Non-Relativistic Holography, Newton–Cartan Geometry and Hydrodynamics

Jelle Hartong

Université Libre de Bruxelles

Heraklion Workshop on Theoretical Physics September 9th, 2016

Review of work done in various collaborations with:

Jan de Boer, Eric Bergshoeff, Morten Holm Christensen, Guido Festuccia, Dennis Hansen, Cynthia Keeler, Elias Kiritsis, Niels Obers, Blaise Rollier, Jan Rosseel, Marco Sanchioni, Watse Sybesma, Stefan Vandoren, Lei Yang

Introduction

- Non-AdS Holography:
 - Boundary not described by Lorentzian geometry
 - Examples: Lifshitz spaces (Newton–Cartan) & null Infinity of flat space (Carrollian)
 - Dual field theories are non-Lorentzian field theories
- non-Lorentzian field theories important for infrared effective descriptions of low energy physics (e.g. strange metals)
- New theories of gravity (e.g. Hořava–Lifshitz) but also novel 3D Chern–Simons theories based on non-Lorentzian symmetries

Terminology

- non-Lorentzian symmetry: any symmetry group, not Poincaré, that contains at least *H* (time translations), *P_i* (space translations) and *J_{ij}* (spatial rotations)
- Aristotelian (absolute rest) symmetries: H, P_i , J_{ij}
- May contain more symmetries like D (dilatations: $t \rightarrow \lambda^z t$ and $x^i \rightarrow \lambda x^i$) and boosts
- non-Lorentzian boosts:
 - G_i (Galilean boost: $t \to t$ and $x^i \to x^i + v^i t$)
 - C_i (Carrollian boost: $t \to t + \bar{v}^i x^i$ and $x^i \to x^i$)
- non-Lorentzian geometry: geometry obtained by gauging a non-Lorentzian symmetry

Important Algebras

- Galilei: H, P_i, G_i, J_{ij} $[H, G_i] = P_i, [P_i, G_j] = 0$ $i = 1, \dots, d$, contraction of Poincaré for $c \to \infty$
- Bargmann: Gal. + central N (mass), $[P_i, G_j] = N\delta_{ij}$ subgroup of Poincaré in one dimension higher (commutant of null momentum), not a contraction
- Schrödinger: Barg. + dilatations (any z) enhancement for z = 2: SL(2, ℝ) subgroup: H, D, K (K = spec. conf.) subgroup of conf. group in one dimension higher
- Galilei conformal algebra: H, D (z = 1), K, P_i, G_i, K_i (K_i =accelerations), J_{ij}

contraction of conformal algebra for $c \to \infty$

Important Algebras

- Schrödinger and Galilean conformal algebras contain infinite dimensional extensions in any dimension.
- Carroll: $H, P_i, C_i, J_{ij}, [P_i, C_j] = H\delta_{ij}$ (*H* central) contraction of Poincaré for $c \to 0$
- Lifshitz Carroll: Carroll+dilatations (any z)
- Lifshitz: H, P_i , J_{ij} + dilatations (any z)
- Galilei and Carroll are isomorphic in 1+1D.
- The finite/infinite dimensional Galilean conformal algebra in 1+1D is isomorphic to the Poincaré(2,1)/BMS₃ algebra.

Questions

- One of the main goals: Understand the landscape of non-Lorentzian field theories and derive the equations for their hydrodynamic limit
- What geometry do these non-Lorentzian field theories couple to?
- Which spaces have a non-Lorentzian boundary geometry?
- What theory of gravity arises when making non-Lorentzian geometries dynamical?
- Can we use this non-Lorentzian gravity as a bulk theory in holography?

Outline Talk

- Newton–Cartan Geometry
- Field theories on TNC backgrounds
- Lifshitz Scalar Models
- Carrollian Geometry and Field Theory
- Hydrodynamics
- Lifshitz Holography
- Chern–Simons Theories
- Summary/Outlook

Part I: Newton–Cartan Geometry

Equivalence Principles

- Lorentzian geometry can be obtained by gauging the Poincaré algebra, replacing local translations by diffeomorphisms.
- Einstein's equivalence principle: locally a manifold is Minkowski space-time.
- Newton–Cartan geometry is a manifold such that locally space-time is flat in the sense of Galilei's principle of relativity and can be obtained by gauging the Bargmann algebra: *H*, *P_a*, *G_a*, *J_{ab}*, *N*.
- NC geometry (with torsion) is the natural geometric framework for HL gravity.

From Poincaré to GR

• Local Poincaré: P_a , M_{ab} (gauging), a = 0, 1 ..., d: $\mathcal{A}_{\mu} = P_a e^a_{\mu} + \frac{1}{2} M_{ab} \omega_{\mu}{}^{ab}$ $\mathcal{F}_{\mu\nu} = \partial_{\mu} \mathcal{A}_{\nu} - \partial_{\nu} \mathcal{A}_{\mu} + [\mathcal{A}_{\mu}, \mathcal{A}_{\nu}] = P_a R_{\mu\nu}{}^a (P) + \frac{1}{2} M_{ab} R_{\mu\nu}{}^{ab} (M)$ $\delta \mathcal{A}_{\mu} = \partial_{\mu} \Lambda + [\mathcal{A}_{\mu}, \Lambda], \qquad \Lambda = \xi^{\mu} \mathcal{A}_{\mu} + \Sigma, \qquad \Sigma = \frac{1}{2} M_{ab} \lambda^{ab}$ $\bar{\delta} \mathcal{A}_{\mu} = \delta \mathcal{A}_{\mu} - \xi^{\nu} \mathcal{F}_{\mu\nu} = \mathcal{L}_{\xi} \mathcal{A}_{\mu} + \partial_{\mu} \Sigma + [\mathcal{A}_{\mu}, \Sigma]$

- ∇_{μ} defined via VP : $\mathcal{D}_{\mu}e^{a}_{\nu} = \partial_{\mu}e^{a}_{\nu} \Gamma^{\rho}_{\mu\nu}e^{a}_{\rho} \omega_{\mu}{}^{a}{}_{b}e^{b}_{\nu} = 0$
- Lorentz invariant $g_{\mu\nu} = \eta_{ab} e^a_{\mu} e^b_{\nu}$. Affine $\Gamma^{\rho}_{\mu\nu}$: $\nabla_{\mu} g_{\nu\rho} = 0$.

