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Disclaimer

Topics I find interesting and which are relevant to this review but won’t
talk about by lack of expertise and/or time

Fermions

Top-down constructions

Anisotropic phases

Inhomogeneous phases

Insulators

Intermediate scalings in the optical conductivity
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What is the AC conductivity?

Ohm’s law
J = σE

where
E is the source (applied electric field),
J the vev (electric current)
and σ the response coefficient:
conductivity.

When E is frequency dependent: AC conductivity [My talk].

When E is frequency independent: DC conductity [Aristos’ talk].

It is an important observable: metals, insulators, superfluids, charge
density waves, information about the spectrum etc.

‘Simple’ to measure.
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Modern reformulation of the conductivity

The memory matrix formalism [Forster’75] is a useful tool when the
Hamiltonian of a system can be decomposed as

H = H0 + ε∆H , Ȧ = εi [A,∆H] 6= 0

where A is an operator overlapping with the electric current J .

σJJ receives contributions from all operators with which J overlaps:

σJJ =
∑
C ,D

χJC

(
1

−iωχ+ M(ω)

)
CD
χDJ

Static susceptibility χAB = δOA/δsB : overlap between 2 operators.

Examples: momentum (χJP = ρ for rel hydro, χJP = 1 for non-rel
hydro), superfluid current (χJφJφ

= 1/ρs for superfluid hydro...)
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Infinite vs finite DC conductivities

MAB is the memory matrix

MAB(ω) = 1
iπ

∫ +∞

−∞
dω′

ImGR
Ȧ Ḃ(ω′)

ω′(ω′ − ω) ⇒ MAA(0) = lim
ω→0

ImGR
Ȧ Ḃ(ω)
ω

If all operators C ,D are conserved, then M = 0 and the
conductivity is a sum of δ-functions:

σJJ = i
ω

∑
C ,D

χJC (χ−1)CDχDJ + . . .

If there is a single long-lived operator A, then

σJJ = χ2
JA

χAA

1
Γ− iω + . . . , Γ = MAA(0)

χAA
� kBT

Gives rise to sharp Drude-like peak (width O(Γ), height O(1/Γ)) in
AC conductivity.

Provides a transparent framework to analyze the various
contributions to the conductivity.
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Infinite vs finite DC conductivities

This suggests three ways for the DC conductivity to be finite

χAJ = 0: for instance, neutral CFTs (χPJ = ρ = 0).

Ȧ 6= 0, χAJ 6= 0: finite density and broken translation symmetry.

Redefine the current such that χAJ̃ = 0: incoherent currents.

All three possibilities will appear in this talk.
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1 Zero density

2 Finite density, conserved U(1)

3 Finite density, conserved U(1), broken translations

4 Finite density, spontaneously broken U(1)

5 Finite density, spontaneously broken translation symmetry:
CDWs
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1 Zero density

2 Finite density, conserved U(1)

3 Finite density, conserved U(1), broken translations

4 Finite density, spontaneously broken U(1)

5 Finite density, spontaneously broken translation symmetry:
CDWs
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Quantum Critical Points

A QCP separates an ordered from a disordered phase at zero
temperature, when a coupling g is varied.

It enjoys special scaling properties (e.g. conformal symmetry,
Lifshitz invariance...).

While it strictly speaking lies on the T = 0 axis, it governs the
behaviour of the system in a quantum critical ‘fan’ at T > 0.
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Correlation functions and OPE

Correlation functions take simple forms, for instance

σ(ω,T ) = i
ω
〈J(ω, k = 0)J(ω, k = 0)〉 = T (d−2)/z Σ(ω/T )

The high ω, k � T asymptotics are governed by the OPE of the JJ
correlator, in particular by the few most relevant operators
(stress-tensor, scalar...)

J(ω, k)J(0, 0) = |ω2 − k2|2∆J−D
∑

On primary

(
cn(ω, k)O
|ω2 − k2|∆n

+ . . .

