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Ubiquity of T-linear resistivity

(after Sachdev-Keimer ’11)



Universal timescale
• Write: 

• Measure: σ (from resistivity),               kF,m (quantum oscillations). 

• Extract τ. Find:
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• LSCO, Takenaka et al. ‘03

• BSCCO, Hwang et al. ‘07

• YBCO, Boris et al. ‘04
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• Wu et al. ’09.

• Schafgans et al. ’12.
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Mission statement
• Perhaps these systems show similar 

behavior because they are close to saturating 
a universal bound? 

• Longstanding idea that quantum criticality 
might saturate a timescale bound (Sachdev). 

• Bolstered by Kovtun-Son-Starinets viscosity 
bound (cf. Zaanen, Bruin et al.). 

• This talk: quasi-concrete proposal for such a 
bound in the context of  metals.



Classification of metals 
by transport

• The resistivity of  a metal is 
determined by the longest lived 
excitations that carry charge (or heat).

Metal

Quasiparticle

Coherent Incoherent

Non-quasiparticle



Quasiparticle transport
• Longest lived excitations: δnk. 

• Study with Boltzmann equation.
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Quasiparticle transport
• Lifetime instead of  mean free path:
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Einstein vs. Drude
• Drude: conductivity as momentum 

relaxation. 

• Einstein: conductivity as diffusion of  charge. 

• Conventional quasiparticle metal: typically 

• Without quasiparticles, (apparently) 
different approaches to conductivity.
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Coherent metals
• Only momentum P is long-lived:  
 
 
(momentum-conserving interactions strong, 
umklapp+disorder weak) 

• Then:

hP (t)i ⇠ e��t , � ⌧ kBT
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(e.g. Jung-Rosch ’07, 
Hartnoll-Hofman ’12, 
Mahajan-Barkeshli-Hartnoll- ’13).



Incoherent metals
• Nothing is long-lived that overlaps 

with the current J. 

• Longest lived quantities are total 
energy and charge. Relate to currents:

@nA

@t
+r · jA = 0 , (nA = {✏, ⇢})

• Implies diffusion and Einstein relation: 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No ‘Drude’ peak but structure at  ω ～ T generic



Incoherent metals
• Conductivities: 

• Susceptibilities:

jA = ��ABrµB , (µA = {T, µ})
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• Diffusion rates:



Optical conductivities
• Materials with high temperature T-

linear resistivity regimes all show the 
onset of  incoherence …

(in low T regimes, with Drude peaks, coherent 
metal approach likely applicable)



• Jonsson et al. ’07.

• Lee et al. ’02.



• Takenaka 
et al. ’05.

• Wang 
et al. ’04.

Na0.7CoO2



Incoherent metals
• Dropping ‘thermoelectric’ terms:

� = �D+ ,

 = cD� .

• Unlike momentum relaxation, diffusion is 
a process that is intrinsic to the system.

• Might the D’s be fundamentally bounded? 
e.g. with quasiparticles:

D ⇠ v2F ⌧ & v2F~
kBT



Aside on screening
• In an actual metal, Coulomb interactions 

instantaneously screen fluctuations in 
charge. 
 

• Charge does not diffuse. 
 

• However, the Einstein relation still holds:
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Universal bounds?
• The KSS bound can be stated as a 

bound on momentum diffusion:

• They proposed that this bound continued 
to hold in the absence of  quasiparticles.
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Resistivity
• A system approximately saturating 

the bound will have:
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• Linear resistivity. If  analyzed à la Bruin et al. 
would give the measured: ⌧ ⇠ ~/(kBT )

• Can cross MIR bound: ρ

T



Incoherence vs. phonons
• Electron-phonon-type scattering above a 

‘Debye’ scale mimics many features of  
incoherent transport. 

• However: 
(i) e-ph scattering cannot cross MIR bound. 
(ii) Above Debye scale, elastic scattering, 
and hence the Wiedemann-Franz law:
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The importance of D
• Direct measurements of  the diffusion 

constants can distinguish different 
scenarios and potentially falsify the bound.

• Eg. I am proposing: � ⇠ 1 , D ⇠ 1

T

• Ultra high T expansion (e.g. DMFT) gives:
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T
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• DMFT has also argued for:
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T 2



The importance of D

• Wu et al. ’93. 
BSCCO

• Compatible with 
bounds once 
phonons subtracted.

• An old measurement of  thermal diffusivity 
in BSCCO exists:



Summary
• Proposed that incoherent metallic 

transport is subject to a diffusivity bound. 

• This may explain the ubiquity of  T-linear 
resistivity. 

• Materials can cross the MIR bound while 
saturating the diffusivity bound. 

• Known T-linear materials are incoherent.



Looking forward
• Experimental counterexamples? 

(cf. low spin diffusivity measured in cold 
atomic Fermi gases).



Looking forward
• Controlled models of  incoherent metals? 

e.g. (i) disordered fixed points. 
        (ii) emergent particle-hole symmetry. 
        (iii) holographic models of  incoherence 

• Some holographic geometries with strong 
momentum relaxation are known. Very 
interesting to probe the diffusivities and 
optical conductivities in these systems.


