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Introduction

• Non-AdS Holography:

◦ Boundary not described by Lorentzian geometry

◦ Examples: Lifshitz spaces (Newton–Cartan) & null
Infinity of flat space (Carrollian)

◦ Dual field theories are non-Lorentzian field theories

• non-Lorentzian field theories important for infrared
effective descriptions of low energy physics (e.g.
strange metals)

• New theories of gravity (e.g. Hořava–Lifshitz) but also
novel 3D Chern–Simons theories based on
non-Lorentzian symmetries
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Terminology

• non-Lorentzian symmetry: any symmetry group, not
Poincaré, that contains at least H (time translations),
Pi (space translations) and Jij (spatial rotations)

• Aristotelian (absolute rest) symmetries: H, Pi, Jij

• May contain more symmetries like D (dilatations:
t→ λzt and xi → λxi) and boosts

• non-Lorentzian boosts:

◦ Gi (Galilean boost: t→ t and xi → xi + vit)

◦ Ci (Carrollian boost: t→ t+ v̄ixi and xi → xi)

• non-Lorentzian geometry: geometry obtained by
gauging a non-Lorentzian symmetry
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Important Algebras

• Galilei: H, Pi, Gi, Jij [H,Gi] = Pi, [Pi, Gj ] = 0

i = 1, . . . , d, contraction of Poincaré for c→ ∞
• Bargmann: Gal. + central N (mass), [Pi, Gj ] = Nδij

subgroup of Poincaré in one dimension higher
(commutant of null momentum), not a contraction

• Schrödinger: Barg. + dilatations (any z)
enhancement for z = 2: SL(2,R) subgroup: H,D,K
(K =spec. conf.) subgroup of conf. group in one
dimension higher

• Galilei conformal algebra: H, D (z = 1), K, Pi, Gi, Ki

(Ki =accelerations), Jij
contraction of conformal algebra for c→ ∞
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Important Algebras

• Schrödinger and Galilean conformal algebras contain
infinite dimensional extensions in any dimension.

• Carroll: H, Pi, Ci, Jij, [Pi, Cj ] = Hδij (H central)
contraction of Poincaré for c→ 0

• Lifshitz Carroll: Carroll+dilatations (any z)

• Lifshitz: H, Pi, Jij + dilatations (any z)

• Galilei and Carroll are isomorphic in 1+1D.

• The finite/infinite dimensional Galilean conformal
algebra in 1+1D is isomorphic to the
Poincaré(2,1)/BMS3 algebra.
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Questions

• One of the main goals: Understand the landscape of
non-Lorentzian field theories and derive the equations
for their hydrodynamic limit

• What geometry do these non-Lorentzian field theories
couple to?

• Which spaces have a non-Lorentzian boundary
geometry?

• What theory of gravity arises when making
non-Lorentzian geometries dynamical?

• Can we use this non-Lorentzian gravity as a bulk
theory in holography?
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Outline Talk

• Newton–Cartan Geometry

• Field theories on TNC backgrounds

• Lifshitz Scalar Models

• Carrollian Geometry and Field Theory

• Hydrodynamics

• Lifshitz Holography

• Chern–Simons Theories

• Summary/Outlook
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Part I:
Newton–Cartan Geometry
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Equivalence Principles

• Lorentzian geometry can be obtained by gauging the
Poincaré algebra, replacing local translations by
diffeomorphisms.

• Einstein’s equivalence principle: locally a manifold is
Minkowski space-time.

• Newton–Cartan geometry is a manifold such that
locally space-time is flat in the sense of Galilei’s
principle of relativity and can be obtained by gauging
the Bargmann algebra: H, Pa, Ga, Jab, N .

• NC geometry (with torsion) is the natural geometric
framework for HL gravity.
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From Poincaré to GR

• Local Poincaré: Pa, Mab (gauging), a = 0, 1 . . . , d:

Aµ = Pae
a
µ +

1

2
Mabωµ

ab

Fµν = ∂µAν − ∂νAµ + [Aµ ,Aν ] = PaRµν
a(P ) +

1

2
MabRµν

ab(M)

δAµ = ∂µΛ + [Aµ ,Λ] , Λ = ξµAµ + Σ , Σ =
1

2
Mabλ

ab

δ̄Aµ = δAµ − ξνFµν = LξAµ + ∂µΣ + [Aµ ,Σ]

• ∇µ defined via VP : Dµe
a
ν = ∂µe

a
ν − Γρµνe

a
ρ − ωµ

a
be
b
ν = 0

• Lorentz invariant gµν = ηabe
a
µe
b
ν . Affine Γρµν : ∇µgνρ = 0.