)

The other regime ω, k � T is much harder to access as infinitely
many operators contribute.
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Examples

Main CM-motivated example: 2+1D O(N) CFTs.

S =
∫

d3x
[
1
2 (∂φa)2 + v

2N
(
φ2

a − N/g
)2
]
, a = 1 . . .N

N = 1: 2+1D Ising model

N = 2: QCP in the same universality class as the Bose-Hubbard
model with superfluid/insulator quantum phase transition.

Strongly-coupled, no quasi particles at small N.

Analyzed using 1/N expansion [Damle & Sachdev’97] or Quantum
Monte Carlo simulations of lattice models [Witczak-Krempa et al’14].
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Large N analysis of the O(N) model

At N → +∞, free theory: Wilson-Fisher
fixed point.

At N → +∞: infinitely lived quasiparticles
⇒ δ-function in the conductivity (I).

There is another, gapped contribution (II).

At large N: strength of interactions
∼ 1/N.

σ(ω/T ) = e2

~
NΣ(Nω/T )

ΣI is well approximated by a Drude form

ΣI(ω) = Σ(0)
1− iτω , τ ∼ T

N
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The O(2) model

The BHM displays a quantum phase
transition between an insulating and a
superfluid phase. t favours hopping, U
favours on-site Coulomb repulsion.

The QCP separating the two phases
has an emergent conformal symmetry.

The two lattice models are in the same
universality class as the BHM (easier
to simulate).

They have the same (Euclidean)
frequency dependence.

Finite amount of points, no points at
low frequency: analytic continuation?

13



Holographic approach

Holography can be useful: can compute the OPE coefficients,
model the relevant operators using bulk fields, etc.

Complete knowledge of the spectrum (poles, zeroes) can be
obtained from the QNMs of the corresponding black hole.

No problem with analytic continuation: can be fitted to Quantum
Monte Carlo data.

Makes a reliable prediction for the low frequency regime.

Ongoing research program by Sachdev, Myers, Witczak-Krempa et
al [hep-th/0701036, 1010.0443, 1210.4166, 1302.0847, 1309.2941,
1312.3334, 1409.3841, 1501.03495, 1602.05599, 1608.02586]
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Simplest holographic model at zero density

Einstein-AdS (Schwarzschild black brane) + Maxwell action:

S =
∫

d4x
√
−g
[
R + 6− 1

4e2 F 2
]

ds2 = −r2
(
1− r0

r

)
dt2 + dr2

r2
(
1− r0

r
) + r2 (dx2 + dy2)

Emergent bulk EM self-duality F ↔ ?F in 3+1D spacetime:

ω, k 6= 0 〈Jx Jx 〉〈Jy Jy 〉 = − 1
e4ω

2

k = 0 ⇒ 〈Jx Jx 〉 = 〈Jy Jy 〉 ⇒ σ(ω) = i
ω
〈JJ〉 = 1

e2

Exchanges zeroes and poles of ⊥ and ‖ correlators

Akin to particle-vortex duality of the Bose-Hubbard model.

No good model of real CM systems: conductivity is ω-independent.
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Option 1: higher-derivative couplings to the Maxwell field

SEM =
∫

d4x
√
−g
(
− 1
4e2 F 2 + γ

e2 CabcdF abF cd
)

γ 6= 0 formally breaks self-duality, but it can
be restored at small γ by γ → −γ

There is a low-lying, purely imaginary QNM in
the spectrum

ω = −iΓ, Γ ∼ T/γ0.66

|γ| ≤ 1/12 by causality, so this pole cannot
get arbitrarily close to the real axis.

