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Strongly	  Interac#ng	  Stuff	  

Boundary	  field	  theory	  
d=2+1	  

•  Bulk	  d=3+1	  black	  hole	  
•  Hawking	  radia#on	  =	  finite	  temperature	  
•  Electrically	  charged	  (Reissner-‐Nordstrom)	  =	  finite	  density	  



Basics	  of	  Conduc#vity	  
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1. Introduction

�j(ω) = σ(ω) �E(ω)

V (φ) = m2φ2 + λφ4

m ≈ 125GeV

mobserved = mbare +minduced

mobserved ≈ 10mbare

mobserved ≈ 1000mbare

mobserved ≈ 1011 eV

minduced ≈ 1027 eV

≈ 1016 mobserved

minduced ≈ 1027 eV

mbare ≈ −1027 eV

Λmax ≈ Λobserved
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Drude	  Model	  
D-BRANES ON ALF SPACES
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Fig. 1 Real (left panel) and
imaginary (right panel) parts of
the optical conductivity calcu-
lated from the Drude model.

3 Experiment

We studied single crystals ofYBa2Cu3O7−δ and Bi2Sr2CaCu2O8 and films ofYBa2Cu3O7−δ . The prepara-
tion of the samples has been described elsewhere [8–15]. The samples have excellent quality surfaces, exhibit
extremely low resistivity, and have sharp superconducting transitions. Crystal sizes ranged from 1×1 mm2

to 6×4 mm2; the YBa2Cu3O7−δ films were 10×10 mm2, quite thin (300–500 Å), and were deposited by
pulsed-laser ablation on a PrBa2Cu3O7−δ buffer layer on YAlO3 substrates. The underdoped samples were
Bi2Sr2CaCu2O8 or YBa2Cu3O7−δ single crystals. The former had Y3+ substituted for Ca2+, yielding [16]
underdoped samples with Tc = 35 K (Pb 50%,Y 20%) and 40 K (Y 35%). In theYBa2Cu3O7−δ system, we
studied fully oxygenated Y1−xPrxBa2Cu3O7−δ single crystals in which substitution of Pr for the Y atom
changes the hole content in the CuO2 planes. The structure of the CuO chains remains unaffected [17]. The
Pr-doped samples have a Tc of 92, 75, and 40 K, respectively, for x = 0, 0.15, and 0.35.

Normal-incidence reflectance or transmittance data were obtained using a modified Perkin-Elmer 16U
grating spectrometer in the near-infrared through ultraviolet regions (2000–33,000 cm−1). The far-infrared
and midinfrared regions were covered using a Bruker IFS-113v Fourier transform spectrometer (80–4000
cm−1). The transmittance of Bi2Sr2CaCu2O8 over 100–700 cm−1 was measured at beamline U4-IR of
the National Synchrotron Light Source. For the single-domain samples, linear polarization of the light was
achieved by placing a polarizer of the appropriate frequency range in the path of the beam using a gear
mechanism that allowed in-situ rotation.

Low-temperature measurements (20–300 K) were done by attaching the sample holder assembly to the
tip of a continuous-flow cryostat. A flexible transfer line delivered liquid helium from a storage tank to the
cryostat. The temperature of the sample was stabilized by using a temperature controller connected to a
previously-calibrated Si diode sensor and a heating element on the tip of the cryostat.

Reflectance spectra, R were measured at each temperature for both the sample and for a reference Al
mirror. Division of the sample spectrum by the reference spectrum gave a preliminary reflectance of the
sample. After measuring the temperature dependence of this preliminary reflectance for each polarization,
the proper normalizing of the reflectance was obtained by taking a final room temperature spectrum, coating
the sample with a 2000Å thick film ofAl, and remeasuring this coated surface.A properly normalized room-
temperature reflectance was then obtained after the reflectance of the uncoated sample was divided by the
reflectance of the coated surface and the ratio multiplied by the known reflectance of Al. This result was
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Graphene	   Li	  et	  al.	  (2008)	  	  
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Cuprates	  
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Figure 10: The optical conductivity of optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8+δ. This plot is
taken from [11].

cuprates, Anderson suggested a power-law fall-off σ(ω) ∼ ω−γ on the basis of a Luttinger liquid
model, with γ = 2/3 arising from a coupling to a gauge field [21].

