Multicomponent Skyrmion lattices and their excitations

Benoit Douçot lpthe Paris
Dima Kovrizhin Cambdridge and MPI-PKS Dresden
Roderich Moessner MPI-PKS Dresden

Quantum Hall effect (I)

$$
\begin{aligned}
& R_{x x}=(V(3)-V(4)) / I \\
& R_{x y}=(V(3)-V(5)) / I
\end{aligned}
$$

Quantum nature of Hall resistance plateaus

Plateaus observed for (ν integer):

$$
\rho_{x y}=\frac{B}{n e}=\frac{h}{\nu e^{2}}
$$

\rightarrow Quantized electronic densities:

$$
n=\nu \frac{e B}{h}
$$

In terms of $\Phi_{0}=\frac{h}{e}$: "Flux quantum"

$$
N_{\text {electrons }}=\nu \frac{\text { Total magnetic flux }}{\Phi_{0}}
$$

Energy spectrum for a single electron

$$
H=\frac{1}{2 m}(\mathbf{P}+e \mathbf{A})^{2}, \quad \mathbf{B}=\boldsymbol{\nabla} \wedge \mathbf{A} \text { spatially uniform. }
$$

Define gauge invariant $\boldsymbol{\Pi}=\mathbf{P}+e \mathbf{A}=m \mathbf{v}$
$\left\{p_{i}, r_{j}\right\}=\delta_{i j}, \quad i, j \in\{x, y\}, \quad\left\{\Pi_{x}, \Pi_{y}\right\}=e B$
\rightarrow Harmonic oscillator spectrum: $E_{n}=\hbar \omega(n+1 / 2), \omega=e B / m$
Conserved quantities (also generators of magnetic translations)
$\mathbf{v}=\omega \hat{\boldsymbol{z}} \wedge(\mathbf{r}-\mathbf{R}), \quad \mathbf{R}=\mathbf{r}+\frac{\hat{\boldsymbol{z}}_{\wedge} \boldsymbol{\Pi}}{e B}, \quad\left\{R_{x}, R_{y}\right\}=-\frac{1}{e B}, \quad\left\{R_{i}, \Pi_{j}\right\}=0$
Heisenberg principle: $B \Delta R_{x} \Delta R_{y} \simeq \frac{h}{e}=\Phi_{0}$
\rightarrow Magnetic length $l=\sqrt{\frac{\hbar}{e B}}$

Landau levels are degenerate

Intuitively, each state occupies the same area as a flux quantum Φ_{0}, so that the number of states per Landau level =

ν is interpreted as the number of occupied Landau levels

ν entier

$3<v<4$

Ferromagnetism at $\nu=1$

Coulomb repulsion favours anti-symmetric orbital wavefunction

\rightarrow spin wavefunction: symmetric (ferromagnet)

no interactions
in QH systems : no kinetic-energy cost!
(LL ~ flat band)

A class of trial states near $\nu=1$

Take antisymmetrized products of single particle states (Slater determinants or Hartree-Fock states): $\left|S_{\psi}\right\rangle=\bigwedge_{\alpha=1}^{N}\left|\Phi_{\alpha}\right\rangle$ where $\Phi_{\alpha, a}(r)=\chi_{\alpha}(r) \psi_{a}(r), r=(x, y), a \in\{1, \ldots, d\}$. $\chi_{\alpha}(r) \rightarrow$ electron position.
$\psi_{a}(r) \rightarrow$ slowly varying spin background. $(\langle\psi(r) \mid \psi(r)\rangle=1)$.
In the $d=2$ case, if σ_{a} denote Pauli matrices:
Associated classical spin field: $n_{a}(r)=\langle\psi(r)| \sigma_{a}|\psi(r)\rangle$
Topological charge: $N_{\text {top }}=\frac{1}{4 \pi} \int d^{(2)} r\left(\partial_{x} \vec{n} \wedge \partial_{y} \vec{n}\right) \cdot \vec{n}$
Because of large magnetic field, we impose that orbital wave-functions $\Phi_{\alpha, a}(r)$ lie in the lowest Landau level.