Turn on other terms: γ1C2F 2. γ1 is
unconstrained by causality (though see
[Camahno et al’14]) and Γ ∼ T/γ0.83

1 : Sharper
Drude peak as γ1 � 1. Effective field theory?
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Option 2: Include the most relevant scalar operator

Sφ = −1
2

∫
d4x
√
−g
[

(∇φ)2 + m2φ2 − 2α1φC2 − 1
4e2 (1 + α2φ) F 2

]

O(2) model: Og mass operator, ∆g & 3/2

Work in the probe limit for the scalar,
φ(0) = 0: QCP

High freq expansion fixed by the OPE
taking into account the vev for Og

α1, α2 can be fixed by fitting to QMC
data in Euclidean signature

ω � T : unconstrained by QMC data.

The holographic conductivity can be
plotted in Lorentzian signature: it is
crucial to solve for φ consistently.
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Open questions

Interesting to consider other CFTs (2+1D Ising model) and other
correlation functions (see [Witczak-Krempa’15]).

Full, self-consistent backreaction of the scalar operator.

Check match between DC conductivity predicted holographically
and that obtained by other means.

Detuning effects away from the QCP (see [Lucas et al’16]).
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Open questions

Holographic quantum critical points vs phases? At finite density:
(T/µ, φ(0)/µ) [Hartnoll & Huijse’11, Adam & al’12, B.G. &
Kiritsis’12].

[Adam et al’12] [Cooper et al’09]
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1 Zero density

2 Finite density, conserved U(1)

3 Finite density, conserved U(1), broken translations

4 Finite density, spontaneously broken U(1)

5 Finite density, spontaneously broken translation symmetry:
CDWs
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Intro

A chemical potential is a relevant deformation of the UV fixed point.

The UV asymptotics of the AC conductivity can be computed from
a first-principle CFT analysis deformed by relevant operators.

Here, we will examine what happens in the IR: low temperatures
and/or low frequencies.

Since translations are not broken: the effective theory governing
transport is relativistic hydrodynamics.
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Hydrodynamic approximation

Hydrodynamics is an effective theory truncating the theory to the
behaviour of a few collective variables: conserved charges and
Goldstone bosons.

It is valid at low frequencies and wavevectors compared to some UV
scale (typically temperature).

In real systems, τee � τmr for hydrodynamics to be a good
approximation.

The collective excitations around thermodynamic equilibrium are
fluctuations of energy, charge and momentum density.

They are sourced by fluctuations in temperature, chemical potential
and fluid velocity.
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Eoms and constitutive relations

The equations of motion are

∇µTµν = 0 , ∇µJµ = 0

They are supplemented by constitutive relations:

Tµν = (ε+ p)uµuν + pηµν − ησµν

Jµ = ρuµ − TσQ∂
µ
( µ

T

)

In conformal relativistic hydrodynamics, only two independent
first-order transport coefficients: shear viscosity η, ‘quantum critical’
conductivity σQ .
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Electric transport in relativistic hydrodynamics

Linearize the eoms around thermodynamic equilibrium and solve for
the fluctuations (δε, δρ, π) in terms of (δT , δµ, u).

From the Ward identity for the current, get δj and read off the
coefficient of −∇δµ which is the electric conductivity (Ohm’s law):

σ = σQ + ρ2

ε+ p
i
ω

The ω = 0 pole originates from momentum conservation and finite
density: a momentum flow also carries charge.

Consistent with our earlier memory matrix formulation.
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Incoherent charge transport

There are two sound poles
ω = ±csk − iDπk2 and a diffusion
pole ω = −iDinck2.

The diffusion pole comes from
diffusion of the incoherent charge
δρinc = s2T δ(ρ/s)/(ε+ p) [Davison,
B.G. & Hartnoll’15].

The corresponding incoherent current Jinc = J − ρP/(ε+ p) verifies
χJinc P = 0 and so has a finite conductivity

σinc(ω) = σQ

This conductivity is totally incoherent at low frequency: no
low-lying poles in the lower half plane (at k = 0).

