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Introduction and Some Review
Introduction

M5-brane is a mysterious and powerful object:

• 6D (2,0) CFT

A major challenge to our understanding of QFT

No perturbative parameters but

• One can put it on manifolds: moduli become

• Can try deforming the theory: e.g. non-commutativity and

Ω-deformation



PART I: An M5

An M5-brane in eleven dimensions has five dynamical scalars

XI and a self-dual 3-form hmnp (and fermions)

The (bosonic) equations of [Howe,Sezgin][Howe,Sezgin,West]

are (we’ve set GIJKL = 0 for simplicity)

(m2)mn∇m∇nXI = −2

3
ĜImnpmr

mhrnp dH = −1

4
Ĝ

where

mm
n = δm

n − 2hmpqh
npq

where the metric ĝmn is the pull-back of the spacetime metric.



What is Hmnp? Well hmnp is self-dual and

Hmnp = mm
qmn

rhqrp

is complicated and satisfies a non-linear self-duality. (But for us

h = H.)

Why? Consider flat space dH = 0 and reduce to D4-brane

Fµν = Hµν5 .

• Bianchi dF = 0 comes from 5-component of dH = 0

• non 5-components are H = ?5F + non− linear

• dH = 0 gives non-linear equation which is just

d

(
?F√

1− F 2

)
= 0 DBI!



PART II: The M5-brane, Seiberg-Witten and all that

One of the most striking applications of the M5-brane was by

[Witten]. Consider the following system of branes in type IIA

string theory

D4 0 1 2 3 6

NS5 0 1 2 3 8 9

is described by D = 4, N = 2 Yang-Mills at low energy.

At strong coupling it lifts to a configuration in M-theory

consisting only of M5-branes

M5 0 1 2 3 6 10

M5 0 1 2 3 8 9







But moreover this can be viewed as a single smooth M5-brane

wrapped on a Riemann Surface Σ

• Σ is precisely the Seiberg-Witten curve!

• gives a systematic construction of Σ from braneology

• explains the appearance of Σ in quantum 4D gauge theory

From the point of view of the M5-brane this configuration

appears as a 3-brane soliton. The effective low energy

dynamics of this soliton is given by the Seiberg-Witten effective

action [Howe, NL, West]



A single classical M5-brane can compute the exact low energy

effective action of a 4D quantum gauge theory

• Perturbative part known since early 80’s [Gates, Grisaru,

Siegel],[Howe, Stelle, West]

• [Seiberg,Witten] gave this plus a prediction for all

non-perturbative instanton terms

• The first few terms were then explicitly checked [Dorey,

Khose, Mattis]

More recent work has vastly expanded this story Gaiotto,

Gukov, Moore, Neitzke...everyone here...



PART II: Enter Ω

Based on previous work, in a seminal paper [Nekrasov] used

the so-called Ω-deformation to compute all terms in the

Seiberg-Witten prepotential exactly.

What is it? D = 4, N = 2 SYM is the dimensional reduction of

D = 5, N = 1 SYM

The Ω-deformation is obtained by compactifying the Euclidean

theory with a twist ω ∈ so(4)

x9 → x9 + 2πR xµ → xµ +Rωµνx
ν



Typically one parameterizes

ωµν =


0 ε1

−ε1
0 ε2

−ε1 0


This ‘localises the path integral of 4D N=2 SYM to point-like

instantons a the origin.

• path integral reduces to zero-mode determinants.

• can be evaluated algebraically using group theory.

Many other applications (Integrable systems, topological

strings, AGT)



The Ω-Deformation as a Flux Background
We can realise the Ω deformation as a Euclidean background in

String theory [Hellerman,Orlando,Reffert]

Step 1) start with flat R9 × S1 = (R2)2 × R5 × S1 in polar

coordinates (i=1,2)

(ri, θi), θi ∼= θi + 2πR x4, x5, x6, x7, x8 x9

and metric

ds2
10 =

3∑
i=1

(dr2
i + r2

i dθ
2
i ) + (dx9)2 + (dx6)2 + (dx7)2 + (dx8)2

Impose the orbifold

x9 ∼= x9 + 2πR θi ∼= θi + 2πεi

This preserves supersymmetry if ε1 = ±ε2.



More general possibilities exist but we will just consider this.