•
$$R_{\mu\nu}{}^a(P) = 2\Gamma^{\rho}_{[\mu\nu]} =$$
torsion

• $R_{\mu\nu}{}^{ab}(M) =$ Riemann curvature 2-form

Gauging Bargmann

Gauging Bargmann [Andringa, Bergshoeff, Panda, de Roo, 2011]
 H, P_a, G_a, J_{ab}, N (a is a spatial index):

$$\mathcal{A}_{\mu} = H\tau_{\mu} + P_{a}e_{\mu}^{a} + G_{a}\Omega_{\mu}{}^{a} + \frac{1}{2}J_{ab}\Omega_{\mu}{}^{ab} + Nm_{\mu}$$

$$\mathcal{F}_{\mu\nu} = HR_{\mu\nu}(H) + P_{a}R_{\mu\nu}{}^{a}(P) + G_{a}R_{\mu\nu}{}^{a}(G) + \frac{1}{2}J_{ab}R_{\mu\nu}{}^{ab}(J) + NR_{\mu\nu}(N)$$

$$\delta\mathcal{A}_{\mu} = \partial_{\mu}\Lambda + [\mathcal{A}_{\mu},\Lambda], \quad \Lambda = \xi^{\mu}\mathcal{A}_{\mu} + \Sigma, \quad \Sigma = G_{a}\lambda^{a} + \frac{1}{2}J_{ab}\lambda^{ab} + N\sigma$$

$$\bar{\delta}\mathcal{A}_{\mu} = \delta\mathcal{A}_{\mu} - \xi^{\nu}\mathcal{F}_{\mu\nu} = \mathcal{L}_{\xi}\mathcal{A}_{\mu} + \partial_{\mu}\Sigma + [\mathcal{A}_{\mu},\Sigma]$$

• Vielbein postulates (introduction of $\Gamma^{\rho}_{\mu\nu}$):

$$\mathcal{D}_{\mu}\tau_{\nu} = \partial_{\mu}\tau_{\nu} - \Gamma^{\rho}_{\mu\nu}\tau_{\rho} = 0$$

$$\mathcal{D}_{\mu}e^{a}_{\nu} = \partial_{\mu}e^{a}_{\nu} - \Gamma^{\rho}_{\mu\nu}e^{a}_{\rho} - \Omega_{\mu}{}^{a}\tau_{\nu} - \Omega_{\mu}{}^{a}{}_{b}e^{b}_{\nu} = 0$$

Gauging Bargmann

• Transformations of τ_{μ} , e^{a}_{μ} and m_{μ} :

 $\bar{\delta}\tau_{\mu} = \mathcal{L}_{\xi}\tau_{\mu}, \quad \bar{\delta}e^{a}_{\mu} = \mathcal{L}_{\xi}e^{a}_{\mu} + \lambda^{a}\tau_{\mu} + \lambda^{a}{}_{b}e^{b}_{\mu}, \quad \bar{\delta}m_{\mu} = \mathcal{L}_{\xi}m_{\mu} + \partial_{\mu}\sigma + \lambda_{a}e^{a}_{\mu}$

• Inverse vielbeins: v^{μ} and e^{μ}_{a} via:

 $v^{\mu}\tau_{\mu} = -1$, $v^{\mu}e^{a}_{\mu} = 0$, $e^{\mu}_{a}\tau_{\mu} = 0$, $e^{\mu}_{a}e^{b}_{\mu} = \delta^{b}_{a}$

• Metric:
$$h^{\mu\nu} = \delta^{ab} e^{\mu}_{a} e^{\nu}_{b}$$
 and τ_{μ}

- $\Gamma^{\rho}_{\mu\nu}$ is affine and inert under G, J
- $\Omega_{\mu}{}^{ab} = \Omega_{\mu}{}^{[ab]}$ so that $\nabla_{\mu}h^{\nu\rho} = 0$. Also $\nabla_{\mu}\tau_{\nu} = 0$
- Torsion: $2\Gamma^{\rho}_{[\mu\nu]} = -v^{\rho}R_{\mu\nu}(H) + e^{\rho}_{a}R_{\mu\nu}{}^{a}(P)$
- Curvature: $[\nabla_{\mu}, \nabla_{\nu}]X_{\sigma} = R_{\mu\nu\sigma}{}^{\rho}X_{\rho} 2\Gamma^{\rho}_{[\mu\nu]}\nabla_{\rho}X_{\sigma}$
- where $R_{\mu\nu\sigma}{}^{\rho} = e^{\rho}_a \tau_{\sigma} R_{\mu\nu}{}^a(G) e_{\sigma a} e^{\rho}_b R_{\mu\nu}{}^{ab}(J)$

Affine Connection

 In GR one sets torsion to zero by hand because applying the Noether procedure to the gauging of Poincaré does not require torsion. Here a similar argument leads to [Festuccia, Hansen, JH, Obers, 2016]

$$\Gamma^{\rho}_{\mu\nu} = -\hat{v}^{\rho}\partial_{\mu}\tau_{\nu} + \frac{1}{2}h^{\rho\sigma}\left(\partial_{\mu}\bar{h}_{\nu\sigma} + \partial_{\nu}\bar{h}_{\mu\sigma} - \partial_{\sigma}\bar{h}_{\mu\nu}\right)$$

where $\hat{v}^{\mu} = v^{\mu} - h^{\mu\nu}m_{\nu}$ and $\bar{h}_{\mu\nu} = h_{\mu\nu} - \tau_{\mu}m_{\nu} - \tau_{\nu}m_{\mu}$ are *G* and *J* invariant.

• Torsion: $2\hat{\Gamma}^{\rho}_{[\mu\nu]} = -\hat{v}^{\rho} \left(\partial_{\mu}\tau_{\nu} - \partial_{\nu}\tau_{\mu}\right)$. Three cases :

• No torsion: $\partial_{\mu}\tau_{\nu} - \partial_{\nu}\tau_{\mu} = 0$ (NC geometry)

- Twistless torsion: $\partial_{\mu}\tau_{\nu} \partial_{\nu}\tau_{\mu} = a_{\mu}\tau_{\nu} a_{\nu}\tau_{\mu}$ (TTNC)
- \circ No constraint on au_{μ} (TNC geometry)

ADM Decomposition

- Local *G* invariant vielbeins: τ_{μ} , $\hat{e}^{a}_{\mu} = e^{a}_{\mu} \tau_{\mu}e^{\nu a}m_{\nu}$ and inverses: \hat{v}^{μ} and e^{μ}_{a} .
- Lorentzian metric: $g_{\mu\nu} = -\tau_{\mu}\tau_{\nu} + \hat{h}_{\mu\nu}$, $\hat{h}_{\mu\nu} = \delta_{ab}\hat{e}^a_{\mu}\hat{e}^b_{\nu}$

•
$$\hat{v}^{\mu} = g^{\mu\nu} \tau_{\nu}$$
 and $e^{\mu}_{a} = g^{\mu\nu} \hat{e}_{\nu a}$