24



Holographic computation of σinc

Consider the family of holographic theories

SEMD =
∫

dx4√−g
[
R − 1

2∂φ
2 − 1

4Z (φ)F 2 − V (φ)
]

To solve for the conductivity, we need to solve for the fluctuations
δax , δgtx of the bulk fields with ingoing boundary conditions at the
horizon [Policastro, Son & Starinets’02]: ‘shake the black hole’.
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Holographic computation of σinc

The system boils down to a single eom, which can be written as a
total radial derivative:

Πinc
′(r) = 0 , Πinc = C2Z

B

(
D
C

)′
δax
′ − CZ 2A2

t
B δax

At the boundary, it is proportional to Jinc . At the horizon, it is
proportional to Einc ∼ T∇(µ/T ).

We get (in d + 2 dimensions) [Jain’10, Davison, B.G. & Hartnoll’15]

σQ = Z (φh)
(

sT
ε+ p

)2
s(d−2)/d
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Effective IR holographic theories

To evaluate the low-T scaling of σinc , we need to know the
near-extremal geometry.

Moreover we are interested in quantum critical phases.

This motivates looking at the following class of solutions
[Charmousis, B.G., Kim, Kiritsis & Meyer’10]

VIR ∼ e−δφ , ZIR ∼ eγφ

ϕ

Veff [ϕ]
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Holographic quantum critical phases

ds2
IR = r 2

d θ

(
−dt2

r2z + dr2 + d~x2
d

r2

)
, φ = κ(z , θ) log r , At = Qr ζ−z

Three critical exponents [B.G. & Kiritsis’12, Gath & al’12].

When θ 6= 0 or ζ 6= 0, these solutions are only scale-covariant under
‘Lifshitz’ rescalings

t → λz t , (r , ~x)→ λ(r , ~x)

⇒ Hyperscaling violation [B.G. & Kiritsis’11,’12, Huijse, Sachdev &
Swingle’11, Gath & al’12, B.G.’13].

s ∼ T (d−θ)/z
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Classes of solutions

ds2
IR = r 2

d θ

(
−dt2

r2z + dr2 + d~x2
d

r2

)
, φ = κ(z , θ) log r , At = Qr ζ−z

There are two classes of solutions
z 6= 1, ζ = θ − d , Q(z , θ).
z = 1, ζ 6= θ − d , Q is an independent scale in the IR solution.
In both cases, Q is (proportional) to the UV charge density.

-2 -1 0 1 2

-4

-2

0

2

4

δ

γ
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Low temperature scaling of σinc

θ is related to an spatial effective dimensionality [B.G. &
Kiritsis’11, Huijse, Sachdev & Swingle’11]

[s] = d − θ ⇒ s ∼ T (d−θ)/z

ζ is related to an anomalous contribution to the dimension of the
density in the IR [B.G.’13,’14, Karch’14]

[ρ] = d − θ + Φ , Φ = 1
2 (ζ + θ − d)

Recent proposal [Hartnoll & Karch] to explain DC transport data in
the cuprates suggests θ = 0, Φ = −2/3, z = 4/3.

Field theory proposals for Φ: ‘multiband’ models [Karch’15],
‘unparticles’ [Karch, Limtragool & Phillips’15].
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Low temperature scaling of σinc

ζ also governs the IR scaling of the electric conductivity for small T
or ω: ‘conduction’ exponent [B.G.’13]. In particular,

z 6= 1 : σQ ∼ T 2+(d−2−θ)/z z = 1 : σQ ∼ T ζ+2(d−θ)

However, for z = 1, σ(ω,T ) is not a function of ω/T :

z 6= 1 : Re[σ(ω,T = 0)] ∼ ω2+(d−2−θ)/z + #δ(ω)
z = 1 : Re[σ(ω,T = 0)] ∼ ω−ζ + #δ(ω)

The extra scale Q plays a role in making up the correct dimension

z = 1 : Re[σ(ω,T = 0)] ∼ Q4ω−ζ+#δ(ω) , [Q] = (ζ+d−θ)/2

The horizon formula for σQ is crucial to get the low-T scaling.
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Open directions

How do we understand Φ holographically, given the U(1) current is
conserved and its dimension should be protected?

