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Charge transport in real materials
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Drude peak

Incoherent metal

Mott insulator

Materials with charged d.o.f. can be
Coherent metals with a well defined Drude peak
Insulators
Incoherent conductors of electricity

Interactions expected to become important in the incoherent
phase ! Possible description in AdS/CFT?



The Cuprates

The Cuprates are real life example of :

Incoherent transport

Anomalous scaling of conductivity and Hall angle with T
[Blake, AD]
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Electrons as a soup

Recent evidence for viscous
flows in strongly
interacting electrons.
[1508.00836],[1509.04165],
[1509.05691]

Hydrodynamics accurate in the high T , momentum (quasi-)
conserving regime

Holography famous for low viscosity/entropy. Can we model
backflows in hydro regime?



Electrons as a soup

A Stoke’s flow
[1509.05691]
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In this case �DC is finite because of no-slip boundary
conditions

Infinite systems need a lattice, viscosity will not help



Drude Model

Lattice scattering (Drude physics)

Average momentum obeys

hṗi = qE � 1
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Momentum Relaxation

Drude peaks are associated to per-
turbative breaking of translations.
Give a mass to mode associated
to boosts. [Hartnoll, Hofman]
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Fourier/Ohm law

We have electric currents J i and a thermal current
Qi

= �T i
t � µJ i

Transport coe�cients are packaged in Ohm/Fourier law
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With rT a temperature gradient



Setup

In D = 4 Einstein-Maxwell with AdS asymptotics:

LEM = R� 1

4

Fµ⌫F
µ⌫

+ 12

ds24 = �U(r) dt2 + U(r)�1 dr2 + r2
�
dx21 + dx22

�

A = a(r) dt+B xdy

Background black hole has temperature T , energy E, pressure P ,
entropy s and charge q.



Setup

Introduce periodic lattice (deformation) on the boundary

Focus on simple black hole topologies

More general statements
[AD, Gauntlett, Gri�n, Melgar]



RG/Holographic picture

, HSV, ... ?

I Charge dominated RG flows, translations restored in IR !
Coherent transport

II Lattice dominated RG flows, translations broken in IR !
Incoherent transport / Insulators
[AD, Hartnoll] [AD, Gauntlett]



Conductivity from Q-lattices [AD, Gauntlett]
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Can model Metal - Insulator transitions

Similar story for inhomogeneous lattices
[Rangamani, Rozali, Smyth]



QNM Point of view
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QNM on the axis ! coherent transport

QNM o↵ the axis ! incoherent transport

Recent check and also transition T [Davison, Gouteraux]



Setup

Deform by chemical potential µ0 and magnetic field B

Hold at finite temperature T

Introduce periodic sources that can relax momentum:

Local chemical potential rµ

Local temperature rT

Magnetic impurities

Local stress + rotation

Probe with external electric field r�µ = E and thermal
gradient �r�T/T = ⇣ to extract conductivities



Currents At Equilibrium

For homogeneous systems we have T0, µ0, ~B0, ...

First consider hydrodynamic limit

Weakly break translations µ0 ! µ0 + �µ(x),
~B0 ! ~B0 + � ~B(x), T ! T + �µ(x)

In hydrodynamic limit, magnetization becomes local

� ~M = @µ ~M0 �µ(x) + @T ~M0 �T (x) + · · ·

) Presence of local magnetization currents

~J =

~r⇥ � ~M

Similar for heat currents



Currents At Equilibrium



Currents At Equilibrium

In the non-hydrodynamic regime k = @t is a symmetry

Lk ⇤ J = 0 ) ik(d ⇤ J) + d(ik ⇤ J) = 0

d(ik ⇤ J) = 0

Assuming Rt ⇥MD�1 topology

ik ⇤ J = d ⇤D�1 M + !

with ! harmonic. Currents relax
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DC conductivities from BH horizons

Bulk theory is Einstein-Maxwell

Consider E/M charged, static black branes

ds2 = �UG (dt+ �)2 +
F

U
dr2 + ds2(⌃d)

A = at (dt+ �) + ai dx
i

ds2(⌃d) = gij(r, x)dx
idxj

Asymptotically, r ! 1

U ! r2, F ! 1

at(r, x) ! µ(x), ai(r, x) ! ai(x)

G ! ¯G(x), gij(r, x) ! r2ḡij(x), �i(r, x) ! �̄i(x)

Local µ, B, T , mag impurities, surface forces



DC conductivities from BH horizons

DC sources at infinity

�ds2 = �2 �� gtt dt
2, �At = ���µ

Fti = �Ei

In the DC limit

@t� = 0, ⇣i = �@i lnT = @i��

@tEi = 0, @[jEi] = 0

Convenient to redefine t ! (1 + ��)t mapping the sources to

�ds2 = �2 gtt t ⇣i dtdx
i, �Ai = t⇣i µdxi

�A = �t Eidx
i



DC conductivities from BH horizons

For the perturbation write

�(ds2) = �gµ⌫(r, x)dx
µdx⌫ � 2tGU⇣idx

i
(dt+ �),

�A = �aµ(r, x)dx
µ � tEidx

i
+ tat⇣idx

i

E(xi) and ⇣(xi) are closed forms

⇣ is boundary temperature gradient

E is boundary electric field

Count functions:

gµ⌫ ! 1
2 (d+ 2) (d+ 3)� (d+ 2) functions

Aµ ! (d+ 2)� 1 functions



Radial Hamiltonian

Imagine radial foliation by hypersurfaces e.g. normal to @r

Radial evolution Hamiltonian is sum of constraints

H@r =

Z
N H+NµHµ

+D G + b.t.

