Holographic Theories in Strong Magnetic Fields (review)

> Umut Gürsoy Utrecht University

Heraklion, 5.8.2016

Rich physics for both QCD and CMT

- Anomalous transport
- Magnetically induced currents in QGP
- Magnetic catalysis inverse magnetic catalysis
- Equilibration/thermalization in strongly interacting matter
- Quantum critical points induced by B
- Rich phase diagram in the (T, B, μ) space

Heavy ion collisions and magnetic fields

- Initial magnitude of B
- Bio-Savart: $B_0 \sim \gamma Z e \frac{b}{R^3} \Rightarrow$ ~ $10^{18} (10^{19})$ G at RHIC (LHC).
- $B_0 \sim 10^{10} 10^{13}$ G (neutron stars), 10^{15} (magnetars)
- More relevantly $eB \approx 5 15 \times m_{\pi}^2$ RHIC (LHC).

Time profile of B at LHC

• with $\sigma = 0.023 \text{fm}^{-1}$ and with $\sigma = 0$:

Anomalous transport

- Chiral magnetic effect
- (Non)-renormalization of anomalous transport
- Sphaleron decay rate and axial chemical potential

Chiral Anomaly in QCD

- *massless* fermions are chiral: left and right-handed quarks.
- Classically QGP chiral symmetric: $N_L = N_R$ as $T \approx 500 \text{ MeV} \gg m_u, m_d$
- Axial current $\partial_{\mu}J^{\mu5} = \partial_{\mu}\left(\langle \bar{\psi}\gamma^{\mu}\psi\rangle_{L} \langle \bar{\psi}\gamma^{\mu}\psi\rangle_{R}\right) = 0$
- However there is a QM anomaly: $\partial_{\mu} j^{\mu 5} = -\frac{N_f g^2}{16\pi^2} \operatorname{Tr}(F_{\mu\nu} \tilde{F}^{\mu\nu}).$
- Due to topologically non-trivial gluon configurations
- Gluon winding number: $Q_w = \frac{g^2}{32\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^{\mu\nu}_a \in \mathbb{Z}.$
- Atiyah-Singer index theorem: $\Delta(N_L N_R) = 2N_f Q_w$

Chiral Magnetic Current

• Under B spin degeneracy of quarks lifted due $H \sim -q\vec{s} \cdot \vec{B}$:

- Macroscopic manifestation of the axial anomaly
- Anomalous magnetohydrodynamics: $\vec{J} = \frac{e^2}{2\pi^2} \mu_5 \vec{B}$ Kharzeev et al '07
- μ_5 encodes the imbalance $N_L \neq N_R$

Anomalous transport in a chiral plasma

• A relativistic chiral plasma with velocity $\vec{u}(x)$

magnetic field $\vec{B} = \vec{\nabla} \times \vec{A}$ and vorticity $\vec{\omega} = \langle \vec{\nabla} \times \vec{u} \rangle$.

• As a result of the chiral anomaly

 $\partial_{\mu} J^{5\mu} = a_1 F \wedge F + a_2 R \wedge R + a_3 \operatorname{Tr}(G \wedge G) ,$

Anomalous electric currents are produced: $\vec{J} = \sigma_B \vec{B} + \sigma_V \vec{w}$.

with $\sigma_B \sim a_1$, a_3 and $\sigma_V \sim a_2$.

- Coefficients a_1, a_2, a_3 are one-loop exact Adler, Bardeen, '69
- Do σ_B and σ_V receive radiative corrections or not?
- Answer by AdS/CFT: Corrections due to a_3 at order $\mathcal{O}(N_f/N_c)$

Hydrodynamic description

A plasma with velocity u^{μ} , energy ϵ , pressure P, charge density n, axial charge density n_5 , chemical potential μ , axial chemical potential μ_5 , magnetic field B^{μ} and vorticity ω^{μ} and no gluonic anomaly $a_3 = 0$ (no gluonic contribution):

• Constitutive relations:

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + \tau^{\mu\nu}$$

$$J^{\mu} = n u^{\mu} + \nu^{\mu}, \qquad \nu^{\mu} = \sigma_{B}B^{\mu} + \sigma_{V}\omega^{\mu}$$

$$J^{5\mu} = n_{5} u^{\mu} + \nu^{\mu}_{5}, \qquad \nu^{\mu}_{5} = \sigma_{B,5}B^{\mu} + \sigma_{V,5}\omega^{\mu}$$

with $\tau^{\mu\nu}$ and ν^{μ} the anomalous contributions.