The last slides suggests that single-parameter analysis is not always
enough to capture the low temperature behaviour of observables. It
is also well-known that single parameter scaling is not enough to
capture the behaviour of eg the cuprates.

We can use explicit holographic computations to build consistent
scaling theories.

Probably also relevant for recent studies of violations of KSS bound
with translation symmetry breaking [Davison & B.G.’14, Hartnoll,
Ramirez & Santos’16, Alberte, Baggioli & Pujolas’16, Burikham &
Poovuttikul’16].
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1 Zero density

2 Finite density, conserved U(1)

3 Finite density, conserved U(1), broken translations

4 Finite density, spontaneously broken U(1)

5 Finite density, spontaneously broken translation symmetry:
CDWs

32



Quasi-hydrodynamic regimes in real metals

Most realistic metals: τmr � τee . Momentum is not a long-lived
quantity: not part of the long wavelength description.

However: graphene [Crossno et al’16, Bandurin et al’16],
delafossite [Moll et al’16]. Violations of the Wiedemann-Franz law,
viscous vorticity flows, viscous contributions to the resistivity.

⇒ hydrodynamics with almost conserved momentum.

[Crossno et al’16] [Bandurin et al’16]
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A long-lived operator means a sharp peak

If P is conserved, Ṗ = [H,P] = 0:

σJJ = χ2
JP i

χPPω

If P is long-lived, Ṗ = [H,P] = O(ε), the ω = 0 pole is relaxed:

σJJ = χ2
JP

χPP

1
Γ− iω + . . . , Γ = MPP

χPP
= O(ε)2

MPP is a certain memory matrix element computed from knowledge
of [H,P].

If P is almost conserved, Γ� T ⇒ sharp peak.

If P is more efficiently relaxed (lattice, impurities, etc) Γ increases
and the dynamics is no longer governed by the Drude pole.
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Hydrodynamics with almost-conserved momentum

First pass [Hartnoll & al’07]: turn on a momentum relaxation term
in the Ward identity

∇µTµν = −ΓδνiT 0i , ∇µJµ = 0

⇒ σ = σQ + ρ2

ε+ p
1

Γ− iω
Valid if Γ� T but not under very good theoretical control.

More elaborate computation [Lucas’15, Lucas et al’16]: hydro
around inhomogeneous background. No modification of Ward
identity necessary. See also [Davison, Schalm & Zaanen’13]

Γ ∼ 1
σQ

+ η

ξ2

[Lucas’15]35



Unconventional electric transport in LSCO

La2−x Srx CuO4

[Cooper et al, Science’09]

[Uchida et al, PRB’91]

Sharp peak at low frequencies for high doping: quasiparticles,
resistivity quadratic in T , Fermi liquid.

At intermediate doping, the peak decreases and broadens out:
strong coupling regime, resistivity linear in T , no quasiparticles.

Need effective theory of transport without quasiparticles.36



Universality of T-linearity

[Bruin et al’16]

Many dirty metals, both conventional and unconventional, display a
resistivity linear in T , [Bruin et al’16]. Planckian timescale:
τP ∼ ~/kBT , [Damle & Sachdev’97, Zaanen’04].

These results can be reformulated in term of a bound saturated by
the charge diffusion constant [Hartnoll’14]:

D & ~v2/kBT

What is v in a strongly-coupled system? Recent proposal
[Blake’16]: butterfly velocity.
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Momentum relaxation vs diffusion [Hartnoll et al’13, Hartnoll’14]

Slow momentum relaxation Γ� Λ

Transport dominated by momentum
relaxation with rate Γ

Purely imaginary pole ω ∼ −ıΓ close
to the real axis ⇒ sharp peak

Fast momentum relaxation Γ & Λ

Transport dominated by energy/charge
diffusion

No long-lived low energy collective
excitation ⇒ broad peak ∼ constant
optical conductivity
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Holographic models of momentum relaxation

Holography ideally suited to transport computations.