Extra charges at $\nu=1$ induce Skyrmion textures

Sondhi, Karlhede, Kivelson, Rezayi, PRB 47, 16419, (1993)

$$
\begin{gathered}
\left\langle\Phi_{\alpha}\right|(P-e A)^{2}\left|\Phi_{\alpha}\right\rangle=\left\langle\chi_{\alpha}\right|\left(P-e A_{\mathrm{eff}}\right)^{2}+V_{\mathrm{eff}}\left|\chi_{\alpha}\right\rangle \\
V_{\text {eff }}=\langle\nabla \psi \mid \nabla \psi\rangle-\langle\nabla \psi \mid \psi\rangle\langle\psi \mid \nabla \psi\rangle \\
A_{\mathrm{eff}}=A-\Phi_{0} \frac{1}{2 \pi} \mathcal{A}
\end{gathered}
$$

Berry connection: $\mathcal{A}=\frac{1}{i}\langle\psi \mid \nabla \psi\rangle$

Generalized topological charge: $\oint \mathcal{A} . d \mathbf{r}=2 \pi N_{\text {top }}$ (This coincides with the previous notion when $d=2$).

Extra charges at $\nu=1$ induce Skyrmion textures

Sondhi, Karlhede, Kivelson, Rezayi, PRB 47, 16419, (1993)

$$
\left\langle\Phi_{\alpha}\right|(P-e A)^{2}\left|\Phi_{\alpha}\right\rangle=\left\langle\chi_{\alpha}\right|\left(P-e A_{\text {eff }}\right)^{2}+V_{\text {eff }}\left|\chi_{\alpha}\right\rangle
$$

Consequences:
The charge orbitals $\chi_{\alpha}(r)$ lie in the lowest Landau level of $A_{\text {eff }}$. There are $N_{\text {eff }}=$ Effective flux $/ \Phi_{0}$ states in this level.
Condition to minimize Coulomb energy:

$$
N_{\text {electrons }}=N_{\text {eff }}
$$

Finally:

$$
N_{\text {electrons }}=N(\nu=1)-N_{\text {top }}
$$

Picture of a Skyrmion crystal

Skyrmion crystals in electronic systems

Theoretical prediction: Brey, Fertig, Côté and MacDonald, PRL 75, 2562 (1995)
Specific heat peak: Bayot et al. PRL 76, 4584 (1996) and PRL 79, 1718 (1997)
Increase in NMR relaxation: Gervais et al. PRL 94, 196803 (2005)

Raman spectroscopy: Gallais et al, PRL 100, 086806 (2008) Microwave spectroscopy: Han Zhu et al. PRL 104, 226801 (2010)

Recent observation (neutron scattering) on the chiral itinerant magnet MnSi: Mühlbauer et al, Science 323, 915 (2009)

Textures in spinor condensates

M. Vengalattore et al. PRL 100, 170403 (2008)
"Helical spin textures in a ${ }^{87} \mathrm{Rb} F=1$ spinor Bose-Einstein condensate are found to decay spontaneously toward a spatially modulated structure of spin domains. The formation of this modulated phase is ascribed to magnetic dipolar interactions that energetically favor the short-wavelength domains over the long-wavelength spin helix."

Multi-Component Systems (Internal Degrees of Freedom)

(A) physical spin: $\mathrm{SU}(2)$

(C) graphene (2D graphite)

(B) bilayer: $\mathrm{SU}(2)$ isospin

two-fold valley degeneracy
$\rightarrow \mathrm{SU}(2)$ isospin
spin + isospin : SU(4)

Realistic anisotropies

Hamiltonian can approximately have high $S U(4)$ symmetry

- Zeeman anisotropy: $S U(2) \rightarrow U(1)$
- Graphene: valley weakly split, $O\left(a / l_{B}\right)$
- Bilayers: charging energy: $S U(2) \rightarrow U(1)$; neglect tunnelling

NMR experiments in quantum Hall bilayers (I)

Heat or NMR pulse \rightarrow increases effective electron Zeeman energy
Nuclear spin relaxation is detected resistively