- ADM: $ds^2 = -N^2 dt^2 + \gamma_{ij} (dx^i + N^i dt) (dx^j + N^j dt)$
- TTNC $\tau_{\mu} = \psi \partial_{\mu} \tau$ (τ is Khronon field of [Blas, Pujolas, Sibiryakov, 2010])
- Fix foliation $\tau = t$ this implies

$$\tau_t = N, \qquad \hat{h}_{ti} = \gamma_{ij} N^j, \qquad \hat{h}_{ij} = \gamma_{ij}, \qquad m_i = -N^{-1} \gamma_{ij} N^j$$

ADM Decomposition

- Since $\tau_t = N$ it follows that
 - NC: $\partial_{\mu}\tau_{\nu} \partial_{\nu}\tau_{\mu} = 0$ is equivalent to N = N(t): projectable HL gravity
 - TTNC: N = N(t, x): non-projectable HL gravity, extra field (torsion) $a_i = N^{-1} \partial_i N$
- ADM decomposition becomes dynamical and is described by τ_{μ} (lapse), m_{μ} (shift) and $\hat{h}_{\mu\nu}$ (spatial metric on cst time slices).
- Actually $m_t = -\frac{1}{2N}\gamma_{ij}N^iN^j + N\tilde{\Phi}$ is an additional field (denoted by A in [Horava, Melby-Thompson, 2010]) where $\tilde{\Phi} = -v^{\mu}m_{\mu} + \frac{1}{2}h^{\mu\nu}m_{\mu}m_{\nu}$ is G, J invariant.

Part II: Field theories on TNC backgrounds

Fixed TNC Backgrounds

• The TNC geometry is described by τ_{μ} , e_{μ}^{a} (or v^{μ} , e_{a}^{μ}) and m_{μ} such that an action is invariant under local tangent space G, J, N transformations. To achieve Jinvariance use $h^{\mu\nu} = \delta^{ab} e_{a}^{\mu} e_{b}^{\nu}$. Sources are:

 $S = S[v^{\mu}, h^{\mu\nu}, m_{\mu}]$

• Its variation is with $e = \det(\tau_{\mu}, e_{\mu}^{a})$

$$\delta S = \int d^{d+1}x e \left(-T_{\mu} \delta v^{\mu} + \frac{1}{2} T_{\mu\nu} \delta h^{\mu\nu} + J^{\mu} \delta m_{\mu} \right)$$

- G invariance: $T_{\mu}e^{\mu}_{a} = J^{\mu}e_{\mu a}$ (mom. density=mass flux)
- N invariance: $\partial_{\mu}J^{\mu} = 0$ (mass conservation)

Energy-Momentum Tensor

- The EMT is $\mathcal{T}^{\mu}{}_{\nu} = -v^{\mu}T_{\nu} + h^{\mu\rho}T_{\rho\nu}$
 - $\circ \mathcal{T}^t{}_t$ is the energy density
 - $\circ ~ {\mathcal T}^i{}_t$ is the energy flux
 - $\circ \mathcal{T}^t{}_i = J^i$ is the momentum density
 - $\circ \mathcal{T}^{j}{}_{i} = T^{j}{}_{i}$ is the stress
 - $\circ J^t$ is the mass density
- Diffeo and scale Ward identities on flat TNC space-time

 $\partial_{\mu} \mathcal{T}^{\mu}{}_{\nu} = 0$ (energy-momentum conservation), $z \mathcal{T}^{t}{}_{t} + \mathcal{T}^{i}{}_{i} = 0$

• Making G inv. manifest: $S = S[\hat{v}^{\mu}, h^{\mu\nu}, \tilde{\Phi}]$ and $T^{\mu}{}_{\nu} = \mathcal{T}^{\mu}{}_{\nu} - J^{\mu}m_{\nu}$ but loose manifest N inv.

Example: Schrödinger Model

• Action for Schrödinger equation on a TNC background:

$$S = \int d^{d+1}x e \left[-i\phi^* \hat{v}^\mu \partial_\mu \phi + i\phi \hat{v}^\mu \partial_\mu \phi^* - h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi^* - 2\phi \phi^* \Phi_N - V(\phi \phi^*) \right]$$

• On a flat NC background this becomes:

$$S = \int d^{d+1}x \left[i\phi^* \left(\partial_t \phi + i\phi \partial_t M \right) - i\phi \left(\partial_t \phi^* - i\phi^* \partial_t M \right) \right. \\ \left. -\delta^{ij} \left(\partial_i \phi + i\phi \partial_i M \right) \left(\partial_j \phi^* - i\phi^* \partial_j M \right) - V(\phi \phi^*) \right]$$

- Wavefunction ψ defined as $\phi = e^{-iM}\psi$.
- Space-time symmetries for M = cst is the Lifshitz subalgebra of Sch given by H, D, P_i and J_{ij}.
 Space-time symmetries for M = xⁱxⁱ/2t is the Lifshitz subalgebra of Sch given by K, D, G_i and J_{ij}.

Particle Number

• What about particle number?

$$S = \int d^{d+1}x e \left[-i\phi^* \hat{v}^{\mu} \partial_{\mu} \phi + i\phi \hat{v}^{\mu} \partial_{\mu} \phi^* - h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi^* - 2\phi \phi^* \Phi_N - V(\phi \phi^*) \right]$$

can be rewritten as

$$S = \int d^{d+1}x e \left[-i\phi^* v^{\mu} D_{\mu}\phi + i\phi v^{\mu} D_{\mu}\phi^* - h^{\mu\nu} D_{\mu}\phi D_{\nu}\phi^* - V(\phi\phi^*) \right]$$

where $D_{\mu}\phi = \partial_{\mu}\phi + im_{\mu}\phi$. There is a local symmetry $\phi \rightarrow e^{-i\sigma}\phi$ and $m_{\mu} \rightarrow m_{\mu} + \partial_{\mu}\sigma$.

 Particle number corresponds to a global phase rotation of \u03c6 and is not a space-time symmetry of the TNC background.

Discussion

- Null reductions turn a Lorentzian space-time into a TNC geometry.
- Other examples of field theories on TNC backgrounds are null reductions of Maxwell, known as Galilean electrodynamics (massless) [Festuccia, Hansen, JH, Obers, 2016].
- Massless Galilean theories: momentum density is zero.
- By starting with a Galilean or Bargmann invariant field theory on flat space we can obtain TNC geometry by the Noether procedure [Festuccia, Hansen, JH, Obers, 2016].
- Typically first order in time derivatives.

Part III: Lifshitz Scalar Models

Lifshitz Scalar Models

• Higher derivative single real scalar model

$$\mathcal{L} = \frac{1}{2} \left(\partial_t \theta \right)^2 - \frac{\lambda}{2} \left(\partial_i \partial_i \right)^n \theta \left(\partial_i \partial_i \right)^n \theta , \qquad z = 2n$$

- Shift symmetry: θ → θ + c
 Scaling dimension: [θ] = (d z)/2
 Global symmetries: ℝ × Lif
 Hamiltonian is bounded from below
 Time reversal invariance
- For z < d we can add a potential $V = V(\theta)$. For $z \ge d$ we keep the shift symmetry for otherwise we can add arbitrary high powers of θ .