Allows non-perturbative computations. No need for hydrodynamic
approximation etc. Does not assume quasiparticles: non-Boltzman
equation treatment.

Need holographic models relaxing momentum. By now there are
many: lattices, disorder, Bianchi VII, massive gravity, axions,
Q-lattices. [Amoretti, Andrade, Arean, Blake, Baggioli, Davison,
Donos, Gauntlett, Ge, Gentle, B.G., Grozdanov, Hartnoll, Horowitz,
K-Y Kim, Kiritsis, Krikun, Ling, Lucas, Musso, Pando Zayas,
Phillips, Pujolas, Rangamani, Rozali, Sachdev, Salazar Landea,
Santos, Schalm, Tong, Vegh, Withers, Zaanen...]
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The axion model

S =
∫

dx4√−g
[
R − 1

2∂φ
2 − 1

4Z (φ)F 2 − V (φ)− 1
2Y (φ)∂ ~ψ2

]

Turn on a scalar source linear in the boundary spatial coordinates:
ψi = mx i . For a massless bulk scalar, this is actually a solution for
the whole bulk [Bardoux et al’12, Andrade & Withers’13].

The Ward identity is modified

∇µ〈Tµν〉 = ∂νψ
0
i 〈Oψi 〉

Projecting along ν = x i shows momentum is relaxed.
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Horizon formulæ for holographic DC conductivities

The DC conductivity can be computed in terms of horizon data,
exact in m [Aristos’ talk tomorrow]:

σDC = s(d−2)/dZ (φh) + ρ2

sm2Y (φh)

For slow momentum relaxation m� T , the second term dominates.
If m = 0, it diverges: related to the weight of ω = 0 pole?

For fast momentum relaxation m� T , the first term dominates.

Similar formulæ in all holographic momentum relaxation models
[Aristos’ talk tomorrow].

Scaling solutions exist at low temperatures, parameterized by
(θ, z , ζ) and whether the axion deformation is marginal or irrelevant
in the IR [B.G.’14, Donos & Gauntlett’14].

Both metallic and insulating behaviours can be found.
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Interpretation of formula

σDC = s(d−2)/dZ (φh) + ρ2

sm2Y (φh)
Compare with the formula from quasi-hydro [Hartnoll & al ‘07]

σ = σQ + ρ2

ε+ p
1
Γ

⇒ σQ = s(d−2)/dZ (φh) , Γ = sm2Y (φh)/(ε+ p)

But we calculated before [Jain’10, Davison, B.G. & Hartnoll’15]

σQ = s(d−2)/dZ (φh)
(

sT
ε+ p

)2
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Slow momentum relaxation AC conductivity

Set the dilaton to zero: analytical black brane [Bardoux et al’12,
Andrade & Withers’13].

The gauge-invariant perturbations decouple (ψ±): two orthogonal
currents J± [Davison & B.G.’15].

J+ = J − ρP/(ε+ p), J− = P for m� T !

Can compute the AC conductivity in a small ω,m� T expansion.

σ+ = σQ + O(ω, Γ) , σ− =
ρ2

ε+p + Γ(1− σQ + λµ2)
Γ− iω + O(ω, Γ) ,

where
Γ = sm2

4π(ε+ p) (1 + λm2 + O(m4, µ6))

Quasi hydrodynamics [Hartnoll & al’07] does not capture all
corrections at O(Γ0). See also fluid/gravity calculation by
[Blake’15].
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Quantitative comparison for the decay rate (1)
We have obtained the following expression for the decay rate

Γ = sm2

4π(ε+ p) (1 + λm2 + O(m4, µ6))

How good is our formula? We can compare it to the exact location of
the pole determined numerically.