• Equations of motion:

$$\partial_{\mu}T^{\mu\nu} = F^{\nu\alpha}J_{\alpha},$$

$$\partial_{\mu}J^{5\mu} = a_{1}\epsilon_{\mu\nu\alpha\beta}F^{\mu\nu}F^{\alpha\beta}, \qquad \partial_{\mu}J^{\mu} = 0.$$

Anomalous conductivities

- Require positivity of the entropy current: $\partial_{\mu}(su^{\mu}) \ge 0$: Son, Surowka '09
 - $\sigma_B = a_1 \,\mu_5 \,, \qquad \sigma_{B,5} = a_1 \,\mu$ $\sigma_V = a_1 \,\mu\mu_5 \,, \qquad \sigma_{V,5} = \frac{a_1}{2} (\mu^2 + \mu_5^2) + CT^2$
- *C* is due to the mixed axial-gravitational anomaly, thus C = 0when $a_2 = 0$
- Value of C is undetermined. Neimann, Oz '09
- $\sigma_B, \sigma_{B,5}$ and σ_V is unrenormalized
- $\sigma_{V,5}$ may or may not be renormalized depending on C.

Field theory arguments

Kubo formulae:

- \vec{B} and $\vec{\omega}$ in the x-direction
- Electric current in the x-direction:

$$\sigma_B = \lim_{k_y \to 0} \frac{i}{k_y} \langle J^x J^z \rangle ,$$

$$\sigma_V = \lim_{k_y \to 0} \frac{i}{k_y} \langle J^x T^{0z} \rangle ,$$

• Axial current in the x-direction:

$$\sigma_{B,5} = \lim_{k_y \to 0} \frac{i}{k_y} \langle J^{5^x} J^z \rangle,$$

$$\sigma_{V,5} = \lim_{k_y \to 0} \frac{i}{k_y} \langle J^{5^x} T^{0z} \rangle.$$

• Use these formulae in the field theory and holographic calculations.

Relation to anomalies Jensen '12, Buividovich '13

- Anomalous 2pf's at constant μ , μ_5 or g_{00} background related to the anomalous 3pfs. For example:
- $\frac{\partial}{\partial \mu} \langle J^x(0) J^{5z}(k_y) \rangle_{\mu} \bigg|_{\mu=0} = -\Gamma^{VVA}_{x0z}(0,k_y)$
- $\frac{\partial}{\partial\mu_5}\langle J^x(0)J^z(k_y)\rangle_{\mu}\Big|_{\mu_5=0} = -\Gamma^{VVA}_{zx0}(k_y, -k_y)$
- Γ^{VVA} is strongly constrained by the vector and axial Ward identities
- Assuming CPT invariance,
- For $|k_y| \ll \mu$, μ_5 anomalous conductivities fixed almost completely: $\sigma_B = a_1 \mu_5$, $\sigma_{B,5} = a_1 \mu$ $\sigma_V = a_1 \mu \mu_5$, $\sigma_{V,5} = \frac{a_1}{2} (\mu^2 + \mu_5^2) + CT^2$
- Complete agreement with hydrodynamics
- *C* still unfixed

Effective field theory on the cone

Jensen, Loganayagam, Yarom '13

- Consider generic 4D theory on a cone $\times R^2$: $ds^2 = dr^2 + r^2 d\tau^2 + dR_2, \quad \tau \sim \tau + 2\pi\delta$ with $U(1)^3$ and mixed axial-GR anomaly.
- Assume finite static screening lengths:
 ⟨O(τ, x)O(τ, 0)⟩ ~ exp(-|x|/ξ).
 ⇒ W is analytic around k = 0.
- Euclidean effective action of static sources W Taylor expandable in k:
- $W = \int d^4x \sqrt{-g} \left(P(T,\mu) + CTX_1^0 + a_2 j_m^{\mu} + \cdots \right)$ where $X_1^{\mu} = T(B^{\mu} + \mu_5 \omega^{\mu})$ and $j_m = j_m(u^{\mu}, g_{\mu\nu}, \omega^{\mu})$.
- Calculate $T^{\tau r}$ from $W : T^{\tau r} \propto B(C + 8\pi^2 \delta^2 a_2)$
- Require translational invariance at $\delta \rightarrow 1$: $C = -8\pi^2 a_2$
- C is fixed completely!