Lifshitz Scalar Models

• Lifshitz is a subgroup of Schrödinger so the Schrödinger model is a Lifshitz scalar theory

$$\mathcal{L} = i\phi^{\star}\partial_t\phi - i\phi\partial_t\phi^{\star} - \partial_i\phi\partial_i\phi^{\star} - V_0\left(\phi\phi^{\star}\right)^{(d+2)/d}$$

$$\phi = \frac{1}{\sqrt{2}} \varphi e^{i\theta}, \qquad \mathcal{L} = -\varphi^2 \left[\partial_t \theta + \frac{1}{2} \partial_i \theta \partial_i \theta \right] - \frac{1}{2} \partial_i \varphi \partial_i \varphi - V_0 \varphi^{2(d+2)/d}$$

Shift symmetry: θ → θ + c
 Scaling dimension: [φ] = d/2, [θ] = 0
 Global symmetries: Sch(z = 2) ⊃ U(1) × Lif(z = 2)
 Hamiltonian is bounded from below
 No time reversal invariance

Lifshitz Scalar Models

$$\mathcal{L} = -\varphi^2 \left[\partial_t \theta + \frac{1}{2} \partial_i \theta \partial_i \theta \right] - \frac{1}{2} \partial_i \varphi \partial_i \varphi - V_0 \varphi^{2(d+2)/d}$$

- Galilean boosts (generator G_i): $x^i = x'^i - v^i t', \quad t = t', \quad \theta = \theta' - v^i x'^i + \frac{1}{2} v^i v^i t'$ Invariant: $\partial_t \theta + \frac{1}{2} \partial_i \theta \partial_i \theta$ $[P_i, G_j] = N \delta_{ij}$: mass N (shift θ)
- At an algebraic level we can break Sch \rightarrow Lif by breaking N
- Or we can break Sch $\rightarrow U(1) \times$ Lif by breaking G_i

$$\mathcal{L} = -\varphi^{\alpha}\partial_t\theta - \frac{1}{2}\varphi^2\partial_i\theta\partial_i\theta - \frac{1}{2}\partial_i\varphi\partial_i\varphi - V_0\varphi^{\frac{2(d+z)}{d+z-2}}, \qquad \alpha = \frac{2d}{d+z-2}$$

Shift symmetry: θ → θ + c
Scaling dimensions: [φ] = (d + z - 2)/2, [θ] = 0
Global symmetries: U(1) × Lif(z) for z ≠ 2
General z > 1 scaling without higher spatial derivatives
For z ≠ 2 Galilean boosts are broken
Hamiltonian is bounded from below
No time reversal invariance

$$\mathcal{L} = (\phi\phi^{\star})^{(\alpha-2)/2} \left[i\phi^{\star}\partial_t\phi - i\phi\partial_t\phi^{\star} \right] - \partial_i\phi\partial_i\phi^{\star} - V_0 \left(\phi\phi^{\star}\right)^{\frac{d+z}{d+z-2}}$$

Discussion

- When breaking G_i we preserve a U(1) but we break N.
 So mass current (defined as response to varying m_μ) is not conserved, instead there is another U(1) current.
- Coupling to TNC geometry requires extra source χ whose response is the right hand side of $\partial_{\mu}J^{\mu}$.
- Other models:

 $\mathcal{L} = -\varphi^{\frac{2(d-z+2)}{z+d-2}} \left[\partial_t \theta + \frac{1}{2} \partial_i \theta \partial_i \theta \right] - \frac{1}{2} \partial_i \varphi \partial_i \varphi - V_0 \varphi^{\frac{2(d+z)}{z+d-2}}$ Has Schrödinger invariance for general z.

 These Lifshitz models have first order time derivatives. How to understand

$$\mathcal{L} = \frac{1}{2} \left(\partial_t \theta \right)^2 - \frac{\lambda}{2} \left(\partial_i \partial_i \right)^n \theta \left(\partial_i \partial_i \right)^n \theta , \qquad z = 2n$$

Part IV: Carrollian Geometry and Field Theory

Carroll Symmetries

- Ultra-relativistic limit of Poincaré
- Lorentz boosts: $L_i = ct\partial_i + \frac{1}{c}x^i\partial_t$. Send $c \to 0$ gives $C_i = x^i\partial_t$. Finite trafo: $t \to t + \overline{v}^ix^i$ and $x^i \to x^i$.
- Light cone collapses to a line
- $[P_i, C_j] = H\delta_{ij}$ no massive generalizations in D > 2
- Simple Carroll boost invariant model: $C = \frac{1}{2} \frac{(2 - 1)^2}{V} \frac{V(-)}{V}$
 - $\mathcal{L} = \frac{1}{2} \left(\partial_t \phi \right)^2 V(\varphi)$
- Time-reversal invariant

Carrollian Geometry

• Gauging Carroll: $A_{\mu} = H\tau_{\mu} + P_a e^a_{\mu} + C_a \Omega_{\mu}{}^a + \frac{1}{2} J_{ab} \Omega_{\mu}{}^{ab}$

 $\bar{\delta}\mathcal{A}_{\mu} = \delta\mathcal{A}_{\mu} - \xi^{\nu}\mathcal{F}_{\mu\nu} = \mathcal{L}_{\xi}\mathcal{A}_{\mu} + \partial_{\mu}\Sigma + [\mathcal{A}_{\mu}, \Sigma], \qquad \Sigma = G_{a}\lambda^{a} + \frac{1}{2}J_{ab}\lambda^{ab}$

• Square matrix $(\tau_{\mu}, e^{a}_{\mu})$ has inverse $(v^{\mu}.e^{\mu}_{a})$

• Metric:
$$v^{\mu}$$
 and $h_{\mu\nu} = \delta_{ab} e^a_{\mu} e^b_{\nu}$

- Like in TNC case we can Stückelberg the boost symmetry. Here this requires introducing M^{μ} so that $\hat{\tau}_{\mu} = \tau_{\mu} - h_{\mu\nu}M^{\nu}$ and $\hat{e}_{a}^{\mu} = e_{a}^{\mu} - M^{\nu}e_{\nu a}v^{\mu}$ are invariant.
- Examples: any null hypersurface of a Lorentzian metric is Carrollian including future/past null infinity of asymptotically flat space-times [JH, 2015].