At zero density [Davison & B.G.’14], the agreement is excellent up to
m/T ' 4: crossover to the incoherent regime. This happens some time
before the pole collision with another purely imaginary pole.
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Quantitative comparison for the decay rate (2)

The agreement is also very good at non-zero density [Davison & B.G.’15].

There is no longer a collision involving the Drude pole when entering the
incoherent regime [Withers’16].
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Fast momentum relaxation

The two decoupled currents become J+ = J , J− = Q. This means
the matrix of thermoelectric conductivities diagonalizes:(

J
Q

)
=
(

σ O(1/m)
O(1/m) κ̄T

)(
E

−∇T/T

)
.

So the heat and electric currents decouple at leading order in 1/m.

The diffusion constants are also diagonal (heat, charge) and are
given by Einstein relations D = σ/χ.

General or specific to this holographic model?

Important question which could lead to progress in understanding
the bound of [Hartnoll’14] applied to incoherent black holes
[Blake’16].
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1 Zero density

2 Finite density, conserved U(1)

3 Finite density, conserved U(1), broken translations

4 Finite density, spontaneously broken U(1)

5 Finite density, spontaneously broken translation symmetry:
CDWs
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Superfluidity

In a superfluid, a U(1) symmetry is spontaneously broken: a
complex order parameter condenses.

Its phase is a Goldstone boson and by gauge invariance

φ̇ = −µ

Taking a spatial derivative

u̇φ = − 1
m∇µ , uφ = 1

m∇φ

A phase gradient sources an electric field! The (conserved)
superfluid current couples to the electric current.

The electric conductivity contains a normal and a superfluid delta
function

σ(ω) = σ0 + ρ2
n

(ε+ p − µρs)
i
ω

+ ρs
µ

i
ω
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Holographic superfluids with momentum relaxation

Naive expectation
σ(ω) = σ̃0 + Kn

Γ− iω + iKs
ω

This is indeed what is seen with holographic lattices [Horowitz and
Santos’13], Q-lattices [Ling et al’14] or within the axion model
[Andrade & Gentle’14], [Kim, Kim & Park’14].

Many open questions: superfluid hydrodynamics with slowly relaxing
momentum? Fate of superfluid/normal densities, as well as
horizon/bulk charge? Collective excitations when momentum is
strongly relaxed? Quantum critical superfluid phases? etc.

What about the superfluid delta function? Can this be relaxed?
Relevant? Yes! [Davison, Delacrétaz, B.G. & Hartnoll’16]
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Superfluid/insulator transitions in thin superfluid films

Superfluidity is destroyed in 2D
superfluid films upon turning up a
large enough magnetic film.

[Hebard & Paalanen’90]

For weakly-disordered films, a T = 0
intermediate metallic phase appears.

[Mason & Kapitulnik’99]
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AC measurements: peaks in the conductivity

Sharp Drude-like peaks appear in the real part of the conductivity.
The superfluid 1/ω pole in the imaginary part is resolved.

[Liu-Pan-Wen-Kim-Sambandamurthy-Armitage’13]
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AC measurements: Phase diagram

The width Ω of the Drude-like peak depends on the magnetic field B and
vanishes when superfluidity is restored: suggests quantum origin.

Quantum critical point at the superfluid/metal transition?
[Liu-Pan-Wen-Kim-Sambandamurthy-Armitage’13]
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Vortices in two dimensions

At finite temperature, vortices can
proliferate due to thermal fluctuations
and destroy quasi long range order
(BKT transition).

At a vortex, the amplitude of the order
parameter vanishes.

[Credit: Andre Schirotzek (MIT)]

This requires that the circulation of the superfluid velocity is
quantized ∮

vortex
uφ = 2πn

m

At a vortex location, the superfluid velocity is no longer a pure
gradient

uφ = 1
m (∇φ+ ε×∇ψ)
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Vortices in two dimensions

Vortices are nucleated in pairs of vortices
anti-vortices: pinned vortices do not relax the
supercurrent.

Mobile vortices will relax the supercurrent,
∂tuφ 6= 0, by (un)winding the phase.