Validity of the EFT arguments

Jensen, Loganayagam, Yarom '13

- The geometry cone $\times R^2$ is singular at r = 0
- The effective action W_{δ} may not be continuous as $\delta \rightarrow 1$:
 - Possible states localized at r = 0 such as twisted states for $\delta \neq 1$
 - Breakdown of the derivative expansion $W_{\delta} = W_0 + kW_1 + k^2W_2 + \cdots$
- JLY argues non of these problems arise as continuity required away from r = 0.
- However the arguments are complicated
- Desirable to check this directly in holography

Holographic approach Landsteiner et al '11

- Let's illustrate the calculation in the conformal plasma:
- First we ignore dynamical glue i.e. set $a_3 = 0$.
- The action:

$$S = \frac{1}{16\pi G} \int_M \sqrt{-g} \left[R + 2\Lambda - \frac{1}{4} F^2 \right] + a_1 A \wedge F \wedge F + a_2 A \wedge R \wedge R + \cdots$$

- Solution: AdS-RN blackhole with gauge field A
- Fluctuate $\Phi_k^I(r) = \left(A_x(r), h_t^x(r), A_z(r), h_t^z(r)\right)$, with $k = k_y$.
- Calculate the two-pfs $G_{IJ}(k)$, in the limit $k \to 0$

$$\sigma_B = \frac{\mu}{4\pi^2}, \qquad \sigma_V = \frac{\mu^2}{8\pi^2} + \frac{T^2}{24}.$$

- Confirms the generic form derived in FT and hydro above!
- Fixes $C = \frac{1}{24}$ and agrees with the EFT result $C = -8\pi^2 a_2$!

An example with phase transition

U.G., A. Jansen '14

- Want to check validity of the EFT arguments in a theory with conf/deconf. transition
- In flat space this requires an intrinsic scale " Λ_{QCD} "
- Break conformality by $\langle \mathcal{O} \rangle \neq 0 \Rightarrow$ non-trivial bulk scalar Φ
- $S = -\frac{1}{16\pi G} \int d^5x \sqrt{-g} \left(R \frac{4}{3} (\nabla \Phi)^2 V(\Phi) Z(\Phi) F^2 \right) + \cdots$ Gao, Zhang '06

•
$$V(\Phi) = -\frac{3}{(2+\alpha^2)^2} \left\{ 4\alpha^2 (\alpha^2 - 1)e^{-\frac{8\Phi}{3\alpha}} + 4(4-\alpha^2)e^{\frac{4\alpha\Phi}{3}} + 24\alpha^2 e^{-\frac{2(2-\alpha^2)\Phi}{3\alpha}} \right\},$$

 $Z(\Phi) = e^{-\frac{4}{3}\alpha\Phi}.$

- For $\alpha = 0$ reduces to conformal plasma.
- Expand V near minimum $\Phi = 0 \Rightarrow m^2 = -\frac{32}{3}$.
- Deformation of $\mathcal{N} = 4 \langle \mathcal{O} \rangle$ with $\Delta_{\mathcal{O}} = 2$ regardless of α
- Analytic, dilatonic and charged, asymptotically AdS BH

An analytic BH: details

- $ds^2 = -N^2(r)\bar{f}^2(r)dt^2 + \frac{r^2dr^2}{(r^2+b^2)\bar{f}^2(r)} + (r^2+b^2)R^2(r)dR_3$,
- with $N^2(r) = \Gamma^{-\gamma}$, $\overline{f}^2(r) = \frac{r^2 + b^2}{l^2} \Gamma^{2\gamma} \frac{c^2}{r^2 + b^2} \Gamma^{1-\gamma}$, $\Phi(r) = -\frac{3}{4} \sqrt{\gamma(2 - 2\gamma)} \log \Gamma$, $R^2(r) = \Gamma^{\gamma}$, $\Gamma = \frac{r^2}{r^2 + b^2}$. $A_t = \mu - \frac{Q}{2(r^2 + b^2)}$, $\gamma = \frac{\alpha^2}{2 + \alpha^2}$, $Q = \sqrt{3(1 - \gamma)} bc$.
- Integration constants: $c = 4\pi GTS + \mu Q$, and $b \propto \Lambda_{QCD}$

Thermodynamics: U.G., A. Jansen '14

- Corresponding thermal gas obtained by $c \rightarrow 0, b = finite$.
- Hawking-Page transition between BH and TG at finite T_c only for $\gamma = 2/3$:
- $\Delta G = M \mu Q TS \approx -\frac{2\pi^3 V_3}{3G} T_c^3 (T T_c), \qquad T \to T_c$, with $T_c = b/2\pi$.