Perhaps more pertinent for the present discussion, the universal power law observed in the
optical conductivity, together with a ω/T scaling, was associated to an underlying quantum critical
point in [11]. Of course the starting point of our holographic model is a strongly interacting critical
point, albeit with a scale introduced by the finite density. Moreover, for small temperatures, T � µ,
our model exhibits an emergent locally critical point, reflected by the near horizon AdS2 × R2

regime.
However, a second explanation was put forward in [22] where it was argued that the σ ∼ ω−γ

behavior with γ ≈ 0.65 was a generic prediction of electrons interacting with a broad spectrum of
bosons. Our holographic model is certainly not short of such bosonic modes and it is possible that
these are responsible for our observed behavior.

Finally, within the holographic framework, a σ(ω) ∼ ω−2/3 power-law was shown to arise from
probe charged matter interacting with a strongly coupled soup with dynamical exponent z = 3
[10].

4 Future Directions

The introduction of a gravitational lattice in the simplest holographic model of a conductor has
allowed us to explore the low-frequency optical conductivity in these models. At very low frequen-
cies, σ(ω) follows a simple Drude form. However, for intermediate frequencies, |σ(ω)| has a power
law fall off (with constant offset) and its phase is approximately constant. Remarkably, both the
exponent of the power law and the phase are consistent with data taken on some cuprates and
are robust against changing all parameters of our model. We do not have a deep understanding
of why this is happening and it would clearly be of interest to find an analytic derivation of this
result.

To get more insight into this result, there are a few generalizations that should be investigated.

19
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•  Finite	  density	  of	  charge	  carriers	  
•  Transla#onal	  invariance	  

Due	  to:	  	  

1.  Dilute	  charge	  carriers	  
2.  Break	  transla#onal	  invariance	  

Two	  op#ons	  to	  resolve	  
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Choices:	  	   •  Ionic	  la8ce:	  	  

•  Scalar	  la8ce:	  introduce	  a	  neutral	  bulk	  scalar.	  
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Λmax ≈ Λobserved

ψ̄ψ ←→ Ψ̄
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/∂ Ψ
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√
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π
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φ� = charge density

[∆φ]bdyhorizon = total charge
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Electric Field

|σ(ω)| ∼ 1
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Figure 3: On the left we show the charge density ρ̃(x) and on the right the absolute value of the

non-zero coefficients of its Fourier series.

with coefficients ρ̃k. On the right panel of Fig. 3 we show the resulting Fourier coefficients. Note

that nonzero Fourier modes occur only for k equal to multiples of 2k0 = 4. As mentioned earlier,

this is because the stress tensor is quadratic in the scalar field, so the lattice seen by the metric

and Maxwell field has twice the lattice wavenumber. For Nx grid points along the x-direction,
a Fourier grid can only hope to resolve up to |kmax| ≤ Nx/2. It is reassuring that for k0 = 2,

and with Nx = 42, the highest multipoles have a magnitude smaller than 10−10, meaning that

our numerical code is capturing the relevant physics. Since higher wavenumbers come from higher

powers of the scalar field in the nonlinear solution, the Fourier series exhibits an exponential decay

with increasing wavenumber, which can be best seen in the logarithmic scale used on the right

panel of Fig. 3.

2.2 Perturbing the Lattice

The main purpose of this paper is to explore transport properties in the presence of our lattice.

According to the AdS/CFT dictionary, on the gravity side, this is mapped into the study of

perturbations about the lattice background.