As vortex cores are not superconducting, expect that mobile vortices
produce dissipation and regulate the conductivity

σ = σ0 + ρs
m2

1
−iω + Ω

Classically [Bardeen & Stephen’65]

Ω ∼ nf
σn
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Decay rate from the memory matrix formalism

In our case, the slow operators are J , Jφ and JQ (not momentum).

Let us consider a slowly-decaying supercurrent:

H = H0 + ε∆H , ε� 1

∂tJφ = εi [∆H, Jφ] , Jφ = 1
m

∫
T 2\{vortex cores}

d2x∇φ

The conductivity is Drude-like

σ = σ0 + ρs
m2

1
−iω + Ω

Importantly, we also get a formula for Ω

Ω = ρsMJφJφ
= ε2ρs lim

ω→0

ImGR
i[∆H,Jφ]i[∆H,Jφ]

ω
� kBT
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Onsite Coulomb interaction

A natural starting point is the commutation relation between the
charge density and the phase, which are canonical variables

[φ(x), ρ(y)] = iδ(x − y)

This relation encodes a Heisenberg uncertainty relation:
∆φ∆ρ & ~

Coulomb interactions penalize charge density fluctuations
[Efetov’80, Doniach’81... Emery-Kivelson’95]. Consequently phase
fluctuations are enhanced.
A simple choice is an on-site density-density interaction [Doniach’84,
Sachdev-Starykh’00]

∆H = 1
2χρρ

∫
d2x ρ(x)2

Since
∫

T 2 d2x∇ρ(x) = 0, we obtain

∂tJφ = 1
mχρρ

∫
T 2\{vortex cores}

∇ρ(x) = − 1
mχρρ

∫
{vortex cores}

∇ρ(x)
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Decay rate due to onsite Coulomb interaction

The calculation of the decay rate

Ω = ε2 ρs
m2χρρ

lim
ω→0

ImGR
ρρ

ω

now involves knowledge of the density-density retarded Green’s
function of the normal fluid inside the vortex cores, for which
we assume the form (neglecting thermoelectric effects)

GR
ρρ = k2Dχρρ

−iω + Dk2 , D = σn
χρρ

We can compute the decay rate due to this interaction as

Ω = ρs
m2

nf πr2
v

2σn

where rv is the typical radius of a vortex core, nf the vortex density
and σn the conductivity of the normal state.
This is exactly [Bardeen-Stephen’65], in a fully quantum treatment.
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Open directions

In the last few slides: transparent, fully quantum formalism for
quantum fluctuating superconductivity. Important for experiments.

The computation of the phase relaxation rate involves knowledge of
the phase relaxation mechanisms: vortices are one possibility, other
interactions exist (Chern-Simons).

Holographic superfluids have been a popular topic of study in the
past few years. The presence of a superfluid delta function is well
established.

Holographic dirty superfluids exist in the literature, as well as vortex
solutions.

Including phase fluctuations means taking into account 1/N
corrections. Also need mobile vortices. Sounds like a nice numerical
holography challenge, and would give another calculable model of
phase relaxation.
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1 Zero density

2 Finite density, conserved U(1)

3 Finite density, conserved U(1), broken translations

4 Finite density, spontaneously broken U(1)

5 Finite density, spontaneously broken translation symmetry:
CDWs

57



Charge density waves

Many Condensed Matter systems exhibit a phase with spontaneous
breaking of translation symmetry, accompanied by formation of
periodic charge order. This is true in particular in high Tc
superconductors, where this phase competes with the
superconducting phase.

The AC conductivity has very characteristic features: δ-function if
no disorder, pinned collective mode in the presence of disorder,
sliding density wave and nonlinear conductivity...

These phases have been constructed holographically [Donos,
Gauntlett, Jarvinen, Jokela, Ling, Lippert, Withers, Zhang...].

Their holographic AC conductivity has not been much studied.
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