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Introduction and Some Review

Introduction

M5-brane is a mysterious and powerful object:
« 6D (2,0) CFT

A major challenge to our understanding of QFT

No perturbative parameters but

e One can put it on manifolds: moduli become

e Can try deforming the theory: e.g. non-commutativity and
Q-deformation



PART I: An M5

An M5-brane in eleven dimensions has five dynamical scalars
X' and a self-dual 3-form A, (and fermions)

The (bosonic) equations of [Howe,Sezgin][Howe,Sezgin,West]
are (we've set Gryx, = 0 for simplicity)

1 -
(m?)™V,, VX1 = —faﬂmw SR dH = =G

where

M = O™ = 2™

where the metric g,,.,, is the pull-back of the spacetime metric.



What is H,,,,,,? Well h,..,, is self-dual and
4 P
limnp = mmqmnrhqrp

is complicated and satisfies a non-linear self-duality. (But for us
h=H.)

Why? Consider flat space dH = 0 and reduce to D4-brane
Fo=H,s .

e Bianchi dF = 0 comes from 5-component of dH =0
e non 5-components are H = x5 F + non — linear

e dH = 0 gives non-linear equation which is just

*F
d|{ ——] =0 DBI!
(vl—F2>



PART IlI: The M5-brane, Seiberg-Witten and all that

One of the most striking applications of the M5-brane was by
[Witten]. Consider the following system of branes in type IIA
string theory

D4 01 2 3 6
NS5 01 2 3 8 9

is described by D = 4, N = 2 Yang-Mills at low energy.

At strong coupling it lifts to a configuration in M-theory
consisting only of M5-branes

M5 01 2 3 6 10
M5 01 2 3 8 9



B D4-brane
W NS5-brane



M MS-brane



But moreover this can be viewed as a single smooth M5-brane
wrapped on a Riemann Surface ¥

e Y is precisely the Seiberg-Witten curve!
e gives a systematic construction of X from braneology

e explains the appearance of ¥ in quantum 4D gauge theory

From the point of view of the M5-brane this configuration
appears as a 3-brane soliton. The effective low energy
dynamics of this soliton is given by the Seiberg-Witten effective
action [Howe, NL, West]



A single classical M5-brane can compute the exact low energy
effective action of a 4D quantum gauge theory

e Perturbative part known since early 80’s [Gates, Grisaru,
Siegel],[Howe, Stelle, West]

o [Seiberg,Witten] gave this plus a prediction for all
non-perturbative instanton terms

e The first few terms were then explicitly checked [Dorey,
Khose, Mattis]

More recent work has vastly expanded this story Gaiotto,
Gukov, Moore, Neitzke...everyone here...



PART II: Enter Q2

Based on previous work, in a seminal paper [Nekrasov] used
the so-called Q2-deformation to compute all terms in the
Seiberg-Witten prepotential exactly.

What is it? D =4, N =2 SYM is the dimensional reduction of
D=5 N=1SYM

The Q-deformation is obtained by compactifying the Euclidean
theory with a twist w € so(4)

2 = 2% +27R o — 2" + Rw, x”



Typically one parameterizes

This ‘localises the path integral of 4D N=2 SYM to point-like
instantons a the origin.

e path integral reduces to zero-mode determinants.

e can be evaluated algebraically using group theory.

Many other applications (Integrable systems, topological
strings, AGT)



The Q-Deformation as a Flux Background

We can realise the 2 deformation as a Euclidean background in
String theory [Hellerman,Orlando,Reffert]

Step 1) start with flat R? x S = (R?)? x R5 x S* in polar
coordinates (i=1,2)
(ri,0;), 0; 2 0; + 27 R zt 20,28 27, 2B z°

and metric
3
ds%o = Z(drf + r?d@f) + (d:vg)2 + (d:nG)2 + (d:n7)2 + (d:ng)2
i=1
Impose the orbifold

20 2% + 27R 0; = 0; 4+ 2me;

This preserves supersymmetry if e; = +es.



More general possibilities exist but we will just consider this.

Step 2) introduce new coordinates that diagonalize the orbifold

action
¢ = 0; — %1’9
20 o 9 ~
+27R O = ¢ + 27
But now the metric is off-diagonal.
> 2 2¢;12
dsfy = > (dr}+r}de] + R2 L(dz®)? + #d@dﬁ)
i=1
+(dz®)? + (dzh)? + ... + (da®)?



Step 3) T-dualize along z°. This produces a non-flat
background (u, v =0,1,2,3)

ds?y = (Wu - UZg”) datda” + (dz*)? + - - + (dz®)?
e = A
B = éU A daz?
where

A’=1+U,U" dU=w

Called the flux-trap since the dilaton has a maximum at the
origin that localizes D-branes there.

Similar to the Melvin solution.