Discussion

• Field theory on a fixed Carrollian geometry:

$$\delta S = \int d^{d+1}x e \left(-T_{\mu} \delta v^{\mu} + \frac{1}{2} T_{\mu\nu} \delta h^{\mu\nu} \right)$$

- Energy-momentum tensor: $T^{\mu}{}_{\nu} = -v^{\mu}T_{\nu} + h^{\mu\rho}T_{\rho\nu}$
- Carroll boost symmetry: $T_{\mu\nu}v^{\mu}e^{\nu}_{a}=0$ (zero energy flux)
- We can now understand:

$$\mathcal{L} = \frac{1}{2} \left(\partial_t \theta \right)^2 - \frac{\lambda}{2} \left(\partial_i \partial_i \right)^n \theta \left(\partial_i \partial_i \right)^n \theta , \qquad z = 2n$$

as a Lifshitz theory with broken Carrollian boosts.

 When coupling to Carrollian geometry the boost breaking is controlled by the coupling to M^μ. Part V: Hydrodynamics

Relativistic Perfect Fluids

• Energy-momentum tensor:

$$T^{\mu}{}_{\nu} = \left(\mathcal{E} + P\right) U^{\mu} U_{\nu} + P \delta^{\mu}_{\nu}$$

- geometry: Lorentzian with metric $g_{\mu\nu}$
- Velocity: $U^{\mu}U_{\mu} = -1$
- Landau frame: $T^{\mu}{}_{\nu}U^{\nu} = -\mathcal{E}U^{\mu}$
- Ward identities: $\nabla_{\mu}T^{\mu\nu} = 0$ and $T^{[\mu\nu]} = 0$
- Scale symmetry: $T^{\mu}{}_{\mu} = 0$: $\mathcal{E} = dP$
- Equation of state: $P = P(\mathcal{E})$. 1st law: $\delta \mathcal{E} = T \delta s$
- Fluid variables: T and U^{μ}

Galilean Perfect Fluids

$$T^{\mu}{}_{\nu} = (\mathcal{E} + P) u^{\mu} \tau_{\nu} + P \delta^{\mu}_{\nu} + u^{\mu} P_{\nu} , \quad J^{\mu} = -\rho u^{\mu}$$

- Particle 4-mom. $P_{\nu} = \frac{1}{2}\rho h_{\kappa\lambda} u^{\kappa} u^{\lambda} \tau_{\nu} + \rho \left(h_{\nu\kappa} u^{\kappa} + m_{\nu} \right)$
- geometry: TNC with metric au_{μ} and $h^{\mu\nu}$
- Velocity: $u^{\mu}\tau_{\mu} = -1$
- Landau frame: $T^{\mu}{}_{\nu}u^{\nu} = -\mathcal{E}u^{\mu}$
- Ward identities (flat space): $\partial_{\mu}T^{\mu\nu} = 0$, $\partial_{\mu}J^{\mu} = 0$, $T^{t}{}_{i} = J^{i}$ and $T^{i}{}_{j} = T^{j}{}_{i}$
- Scale symmetry: $zT_t^t + T_i^i = 0$: $z\mathcal{E} = dP$
- Equation of state: $P = P(\mathcal{E})$. 1st law: $\delta \mathcal{E} = T \delta s$
- Fluid variables: T, ρ and u^{μ}

Speed of Sound of Galilean perfect fluid

• Fluctuate around a constant background (perform G-boost: $\partial_{t'} = \partial_t + V_0^i \partial_i$ and $\partial'_i = \partial_i$)

$$\partial_{t'}^2 \delta \mathcal{E} - \frac{\mathcal{E}_0 + P_0}{\rho_0} \partial_i' \partial_i' \delta P = 0$$

• Assume equation of state $2\mathcal{E} = dP$

$$\partial_{t'}^2 \delta \mathcal{E} - \frac{2}{d} \frac{\mathcal{E}_0 + P_0}{\rho_0} \partial_i' \partial_i' \delta \mathcal{E} = 0$$

- 1st law: $\delta \mathcal{E} = T\delta s = \frac{\mathcal{E}+P}{\rho}\delta\rho + T\rho\delta\left(\frac{s}{\rho}\right)$
- Speed of sound $c_s^2 = \left(\frac{\partial P}{\partial \rho}\right)_{s/\rho} = \frac{2}{d} \frac{\mathcal{E}_0 + P_0}{\rho_0}$

Carrollian Perfect Fluids

$$T^{\mu}{}_{\nu} = \left(\mathcal{E} + P\right)v^{\mu}\bar{u}_{\nu} + P\delta^{\mu}_{\nu}$$

- geometry: Carrollian with metric v^{μ} and $h_{\mu\nu}$
- Velocity: $v^{\mu}\bar{u}_{\mu} = -1$
- Landau frame: $T^{\mu}{}_{\nu}\bar{u}_{\mu} = -\mathcal{E}\bar{u}_{\nu}$
- Ward identities (flat space): $\partial_{\mu}T^{\mu\nu} = 0$, $T^{i}{}_{t} = 0$ and $T^{i}{}_{j} = T^{j}{}_{i}$
- Scale symmetry: $zT^{t}_{t} + T^{i}_{i} = 0$: $z\mathcal{E} = dP$
- Equation of state: $P = P(\mathcal{E})$. 1st law: $\delta \mathcal{E} = T \delta s$
- Fluid variables: T and \bar{u}_{μ}
- Follows from $c \to 0$ limit of rel. PF

Null Reduction

- Minkowski in null coordinates: $ds^2 = 2dtdu + dx^i dx^i$
- Null reduction of EMT: $t^{\mu}{}_{u} = T^{\mu}$, $t^{u}{}_{u} = T^{t}{}_{t}$, $t^{\mu}{}_{\nu} = T^{\mu}{}_{\nu}$
- Perfect fluid: $t^A{}_B = (E+P)U^AU_B + P\delta^A_B$, $U^2 = -1$
- Reduction of fluid:

$$U_{u}^{2} = \frac{\rho}{E+P}, \qquad U_{t} = -\frac{1}{2}U_{u}\left(V^{i}V^{i} + U_{u}^{-2}\right)$$
$$U_{i} = U_{u}V^{i}, \qquad E = 2\mathcal{E} + P,$$

• Lower-dimensional EMT and mass current:

$$T^{\mu}{}_{\nu} = \left(\mathcal{E} + P + \frac{1}{2}\rho V^{i}V^{i}\right)u^{\mu}\tau_{\nu} + P\delta^{\mu}_{\nu} + \rho u^{\mu}h_{\nu\rho}u^{\rho}, \quad T^{\mu} = -\rho u^{\mu}$$

$$\tau_{\mu}u^{\mu} = -1, \quad u^{i} = -V^{i}, \quad \tau_{\mu} = \delta^{t}_{\mu}, \quad h_{t\mu} = 0, \quad h_{ij} = \delta_{ij}$$