Spielman et al., Phys. Rev. Lett. 94, 076803, (2005)

NMR experiments in quantum Hall bilayers (II)

Current-pump and resistive detection

Kumada at al., Phys. Rev. Lett. 94, 096802

Phase coexistence scenario

- Theoretical suggestion of first order transition (Schliemann, Girvin, MacDonald, 2001)
- Explanation of the longitudinal Coulomb drag peak (Stern, Halperin, 2002)

Kellog et al. Phys. Rev. Lett. 90, 246801, (2003)

The case for entangled textures (I)

Bourassa et al, Phys. Rev. B 74, 195320 (2006)

The case for entangled textures (II)

Bilayer with charge imbalance

Ezawa, Tsitsishvili, Phys. Rev. B 70, 125304, (2004)

Collective mode spectrum

Côté et al.,
Phys. Rev. B 76, 125320, (2007)

$C P^{(d-1)}$ model for exchange energy

d-component spinor field $|\psi(r)\rangle$ parametrizes a Slater determinant at $\nu=1$.
Assume $S U(d)$ global symmetry and local gauge symmetry: $|\psi(r)\rangle \rightarrow e^{i \phi(r)}|\psi(r)\rangle$.

$$
\mathcal{E}_{e x}=\int d^{(2)} r\left(\frac{\langle\nabla \psi \mid \nabla \psi\rangle}{\langle\psi \mid \psi\rangle}-\frac{\langle\nabla \psi \mid \psi\rangle\langle\psi \mid \nabla \psi\rangle}{\langle\psi \mid \psi\rangle^{2}}\right)
$$

Berry connection: $\mathcal{A}=\frac{1}{i}\langle\psi \mid \nabla \psi\rangle$
Topological charge: $\oint \mathcal{A} . d \mathbf{r}=2 \pi N_{\text {top }}$

$$
\mathcal{E} \geq \pi\left|N_{\text {top }}\right|
$$

Lower bound is reached when $|\psi(r)\rangle$ is holomorphic or anti-holomorphic: leading to a huge degeneracy.

Spectrum of the Hessian matrix (I)

Consider small deviations $|\psi\rangle \rightarrow|\psi\rangle+\sqrt{\langle\psi \mid \psi\rangle}|\phi\rangle$ away from analytic spinor $|\psi\rangle$.

$$
\mathcal{E}=\pi\left|N_{\text {top }}\right|+2\langle\phi| M^{+} P M|\phi\rangle+\ldots
$$

$$
\begin{array}{ll}
\left.M|\phi\rangle=\left|\partial_{\bar{z}} \phi\right\rangle+\frac{1}{2} \frac{\left\langle\partial_{z} \psi \mid \psi\right\rangle}{\langle } \right\rvert\, & \text { Key property: } \\
\left.P|\phi\rangle=|\phi\rangle-\frac{\mid \psi(z)\langle\psi\rangle}{\langle\psi(z)|} \right\rvert\,\langle \rangle & {\left[M, M^{+}\right]=\frac{1}{2} \mathcal{B}(r)=\pi Q(r)}
\end{array}
$$

If $\mathcal{B}(r)$ constant, the spectrum of $M^{+} M$ is $\left\{\frac{\mathcal{B}}{2} n, n=0,1,2, \ldots\right\}$. At large d, we may expect that the effect of P is small.
Most likely, Hessian of $C P^{(d-1)}$ model is gapped, with an energy gap of order $\frac{e^{2}}{4 \pi \epsilon l} n l^{2} . \quad(l=\sqrt{\hbar / e B}, \overline{Q(r)}=n)$.