Our first task is to write the equations governing generic perturbations of Eqs. (2.3). We denote

background fields with hats and expand all fields as

gab = �gab + hab, Aa =
�Aa + ba, Φ = �Φ+ η , (2.16)

where hab, ba and η should be regarded as small compared to �gab, �Aa and �Φ, respectively. Ex-

panding equations (2.3) to linear order determines how perturbations propagate in the background

{�g, �A, �Φ}. The resulting system of PDEs takes the following form

1

2

�
��hab − 2 �Racbdh

cd
+ 2 �R c

(a hb)c + 2�∇(a
�∇ch̄b)c

�
= − 3

L2
hab+4�∇(aη �∇b)

�Φ+2V �
(�Φ)η �gab+2V (�Φ)hab
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Figure 5: The optical conductivity, both without the lattice (dashed line) and with the lattice
(solid line and data points) for µ = 1.4 and temperature T/µ = 0.115. Note that the lattice
(which has wavenumber k0 = 2 and amplitude A0 = 1.5) only changes the low frequency behavior.
The pole in Im σ without the lattice reflects the existence of a ω = 0 delta-function in Re σ.

There is nothing mysterious about the presence of this delta-function. It follows solely on the
grounds of momentum conservation in the boundary theory. If we have a translationally invariant
state with nonzero charge density, then one can always boost it to obtain a nonzero current with
zero applied electric field. This results in the infinite DC conductivity.

The introduction of a background spatial lattice, as described in the previous section, resolves
this issue. With no translational invariance, there is no momentum conservation and the ω = 0
delta-function spreads out, revealing its secrets. In this section we describe what was hiding in
that delta-function.

The optical conductivity, σ(ω), in the presence of the lattice is shown by the solid line in Fig. 5.
At high frequencies, ω � µ, the optical conductivity in the lattice background remains unchanged
from the translationally invariant black hole. The interesting physics lies at lower frequencies.
The dissipative part of the conductivity, Reσ, now rises at low ω. This is the redistribution of the
spectral weight of the delta-function. Moreover, the pole in the responsive part of the conductivity,
Im σ, has now disappeared, with Im σ(ω) → 0, as ω → 0, confirming that there is no longer a
delta-function at zero frequency3. We now describe the characteristics of the conductivity in more
detail.

3
The resolution of a delta-function into a Drude-like peak has been seen in a somewhat different context in

conformal fixed points with vanishing charge density [16]. Here the delta-function is resolved by interactions rather

than breaking of translational symmetry, either in an � expansion [16] or a 1/N expansion [17].
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Figure 6: A blow up of the low frequency optical conductivity with lattice shown in Fig. 5. The

data points in both curves are fit by the simple two-parameter Drude form (3.2).

3.1 The Drude Peak

At low frequency, both the real and imaginary parts of the conductivity can be fit by the two-

parameter Drude form

σ(ω) =
Kτ

1− iωτ
(3.2)

with both the scattering time τ and the overall amplitude K constants, independent of ω. This is
shown in Fig. 6. It can be checked numerically that the overall amplitude K agrees (to about the

1% level) with the coefficient of the pole (3.1) in the translationally invariant case. All interesting

physics in this regime is therefore captured by the single parameter, τ . We have varied the

temperature and lattice spacing and found that this Drude form holds in all cases. Given the lack

of well-defined quasi-particles in our holographic system, it seems surprising that the low-frequency

behaviour of our system is governed so well by the exact Drude form.

3.2 DC Resistivity

The resolution of the ω = 0 delta-function leaves behind a well-defined DC resistivity, ρ = (Kτ)−1
.

The Drude amplitude K is essentially independent of temperature T and all temperature de-

pendence in the resistivity ρ(T ) is inherited from τ . The results depend strongly on the lattice

wavenumber k0 and are shown on the left hand side of Fig. 7.