Lifshitz Fluids from Null Reduction

- Add a scalar with shift symmetry and consider the Ward identities: $\partial_A t^A{}_B = -O_\psi \partial_B \psi$ and $t^A{}_A = 0$
- Twisted null reduction: $\psi = -u$
- Lower-dimensional Ward identities: $\partial_{\mu}T^{\mu}{}_{\nu} = 0$, $\partial_{\mu}T^{\mu} = O_{\psi}$ (mass no longer conserved), $2T^{t}{}_{t} + T^{i}{}_{i} = 0$
- Fluid equations imply a conserved entropy current if we take

$$\mathcal{E} + P - \frac{1}{2}\rho V^2 = Ts, \qquad \delta \mathcal{E} = T\delta s + \frac{1}{2}V^2\delta\rho$$

- Velocity Vⁱ becomes a chemical potential
- Lifshitz PF from Schrödinger PF by breaking ${\cal N}$

Discussion

- In the example from twisted null reduction we can take e.g. $O_{\psi} = c\rho \partial_i V^i$. This leads to a conserved current $\partial_t \rho^{\frac{1}{1-c}} + \partial_i \left(\rho^{\frac{1}{1-c}} V^i \right) = 0$. In this case speed of sound the same as in Galilean case.
- work in progress:
 - Systematically classify transport coefficients of Lifshitz fluids by breaking Gal, Lor or Car boosts by adding terms to the boost Ward identities that break these symmetries.
 - Most general hydro assuming only Lifshitz symmetries.
 - Hydro from Finite temperature Lifshitz field theories.

Part VI: Lifshitz Holography

Non-relativistic holography, Newton-Cartan geometry and hydrodynamics - p. 40/61

Lifshitz Holography

- Types of models:
 - Horava–Lifshitz gravity in the bulk [Griffin, Horava, Melby-Thompson, 2012], [Janiszewski, Karch, 2012] Which is dynamical TTNC geometry in the bulk [JH, Obers, 2015].
 - Bulk GR with massive vectors or a massless vector with a dilaton: [Baggio, de Boer, Holsheimer, 2011], [Ross, 2011], [Griffin, Horava, Melby-Thompson, 2012], [Chemissany, Geissbuhler, JH, Rollier, 2012], [Chemissany, Papadimitriou, 2014].
- Here focus is on the massive vector model.

Massive Vector Model

• For a bulk theory of the form

$$S = \int d^4x \sqrt{-g} \left(R - \frac{1}{4} Z(\Phi) F^2 - \frac{1}{2} (\partial \Phi)^2 - \frac{1}{2} W(\Phi) B^2 - V(\Phi) \right)$$

Lifshitz solutions are given by

$$ds^{2} = -\frac{dt^{2}}{r^{2z}} + \frac{1}{r^{2}} \left(dr^{2} + dx^{2} + dy^{2} \right) , \quad B = \frac{2(z-1)}{zZ_{0}} \frac{dt}{r^{z}} , \quad \Phi = 0$$

provided the functions Z, W and V obey

 $V_0 = -(z^2 + z + 4)$, $W_0 = 2zZ_0$, $V_1 = (z - 1)\left(z\frac{Z_1}{Z_0} + 2\frac{W_1}{W_0}\right)$ where we denote: $V(\Phi) = V_0 + V_1\Phi + \dots$

Massive Vector Model

• For a bulk theory of the form

$$S = \int d^4x \sqrt{-g} \left(R - \frac{1}{4} Z(\Phi) F^2 - \frac{1}{2} (\partial \Phi)^2 - \frac{1}{2} W(\Phi) B^2 - V(\Phi) \right)$$

$$ds^{2} = \frac{dr^{2}}{R(\Phi)r^{2}} - E^{0}E^{0} + \delta_{ab}E^{a}E^{b}, \qquad B_{M} = A_{M} - \partial_{M}\Xi$$

the AlLif boundary conditions are [Ross, 2011], [Christensen, JH, Obers, Rollier, 2013], [JH, Kiritsis, Obers, 2014] ($1 < z \leq 2$):

$$E_{\mu}^{0} = r^{-z}\tau_{\mu} + \ldots + r^{z-2}(m_{\mu} - \partial_{\mu}\chi) + \ldots \qquad E_{\mu}^{a} = r^{-1}e_{\mu}^{a} + \ldots$$

$$A_{\mu} = \alpha(\Phi)E_{\mu}^{0} + \ldots \qquad A_{r} = (z-2)r^{z-3}\chi + \ldots$$

$$\Xi = r^{z-2}\chi + \ldots \qquad \Phi = r^{\Delta}\phi + \ldots$$

Transformations of the sources

- The local bulk symmetries are: local Lorentz transf., gauge transf. acting on A_M and Ξ and diffeos preserving the metric gauge (PBH transf.).
- The way these symmetries act on the sources τ_{μ} , e_{μ}^{a} , m_{μ} , χ is the same as the action of the Bargmann algebra plus local dilatations, i.e. the Sch algebra.
- There is thus a Schrödinger Lie algebra valued connection given by ($\tilde{m}_{\mu} = m_{\mu} + (z 2)\chi b_{\mu}$):

$$A_{\mu} = H\tau_{\mu} + P_{a}e_{\mu}^{a} + N\tilde{m}_{\mu} + \frac{1}{2}J_{ab}\omega_{\mu}{}^{ab} + G_{a}\omega_{\mu}{}^{a} + Db_{\mu}$$

whose transformations reproduce those of the sources [Bergshoeff, JH, Rosseel, 2014]. Bdry geom.=TTNC geom.

Boundary Geometry

• In the metric formalism the sources are:

source	$ar{h}_{\mu u}$	$ au_{\mu}$	$ ilde{\Phi}$	ϕ
scaling dimension	-2	-z	2(z-1)	Δ

• Schematically they appear in the asymptotic exp. as

$$ds^{2} = \frac{dr^{2}}{Rr^{2}} + h_{\mu\nu}dx^{\mu}dx^{\nu} \qquad B = B_{r}dr + B_{\mu}dx^{\mu}$$

$$h_{\mu\nu} = -r^{-2z}\tau_{\mu}\tau_{\nu} + \dots + r^{-2}\left(\bar{h}_{\mu\nu} + \tilde{\Phi}\tau_{\mu}\tau_{\nu}\right) + \dots$$
$$B_{\mu} = r^{-z}\tau_{\mu} + \dots + r^{2-z}\tilde{\Phi}\tau_{\mu} + \dots$$
$$\Phi = r^{\Delta}\phi + \dots + r^{2(z-1)}\tilde{\Phi} + \dots$$

Leading Order Solutions

• i).
$$1 < z < 2$$
 and $\Delta > 0$
 $R_{(0)} = \frac{1}{2z} \frac{W_0}{Z_0}, \qquad \alpha_{(0)}^2 = \frac{2(z-1)}{z} \frac{1}{Z_0}$
 $V_0 = -\frac{1}{2z} (z^2 + z + 4) \frac{W_0}{Z_0}, \qquad V_1 = (z-1) \left[\frac{1}{2} \frac{Z_1}{Z_0} + \frac{1}{z} \frac{W_1}{W_0} \right] \frac{W_0}{Z_0}$

We can set $Z_0 = 1$. R_0 is the Lifshitz radius.