Spectrum of the Hessian matrix (II)

Variational evaluation of the hessian spectrum for $d=3$

Variational approach for lattice of textures

$\mathcal{E}=\mathcal{E}_{e x}+\mathcal{E}_{e l}, \quad \mathcal{E}_{e l}=\frac{1}{2} \int d^{(2)} r_{1} \int d^{(2)} r_{2} Q\left(r_{1}\right) u\left(r_{1}-r_{2}\right) Q\left(r_{2}\right)$
$u(r)=\frac{e^{2}}{4 \pi \epsilon|r|}$
Assume an average charge density $\overline{Q(r)}=n$, then $\mathcal{E}_{e l} / \mathcal{E}_{e x}=\ln ^{1 / 2}$, where $l=\sqrt{\hbar / e B}$. In the dilute limit, $\mathcal{E}_{e x} \gg \mathcal{E}_{e l}$. Main approximation: Minimize \mathcal{E} among the configurations that minimize $\mathcal{E}_{e x}$. That is, we look for holomorphic d-component spinor configurations $|\Psi(r)\rangle$ with given $\overline{Q(r)}=n$, such that $\mathcal{E}_{e l}$ is minimum.
Physical intuition: One should make $Q(r)$ as homogeneous as possible. In particular, it is natural to consider first periodic patterns.

Construction of periodic textures

Problem: construct periodic holomorphic maps from torus to projective space Answer: use Theta functions

$$
\begin{aligned}
& \gamma_{1}=\pi \sqrt{d} \\
& \gamma_{2}=\pi \sqrt{d} \tau
\end{aligned}
$$

$$
\theta(z+\gamma)=e^{a_{\gamma} z+b_{\gamma}} \theta(z)
$$

$$
\gamma=n_{1} \gamma_{1}+n_{2} \gamma_{2}
$$

n_{1} and n_{2} integers

Fixing the topological charge d

$$
\frac{1}{i} \int_{\mathcal{C}\left(\gamma_{1}, \gamma_{2}\right)} \frac{\theta^{\prime}(z)}{\theta(z)}=\frac{1}{i}\left(a_{\gamma_{1}} \gamma_{2}-a_{\gamma_{2}} \gamma_{1}\right)=2 \pi d
$$

Theta functions of a fixed type carrying topological charge d on the elementary (γ_{1}, γ_{2}) parallelogram form a complex vector space of dimension d (Riemann Roch theorem on torus).

Lattice of allowed translations

Quantized translations:

$$
\begin{gathered}
\mathcal{T}_{w} \theta(z)=e^{\mu(w) z} \theta(z-w) \\
\frac{\mathcal{T}_{w} \theta(z+\gamma)}{\mathcal{T}_{w} \theta(z)}=e^{a_{\gamma} z+b_{\gamma}} e^{\mu(w) \gamma-a_{\gamma} w}
\end{gathered}
$$

$$
w=\frac{1}{d}\left(m_{1} \gamma_{1}+m_{2} \gamma_{2}\right)
$$

$$
\mu(w)=\frac{1}{d}\left(m_{1} a_{\gamma_{1}}+m_{2} a_{\gamma_{2}}\right)
$$

Type conservation:

$$
\mu(w) \gamma-a_{\gamma} w \in 2 \pi \mathbb{Z}
$$

for any lattice vector γ.
$\mathcal{T}_{w} \mathcal{T}_{w^{\prime}}=e^{i \frac{2 \pi}{d}\left(m_{1} m_{2}^{\prime}-m_{2} m_{1}^{\prime}\right)} \mathcal{T}_{w^{\prime}} \mathcal{T}_{w}$
$\left(m_{1} m_{2}^{\prime}-m_{2} m_{1}^{\prime}\right) / d=$ topological charge inside parallelogram delimited by w and w^{\prime}.

Useful set of theta functions

$$
\theta_{p}(z)=\sum_{n} e^{i(\pi \tau d(n-p / d)(n-1-p / d)+2 \sqrt{d}(n-p / d) z)}
$$

Pattern of zeros ($d=4$)

$$
\begin{aligned}
& \mathcal{T}_{\frac{\gamma_{1}}{d}} \theta_{p}=e^{i \frac{2 \pi p}{d}} \theta_{p} \\
& \mathcal{T}_{\frac{\gamma_{2}}{d}} \theta_{p}=\lambda \theta_{p+1}
\end{aligned}
$$