To make sense of this complicated plot, we review some recent work in the literature. Since

the near horizon geometry of an extremal Reissner-Nordström AdS black hole is AdS2 × R2
, the

dual theory is said to be “locally critical” in the sense that it is invariant under rescalings of time,

with no rescaling of space. Hartnoll and Hofman [12] have recently studied the DC conductivity

in a locally critical theory. They showed that the DC conductivity can be extracted from the two
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Figure 7: The left panel shows the DC resistivity plotted as a function of temperature for various

lattice spacings. On the right hand side we factor out the scaling (3.3, 3.4) and re-plot the same

data on a log scale. The lines denote a fit to the data including polynomial corrections to the

leading low temperature behavior. Both plots arise from a background with µ = 1.4 and the

lattice amplitude A0 = k0/2. The plots remain essentially unchanged for lattices of different
amplitudes.

point function of the charge density, evaluated at the lattice wavenumber. They then calculated

this two point function by perturbing the Reissner-Nordström AdS black hole and found

ρ ∝ T 2ν−1
(3.3)

where4

ν =
1

2

�
5 + 2(k/µ)2 − 4

�
1 + (k/µ)2 (3.4)

The exponent can be viewed as arising from the dimension ∆ = ν − 1
2 of the operator dual to the

charge density in the near horizon AdS2 region, evaluated at the lattice wavenumber k.
On the right hand side of Fig. 7 we plot ρ/T 2ν−1 for several values of the lattice wavenumber.

As discussed earlier, if our scalar field has lattice wavenumber k0, the charge density has lattice

wavenumber 2k0, so we have set k = 2k0 in (3.4). We have fit the data to ρ0 = T 2ν−1(a0 + a1T +

a2T 2 + a3T 3) and drawn the curves on the right hand side of Fig. 7. The fact that the curves all

approach nonzero, but finite, constants at low temperature shows that our data confirms the low

temperature scaling (3.3) with exponent (3.4) predicted in [12].

Note that as the temperature goes to zero, the dissipation goes to zero and the DC resistivity

vanishes. Thus the DC conductivity becomes infinite, as expected for a perfect lattice with no

dissipation.

4This is a manifestly scale invariant form of the exponent that was found in [12] and was first derived in a
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amplitudes.
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Figure 8: The modulus |σ| and argument arg σ of the conductivity. The background for both
plots has wavenumber k0 = 2, amplitude A0 = 1.5, chemical potential µ = 1.4 and temperature
T/µ = 0.115. The line on the right is a fit to the power law (3.5).

3.3 Power-law Optical Conductivity

The fit to the Drude peak works well for ω/T � 1. However, for ω/T � 1, the optical conductivity
exhibits a power-law fall-off in a “mid-infrared” regime, before reverting to the continuum result. It
is convenient to use ωτ as a dimensionless measure of the frequency in this region. This is because
the power law behavior falls roughly in the range 2 < ωτ < 8 for all the lattices we have examined,
even those with different temperature, lattice spacing and amplitude. (For the temperature we use
in Fig. 5, τT = 2.22, so ωτ = 2 corresponds to ω/T = 0.9.) In Fig. 8 we have plotted |σ| and the
phase angle over this range of frequencies. The data is very well fit by

|σ(ω)| = B

ω2/3
+ C (3.5)

In contrast, the phase angle of the conductivity, arg σ varies only slightly from 65◦. The slight
variation in the phase angle is enough so that the real and imaginary parts of the conductivity do
not individually follow simple power laws over the range indicated in Fig. 8.

The exponent of the power law does not depend on the particular choices we have made for the
parameters in our model. To illustrate this, and to make the power law more manifest, in Fig. 9
we show (|σ|−C) vs ωτ on a log-log plot. On the left we show three different choices for the lattice
wavenumber k0. On the right, we show three different temperatures. The fact that the curves all
form parallel straight lines for ωτ > 2 shows the power law fall-off with exponent −2/3 is robust.
Since the offset C depends on k0 and T , in Fig. 9 we have subtracted a different constant for each
curve.

different context in [23].
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Figure 9: The magnitude of the optical conductivity with the offset removed, on a log-log plot.
On the left, the plot has T/µ = .115, and shows three different wavenumbers: diamonds denote
k0 = 3, the squares denote k0 = 1, and the circles denote k0 = 2. On the right, the plot has
k0 = 2 and shows three different temperatures: the diamonds have T/µ = .098, the circles have
T/µ = .115 and the squares have T/µ = .13. In both plots, A0/k0 = 3/4. The fact that the lines
are parallel for ωτ > 2 shows that the fit to the power law (3.5) is robust.