Step 2) introduce new coordinates that diagonalize the orbifold

action

φi = θi −
εi
R
x9

x9 ∼= x9 + 2πR φi ∼= φi + 2π

But now the metric is off-diagonal.

ds2
10 =

3∑
i=1

(dr2
i + r2

i dφ
2
i +

ε2i r
2
i

R2
(dx9)2 +

2εir
2
i

R
dφidx

9)

+(dx9)2 + (dx4)2 + . . .+ (dx8)2



Step 3) T-dualize along x9. This produces a non-flat

background (µ, ν = 0, 1, 2, 3)

ds2
10 =

(
ηµν −

UµUν
∆2

)
dxµdxν + (dx4)2 + · · ·+ (dx8)2

e−φ = ∆

B =
1

∆2
U ∧ dx9

where

∆2 = 1 + UµU
µ dU = ω

Called the flux-trap since the dilaton has a maximum at the

origin that localizes D-branes there.

Similar to the Melvin solution.



In the case of type IIA we can also do:

Step 4) Lift to M-theory

ds2
11 = ∆2/3

[(
ηµν −

UµUν
∆2

)
dxµdxν + (dx4)2 + · · ·+ (dx8)2

+
(dx9)2 + (dx10)2

∆2

]
C =

1

∆2
dx9 ∧ dx10 ∧ U .

At first order the metric is flat and

G = dx9 ∧ dx10 ∧ ω



To see the effect on the D4/NS5-brane configuration consider

the first order correction due to BNSNS = U ∧ dx9

δΩSD4 =
1

g2
4

∫
d5xUµ∂νX

9Fµν

In the non-Abelian theory this becomes

δΩSD4 =
1

g2
4

tr

∫
d5xUµDνX

9Fµν − i[X8,X9]UµD
µX8

Here the second term arises following the discussion of Myers

from imposing consistency with T–duality along x8.

In particular the second term is UµD8X
9Fµ8 with

• D8X
9 = −i[X8,X9]

• Fµ8 = DµX8



Going to higher order we find: (Φ = X8 + iX9)

SΩ
D4 = − 1

g2
Tr

∫
d4x
[1

2
(Dµ Φ + i

1

2
FµλU

λ)(Dµ Φ̄− i1
2
FµρUρ)

+
1

4
FµνF

µν +
1

8
([Φ, Φ̄] + iUµDµ(Φ− Φ̄))2

]

This agrees with the Ω-deformation of 4D N = 2 SYM given in

[Nekrasov,Okounkov],[Ito,Nakajima,Saka]

The bottom line is that we can manufacture the Ω-deformation

by putting branes in this background



The Alpha-Deformation

Given the M-theory flux solution corresponding to the

Ω-deformation we can consider something else:

ds2
11 = ∆2/3

[(
ηµν −

UµUν
∆2

)
dxµdxν + . . . (dx9)2 + (dx10)2

+
(dx6)2 + (dx8)2

∆2

]
C =

1

∆2
dx6 ∧ dx8 ∧ U .

i.e. x6 ↔ x9, x8 ↔ x10 - corresponding to a ’9-11’ flip.

The classic Witten M5-brane configuration in this background is

still supersymmetric.



Again we can consider the type IIA D4/NS5 brane

configuration. To first order CRR = U ∧ dx6 ∧ dx8

δASD4 =
i

2g2
4

∫
d5x εµνλρUµFνλ∂ρX

8

To check compatibility with T-duality along x9 we note that

CRR3 → CRR4 = CRR3 ∧ dx9

This time there is no extra term a la Myers and:

δASD4 =
i

g2
4

tr

∫
d5xDµX

8Uν ? Fµν .

At first order and for abelian fields this essentially agrees with

the Ω-deformation after an integration by parts.



At higher order we find the deformed action

SAD4 = − 1

g2
Tr

∫
d4x

[
1

2∆2

(
DµX

8 + iUλ ? Fµλ

) (
DµX8 + iUρ ? Fµρ

)
+

1

4
FµνF

µν +
1

2
DµX

9DµX9

+
1

2∆2
(UµDµX

8)2 +
1

2
(UµDµX

9)2 − 1

2∆2
([X8,X9])2

]
,

‘S-dual’ to the Ω-deformation (roughly F→ ?F)

More concretely, in the Abelian case, SAD4 can be obtained from

SΩ
D4 by dualizing F → ∗F = ?F .



Deforming the M5-brane

So we can revisit the M5-brane, wrapped on a Riemann

Surface, in this spacetime to obtain the Seiberg-Witten effective

action in the presence of the Ω-deformation.

