we looking at a new type of sigma model whose

“worldsheet” are gauge theories?

(see work by E. Kiritsis ’14 for some related thoughts)
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