• ii).
$$1 < z < 2$$
 and $\Delta = 0$

• iii).
$$z = 2$$
 and $\Delta > 0$
 $R_{(0)} = (Z(\phi))^{-\frac{z-1}{z+1}}, \quad \alpha_{(0)}^2 = \frac{2(z-1)}{z}(Z(\phi))^{-1}$
 $W(\Phi) = 2z(Z(\phi))^{\frac{2}{z+1}} + \dots, \quad V(\Phi) = -(z^2 + z + 4)(Z(\phi))^{-\frac{z-1}{z+1}} + \dots$

• iv). z = 2 and $\Delta = 0$

Vevs and Ward identities

 Assuming holographic renormalizability the variation of the on-shell action takes the form:

$$\delta S_{\text{ren}}^{\text{os}} = \int d^3 x e \left[-T_{\mu} \delta v^{\mu} + \frac{1}{2} T_{\mu\nu} \delta h^{\mu\nu} + J^{\mu} \delta m_{\mu} + \langle O_{\chi} \rangle \delta \chi + \langle O_{\phi} \rangle \delta \phi - \mathcal{A} \frac{\delta r}{r} \right]$$

• The vevs and sources can be used to define the *G*, *J*, *N* invariants:

$$T^{\mu}{}_{\nu} = -v^{\mu}T_{\nu} + e^{\mu}_{a}T^{a}_{\nu} - J^{\mu}(m_{\nu} - \partial_{\nu}\chi) \qquad \text{bdry EM tensor}$$
$$J^{\mu} = -J^{0}v^{\mu} + J^{a}e^{\mu}_{a} \qquad \text{mass current}$$

• Vielbein components of $T^{\mu}{}_{\nu}$ provide the energy density, energy flux, momentum density and stress.

Vevs and Ward identities

- The Ward identities are (ignoring the dilaton ϕ):
- - We used Galilean boost invariant vielbeins τ_{μ} , \hat{v}^{μ} , e_{a}^{μ} , \hat{e}_{μ}^{a} and density $e = \det(\tau_{\mu}, e_{\mu}^{a})$.
 - ∇_{μ} denotes that affine TNC connection for which $\nabla_{\mu}\tau_{\nu} = 0$, $\nabla_{\mu}h^{\nu\rho} = 0$ and $\nabla_{\mu}\hat{v}^{\nu} = 0$.

Moving Lifshitz Black Branes [JH, Obers, Sanchioni, 2016]

• SS reduction of $\mathcal{L}_{(5)} = \sqrt{-\gamma} \left(R + 12 - \frac{1}{2} (\partial \psi)^2 \right) + \mathcal{L}_{ct}$

$$\mathcal{L}_{(4)} = \sqrt{-g} \left(R - \frac{1}{4} e^{3\Phi} F^2 - 2B^2 - \frac{3}{2} (\partial\Phi)^2 - 2e^{-3\Phi} + 12e^{-\Phi} \right) + \mathcal{L}_{\mathsf{ct}}$$

- Admits z = 2 and $\Delta = 0$ Lifshitz solutions
- Near boundary (r = 0) exp.: $ds_4^2 = e^{\Phi} \frac{dr^2}{r^2} + h_{\mu\nu} dx^{\mu} dx^{\nu}$

$$\Phi = -\frac{1}{8}r^{2}\rho - r^{4}\left(\frac{1}{6}T^{t}_{t} + \frac{1}{64}\rho^{2}\right) + \mathcal{O}(r^{6})$$

$$B_{t} = r^{-2} + \frac{1}{4}\rho + r^{2}\left(\frac{1}{12}T^{t}_{t} + \frac{1}{16}\rho^{2}\right) + \mathcal{O}(r^{4})$$

$$B_{i} = -\frac{1}{4}r^{2}T^{t}_{i} + \mathcal{O}(r^{4}) \qquad \text{likewise for } h_{\mu\nu}$$

Moving Lifshitz Black Branes

• Ansatz for full solution (all functions depend on r only):

$$ds_4^2 = -r^{-4}F_1dt^2 + \frac{dr^2}{r^2F_2} + \frac{F_3}{r^2}dx^2 + \frac{F_4}{r^2}(dy + N^y dt)^2$$

$$B = r^{-2}Gdt + A_y(dy + N^y dt) , \qquad \Phi = \Phi(r)$$

- Effective action for this ansatz has two scale symmetries:
- 1). [G] = 1, $[F_1] = 2$, $[F_{3,4}] = 1$, $[A_y] = -1/2$, $[N^y] = 3/2$ 2). $[F_3] = 2$, $[F_4] = -2$, $[A_y] = -1$, $[N^y] = 1$

Associated Noether charges Q_1 and Q_2 are 1st int. of motion along r (similar to [Bertoldi, Burrington, Peet, 2009]).

Thermodynamics

- Near horizon regularity: G, F_1 , F_2 first order zeros at $r = r_h$, the rest are nonzero
- Horizon generator $X = \partial_t N^y(r_h)\partial_y$ gives temperature and chemical potential ($N^y(r_h) = -V$)
- Conserved Noether charges $Q_1 \frac{3}{2}Q_2 = Ts$ at the horizon and $\mathcal{E} + P \frac{1}{2}\rho V^2$ at the boundary
- 1st law from on-shell action, grand potential as a function of temperature *T* and chemical potential *V*

$$\mathcal{E} + P - \frac{1}{2}\rho V^2 = Ts$$
, $\delta \mathcal{E} = T\delta s + \frac{1}{2}V^2\delta\rho$

• Other holographic setups: EMD [Kiritsis, Matsuo, 2015] and compare with approach by [Hoyos, Kim, Oz, 2013].