• Rµν
a(P ) = 2Γρ[µν] = torsion

• Rµν
ab(M) = Riemann curvature 2-form
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Gauging Bargmann

• Gauging Bargmann [Andringa, Bergshoeff, Panda, de Roo, 2011]
H, Pa, Ga, Jab, N (a is a spatial index):

Aµ = Hτµ + Pae
a
µ +GaΩµ

a +
1

2
JabΩµ

ab +Nmµ

Fµν = HRµν(H) + PaRµν
a(P ) +GaRµν

a(G) +
1

2
JabRµν

ab(J) +NRµν(N)

δAµ = ∂µΛ + [Aµ ,Λ] , Λ = ξµAµ + Σ , Σ = Gaλ
a +

1

2
Jabλ

ab +Nσ

δ̄Aµ = δAµ − ξνFµν = LξAµ + ∂µΣ + [Aµ ,Σ]

• Vielbein postulates (introduction of Γρµν):

Dµτν = ∂µτν − Γρµντρ = 0

Dµe
a
ν = ∂µe

a
ν − Γρµνe

a
ρ − Ωµ

aτν − Ωµ
a
be
b
ν = 0
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Gauging Bargmann

• Transformations of τµ, eaµ and mµ:

δ̄τµ = Lξτµ , δ̄eaµ = Lξeaµ+λaτµ+λabebµ , δ̄mµ = Lξmµ+∂µσ+λae
a
µ

• Inverse vielbeins: vµ and eµa via:

vµτµ = −1 , vµeaµ = 0 , eµaτµ = 0 , eµae
b
µ = δba

• Metric: hµν = δabeµae
ν
b and τµ

• Γρµν is affine and inert under G, J

• Ωµ
ab = Ωµ

[ab] so that ∇µh
νρ = 0. Also ∇µτν = 0

• Torsion: 2Γρ[µν] = −vρRµν(H) + eρaRµν
a(P )

• Curvature: [∇µ ,∇ν ]Xσ = Rµνσ
ρXρ − 2Γρ[µν]∇ρXσ

• where Rµνσ
ρ = eρaτσRµν

a(G)− eσae
ρ
bRµν

ab(J)
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Affine Connection

• In GR one sets torsion to zero by hand because
applying the Noether procedure to the gauging of
Poincaré does not require torsion. Here a similar
argument leads to [Festuccia, Hansen, JH, Obers, 2016]

Γρµν = −v̂ρ∂µτν +
1

2
hρσ

(

∂µh̄νσ + ∂ν h̄µσ − ∂σh̄µν
)

where v̂µ = vµ − hµνmν and h̄µν = hµν − τµmν − τνmµ

are G and J invariant.

• Torsion: 2Γ̂ρ[µν] = −v̂ρ (∂µτν − ∂ντµ). Three cases :

◦ No torsion: ∂µτν − ∂ντµ = 0 (NC geometry)

◦ Twistless torsion: ∂µτν − ∂ντµ = aµτν − aντµ (TTNC)

◦ No constraint on τµ (TNC geometry)
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ADM Decomposition

• Local G invariant vielbeins: τµ, êaµ = eaµ − τµe
νamν and

inverses: v̂µ and eµa .

• Lorentzian metric: gµν = −τµτν + ĥµν , ĥµν = δabê
a
µê
b
ν

• v̂µ = gµντν and eµa = gµν êνa

• ADM: ds2 = −N 2dt2 + γij (dx
i +N idt) (dxj +N jdt)

• TTNC τµ = ψ∂µτ (τ is Khronon field of [Blas, Pujolas,

Sibiryakov, 2010])

• Fix foliation τ = t this implies

τt = N , ĥti = γijN
j , ĥij = γij , mi = −N−1γijN

j
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ADM Decomposition

• Since τt = N it follows that

◦ NC: ∂µτν − ∂ντµ = 0 is equivalent to N = N(t):
projectable HL gravity

◦ TTNC: N = N(t, x): non-projectable HL gravity,
extra field (torsion) ai = N−1∂iN

• ADM decomposition becomes dynamical and is
described by τµ (lapse), mµ (shift) and ĥµν (spatial
metric on cst time slices).