$\lambda=\exp (-i \pi \tau(d+1 / d))$

Useful set of theta functions

$$
\theta_{p}(z)=\sum_{n} e^{i(\pi \tau d(n-p / d)(n-1-p / d)+2 \sqrt{d}(n-p / d) z)}
$$

Useful set of theta functions

$$
\theta_{p}(z)=\sum_{n} e^{i(\pi \tau d(n-p / d)(n-1-p / d)+2 \sqrt{d}(n-p / d) z)}
$$

Useful set of theta functions

$$
\theta_{p}(z)=\sum_{n} e^{i(\pi \tau d(n-p / d)(n-1-p / d)+2 \sqrt{d}(n-p / d) z)}
$$

Useful set of theta functions

$$
\theta_{p}(z)=\sum_{n} e^{i(\pi \tau d(n-p / d)(n-1-p / d)+2 \sqrt{d}(n-p / d) z)}
$$

Periodic textures with lowest energy

Periodic texture $d=2$

Periodic texture $d=4$

Spatial variations of topological charge

$Q(r)$ is always γ_{1} / d and γ_{2} / d periodic.
At large d the modulation contains mostly the lowest harmonic, and its amplitude decays exponentially with d.
Large d behavior for a square lattice:
$Q(x, y) \simeq \frac{2}{\pi}-4 d e^{-\pi d / 2}\left[\cos (2 \sqrt{d} x)-2 e^{-\pi d / 2} \cos ^{2}(4 \sqrt{d} x)+(x \leftrightarrow y)\right]+\ldots$
Only the triangular lattice seems to yield a true local energy minimum. This is most directly seen by computing eigenfrequencies of small deformation modes.

Applications of a flat topological charge profile

N. Cooper and J. Dalibard, PRL 110, 185301 (2013); N. Cooper and R. Moessner, PRL 109, 215302 (2012)
Tight binding model in momentum space with a non-zero average flux (à la Hofstadter) corresponds, in the large N limit to a periodic texture in real space $r \rightarrow|\psi(r)\rangle$ with very flat Berry curvature. After adding kinetic energy of atoms, this generates a very flat effective orbital magnetic field.
For $N=3, \Omega=3 E_{\mathrm{R}}$, get Landau level with a bandwidth
$W=0.015 E_{\mathrm{R}}$.

Collective mode spectrum (I)

Analogy with spin-wave theory:
Ni

$$
\psi_{a}(r)=\left(\delta_{a b}+U_{a b}(r)\right) \theta_{b}(r)
$$

$U_{a b}(r)$ gives d^{2} degrees of freedom for each pseudo-momentum, so there are d^{2} branches (positive frequencies) in the excitation spectrum: the situation is reminiscent of a non-collinear antiferromagnet.

Consequences of $U(d)$ symmetry

Zero-momentum sector $\left(m_{1}, m_{2}\right)=(0,0)$ Hamiltonian system with $N=d^{2}$ degrees of freedom.

If $g \in U(d)$, the transformation
$U \rightarrow g U,(g U)_{a c}\left(m_{1}, m_{2}\right) \equiv g_{a b} U_{b c}\left(m_{1}, m_{2}\right)$ preserves equations of motion.
This gives $f=d^{2}$ flat directions, tangent to the ground-state manifold at the periodic texture configuration.
Finite momentum sector
Get one magnetophonon with $\omega \simeq k^{1+\alpha / 2}$ if $u(r) \simeq r^{-\alpha}$, and $d^{2}-1$ spin-waves with linear dispersion.

Time-dependent Hartree-Fock equation

Impose that $|\Psi(t)\rangle$ is a Slater determinant. For a texture, this is completely determined by the spinor configuration $|\psi(r, t)\rangle$. Dynamics is obtained from $\mathcal{S}=\mathcal{S}_{1}+\mathcal{S}_{2}$ with :
$\mathcal{S}_{1}=i \int_{t_{1}}^{t_{2}} d t \int d^{(2)} r \frac{\langle\psi(r, t) \mid \dot{\psi}(r, t)\rangle}{\langle\psi(r, t) \mid \psi(r, t)\rangle} d t$
$\mathcal{S}_{2}=-\frac{1}{2} \int_{t_{1}}^{t_{2}} d t \int d^{(2)} r_{1} \int d^{(2)} r_{2} Q\left(r_{1}\right) u\left(r_{1}-r_{2}\right) Q\left(r_{2}\right)$
The variation of \mathcal{S} has to be taken within the subspace of analytic spinors.
Equations of motion have a similar structure as in Bogoliubov theory of superfluids in the presence of a vortex lattice, see Matveenko and Shlyapnikov, PRA, 83, 033604, (2011). Because of high symmetry of the $Q(r)$ profile, matrix structure breaks into small blocks of size 2 by 2 !