At infinity they yield Ward identities

rµ hTµ⌫i = Fµ⌫ hJ⌫i , rµ hJµi = 0, hTµ
µi = anom

Meaningful but not closed system without hydro



DC conductivities from BH horizons

Projection of metric hµ⌫ and gauge field bµ on r = " surface

Conjugate momentum densities ⇡µ⌫ and ⇡µ with respect to @r

“Evolution” equations

˙hµ⌫ =

�H@r

�⇡µ⌫
, ⇡̇µ⌫

= ��H@r

�hµ⌫

˙bµ =
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�bµ



DC conductivities from BH horizons

And constraints

H⌫ =Dµt
µ
⌫ �

1

2

f⌫⇢j
⇢
= 0

G =Dµj
µ
= 0

With tµ⌫ = (�h)�1/2 ⇡µ⌫ and jµ = (�h)�1/2 ⇡µ.

Continuity equations on the surface



DC conductivities from BH horizons

Examine constraints close to the horizon

Impose infalling conditions

Define

vi ⌘ ��g
(0)
it , w ⌘ �a

(0)
t ,

p ⌘ �4⇡T
�g

(0)
rt

G(0)
� �g

(0)
it gij(0)rj lnG(0)



DC conductivities from BH horizons

Constraints on the horizon give
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Solve for a Stokes flow on the curved black hole horizon

Closed system of equations in d dimensions

Nowhere made hydro assumptions!

Related work
[Damour][Thorne, Price][Eling, Oz][Bredberg, Keeler, Lysov, Strominger]



DC conductivities from BH horizons

Electric Current

Define

J i
=

p
�gF ir

At r ! 1 gives field theory current densities J i
1

Anywhere in the bulk
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DC conductivities from BH horizons

Heat Current

Let k = @t and define
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DC Conductivities from BH horizons

For the background (Ei = ⇣i = 0) we have

J (B)i
1 = @jM

(B)ij , Q(B)i
1 = @jM

(B)ij
T

with the magnetizations
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satisfying
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(B)i
1 = 0

and giving no net fluxes!



DC Conductivities from BH horizons

Back to perturbations we write...

J i
1 = J i

(0) + @jM
ij �M (B)ij⇣j

Qi
1 = Qi

(0) + @jM
ij
T �M (B)ijEj � 2M

(B)ij
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The “transport components” of the currents are then

J i
1 = J i

(0), Qi
1 = Qi

(0)

Important point is

@iJ i
1 = 0, @iQi

1 = 0

Meaningful to examine fluxes through d� 1 cycles!

The currents on the horizon are the transport currents!



DC conductivities from BH horizons

Solutions for vi, w and p are uniquely fixed by sources E and ⇣
Then
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1 in e.g. d = 2
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Conductivities determined by BH horizon data!



Hydro temptation

Meaningful quantities are

Q = vol

�1
d
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Can also write as
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Tempting to see it as first order hydro

It does give an exact answer!



DC conductivities from BH horizons

Can show (strict) positivity of transport coe�cients:

0 <

Z
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p
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In the absence of Killing vectors

Lvg
(0)
ij = 2r(i v j) = 0, Lva

(0)
t = 0

The eigenvalues are positive definite... No insulators at finite
T with regular BH horizons.
In some cases can come up with specific numbers for the
bound.
[Grozdanov, Lucas, Sachdev, Schalm]



Onsager relations

We can easily find the time reversed background bh horizons by
simply

�0
i ! ��

(0)
i , F

(0)
ij ! �F

(0)
ij

The transport coe�cients of the new geometry are simply
related to the original ones through Onsager relations
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If the background is symmetric under time reversal then these
reduce to a relation among the transport coe�cients

Non-obvious after subtracting magnetisation currents in the
UV theory. Proof relatively easy!



Interesting limits

S = SCFT +

Z
h(x)O(x)

Limits to consider for the background black holes:

Perturbative lattice h0/T
d�� << 1

Hydrodynamic limit LUV T >> 1

! For marginal operators hydro doesn’t imply perturbative



Perturbative lattices

Consider perturbative, periodic lattices about flat black brane

g(0)ij = g �ij + �h
(1)
ij + �2 h

(2)
ij + · · ·

a
(0)
t = a+ � a(1) + �2 a(2) + · · ·

The bh horizon is a small � expansion about flat space

Leading order is homogeneous system, e.g. AdS-RN horizon



Perturbative lattices

Solve Navier-Stokes perturbatively in �

vi =
1

�2
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vi(1) + vi(2) + · · · , w =
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The leading fluid velocity term dominates the expressions for
the currents
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At leading order the currents are homogeneous

¯J i ⇡ ��2 ⇢vi(0) ,
¯Qi ⇡ ��2 Tsvi(0) ,



Perturbative lattices

The conductivities are

̄ = M�1 4⇡sT
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M depends on the UV details of the lattice

They drop out of the Lorenz ratio
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�T
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s2
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Wiedemann - Franz law conjectures L =

⇡2k2B
3 e2

More general treatment using memory matrix formalism
[Mahajan, Barkeshli, Hartnoll]



Summary

Argued that DC transport currents are fixed by horizon
“hydro”

Some general results on perturbative lattices

Heat current flows in hydro limit

Inhomogeneous ground states?

Holographic insulators with gap?
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