• Anomalous conductivities U.G., A. Jansen '14

$$\langle J^{x}J^{z}\rangle = -\frac{i\kappa k\rho_{h}}{\sqrt{2\pi G}}\sqrt{1-\xi}v\left(1-v^{2}\right)^{\xi},$$

$$\langle J^{x}T_{t}^{z}\rangle = \frac{i\kappa kv^{2}\rho_{h}^{2}}{2\pi G}(1-\xi)\left(1-v^{2}\right)^{2\xi} + \frac{2ik\lambda\rho_{h}^{2}}{\pi G}\left(1-v^{2}\right)^{2\xi-1}\left((\xi-1)v^{2}+1\right)^{2}, \text{etc.}$$

with ρ_h horizon location, $v \sim \Lambda_{QCD}$, $\xi = \frac{\alpha^2 - 1}{\alpha^2 + 2}$

• Yet, when expressed in $T = T(\rho_h, v, \alpha)$ and $\mu = \mu(\rho_h, v, \alpha)$:

$$\sigma_B = \frac{\mu}{4\pi^2}, \qquad \sigma_V = \frac{\mu^2}{8\pi^2} + \frac{T^2}{24}.$$

• A non-trivial check on the EFT and hydro arguments

Horizon universality

J. Tarrio, U.G. '14

- A generic background: $ds^2 = -g_{tt}(r)dt^2 + g_{xx}d\vec{x}^2 + g_{rr}dr^2, \ A = A_t(r), \ \Phi = \Phi(r)$
- Use a trick by A. Donos, J. Gauntlett '14 $\delta A_x(y,r) = -B_z^5 y + \alpha_x(r), \ \delta A_z(y,r) = B_x^5 y + \alpha_z(r)$ $\delta V_x(y,r) = -B_z y + \beta_x(r), \ \delta V_z(y,r) = B_x y + \beta_z(r)$ $\delta g_{tx}(y,r) = g_{xx} \gamma_x(r), \ \delta g_{tz}(y,r) = g_{xx} \gamma_z(r)$
- where $\alpha_x, \alpha_z, \beta_x, \beta_z, \gamma_x, \gamma_z$ normalizable
- One reads off at the horizon:

 $\langle J_5^a \rangle = \frac{N_c}{2\pi^2} \left(\mu_5 B_b^5 + \mu B_b \right) \delta^{ab} ,$ $\langle J^a \rangle = \frac{N_c}{2\pi^2} \left(\mu_5 B_b + \mu B_b^5 \right) \delta^{ab} .$

• Holography predicts universal values for $\sigma_B, \sigma_{B5}, \sigma_V, \sigma_{V5}$

Now consider dynamical gluons: $a_3 \neq 0$

Anomalous conductivities with glue

- In QCD-like theories
 - $\partial_{\mu} J^{5\mu} = a_1 \operatorname{Tr}(F \cdot \tilde{F}) + a_3 \operatorname{Tr}(G \cdot \tilde{G}) + a_2 R \cdot \tilde{R},$
- So far we only considered $a_3 = 0$
- Non of the non-renormalization arguments above apply when $a_3 \neq 0$
- Direct FT calculation $\Rightarrow \sigma_{V,5}$ receives perturbative corrections from dynamical glue loops Golkar, Son '12; Hou et al '12
- Lattice-QCD: both σ_B and $\sigma_{V,5}$ receive huge corrections Yamamoto '12, Braguta et al. '13
- Hydro arguments above do not apply \Rightarrow need hydro d.o.f. for $\operatorname{Tr}(G \cdot \tilde{G})$
- Nor does the EFT argument!
- Can we find an alternative approach through holography?

Holography with dynamical glue

- How to compute σ_B , σ_V at strong coupling?
- First: how to realize a₃ ≠ 0 situation in holography?
 Klebanov, Ouyang, Witten '02
- Anomalous breaking of the R-symmetry $U(1) \rightarrow Z_N$ in $\mathcal{N} = 1$ Klebanov-Witten theory \Leftrightarrow
- Higgs the corresponding gauge field A_M in the bulk
- C_2 not invariant under $A \to A + d\epsilon$: $C_2 \to C_2 + \epsilon \omega_2$
- A eats the scalar $\Theta = \int_{S^2} C_2$ and gets a mass m_A^2
- Θ dual to the $\theta_{YM} \int \operatorname{Tr} G \wedge G$
- Thus, holography:

$$\partial_{\mu}J_{R}^{\mu} = m_{A}^{2}\mathrm{Tr}\,G\wedge G$$

Bottom-up construction

Casero, Kiritsis, Paredes '07 generalized this construction.