Collective mode spectrum (II)

Numerical spectrum for $d=3$ and Coulomb interactions

D. Kovrizhin, B. D. and R. Moessner, Phys. Rev. Lett. 110, 186802, (2013)

Quadratic Hamiltonians with flat directions (I)

$$
N=1, f=1
$$

$$
H=\frac{1}{2} P^{2}
$$

$$
\binom{\dot{X}}{\dot{P}}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{X}{P}
$$

flat direction: X axis

Moving away by ϵ along the P axis generates drift motion parallel to the flat direction with velocity ϵ.

Quadratic Hamiltonians with flat directions (IIa)

$$
N=2, f=2
$$

Assume flat subspace is isotropic, generated by X_{1}, X_{2} directions.

$$
\begin{gathered}
H=\frac{1}{2} P_{1}^{2}+\frac{1}{2} P_{2}^{2} \\
\left(\begin{array}{c}
\dot{X}_{1} \\
\dot{P}_{1} \\
\dot{X}_{1} \\
\dot{P}_{1}
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
X_{1} \\
P_{1} \\
X_{2} \\
P_{2}
\end{array}\right)
\end{gathered}
$$

One Jordan block for each flat direction.
Generating functions of drift motions, P_{1} and P_{2} commute everywhere, and in particular on the ground-state subspace.

Quadratic Hamiltonians with flat directions (IIb)

$$
N=2, f=2
$$

Assume flat subspace is not isotropic, generated by X_{1}, P_{1} directions.

$$
\begin{gathered}
H=\frac{\omega}{2}\left(X_{2}^{2}+P_{2}^{2}\right) \\
\left(\begin{array}{c}
\dot{X}_{1} \\
\dot{P}_{1} \\
\dot{X}_{1} \\
\dot{P}_{1}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \omega \\
0 & 0 & -\omega & 0
\end{array}\right)\left(\begin{array}{c}
X_{1} \\
P_{1} \\
X_{2} \\
P_{2}
\end{array}\right)
\end{gathered}
$$

Only one zero eigenvector for each flat direction (no Jordan block). There is a finite frequency oscillator.

Generating functions of drift motions, X_{1} and P_{1} do not commute on the ground-state subspace.

Two spins with antiferromagnetic couplings

$$
\begin{gathered}
N=2, f=2 \\
H=\vec{S}_{1} \cdot \vec{S}_{2}, \quad\left\|\vec{S}_{1}\right\|^{2}=s_{1},\left\|\vec{S}_{2}\right\|^{2}=s_{2}
\end{gathered}
$$

Ground-state manifold: $\vec{S}_{1}=s_{1} \vec{n}, \vec{S}_{2}=-s_{2} \vec{n},\|\vec{n}\|=1$

Two spins with antiferromagnetic couplings

$$
\begin{gathered}
N=2, f=2 \\
H=\vec{S}_{1} \cdot \vec{S}_{2}, \quad\left\|\vec{S}_{1}\right\|^{2}=s_{1},\left\|\vec{S}_{2}\right\|^{2}=s_{2}
\end{gathered}
$$

Ground-state manifold: $\vec{S}_{1}=s_{1} \vec{n}, \vec{S}_{2}=-s_{2} \vec{n},\|\vec{n}\|=1$

$$
\frac{d \vec{S}_{i}}{d t}=\left(\vec{S}_{1}+\vec{S}_{2}\right) \wedge \vec{S}_{i}
$$