• Actually mt = − 1
2N
γijN

iN j +N Φ̃ is an additional field
(denoted by A in [Horava, Melby-Thompson, 2010]) where
Φ̃ = −vµmµ +

1
2
hµνmµmν is G, J invariant.
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Part II:
Field theories on TNC

backgrounds
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Fixed TNC Backgrounds

• The TNC geometry is described by τµ, eaµ (or vµ, eµa)
and mµ such that an action is invariant under local
tangent space G, J , N transformations. To achieve J
invariance use hµν = δabeµae

ν
b . Sources are:

S = S[vµ, hµν ,mµ]

• Its variation is with e = det(τµ, eaµ)

δS =

∫

dd+1xe

(

−Tµδvµ +
1

2
Tµνδh

µν + Jµδmµ

)

• G invariance: Tµeµa = Jµeµa (mom. density=mass flux)

• N invariance: ∂µJµ = 0 (mass conservation)
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Energy-Momentum Tensor

• The EMT is T µ
ν = −vµTν + hµρTρν

◦ T t
t is the energy density

◦ T i
t is the energy flux

◦ T t
i = J i is the momentum density

◦ T j
i = T ji is the stress

◦ J t is the mass density

• Diffeo and scale Ward identities on flat TNC space-time

∂µT µ
ν = 0 (energy-momentum conservation), zT t

t+T i
i = 0

• Making G inv. manifest: S = S[v̂µ, hµν , Φ̃] and
T µν = T µ

ν − Jµmν but loose manifest N inv.
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Example: Schrödinger Model

• Action for Schrödinger equation on a TNC background:

S =

∫

dd+1xe [−iφ∗v̂µ∂µφ+ iφv̂µ∂µφ
∗ − hµν∂µφ∂νφ

∗ − 2φφ∗ΦN − V (φφ∗)]

• On a flat NC background this becomes:

S =

∫

dd+1x [iφ∗ (∂tφ+ iφ∂tM)− iφ (∂tφ
∗ − iφ∗∂tM)

−δij (∂iφ+ iφ∂iM) (∂jφ
∗ − iφ∗∂jM)− V (φφ∗)

]

• Wavefunction ψ defined as φ = e−iMψ.

• Space-time symmetries for M = cst is the Lifshitz
subalgebra of Sch given by H, D, Pi and Jij.
Space-time symmetries for M = xixi/2t is the Lifshitz
subalgebra of Sch given by K, D, Gi and Jij.
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Particle Number

• What about particle number?

S =

∫

dd+1xe [−iφ∗v̂µ∂µφ+ iφv̂µ∂µφ
∗ − hµν∂µφ∂νφ

∗ − 2φφ∗ΦN − V (φφ∗)]

can be rewritten as

S =

∫

dd+1xe [−iφ∗vµDµφ+ iφvµDµφ
∗ − hµνDµφDνφ

∗ − V (φφ∗)]

where Dµφ = ∂µφ+ imµφ. There is a local symmetry
φ→ e−iσφ and mµ → mµ + ∂µσ.

• Particle number corresponds to a global phase rotation
of φ and is not a space-time symmetry of the TNC
background.
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Discussion

• Null reductions turn a Lorentzian space-time into a
TNC geometry.

• Other examples of field theories on TNC backgrounds
are null reductions of Maxwell, known as Galilean
electrodynamics (massless) [Festuccia, Hansen, JH, Obers, 2016].

• Massless Galilean theories: momentum density is
zero.

• By starting with a Galilean or Bargmann invariant field
theory on flat space we can obtain TNC geometry by
the Noether procedure [Festuccia, Hansen, JH, Obers, 2016].

• Typically first order in time derivatives.
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Part III:
Lifshitz Scalar Models
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Lifshitz Scalar Models

• Higher derivative single real scalar model

L =
1

2
(∂tθ)

2 − λ

2
(∂i∂i)

nθ(∂i∂i)
nθ , z = 2n

• Shift symmetry: θ → θ + c

Scaling dimension: [θ] = (d− z)/2

Global symmetries: R× Lif
Hamiltonian is bounded from below
Time reversal invariance

• For z < d we can add a potential V = V (θ). For z ≥ d

we keep the shift symmetry for otherwise we can add
arbitrary high powers of θ.
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Lifshitz Scalar Models

• Lifshitz is a subgroup of Schrödinger so the
Schrödinger model is a Lifshitz scalar theory

L = iφ⋆∂tφ− iφ∂tφ
⋆ − ∂iφ∂iφ

⋆ − V0 (φφ
⋆)(d+2)/d

φ =
1√
2
ϕeiθ , L = −ϕ2

[

∂tθ +
1

2
∂iθ∂iθ

]

−1

2
∂iϕ∂iϕ−V0ϕ2(d+2)/d

• Shift symmetry: θ → θ + c

Scaling dimension: [ϕ] = d/2, [θ] = 0

Global symmetries: Sch(z = 2) ⊃ U(1)× Lif(z = 2)
Hamiltonian is bounded from below
No time reversal invariance
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Lifshitz Scalar Models