- Consider a system of N_c D3 gauge branes and N_f D4 flavor branes. More relevant to QCD.
- Ignore GR anomaly for simplicity
- Let's first get the electromagnetic piece $\partial_{\mu}J^{\mu} = a_1F \wedge F$ right:
- WZ term on the flavor branes: $S_{WZ,4} = T_4 \int d^5 x i F_0 \wedge \Omega_5 + \cdots$ with $F_0 = \star F_5 \propto N_c$, and $\Omega_5 \sim A \wedge F \wedge F$.
- $A \to A + d\epsilon \Rightarrow \partial_{\mu} J^{\mu} \propto N_c F \wedge F$
- Where is the $\operatorname{Tr} G \wedge G$ term?
- WZ term on the D3 branes: $S_{WZ,3} = T_3 \int d^4x C_0(r) \operatorname{Tr} G \wedge G$
- Thus, $\theta_{YM} = C_0(\infty)$

- C_0 is NOT invariant under $A \to A + d\epsilon$:
- C_0 also couples to the flavor branes $S_{WZ,4} = T_4 \int d^5 x \tilde{F}_4 \wedge A + \cdots$ with $\tilde{F}_4 = d\tilde{C}_3 = \star dC_0$
- Dualize \tilde{C}_3 to get the axion action: $S_a \sim \int d^5 x \sqrt{g} \left(dC_0 - N_f A \right)^2$.
- Invariant only if $C_0 \rightarrow C_0 N_f \epsilon$

All in all... under $A \to A + d\epsilon$, $C_0 \to C_0 - N_f \epsilon$:

$$\partial_{\mu}J_{R}^{\mu} \sim N_{f}\mathrm{Tr}\left(G\wedge G\right) + N_{f}F\wedge F$$

Bulk axion is the key to get dynamical gluon contribution.

Application to anomalous conductivities

U.G., A. Jansen '14

$$S_{tot} = \frac{1}{16\pi G} \int d^5 x \sqrt{-g} \left(R - \frac{4}{3} (\partial \phi)^2 - \frac{1}{4} Z_1(\Phi) F^2 - V(\phi) \right) + \int d^5 x \left(a_1 A \wedge F \wedge F + a_2 A \wedge R \wedge R \right), - \int d^5 x \sqrt{-g} \left(\frac{Z_0(\Phi)}{2} (dC_0 - N_f A)^2 \right) + \int d^4 x \sqrt{-h} a_3 C_0 \operatorname{Tr}(G \wedge G A)^2 \right)$$

- Now apply the same procedure to compute $\langle J_x J_z \rangle$, $\langle T_{0x} J_z \rangle$
- Two important differences:
 - 1. Gauge field gets a mass:

 $\partial_N \left(\sqrt{-g} Z_1(\Phi) F^{MN} \right) = \frac{N_f}{N_c} \sqrt{-g} Z_0(\Phi) A^M.$

- 2. Fluctuation eqs for A_x , h_z^0 etc has new terms
- We identified the holographic mechanism to produce the dynamical gluon contribution to the anomalous conductivities.

Summary

Hydro and QFT —> non-renormalization of

 $\sigma_B, \sigma_{B5}, \text{ and } \sigma_V$

- Possible radiative corrections to $\sigma_{V5} \quad {\rm as} \quad C(\lambda)T^2$
- Both EFT and Holography suggests $C = -8\pi^2 a_2$
- Proved in holography at $\lambda = \infty$ by horizon universality. Robust against $1/\lambda$ Grozdanov and Poovittikul '16
- All corrected by dynamical gluons. In holography corrections at order N_f/N_c

Open questions

- All anomalous transport non-renormalized in the absence of dynamical glue? How about non-perturbative corrections?
- How to calculate gluonic corrections and compare with lattice? Assume Stueckelberg mass for C0 and calculate in effective model

Landsteiner et al '14

• But not possible to compare to lattice except in Veneziano limit, really hard!