3.4 Comparison to the Cuprates

Our results for the optical conductivity bear a striking resemblance to the behaviour seen in the
cuprates where a mid-infrared power-law contribution has long been observed [18, 11, 19]. At low
frequencies, ω/T � 1.5, the optical conductivity takes the Drude form (3.2) if one also allows for τ
to scale linearly with both T and ω [19]. But for ω/T � 1.5, a cross-over to power-law behaviour
takes place, in which |σ| ∼ ω−γ with γ ≈ 0.65 and the phase is roughly constant around 60◦ [11].
This is shown in Fig. 10.

There are differences between our behaviour and that of the cuprates. Most notably, the DC
resistivity that we obtain is nothing like the robust linear behavior characteristic of the strange
metal regime; instead we find power-law behaviour with an exponent that depends on the lattice
wavenumber. Moreover, in the mid-infra red regime our optical conductivity requires a constant
off-set C in (3.5). No such off-set is seen in [11].

In some sense, this discrepancy makes the agreement of the phase angle somewhat more sur-
prising. For strictly power-law conductivity (i.e. with C = 0 as seen in the cuprates), causality
and time-reversal invariance in the form σ(ω) = σ�(−ω) relate the exponent of the power law to
the phase [11]. However, with C �= 0, there is no reason for the phase and exponent to be related.

There have been previous theoretical observations of power-law fall-off in the optical conduc-
tivity. It is seen in models of charges moving in a periodic potential subject to dissipation [20], but
the exponent typically depends on the details of the model of dissipation. In the context of the
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Figure 10: The optical conductivity of optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8+δ. This plot is
taken from [11].

cuprates, Anderson suggested a power-law fall-off σ(ω) ∼ ω−γ on the basis of a Luttinger liquid
model, with γ = 2/3 arising from a coupling to a gauge field [21].

Perhaps more pertinent for the present discussion, the universal power law observed in the
optical conductivity, together with a ω/T scaling, was associated to an underlying quantum critical
point in [11]. Of course the starting point of our holographic model is a strongly interacting critical
point, albeit with a scale introduced by the finite density. Moreover, for small temperatures, T � µ,
our model exhibits an emergent locally critical point, reflected by the near horizon AdS2 × R2

regime.
However, a second explanation was put forward in [22] where it was argued that the σ ∼ ω−γ

behavior with γ ≈ 0.65 was a generic prediction of electrons interacting with a broad spectrum of
bosons. Our holographic model is certainly not short of such bosonic modes and it is possible that
these are responsible for our observed behavior.

Finally, within the holographic framework, a σ(ω) ∼ ω−2/3 power-law was shown to arise from
probe charged matter interacting with a strongly coupled soup with dynamical exponent z = 3
[10].

4 Future Directions

The introduction of a gravitational lattice in the simplest holographic model of a conductor has
allowed us to explore the low-frequency optical conductivity in these models. At very low frequen-
cies, σ(ω) follows a simple Drude form. However, for intermediate frequencies, |σ(ω)| has a power
law fall off (with constant offset) and its phase is approximately constant. Remarkably, both the
exponent of the power law and the phase are consistent with data taken on some cuprates and
are robust against changing all parameters of our model. We do not have a deep understanding
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taken from [11].
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More	  Evidence	  for	  Scaling	  
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Conduc#vity	  in	  AdS5	  
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Summary	  

•  Clear	  evidence	  for	  la8ce	  induced,	  mid-‐infrared,	  scaling	  regime	  

•  Robust	  agreement	  with	  cuprates.	  	  

•  Why?!	  