In the case of type IIA we can also do:

Step 4) Lift to M-theory

A2
(dz?)? + (dm10)2]

u,U,
dst) = A3 me - £ ) dztdz” + (dz*)? 4 - -

+ Az

1
C:deg/\dxlo/\U.

At first order the metric is flat and

G =dz’ Ndz" Aw

+ (dz®)?



To see the effect on the D4/NS5-brane configuration consider
the first order correction due to BYSNS = U A da®

1
50Sps = — / d°zU,0, X FH
9i
In the non-Abelian theory this becomes
1
00Spa = Qtr/dsﬂf U,D, X F* — X% XU, D"*X®
94

Here the second term arises following the discussion of Myers
from imposing consistency with T-duality along .

In particular the second term is U, DsX?F#® with

o DgX? = —i[X8 XY
e FH8 — DHXS



Going to higher order we find: (& = X8 4 iX?)
Q 1 a [1 1 MN(DE® _ L e
SBi =T [ d x[g(Du ® +iSFaUY) (D" @ —iFU,)

1 1, - _
+ FwF + g([@ ] +iU"D,(® — ®))?

This agrees with the Q-deformation of 4D N = 2 SYM given in
[Nekrasov,Okounkov],[Ito,Nakajima,Saka]

The bottom line is that we can manufacture the Q-deformation
by putting branes in this background



The Alpha-Deformation

Given the M-theory flux solution corresponding to the
Q-deformation we can consider something else:

Uy
ds, = A3 an — UZQ ) datdz” + ... (dz®)? + (dz10)?
(dz%)? + (dx®)?
+ N

1
C:Ed:pwdeU.

i.e. 2% < 2%, 2% « 29 - corresponding to a '9-11’ flip.

The classic Witten M5-brane configuration in this background is
still supersymmetric.



Again we can consider the type IIA D4/NS5 brane
configuration. To first order CF% = U A da A da®

(5ASD4 d5{L'€'uV)‘pU Fy,\a X

22

To check compatibility with T-duality along z° we note that
C3f — O = G5 A da?
This time there is no extra term a la Myers and:

SaSps = —str / &z D, XU, « FH".
94

At first order and for abelian fields this essentially agrees with
the Q-deformation after an integration by parts.



At higher order we find the deformed action

1
A _ 4 8 A I
SD4_—ngr/d [2 5 (D X8+ iU« F,, )(D“X + iU, x F'P)

1
+ZFMVFWI + *D }(9]:)“}(9

1
UMD X5 4 (UMD, X0 — o (X5 X))

)

2A2(

‘S-dual’ to the Q-deformation (roughly F — xF)

More concretely, in the Abelian case, S, can be obtained from
S$, by dualizing F — *F = «F.



Deforming the M5-brane

So we can revisit the M5-brane, wrapped on a Riemann
Surface, in this spacetime to obtain the Seiberg-Witten effective
action in the presence of the Q-deformation.

In fact we will just consider the first order corrections in e, eo
and low energy fluctuations, to quadratic order in 9,

Switch to complex coordinates

ds?, = dayda” + dzdz + dsds + (da*)? + (dz®)? + (dz7)?
1 1
Cy = 5(z+2)(ds+ds) Nw—5 (s+5)(dz+d2) Aw

where s = 26 + 210, 2z = 28 + i2?



To this order the M5-brane is still embedded by a holomorphic
function s(z)

e can take the same, undeformed Seiberg-Witten curve X

e depends on moduli u; as well as other non-dynamical
parameters such as hypermultiplet masses.
e we will just consider the case of a single modulus «
corresponding to gauge group SU(2)
o Yisdefinedby t? —2(22 —u)t +1=0,t =¢"*°
e 3 has a single holomorphic differential A = (9s/0u)dz

M5-brane dynamics come from letting v — w(z*) and turning
on fluctuations of hg



First, since we are Euclidean, we take ¢ x hs3 = h3 and, to the
order we are working, we can simply take hs = Hs

The equation of motion for hs is
1 4
hs = —-d
dhs 1 Cs
To solve this we write
1 . .
hs = —1(03 + xC3 + (IJ)

where ® = ¢ x ® takes the form

¢ = gfw,da:“ Adx” Adz+ gﬁwd:c“ Adx” A dz
11 o o )
+W§€uvm (07505 kF oy — 07505 EF4r) dat A dz” A da?

with
F=—%4 F f:*4.}:



This explains our odd choice for C"
1
Cy :%(z—ki) (ds +ds) Aw — 3 (s +5) (dz + d2) Aw
Because in this case
A~ 4 1.
d(Cg + 1% 03) = —1G4
if Ous = 0.

Furthermore it is supersymmetric:

hg - Te~w-Te=0

Other choices seem very problematic and do not lead to
manageble integrals.