UG, Jansen, Tarrio (work in progress)

Sphaleron decay and axial potential

- How to determine μ_5 in holography?
- Sphaleron decay rate
- Dependence of the decay rate on B

How to produce Q_w **in QGP?**

- Sphalerons: thermally induced changes in Q_w
- The most dominant Q_w decay Moore et al '97 due to sphalerons
- Sphaleron decay rate: $\Gamma_{CS} = \frac{d(N_L N_R)}{dtd^3x} \approx 192.8 \, \alpha_s^5 \, T^4$

- If $Q_w \neq 0$ (or μ_5 finite)
- If there is an external magnetic field
- There exists $J^{\mu} \propto B$ due to chiral anomaly
- In QGP the main source of Q_w is sphalerons
- A effective µ₅ is generated by topological charge fluctuations due to Sphaleron decay:

 $\mu_5 \propto lim_{\omega \to 0} \langle \mathrm{Tr} F \tilde{F}(\omega) \mathrm{Tr} F \tilde{F}(\omega) \rangle$

• However, QGP is strongly interacting, how to calculate μ_5 ?

Holographic calculation

Finite T, $N_c \gg 1$, $\alpha_s \gg 1$ QFT \Leftrightarrow GR on black holes in 5D

Maldacena '97; Witten; Gubser, Klebanov, Polyakov '98

- 1. $\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\rangle$ computed from $\hat{\nabla}^2\phi = m^2\phi$ on the BH.
- 2. Recall $\omega J^{\mu 5}(\omega) \propto \text{Tr} F \tilde{F}(\omega)$. Introduce CP odd axion a(r, x)
- 3. The source term $\int d^4x a_0(x) \text{Tr} F \tilde{F}(x)$ with $a(r, x) \to a_0(x)$ at the boundary.

Holographic calculation of $\Delta(N_L - N_R)$

AdS/CFT: $\Gamma_{CS} = \frac{(g^2 N_c)^2}{256\pi^3}T^4$, Son, Starinets '02

Phenomenologically interesting region $T \approx T_c$ where conformality breaks down:

Improved holographic QCD U.G., Nitti, Kiritsis '07

•
$$\frac{S_{GR}}{M_p^3 N_c^2} = \int d^5 x \sqrt{-g} \left(R - (\partial \Phi)^2 + V(\Phi) - \frac{1}{2N_c^2} Z(\Phi) (\partial \alpha)^2 \right)$$

- Parametrize $Z(\lambda) = Z_0 \left(1 + c_1 \lambda + c_4 \lambda^4 \right)$
- Result: $\Gamma_{CS}(T_c) \ge C s(T_c)T_c\chi$ O'Bannon, U.G, Iatrakis, Kiritsis, Nitti '12
- where $\chi = \frac{\partial^2 \epsilon(\theta)}{\partial \theta^2}$ is the topological susceptibility

for ihQCD to reproduce lattice 0^{+-} glueball spectrum within 1σ .

Dependence of Γ on the magnetic field

T. Drwenski, I. Iatrakis, U.G., '15

• Backreacted ihQCD with $N_f/N_c = 0.1$.

As an aside...

• Determine the entropy S(B,T)

T. Drwenski, I. Iatrakis, U.G., '15 Compare with lattice Bali et al, '14

• Backreacted ihQCD with $N_f/N_c = 0.1$.

Perturbative Magnetohydrodynamics

- Effects of EM interactions on the QGP flow
- New phenomena: magnetically induced electric currents
- Predictions for charged hadron spectra

UG, D. Kharzeev, K. Rajagopal '14

Perturbative Magnetohydrodynamics

- Suppose $u^{\mu}(x)$ with no back reaction of electromagnetic fields and \vec{E} , \vec{B} are known
- Go to the comoving frame by $\Lambda(-\vec{u})$ e.g. $F'_{\mu\nu} = (\Lambda \cdot F \cdot \Lambda)_{\mu\nu}$
- Compute the stationary velocity:

$$m\frac{d\langle \vec{v_B}\rangle}{dt} = q\langle \vec{v_B}\rangle \times \vec{B'} + q\vec{E'} - \mu m\langle \vec{v_B}\rangle = 0,$$

 μm the drag coefficient; e.g. from AdS/CFT: $\frac{\pi\sqrt{\lambda}}{2}T^2$

- Go back to the center of mass frame: by $V^{\mu} = \Lambda(\vec{u})^{\mu}_{\nu}v^{\nu}_{B}$
- V^{μ} contains both u^{μ} and v^{μ}_{B} \Rightarrow construct observables from V

Constructing u^{μ} for the expanding fluid

- Start from the Bjorken flow: Bjorken '83
 - 1. Boost invariance along z: $\xi = z\partial_t + t\partial_x$
 - 2. Rotation around z: $\xi = x\partial_y y\partial_x$
 - 3. Translations in transverse plane: $\xi = \partial_x$ and $\xi = \partial_y$
- Solution to $[\xi, u] = 0$ is $u = \partial_{\tau} (ds^2 = -d\tau^2 + \tau^2 d\eta^2 + dx_{\perp}^2 + x_{\perp}^2 d\phi^2)$
- Fine except transverse translations