Part VII: Chern–Simons theories

Metrics on non-semisimple algebras

- The Galilei algebra and most of its extensions do not admit a symmetric non-degenerate bilinear form ("trace"). There are a couple of exceptions.
- One can combine the 2D Galilean conformal algebra (H, D, K, S, Y, Z) with the 3D z = 2 Schrödinger algebra (H, D, K, N, J, P_a, G_a) such that the SL(2, ℝ) subalgebras (H, D, K) are the same and

$$[G_a, G_b] = S\epsilon_{ab}, \quad [P_a, P_b] = Z\epsilon_{ab}, \quad [P_a, G_b] = N\delta_{ab} - Y\epsilon_{ab}.$$

Trace:
$$B(H, S) = -B(J, N) = c_1$$
, $B(P_a, G_b) = c_1 \epsilon_{ab}$,
 $B(G_a, G_b) = c_2 \delta_{ab}$, $B(J, S) = c_2$, $B(J, J) = c_3$

Chern–Simons Theories

• $A = H\tau + P_a e^a + G_a \Omega^a + J\Omega + Nm + Db + Kf + S\eta + Y\alpha + Z\beta$

$$\mathcal{L}_{\mathsf{CS}} = \mathsf{Tr}\left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right)$$

• Admits z = 2 Lifshitz solutions with a 'metric' in the sense of HL gravity:

"metric"
$$ds^2 = -\tau^2 + (e^1)^2 + (e^2)^2$$
: $\tau = \frac{dt}{r^2}, \ e^1 = \frac{dr}{r}, \ e^2 = \frac{dx}{r},$
"matter": $b = -\frac{dr}{r}, \ \beta = -\frac{dx}{r}$

• Algebra admits infinite dimensional extensions with 2 central charges.

Chern–Simons Theories

- What are the boundary conditions such that the asymptotic symmetry algebra is BMS_3 combined with Schrödinger–Virasoro (and U(1) current algebra for J)?
- There must exist a novel 2D class of field theories with these infinite symmetries.
- What are thermal states in the bulk? Black holes?
- Similar to lower-spin gravity [Hofman, Rollier, 2014].
- In metric formulation this leads to new versions of HL gravity called Schrödinger CS gravity.
- Novel type of holographic duality with a non-Einsteinian bulk gravity theory.

Outlook

- New types of geometries by gauging non-relativistic symmetries.
- non-AdS holography and infrared effective field theories requires new classes of field theories.
- novel types of holographic dualities with non-Einsteinian bulk theories.
- What about Kerr/CFT, Schrödinger holography, etc.?
- Many ways to realize Lifshitz invariance in field theory. New models with general *z* scaling without higher spatial derivatives.
- Most general Lifshitz hydodynamics.

Part VIII: Relation with Hořava–Lifshitz gravity

Non-relativistic holography, Newton-Cartan geometry and hydrodynamics – p. 57/61

Effective Actions

- Extrinsic curvature: $\nabla_{\mu}\hat{v}^{\rho} = -h^{\rho\sigma}K_{\mu\sigma}$ where $K_{\mu\nu} = -\frac{1}{2}\mathcal{L}_{\hat{v}}\hat{h}_{\mu\nu}$
- Integration measure $e = \det(\tau_{\mu}, e^{a}_{\mu})$ is G, J invariant.
- Add terms (built out of tangent space invariants) to the action that are relevant or marginal (up to dilatation weight d + z)

invariant	$ au_{\mu}$	$\hat{h}_{\mu u}$	\hat{v}^{μ}	$h^{\mu u}$	e	$ ilde{\Phi}$	χ
dil. weight	-z	-2	z	2	-(z+d)	2(z-1)	z-2

 We work in 2+1 dimensions with 1 < z ≤ 2. Weight of each term is determined by number of h^{µν} and ŷ^µ.

Effective Actions

- In 2+1 dimensions there is one curvature invariant: $\mathcal{R} = h^{\mu\nu} R_{\rho\mu\nu}^{\rho}$ (2) which is the Ricci curvature of γ_{ij} .
- Do not allow terms that break time reversal invariance.
- Two kinetic terms (the HL λ parameter):

 $c_1 \nabla_\nu \hat{v}^\mu \nabla_\mu \hat{v}^\nu + c_2 \nabla_\mu \hat{v}^\mu \nabla_\nu \hat{v}^\nu = C \left(h^{\mu\rho} h^{\nu\sigma} K_{\mu\nu} K_{\rho\sigma} - \lambda \left(h^{\mu\nu} K_{\mu\nu} \right)^2 \right)$

• The potential term matches [Blas, Pujolas, Sibiryakov, 2010], [Zhu, Shu, Wu, Wang, 2010]

 $\mathcal{V} = c_3 h^{\mu\nu} a_{\mu} a_{\nu} + c_4 \mathcal{R} + \delta_{z,2} \left[c_5 \left(h^{\mu\nu} a_{\mu} a_{\nu} \right)^2 + c_6 h^{\mu\rho} a_{\mu} a_{\rho} \nabla_{\nu} \left(h^{\nu\sigma} a_{\sigma} \right) \right. \\ \left. + c_7 \nabla_{\nu} \left(h^{\mu\rho} a_{\rho} \right) \nabla_{\mu} \left(h^{\nu\sigma} a_{\sigma} \right) + c_8 \mathcal{R}^2 + c_9 \mathcal{R} \nabla_{\mu} \left(h^{\mu\nu} a_{\nu} \right) + c_{10} \mathcal{R} h^{\mu\nu} a_{\mu} a_{\nu} \right]$

Local U(1)

• TTNC identity (note $\lambda = 1$):

 $\delta_N \left(\nabla_\nu \hat{v}^\mu \nabla_\mu \hat{v}^\nu - \nabla_\mu \hat{v}^\mu \nabla_\nu \hat{v}^\nu \right) = -\mathcal{R} \hat{v}^\mu \partial_\mu \sigma + \text{torsion terms} \,,$

• The additional field $\tilde{\Phi}$ transforms as: $\delta_N \tilde{\Phi} = -\hat{v}^{\mu} \partial_{\mu} \sigma$.

$$S = \int d^3x e \left[C \left(h^{\mu\rho} h^{\nu\sigma} K_{\mu\nu} K_{\rho\sigma} - \left(h^{\mu\nu} K_{\mu\nu} \right)^2 - \tilde{\Phi} \mathcal{R} \right) - \mathcal{V} \right]$$

Is the U(1) invariant HMT action for projectable HL gravity in 3D [Horava, Melby-Thompson, 2010].

The non-projectable HMT action can only be made U(1) invariant by adding a Stückelberg scalar [HMT].
 By replacing m_μ by m_μ - ∂_μχ we reproduce precisely all the terms of [Zhu, Shu, Wu, Wang, 2010].

Outlook

- What if we drop condition that the actions is time-reversal invariant? More U(1) invariant possibilities?
- Black holes: in 4D up to second order in spatial derivatives (Einstein–Aether theories) there are universal horizons [Barausse, Jacobson, Sotiriou, 2011] but with higher spatial derivatives that does not seem to be the Case [Kiritsis, Kofinas, 2009].
- Fluid/gravity correspondence [Davison, Grozdanov, Janiszewski, Kaminski, 2016].
- What are good probes? String propagation on TNC backgrounds