In fact we will just consider the first order corrections in ε1, ε2
and low energy fluctuations, to quadratic order in ∂µ

Switch to complex coordinates

ds2
11 = dxµdx

µ + dzdz̄ + dsds̄+ (dx4)2 + (dx5)2 + (dx7)2

C3 =
1

2
(z + z̄) (ds+ ds̄) ∧ ω − 1

2
(s+ s̄) (dz + dz̄) ∧ ω

where s = x6 + ix10, z = x8 + ix9



To this order the M5-brane is still embedded by a holomorphic

function s(z)

• can take the same, undeformed Seiberg-Witten curve Σ

• depends on moduli ui as well as other non-dynamical

parameters such as hypermultiplet masses.

• we will just consider the case of a single modulus u
corresponding to gauge group SU(2)

• Σ is defined by t2 − 2(z2 − u)t+ 1 = 0, t = e−s

• Σ has a single holomorphic differential λ = (∂s/∂u)dz

M5-brane dynamics come from letting u→ u(xµ) and turning

on fluctuations of h3



First, since we are Euclidean, we take i ∗ h3 = h3 and, to the

order we are working, we can simply take h3 = H3

The equation of motion for h3 is

dh3 = −1

4
dĈ3

To solve this we write

h3 = −1

4
(Ĉ3 + ?Ĉ3 + Φ)

where Φ = i ? Φ takes the form

Φ =
κ

2
Fµνdxµ ∧ dxν ∧ dz +

κ̄

2
F̄µνdxµ ∧ dxν ∧ dz̄

+
1

1 + |∂s|2
1

3!
εµνρσ

(
∂τs∂̄s̄ κFστ − ∂τ s̄∂s κ̄Fστ

)
dxµ ∧ dxν ∧ dxρ

with

F = − ?4 F F̄ = ?4F̄



This explains our odd choice for C:

C3 =
1

2
(z + z̄) (ds+ ds̄) ∧ ω − 1

2
(s+ s̄) (dz + dz̄) ∧ ω

Because in this case

d(Ĉ3 + i ? Ĉ3) = −1

4
Ĝ4

if ∂µs = 0.

Furthermore it is supersymmetric:

h3 · Γε ∼ ω · Γε = 0

Other choices seem very problematic and do not lead to

manageble integrals.



Note that

G = d(z + z̄) ∧ d(s+ s̄) ∧ ω

so this is an Alpha-deformation.

The corresponding Ω-deformation would have

G = d(z − z̄) ∧ d(s− s̄) ∧ ω

To handle this we could take

C3 =
1

2
(z − z̄) (ds− ds̄) ∧ ω − 1

2
(s− s̄) (dz − dz̄) ∧ ω

But this has an explicit dependence on x10 = (s− s̄)/2i.

• Not a good gauge choice for type IIA

• Nevertheless just computing we find the same answer.



The equation of motion for for h3 now takes the form

0 = dΦ + ?Ĉ3 = ?4(Eµzdz + Ēµz̄dz̄)

with

Eµz = ∂µ(κFµν − Ĉµνz) + ∂

[
∂̄s̄∂νs

1 + |∂s2|
(κFµν − Ĉµνz)

]
−∂
[
∂s∂ν s̄

1 + |∂s|2
(κ̄F̄µν − Ĉµνz̄)

]

To reduce this equation we evaluate

0 =

∫
Σ
Eµzdz ∧ λ̄ 0 =

∫
Σ
Ēµz̄dz̄ ∧ λ



Doing this one encounters the following integrals

I0 =

∫
Σ
λ ∧ λ̄ =

da

du
(τ − τ̄)

dā

dū

K =

∫
Σ
d

[
λz∂̄s̄

1 + |∂s|2

]
∧ λ = −

(
da

du

)2 dτ

du

J =

∫
Σ
d

[
∂µs̄∂s

1 + |∂s|2
z̄∂̄s̄

]
∧ λ̄ = 0

The first is easily evaluated using the Riemann bi-linear identity

The second is tricky but was evaluated years ago in [Lambert,

West] by cutting holes of size δ in Σ around the branch points

ei, of t(z), doing the line integrals and taking δ → 0:

K =
∑
i

∮ [
λz∂̄s̄

1 + |∂s|2

]
λ = −πi

∑
i

1

ei

1∏
j 6=i(ei − ej)