Gubser's flow solution

Gubser '10

- Begin by Bjorken's flow
- Replace $\xi_i = \partial_x$, ∂_y with $\xi_i = \partial_i + q^2 \left[2x^i x^\mu \partial_\mu x^\mu x_\mu \partial_i \right]$
- Solution to $[\xi, u] = 0$ is $u = \cosh \kappa \partial_{\tau} + \sinh \kappa \partial_{\perp}$ with $\kappa = \frac{2q^2 \tau x_{\perp}}{1+q^2 \tau^2 + q^2 x_{\perp}^2}$
- Solution to Hydrodynamics: $\nabla_{\mu}T^{\mu\nu} = 0$ with

$$\epsilon = \frac{\hat{\epsilon}_0}{\tau^{4/3}} \frac{(2q)^{8/3}}{\left[1 + 2q^2(\tau^2 + x_\perp^2) + q^4(\tau^2 - x_\perp^2)^2\right]^{4/3}}$$

- Also analytic dissipative correction with η/S .
- Two parameters to fix: Initial energy $\hat{\epsilon}_0$ and "system size" 1/q

- Calculated *B*
- Fixed Gubser's flow parameters $\Rightarrow u^{\mu}$
- Solve classical force equation electromagnetic force = drag
- Do Cooper-Frye to calculate v_n
- The simplest and most direct effect: directed flow v_1 :

• Pions and protons at LHC

• Pions and protons at RHIC

Color coding: $p_T = 0.25$ (green), 0.5 (blue), 1 (red), 2 (black) GeV

"Classical" currents in charged and expanding medium:

- Faraday currents $\vec{J}_F \sim \sigma \vec{E}_F$ with $\nabla \times \vec{E}_F = -\frac{\partial \vec{B}}{\partial t}$
- Hall currents $\vec{J}_H \sim \sigma \vec{E}_H$ with $\vec{E}_H = \vec{u} \times \vec{B}$

Magnetic Catalysis

- Effects of B on the quark condensate
- Use holography to understand the recent Lattice QCD results: "inverse magnetic catalysis"

Magnetic Catalysis Gusynin, Miransky, Shovkovy '94

- B increases $\langle \bar{q}q \rangle$ at T = 0
- Seems counter-intitutive in the light of BCS: B destroys the Cooper pair ⟨ee⟩
- Opposite charges important
- Gusynin, Miransky, Shovkovy '94 Studied in 3+1 NJL: $\langle \bar{q}q(B) \rangle^2 = \langle \bar{q}q(0) \rangle^2 \left(1 + \frac{|eB|^2}{3\langle \bar{q}q(0) \rangle^4 \ln(\Lambda/\langle \bar{q}q(0) \rangle^2} \right)$
- Similar behavior for QCD at weak α_s
- Dimensional reduction 3 + 1 → 1 + 1 through Landau quantization ⇒ IR dynamics stronger in lower D

Inverse Magnetic Catalysis: a puzzle

G. Bali et al '11, '12

- *B* destroys $\langle \bar{q}q \rangle$ around $T \sim T_c$
- T_c decreases with B

Possible Explanations

• "Valence" vs. "sea" quarks F. Bruckmann et al '13

$$\langle \bar{q}q \rangle = \int \mathcal{D}Ae^{-S[A]} \det(D(A,B) + m) \operatorname{tr}(D(A,B) + m)^{-1}$$

Valence \Rightarrow enhances $\langle \bar{q}q \rangle$ for any *B*. Sea \Rightarrow favors *A* configs. with larger Dirac eigenvalues \Rightarrow suppresses $\langle \bar{q}q \rangle$ for larger *B*

- B effectively reduces $3 + 1 \rightarrow 1 + 1$, enhancing $\langle \bar{q}q \rangle$. But larger B reduces α_s by asymptotic freedom, diminishing $\langle \bar{q}q \rangle$.
- Clearly a result of non-trivial interplay between confinement and chiral symmetry breaking
- Should be able to observe in a phase deconfined with broken chiral symmetry
- This happens in holographic QCD in the Veneziano limit Jarvinen, Kiritsis '12