Eigenvalue spectrum: $\left\{0,0, s_{1}-s_{2}, s_{2}-s_{1}\right\}$

Two spins with antiferromagnetic couplings

$$
\begin{gathered}
N=2, f=2 \\
H=\vec{S}_{1} \cdot \vec{S}_{2}, \quad\left\|\vec{S}_{1}\right\|^{2}=s_{1},\left\|\vec{S}_{2}\right\|^{2}=s_{2}
\end{gathered}
$$

Ground-state manifold: $\vec{S}_{1}=s_{1} \vec{n}, \vec{S}_{2}=-s_{2} \vec{n},\|\vec{n}\|=1$
If $s_{1} \neq s_{2}$: non-isotropic, one finite frequency oscillator. $\vec{S}_{1}+\vec{S}_{2} \neq 0$ on ground-state manifold.

Two spins with antiferromagnetic couplings

$$
\begin{gathered}
N=2, f=2 \\
H=\vec{S}_{1} \cdot \vec{S}_{2}, \quad\left\|\vec{S}_{1}\right\|^{2}=s_{1},\left\|\vec{S}_{2}\right\|^{2}=s_{2}
\end{gathered}
$$

Ground-state manifold: $\vec{S}_{1}=s_{1} \vec{n}, \vec{S}_{2}=-s_{2} \vec{n},\|\vec{n}\|=1$
If $s_{1}=s_{2}$: isotropic, two Jordan blocks.
$\vec{S}_{1}+\vec{S}_{2}=0$ on ground-state manifold.

$$
\mathcal{S}=g \int d t \int d^{(2)} r\left[\left(\partial_{t} \vec{n}\right)^{2}-\left(\partial_{x} \vec{n}\right)^{2}-\left(\partial_{y} \vec{n}\right)^{2}\right]
$$

bundle, spanned by \vec{n} and $\dot{\vec{n}}$. Gives rise to a nonlinear σ-model.

An $U(d) \sigma$-model for collective dynamics? (I)

For zero momentum:
A Jordan block is associated to each flat direction.
$U(d)$-orbit of the periodic texture configuration is isotropic.
Small deviations from periodic texture: $\left(U_{a b}\left(m_{1}, m_{2}\right)\right.$ small)

$$
\psi_{a}(r)=\theta_{a}(r)+\sum_{b, m_{1}, m_{2}} U_{a b}\left(m_{1}, m_{2}\right) \chi_{b}\left(m_{1}, m_{2}\right)(r)
$$

An $U(d) \sigma$-model for collective dynamics? (II)

Linear spin-waves

$$
\begin{aligned}
& \text { i } \\
& \psi_{a}(r)=\left(\delta_{a b}+U_{a b}(r)\right) \theta_{b}(r) \\
& U_{a b}(r)=\sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}} \tilde{U}_{a b}(\vec{k})
\end{aligned}
$$ expansion)

$\psi_{a}(r)=g_{a b}(r) \theta_{b}(r), g_{a b}(r)$
unitary
\mathcal{S} local functional of derivatives of $g_{a b}$.

An $U(d) \sigma$-model for collective dynamics? (III)

Projection on a space of holomorphic functions not compatible with unitarity condition $\sum_{b} g_{b a}(r) \overline{g_{b c}(r)}=\delta_{a c}$.
Our "spin-wave theory" has the following structure:
$\psi_{a}(r)=\left[\left(\delta_{a b}+\hat{U}_{a b}\right) \theta_{b}\right](r)$ with $\hat{U}_{a b}(r)=\mathcal{P}_{h o l}\left(\sum_{\vec{k}} U_{a b}(\vec{k}) e^{i \vec{k} \cdot \vec{r}}\right)$
Suggests to construct gradient expansion using $\mathcal{P}_{\text {hol }}$:
$\psi_{a}(r)=\mathcal{P}_{h o l}\left(g_{a b}(r) \theta_{b}\right)(r) ?$
Note: $\mathcal{P}_{\text {hol }} f \mathcal{P}_{\text {hol }} g \theta=\mathcal{P}_{\text {hol }}(f \star g) \theta$
But is there an optimal choice of $\mathcal{P}_{h o l}$?
\mathcal{S} non-local functional of derivatives of $g_{a b}$. Can we approximate it by a local one in the long wave-length limit?