J is evaluated in a similar way



The result is

(τ − τ̄) (∂µFµν + ∂µaωµν) + ∂µτFµν − ∂µτ̄ F̄µν = 0

(τ − τ̄)
(
∂µF̄µν + ∂µā ωµν

)
+ ∂µτFµν − ∂µτ̄ F̄µν = 0

Taking the difference we find

∂µ(Fµν − F̄µν) = −∂µ (a− ā)ωµν

which is solved by writingF = (1− ∗)F − (a− ā)ω−

F̄ = (1 + ∗)F + (a− ā)ω+

where F = dA satisfies the standard Bianchi identity



Next we look at the scalar equations

E = ∂µ∂µs− ∂
[
∂ρs∂ρs∂̄s̄

1 + |∂s|2

]
− 16∂2s

(1 + |∂s|2)2hµνz̄hµνz̄

− 2ω−µνFµν
(
da

du

)−1

λz + 2ω+
µνF̄µν

(
dā

dū

)−1

λ̄z̄ = 0

Ē = ∂µ∂µs̄− ∂̄
[
∂ρs̄∂ρs̄∂s

1 + |∂s|2

]
− 16∂̄2s̄

(1 + |∂s|2)2hµνzhµνz

− 2ω−µνFµν
(
da

du

)−1

λz + 2ω+
µνF̄µν

(
dā

dū

)−1

λ̄z̄ = 0

and reduce by evaluating

0 =

∫
Σ
Edz ∧ λ̄ 0 =

∫
Σ
Ēdz̄ ∧ λ



The details of the calculation are similar

(τ − τ̄) ∂µ∂µa+ ∂µa∂µτ +
dτ̄

dā
F̄µνF̄µν

− 2 (τ − τ̄)ωµνFµν + 2 (L1 − L2)

(
dā

dū

)2

ωµνF̄µν = 0

(τ − τ̄) ∂µ∂µā− ∂µā∂µτ̄ −
dτ

da
FµνFµν

− 2 (τ − τ̄)ωµνF̄µν + 2
(
L̄1 − L̄2

)(da
du

)2

ωµνFµν = 0

where L1 and L2 are the integrals

L1 = −
∫

Σ
∂

(
∂s

1 + |∂s|2

)
(s̄+ s̄− z∂̄s̄− z̄∂̄s̄)λz̄dz ∧ λ̄,

L2 =

∫
Σ
λ̄z̄dz ∧ λ̄

Some analysis, complimented by a numerical check, shows

that L1 = L2.



Putting everything together we arrive at the following

Lagrangian that gives these equations of motion

iL = − (τ − τ̄)
[1

2
∂µa∂

µā+ FµνF
µν + (a− ā) ? ωµνF

µν

− 2∂µ (a+ ā) ? Fµν∗Uν

]
+ (τ + τ̄) [Fµν ? F

µν + (a− ā)ωµνF
µν + 2∂µ (a− ā) ? Fµν∗Uν ]

where ω = dU and ?ω = d∗U .

This is low-energy effective action of the M5-brane on Σ in a

flux background and hence can be identified with the

Seiberg-Witten solution of 4D N=2 Yang-Mills theory with an A-

or Ω-deformation.



It is natural to complete the squares and generalize to arbitrary

gauge group:

iL = − (τij − τ̄ij)
[1

2

(
∂µa

i + 2

(
τ̄

τ − τ̄

)
ik

? F kµν
∗Uν

)
×

(
∂µāj − 2

(
τ

τ − τ̄

)
jl

? F lµλ∗Uλ

)

+

(
F iµν +

1

2

(
ai − āi

)
? ωµν

)(
F jµν +

1

2

(
aj − āj

)
? ωµν

)]
+ (τij + τ̄ij)

(
F iµν +

1

2

(
ai − āi

)
? ωµν

)(
?F jµν +

1

2

(
aj − āj

)
ωµν

)

Similar structure to the Ω-deformation of the original theory



Conclusions

Analysed the Ω-deformation as a flux background in M-theory.

Considered an S-dual A-deformation and evaluated the

M5-brane in this background.

Hope to shed light on the Ω-deformation and the M5-brane

using a 11D supergravity realisation



Currently looking at

• Second order corrections: looks as if the SW curve is

essentially unaltered (although the complex structure gets

deformed by ∆).

• More general SW curves (e.g. SU(Nc) with Nf flavours) -

conceptually no change but the non-holomorphic integrals

are more involved.

• When can you lift a D4/NS5-brane system to a smooth

M5? - tells us about non-Coulomb branch vacua of the

(2,0) theory.

Other applications: non-Lagrangian theories, AGT...?