The gravitational action

$$S = M^{3}N_{c}^{2}\int d^{5}x \left[\sqrt{g}\left(R - \frac{4}{3}\frac{(\partial\lambda)^{2}}{\lambda^{2}} + V_{g}(\lambda)\right) - xV_{f}(\lambda,\tau)\sqrt{\det(g_{\mu\nu} + w(\lambda)V_{\mu\nu} + \kappa(\lambda)\partial_{\mu}\tau\partial_{\nu}\tau)}\right],$$

with $V_{\mu\nu}$ the EM field tensor, $x = N_f/N_c = 1$ in Veneziano limit. Ansatz:

$$\mathrm{d}s^{2} = e^{2A(r)} \left(\frac{\mathrm{d}r^{2}}{f(r)} + f(r) \,\mathrm{d}t^{2} + \mathrm{d}x_{1}^{2} + \mathrm{d}x_{2}^{2} + e^{2W(r)} \,\mathrm{d}x_{3}^{2} \right).$$

Tachyon:

$$\frac{\tau}{\mathcal{L}_{\mathsf{UV}}} = m_q r \left(-\log(\Lambda r) \right)^{-\gamma_0/b_0} + \langle \bar{q}q \rangle r^3 \left(-\log(\Lambda r) \right)^{\gamma_0/b_0}$$

 V_f, V_g, κ and w chosen to satisfy known properties of QCD. Set $m_q = 0$. Define $q = e^A \frac{dr}{dA}$

• Playing with c in $w(\lambda) = \frac{\sqrt{1 + \log(1 + c\lambda)}}{\left(1 + \frac{3}{4}\left(\frac{115 - 16x}{27} + \frac{1}{2}\right)c\lambda\right)^{4/3}}$ produce different qualitative behavior

• Decreasing *c* reduces the effect of λ in the *B*-sector of the DBI action

Behavior of the condensate

ΔΣ

0.4

x=1 c=0.4 0.2 0. $T/\Lambda = 0.1385$ -0.2 7/Λ = 0.14 -0.4 7// =-0.1415 -0.6 $T/\Lambda = 0.143$ -0.8 В **Λ**² 0.05 0.10 0.15

 $T/\Lambda = 0$

A clear sign of inverse magnetic catalysis for sufficiently small c

Open questions

- Match with lattice —> fix unknown functions in V-QCD
- Understand the QFT reason for inverse MC
- How about dependence on B of $\langle \operatorname{tr} G^2 \rangle$

Thermalization and equilibration

- Large magnetic fields generated in off-central heavy ion collisions
- How do they affect the subsequent evolution ?
- First step: analyze equilibration of linear fluctuations on B —> quasi-normal modes
- Second: full non-linear analysis —> characteristic formulation of GR + EM

Linear fluctuations

- Equilibration profile of linear fluctuations
 <—> quasi-normal modes of the BH
- Quasi-normal modes: $\delta \phi_{\alpha\beta..} = h^n_{\alpha\beta..}(r) e^{-i\omega_n t + \vec{k} \cdot \vec{x}}$

$$\int_{\infty}^{r} \sqrt{-g} h_{\alpha\beta..}^{n} h_{n}^{\alpha\beta..} dr < \infty \qquad \qquad h_{\alpha\beta..}^{n} \sim (r - r_{h})^{\frac{-i\omega_{n}}{4\pi T}}$$

• Solutions: discrete spectrum ω_n Im (ω_n) : decay rate Re (ω_n) : wavelength

Dependence of equilibration on B T. Demircik, UG '16

• B reduces the symmetry, choose $\vec{B} \parallel \vec{k}$ Only spin-2: $h_{\alpha\beta} - \delta_{\alpha\beta}h/2$ spin-1: $h_{t\alpha}$, $h_{z,\alpha}$, v_{α} $T = T_c$, $k \ll T_c$

- B affects little the spin-2 and spin-1 fluctuations
- There exists a purely imaginary mode. Behaves opposite to others under B

Open questions

Solve the entire time-dependent GR + EM problem

Other directions

- Anomalous transport and Weyl/Dirac semimetals CME recently observed in ZrTe5 Q. Li et al '14
- Possible technological applications? Quantum computing?
- Quantum critical fixed points induced by B?
 What can be learned from holography?
- Dependence of transport coefficients on B? ALICE has sufficient statistics to observe B-dependence in bulk and shear viscosity!
- Landau levels at strong coupling
- Construction of improved holographic magnetic QCD Fix the unknown functions by matching Euclidean correlators on lattice —> Predict real-time quantities that depend on B