Note that
G=d(z+2z)Nd(s+35) Nw

so this is an Alpha-deformation.

The corresponding 2-deformation would have

G=d(z—2)Nd(s—3) Nw

To handle this we could take
03:%(z—i)(ds—dg)/\w—%(s—é)(dz—dz)/\w

But this has an explicit dependence on z10 = (s — 3)/2i.

¢ Not a good gauge choice for type IIA
¢ Nevertheless just computing we find the same answer.



The equation of motion for for h3 now takes the form
0= d® + C3 = *4(Ezdz + E,zdz)

with

B,. = au(mfw—cw)m[ 0505 - }

oA 92 FV_CVZ
1+‘882’(H'M H )

0s0,5 ,_ - A
—0 [I—Has‘z(ﬁf#y - C‘m,g):|

To reduce this equation we evaluate

0—/E,udz/\)\ 0—/Eugdz/\/\
b b



Doing this one encounters the following integrals

The first is easily evaluated using the Riemann bi-linear identity

The second is tricky but was evaluated years ago in [Lambert,
West] by cutting holes of size § in ¥ around the branch points
ei, of t(z), doing the line integrals and taking § — 0:

= [ s S e

J is evaluated in a similar way



The result is

(T - 7_-) (8/.Lf,ul/ + ay,a w;u/) + aHTle, - 8#7_'./_?/_“/ =0
(7 = 7) (OpFuw + Opawyuy) + 0umFuy — 0T Fyu =0

Taking the difference we find

Ou(Fuv — Fuw) = =0 (a — @) wu
which is solved by writing

F=(1-%xF—-(a—a)w™
ﬁ:(l—}-*)F—{—(a—Ez)w“‘

where F' = dA satisfies the standard Bianchi identity



Next we look at the scalar equations

2 ,wah;wz

5= 2
E = 0,05 — [8,)38;,585} B ( 169%s

1+ |0s|? 1+ |0s]2)
_ da\ " _ (da\ "'
— 2(.0“”./_':“1/ (du) )‘z + 2w:jy.7:,w (d’lj) AE =0
_ ~[0,50,50s 160°5
E = s PP o
aua,us 0 |:1 n |8S|2:| (1 + ’88‘2>

> ltuvz h;wz

_ da\ Lo (da\ T
— % P | o) At 2L P (o) Ae=0

and reduce by evaluating

Oz/Edz/\)\ Oz/Edz/\)\
> >



The details of the calculation are similar

(1 — )88@—%8&8“7'—#2]3 Fouw
— 21— P W Fr + 2 (L1 — (df?i) W Fyy =0
(1 = 7) 0u0ua — 0,60, T — da]:W]:’“’

_ d
—2(r = P wpFu +2 (L1 — Lo) di) W Fuy =0
where L1 and L, are the integrals
0s o - = -
Ly :—/8 ————— | (§4+ 5 — 205 — 205) \zdz N\ A,
o
Lr— / Aedz A A
>

Some analysis, complimented by a numerical check, shows
that L1 =1o



Putting everything together we arrive at the following
Lagrangian that gives these equations of motion
1
iL=—(r—7) [§8ua8”d + F F™ 4 (0 — @) % wp PP
— 20, (a+a)* F’“’*UV}

+ (1 +7) [Fu * F*" 4+ (a — @) wy F* + 20, (a — a) x F**U,|

where w = dU and xw = d*U.

This is low-energy effective action of the M5-brane on X in a
flux background and hence can be identified with the
Seiberg-Witten solution of 4D N=2 Yang-Mills theory with an A-
or Q2-deformation.



It is natural to complete the squares and generalize to arbitrary

i T k xrrv
(@ﬂ +2 (7_%>ik*Fw v >
x (aﬂaﬂ'—2< . > *F“‘A*UA>
1

+ <Ffw + % (a' —a") *wW> <Fj‘“’ +5 (a? —a’) *w’“’) }

A I _ 1.
+ (75 + Tij) (Fliy +3 (a' —a") *wul,> <*F9“” +3 (o) —a) w’”’)

gauge group:

Similar structure to the Q2-deformation of the original theory



Conclusions

Analysed the Q2-deformation as a flux background in M-theory.

Considered an S-dual A-deformation and evaluated the
M5-brane in this background.

Hope to shed light on the Q-deformation and the M5-brane
using a 11D supergravity realisation



Currently looking at

e Second order corrections: looks as if the SW curve is
essentially unaltered (although the complex structure gets
deformed by A).

e More general SW curves (e.g. SU(V.) with N, flavours) -
conceptually no change but the non-holomorphic integrals
are more involved.

e When can you lift a D4/NS5-brane system to a smooth
M5? - tells us about non-Coulomb branch vacua of the
(2,0) theory.

Other applications: non-Lagrangian theories, AGT...?