L = −ϕ2

[

∂tθ +
1

2
∂iθ∂iθ

]

− 1

2
∂iϕ∂iϕ− V0ϕ

2(d+2)/d

• Galilean boosts (generator Gi):
xi = x′i − vit′ , t = t′ , θ = θ′ − vix′i + 1

2
vivit′

Invariant: ∂tθ + 1
2
∂iθ∂iθ

[Pi, Gj ] = Nδij: mass N (shift θ)

• At an algebraic level we can break
Sch → Lif by breaking N

• Or we can break
Sch → U(1)× Lif by breaking Gi
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Lifshitz Scalar Models

L = −ϕα∂tθ−
1

2
ϕ2∂iθ∂iθ−

1

2
∂iϕ∂iϕ−V0ϕ

2(d+z)
d+z−2 , α =

2d

d+ z − 2

• Shift symmetry: θ → θ + c

Scaling dimensions: [ϕ] = (d+ z − 2)/2, [θ] = 0

Global symmetries: U(1)× Lif(z) for z 6= 2

General z > 1 scaling without higher spatial derivatives
For z 6= 2 Galilean boosts are broken
Hamiltonian is bounded from below
No time reversal invariance

L = (φφ⋆)(α−2)/2 [iφ⋆∂tφ− iφ∂tφ
⋆]− ∂iφ∂iφ

⋆ − V0 (φφ
⋆)

d+z

d+z−2
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Discussion

• When breaking Gi we preserve a U(1) but we break N .
So mass current (defined as response to varying mµ)
is not conserved, instead there is another U(1) current.

• Coupling to TNC geometry requires extra source χ
whose response is the right hand side of ∂µJµ.

• Other models:
L = −ϕ

2(d−z+2)
z+d−2

[

∂tθ +
1
2
∂iθ∂iθ

]

− 1
2
∂iϕ∂iϕ− V0ϕ

2(d+z)
z+d−2

Has Schrödinger invariance for general z.

• These Lifshitz models have first order time derivatives.
How to understand

L =
1

2
(∂tθ)

2 − λ

2
(∂i∂i)

nθ(∂i∂i)
nθ , z = 2n
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Part IV:
Carrollian Geometry and Field

Theory
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Carroll Symmetries

• Ultra-relativistic limit of Poincaré

• Lorentz boosts: Li = ct∂i +
1
c
xi∂t. Send c→ 0 gives

Ci = xi∂t. Finite trafo: t→ t+ v̄ixi and xi → xi.

• Light cone collapses to a line

• [Pi, Cj ] = Hδij no massive generalizations in D > 2

• Simple Carroll boost invariant model:
L = 1

2
(∂tφ)

2 − V (ϕ)

• Time-reversal invariant
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Carrollian Geometry

• Gauging Carroll: Aµ = Hτµ + Pae
a
µ + CaΩµ

a + 1
2
JabΩµ

ab

δ̄Aµ = δAµ−ξνFµν = LξAµ+∂µΣ+[Aµ ,Σ] , Σ = Gaλ
a+

1

2
Jabλ

ab

• Square matrix (τµ, e
a
µ) has inverse (vµ.eµa)

• Metric: vµ and hµν = δabe
a
µe
b
ν

• Like in TNC case we can Stückelberg the boost
symmetry. Here this requires introducing Mµ so that
τ̂µ = τµ − hµνM

ν and êµa = eµa −M νeνav
µ are invariant.

• Examples: any null hypersurface of a Lorentzian metric
is Carrollian including future/past null infinity of
asymptotically flat space-times [JH, 2015].
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Discussion

• Field theory on a fixed Carrollian geometry:

δS =

∫

dd+1xe

(

−Tµδvµ +
1

2
Tµνδh

µν

)

• Energy-momentum tensor: T µν = −vµTν + hµρTρν

• Carroll boost symmetry: Tµνvµeνa = 0 (zero energy flux)

• We can now understand:

L =
1

2
(∂tθ)

2 − λ

2
(∂i∂i)

nθ(∂i∂i)
nθ , z = 2n

as a Lifshitz theory with broken Carrollian boosts.