Open questions

- Derivation of our effective $C P^{(d-1)}$ model from microscopic model?
- Is there a degeneracy lifting effect from zero point motion energy of finite frequency modes of the Hessian?
- Are the collective degrees of freedom described by an emerging $U(d) \sigma$-model ?
- Role of non-commutativity of physical plane?
- Role of quantum fluctuations \rightarrow quantum melting of Skyrmion crystal?
- Effect of non-infinite stiffness in $C P^{(d-1)}$ model \rightarrow admixture of non-analytic components.
- Extension to higher integer filing factors $\rightarrow C P^{(d-1)}$ replaced by Grassmanian manifolds.

Effect of valley anisotropy (I)

AIAs quantum wells: three valleys with mass anisotropy, $\lambda=\left(m_{x} / m_{y}\right)^{1 / 2} \simeq 2$
Nematic anisotropy term: $H_{N}=2 \Delta_{0} \kappa \sum_{i \neq j}\left|\psi_{i}\right|^{2}\left|\psi_{j}\right|^{2}$
Generalizes (Abanin, Parameswaran, Kivelson, Sondhi, PRB 82,035428 (2010)). For AIAs at $n_{e l}=2.5 \times 10^{11} \mathrm{~cm}^{-1}, \Delta_{0} \kappa=2.5 \mathrm{~K}, \rho_{s}=5.2 \mathrm{~K}$.

Effect of valley anisotropy (I)

AIAs quantum wells: three valleys with mass anisotropy, $\lambda=\left(m_{x} / m_{y}\right)^{1 / 2} \simeq 2$
Nematic anisotropy term: $H_{N}=2 \Delta_{0} \kappa \sum_{i \neq j}\left|\psi_{i}\right|^{2}\left|\psi_{j}\right|^{2}$
Generalizes (Abanin, Parameswaran, Kivelson, Sondhi, PRB 82, 035428 (2010)). For AIAs at $n_{e l}=2.5 \times 10^{11} \mathrm{~cm}^{-1}, \Delta_{0} \kappa=2.5 \mathrm{~K}, \rho_{s}=5.2 \mathrm{~K}$.

Effect of valley anisotropy (I)

AIAs quantum wells: three valleys with mass anisotropy, $\lambda=\left(m_{x} / m_{y}\right)^{1 / 2} \simeq 2$
Nematic anisotropy term: $H_{N}=2 \Delta_{0} \kappa \sum_{i \neq j}\left|\psi_{i}\right|^{2}\left|\psi_{j}\right|^{2}$
Generalizes (Abanin, Parameswaran, Kivelson, Sondhi, PRB 82, 035428 (2010)). For AIAs at $n_{e l}=2.5 \times 10^{11} \mathrm{~cm}^{-1}, \Delta_{0} \kappa=2.5 \mathrm{~K}, \rho_{s}=5.2 \mathrm{~K}$.

Effect of valley anisotropy (I)

AIAs quantum wells: three valleys with mass anisotropy, $\lambda=\left(m_{x} / m_{y}\right)^{1 / 2} \simeq 2$
Nematic anisotropy term: $H_{N}=2 \Delta_{0} \kappa \sum_{i \neq j}\left|\psi_{i}\right|^{2}\left|\psi_{j}\right|^{2}$
Generalizes (Abanin, Parameswaran, Kivelson, Sondhi, PRB 82, 035428 (2010)). For AIAs at $n_{e l}=2.5 \times 10^{11} \mathrm{~cm}^{-1}, \Delta_{0} \kappa=2.5 \mathrm{~K}, \rho_{s}=5.2 \mathrm{~K}$.

Effect of valley anisotropy (II)

In presence of anisotropy, the three lowest states remain gapless: the magnetophonon and two spin-waves associated to a Cartan subalgebra of the $s u(3)$ Lie algebra.
A gap develops for the six remaining states which come in pairs.