• When coupling to Carrollian geometry the boost
breaking is controlled by the coupling to Mµ.
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Part V:
Hydrodynamics
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Relativistic Perfect Fluids

• Energy-momentum tensor:

T µν = (E + P )UµUν + Pδµν

• geometry: Lorentzian with metric gµν

• Velocity: UµUµ = −1

• Landau frame: T µνU ν = −EUµ

• Ward identities: ∇µT
µν = 0 and T [µν] = 0

• Scale symmetry: T µµ = 0: E = dP

• Equation of state: P = P (E). 1st law: δE = Tδs

• Fluid variables: T and Uµ
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Galilean Perfect Fluids

T µν = (E + P )uµτν + Pδµν + uµPν , Jµ = −ρuµ

• Particle 4-mom. Pν = 1
2
ρhκλu

κuλτν + ρ (hνκu
κ +mν)

• geometry: TNC with metric τµ and hµν

• Velocity: uµτµ = −1

• Landau frame: T µνuν = −Euµ

• Ward identities (flat space): ∂µT µν = 0, ∂µJµ = 0,
T ti = J i and T ij = T j i

• Scale symmetry: zT tt + T ii = 0: zE = dP

• Equation of state: P = P (E). 1st law: δE = Tδs

• Fluid variables: T , ρ and uµ

Non-relativistic holography, Newton-Cartan geometry and hydrodynamics – p. 34/61



Speed of Sound of Galilean perfect fluid

• Fluctuate around a constant background (perform
G-boost: ∂t′ = ∂t + V i

0∂i and ∂′i = ∂i)

∂2t′δE − E0 + P0

ρ0
∂′i∂

′

iδP = 0

• Assume equation of state 2E = dP

∂2t′δE − 2

d

E0 + P0

ρ0
∂′i∂

′

iδE = 0

• 1st law: δE = Tδs = E+P
ρ
δρ+ Tρδ

(

s
ρ

)

• Speed of sound c2s =
(

∂P
∂ρ

)

s/ρ
= 2

d
E0+P0

ρ0
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Carrollian Perfect Fluids

T µν = (E + P ) vµūν + Pδµν

• geometry: Carrollian with metric vµ and hµν

• Velocity: vµūµ = −1

• Landau frame: T µν ūµ = −E ūν
• Ward identities (flat space): ∂µT µν = 0, T it = 0 and
T ij = T ji

• Scale symmetry: zT tt + T ii = 0: zE = dP

• Equation of state: P = P (E). 1st law: δE = Tδs

• Fluid variables: T and ūµ

• Follows from c→ 0 limit of rel. PF
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Null Reduction

• Minkowski in null coordinates: ds2 = 2dtdu+ dxidxi

• Null reduction of EMT: tµu = T µ, tuu = T tt, tµν = T µν

• Perfect fluid: tAB = (E + P )UAUB + PδAB, U2 = −1

• Reduction of fluid:

U2
u =

ρ

E + P
, Ut = −1

2
Uu

(

V iV i + U−2
u

)

Ui = UuV
i , E = 2E + P ,

• Lower-dimensional EMT and mass current:

T µν =

(

E + P +
1

2
ρV iV i

)

uµτν + Pδµν + ρuµhνρu
ρ , T µ = −ρuµ

τµu
µ = −1 , ui = −V i , τµ = δtµ , htµ = 0 , hij = δij
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Lifshitz Fluids from Null Reduction

• Add a scalar with shift symmetry and consider the
Ward identities: ∂AtAB = −Oψ∂Bψ and tAA = 0

• Twisted null reduction: ψ = −u
• Lower-dimensional Ward identities: ∂µT µν = 0,
∂µT

µ = Oψ (mass no longer conserved), 2T tt + T ii = 0

• Fluid equations imply a conserved entropy current if
we take

E + P − 1

2
ρV 2 = Ts , δE = Tδs+

1

2
V 2δρ

• Velocity V i becomes a chemical potential

• Lifshitz PF from Schrödinger PF by breaking N

Non-relativistic holography, Newton-Cartan geometry and hydrodynamics – p. 38/61



Discussion

• In the example from twisted null reduction we can take
e.g. Oψ = cρ∂iV

i. This leads to a conserved current

∂tρ
1

1−c + ∂i

(

ρ
1

1−cV i
)

= 0. In this case speed of sound

the same as in Galilean case.

• work in progress:

◦ Systematically classify transport coefficients of
Lifshitz fluids by breaking Gal, Lor or Car boosts by
adding terms to the boost Ward identities that break
these symmetries.

◦ Most general hydro assuming only Lifshitz
symmetries.

◦ Hydro from Finite temperature Lifshitz field theories.
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Part VI:
Lifshitz Holography
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Lifshitz Holography

• Types of models:

◦ Horava–Lifshitz gravity in the bulk [Griffin, Horava,

Melby-Thompson, 2012], [Janiszewski, Karch, 2012] which is
dynamical TTNC geometry in the bulk [JH, Obers, 2015].

◦ Bulk GR with massive vectors or a massless vector
with a dilaton: [Baggio, de Boer, Holsheimer, 2011], [Ross, 2011],
[Griffin, Horava, Melby-Thompson, 2012], [Chemissany, Geissbuhler, JH,

Rollier, 2012], [Chemissany, Papadimitriou, 2014].

• Here focus is on the massive vector model.
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Massive Vector Model

• For a bulk theory of the form

S =

∫

d4x
√−g

(

R− 1

4
Z(Φ)F 2 − 1

2
(∂Φ)2 − 1

2
W (Φ)B2 − V (Φ)

)

Lifshitz solutions are given by

ds2 = −dt
2

r2z
+

1

r2
(

dr2 + dx2 + dy2
)

, B =
2(z − 1)

zZ0

dt

rz
, Φ = 0

provided the functions Z, W and V obey

V0 = −
(

z2 + z + 4
)

, W0 = 2zZ0 , V1 = (z − 1)

(

z
Z1

Z0

+ 2
W1

W0

)

where we denote: V (Φ) = V0 + V1Φ + . . .
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Massive Vector Model

• For a bulk theory of the form

S =

∫

d4x
√−g

(

R− 1

4
Z(Φ)F 2 − 1

2
(∂Φ)2 − 1

2
W (Φ)B2 − V (Φ)

)

ds2 =
dr2

R(Φ)r2
−E0E0 + δabE

aEb , BM = AM − ∂MΞ

the AlLif boundary conditions are [Ross, 2011], [Christensen,

JH, Obers, Rollier, 2013], [JH, Kiritsis, Obers, 2014] (1 < z ≤ 2):

E0
µ = r−zτµ + . . .+ rz−2 (mµ − ∂µχ) + . . . Ea

µ = r−1eaµ + . . .

Aµ = α(Φ)E0
µ + . . . Ar = (z − 2)rz−3χ+ . . .

Ξ = rz−2χ+ . . . Φ = r∆φ+ . . .
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Transformations of the sources

• The local bulk symmetries are: local Lorentz transf.,
gauge transf. acting on AM and Ξ and diffeos
preserving the metric gauge (PBH transf.).

• The way these symmetries act on the sources τµ, eaµ,
mµ, χ is the same as the action of the Bargmann
algebra plus local dilatations, i.e. the Sch algebra.

• There is thus a Schrödinger Lie algebra valued
connection given by (m̃µ = mµ + (z − 2)χbµ):

Aµ = Hτµ + Pae
a
µ +Nm̃µ +

1

2
Jabωµ

ab +Gaωµ
a +Dbµ

whose transformations reproduce those of the sources
[Bergshoeff, JH, Rosseel, 2014]. Bdry geom.=TTNC geom.
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Boundary Geometry

• In the metric formalism the sources are:

source h̄µν τµ Φ̃ φ

scaling dimension −2 −z 2(z − 1) ∆

• Schematically they appear in the asymptotic exp. as

ds2 =
dr2

Rr2
+ hµνdx

µdxν B = Brdr +Bµdx
µ

hµν = −r−2zτµτν + . . .+ r−2
(

h̄µν + Φ̃τµτν

)

+ . . .

Bµ = r−zτµ + . . .+ r2−zΦ̃τµ + . . .

Φ = r∆φ+ . . . + r2(z−1)Φ̃ + . . .
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Leading Order Solutions

• i). 1 < z < 2 and ∆ > 0

R(0) =
1

2z

W0

Z0
, α2

(0) =
2(z − 1)

z

1

Z0

V0 = − 1

2z
(z2 + z + 4)

W0

Z0

, V1 = (z − 1)

[

1

2

Z1

Z0

+
1

z

W1

W0

]

W0

Z0

We can set Z0 = 1. R0 is the Lifshitz radius.
• ii). 1 < z < 2 and ∆ = 0

• iii). z = 2 and ∆ > 0

R(0) = (Z(φ))
−
z−1
z+1 , α2

(0) =
2(z − 1)

z
(Z(φ))−1

W (Φ) = 2z(Z(φ))
2
z+1 + . . . , V (Φ) = −(z2 + z + 4)(Z(φ))

−
z−1
z+1 + . . .

• iv). z = 2 and ∆ = 0
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Vevs and Ward identities

• Assuming holographic renormalizability the variation of
the on-shell action takes the form:

δSos
ren =

∫

d3xe

[

−Tµδvµ +
1

2
Tµνδh

µν + Jµδmµ

+〈Oχ〉δχ+ 〈Oφ〉δφ−Aδr
r

]

• The vevs and sources can be used to define the G, J ,
N invariants:

T µν = −vµTν + eµaT
a
ν − Jµ (mν − ∂νχ) bdry EM tensor

Jµ = −J0vµ + Jaeµa mass current

• Vielbein components of T µν provide the energy
density, energy flux, momentum density and stress.
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Vevs and Ward identities

• The Ward identities are (ignoring the dilaton φ):

0 = −êaµJµ + τµe
νaT µν boosts

0 = êaµe
νbT µν − (a↔ b) rotations

A = −zv̂ντµT µν + êaµe
ν
aT

µ
ν + 2(z − 1)Φ̃τµJ

µ dilatations

〈Oχ〉 = e−1∂µ (eJ
µ) gauge trafo

0 = ∇µT
µ
ν + 2Γρ[µρ]T

µ
ν − 2Γµ[νρ]T

ρ
µ + τµJ

µ∂νΦ̃ diffeos

• We used Galilean boost invariant vielbeins τµ, v̂µ, eµa ,
êaµ and density e = det (τµ, eaµ).

• ∇µ denotes that affine TNC connection for which
∇µτν = 0, ∇µh

νρ = 0 and ∇µv̂
ν = 0.
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Moving Lifshitz Black Branes [JH, Obers, Sanchioni, 2016]

• SS reduction of L(5) =
√−γ

(

R + 12− 1
2
(∂ψ)2

)

+ Lct

L(4) =
√
−g

(

R− 1

4
e3ΦF 2 − 2B2 − 3

2
(∂Φ)2 − 2e−3Φ + 12e−Φ

)

+ Lct

• Admits z = 2 and ∆ = 0 Lifshitz solutions

• Near boundary (r = 0) exp.: ds24 = eΦ dr
2

r2
+ hµνdx

µdxν

Φ = −1

8
r2ρ− r4

(

1

6
T tt +

1

64
ρ2
)

+O(r6)

Bt = r−2 +
1

4
ρ+ r2

(

1

12
T tt +

1

16
ρ2
)

+O(r4)

Bi = −1

4
r2T ti +O(r4) likewise for hµν
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Moving Lifshitz Black Branes

• Ansatz for full solution (all functions depend on r only):

ds24 = −r−4F1dt
2 +

dr2

r2F2

+
F3

r2
dx2 +

F4

r2
(dy +N ydt)2

B = r−2Gdt+ Ay (dy +N ydt) , Φ = Φ(r)

• Effective action for this ansatz has two scale
symmetries:

1). [G] = 1 , [F1] = 2 , [F3,4] = 1 , [Ay] = −1/2 , [N y] = 3/2

2). [F3] = 2 , [F4] = −2 , [Ay] = −1 , [N y] = 1

Associated Noether charges Q1 and Q2 are 1st int. of
motion along r (similar to [Bertoldi, Burrington, Peet, 2009]).
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Thermodynamics
• Near horizon regularity: G, F1, F2 first order zeros at
r = rh, the rest are nonzero

• Horizon generator X = ∂t −N y(rh)∂y gives
temperature and chemical potential (N y(rh) = −V )

• Conserved Noether charges Q1 − 3
2
Q2 = Ts at the

horizon and E + P − 1
2
ρV 2 at the boundary

• 1st law from on-shell action, grand potential as a
function of temperature T and chemical potential V

E + P − 1

2
ρV 2 = Ts , δE = Tδs+

1

2
V 2δρ

• Other holographic setups: EMD [Kiritsis, Matsuo, 2015] and
compare with approach by [Hoyos, Kim, Oz, 2013].
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Part VII:
Chern–Simons theories
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Metrics on non-semisimple algebras

• The Galilei algebra and most of its extensions do not
admit a symmetric non-degenerate bilinear form
(“trace”). There are a couple of exceptions.

• One can combine the 2D Galilean conformal algebra
(H, D, K, S, Y , Z) with the 3D z = 2 Schrödinger
algebra (H, D, K, N , J , Pa, Ga) such that the SL(2,R)
subalgebras (H, D, K) are the same and

[Ga , Gb] = Sǫab , [Pa , Pb] = Zǫab , [Pa , Gb] = Nδab−Y ǫab .

Trace: B(H,S) = −B(J,N) = c1 , B(Pa, Gb) = c1ǫab ,

B(Ga, Gb) = c2δab , B(J, S) = c2 , B(J, J) = c3
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Chern–Simons Theories

• A = Hτ+Pae
a+GaΩ

a+JΩ+Nm+Db+Kf+Sη+Y α+Zβ

LCS = Tr
(

A ∧ dA+
2

3
A ∧ A ∧A

)

• Admits z = 2 Lifshitz solutions with a ‘metric’ in the
sense of HL gravity:

“metric” ds2 = −τ 2 + (e1)2 + (e2)2 : τ =
dt

r2
, e1 =

dr

r
, e2 =

dx

r
,

“matter” : b = −dr
r
, β = −dx

r

• Algebra admits infinite dimensional extensions with 2
central charges.
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Chern–Simons Theories

• What are the boundary conditions such that the
asymptotic symmetry algebra is BMS3 combined with
Schrödinger–Virasoro (and U(1) current algebra for J)?

• There must exist a novel 2D class of field theories with
these infinite symmetries.

• What are thermal states in the bulk? Black holes?

• Similar to lower-spin gravity [Hofman, Rollier, 2014].

• In metric formulation this leads to new versions of HL
gravity called Schrödinger CS gravity.

• Novel type of holographic duality with a
non-Einsteinian bulk gravity theory.
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Outlook

• New types of geometries by gauging non-relativistic
symmetries.

• non-AdS holography and infrared effective field
theories requires new classes of field theories.

• novel types of holographic dualities with
non-Einsteinian bulk theories.

• What about Kerr/CFT, Schrödinger holography, etc.?

• Many ways to realize Lifshitz invariance in field theory.
New models with general z scaling without higher
spatial derivatives.

• Most general Lifshitz hydodynamics.
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Part VIII:
Relation with Hořava–Lifshitz

gravity
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Effective Actions

• Extrinsic curvature: ∇µv̂
ρ = −hρσKµσ where

Kµν = −1
2
Lv̂ĥµν

• Integration measure e = det
(

τµ, e
a
µ

)

is G, J invariant.

• Add terms (built out of tangent space invariants) to the
action that are relevant or marginal (up to dilatation
weight d+ z)

invariant τµ ĥµν v̂µ hµν e Φ̃ χ

dil. weight −z −2 z 2 −(z + d) 2(z − 1) z − 2

• We work in 2+1 dimensions with 1 < z ≤ 2. Weight of
each term is determined by number of hµν and v̂µ.
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Effective Actions

• In 2+1 dimensions there is one curvature invariant:
R = hµνRρµν

ρ (2) which is the Ricci curvature of γij.

• Do not allow terms that break time reversal invariance.

• Two kinetic terms (the HL λ parameter):

c1∇ν v̂
µ∇µv̂

ν+c2∇µv̂
µ∇ν v̂

ν = C
(

hµρhνσKµνKρσ − λ (hµνKµν)
2)

• The potential term matches [Blas, Pujolas, Sibiryakov, 2010], [Zhu,

Shu, Wu, Wang, 2010]

V = c3h
µνaµaν + c4R+ δz,2

[

c5 (h
µνaµaν)

2 + c6h
µρaµaρ∇ν (h

νσaσ)

+c7∇ν (h
µρaρ)∇µ (h

νσaσ) + c8R2 + c9R∇µ (h
µνaν) + c10Rhµνaµaν

]
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Local U(1)

• TTNC identity (note λ = 1):

δN (∇ν v̂
µ∇µv̂

ν −∇µv̂
µ∇ν v̂

ν) = −Rv̂µ∂µσ + torsion terms ,

• The additional field Φ̃ transforms as: δN Φ̃ = −v̂µ∂µσ.

S =

∫

d3xe
[

C
(

hµρhνσKµνKρσ − (hµνKµν)
2 − Φ̃R

)

− V
]

Is the U(1) invariant HMT action for projectable HL
gravity in 3D [Horava, Melby-Thompson, 2010].

• The non-projectable HMT action can only be made
U(1) invariant by adding a Stückelberg scalar [HMT].
By replacing mµ by mµ − ∂µχ we reproduce precisely
all the terms of [Zhu, Shu, Wu, Wang, 2010].
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Outlook

• What if we drop condition that the actions is
time-reversal invariant? More U(1) invariant
possibilities?

• Black holes: in 4D up to second order in spatial
derivatives (Einstein–Aether theories) there are
universal horizons [Barausse, Jacobson, Sotiriou, 2011] but with
higher spatial derivatives that does not seem to be the
case [Kiritsis, Kofinas, 2009].

• Fluid/gravity correspondence [Davison, Grozdanov, Janiszewski,

Kaminski, 2016].

• What are good probes? String propagation on TNC
backgrounds ....
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