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Quantum Hall effect (I)

I

5

1 2

3 4

6

Rxx = (V (3) − V (4)) /I

Rxy = (V (3) − V (5)) /I

Multicomponent Skyrmion lattices and their excitations



Quantum nature of Hall resistance plateaus

Plateaus observed for (ν integer):

ρxy =
B

ne
=

h

νe2

→ Quantized electronic densities:

n = ν
eB

h

In terms of Φ0 = h
e
: “Flux quantum”

Nelectrons = ν
Total magnetic flux

Φ0
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Energy spectrum for a single electron

H =
1

2m
(P + eA)2, B = ∇ ∧ A spatially uniform.

Define gauge invariant Π = P + eA = mv
{pi, rj} = δij, i, j ∈ {x, y}, {Πx,Πy} = eB
→ Harmonic oscillator spectrum: En = ~ω(n+ 1/2), ω = eB/m

Conserved quantities (also generators of magnetic translations)

v = ωẑ∧(r−R), R = r+ ẑ∧Π
eB

, {Rx, Ry}=− 1
eB
, {Ri,Πj} = 0

Heisenberg principle: B∆Rx∆Ry ≃ h
e

= Φ0

→ Magnetic length l =
√

~

eB
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Landau levels are degenerate

Intuitively, each state occupies the same area as a flux quantum
Φ0, so that the number of states per Landau level =

Total magnetic flux

Φ0

ν is interpreted as the number of occupied Landau levels

3<   <4νentierν
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Ferromagnetism at ν = 1

Coulomb repulsion favours
anti-symmetric orbital
wavefunction

→ spin wavefunction:
symmetric (ferromagnet)

mm−1 m+1 ......

ν = 1

exchange gap

no interactions with repulsive interactions

in QH systems :     no kinetic−energy cost !
( LL ~ flat band)
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A class of trial states near ν = 1

Take antisymmetrized products of single particle states (Slater
determinants or Hartree-Fock states): |Sψ〉 =

∧N
α=1 |Φα〉

where Φα,a(r) = χα(r)ψa(r), r = (x, y), a ∈ {1, ..., d}.
χα(r) → electron position.
ψa(r) → slowly varying spin background. (〈ψ(r)|ψ(r)〉 = 1).

In the d = 2 case, if σa denote Pauli matrices:
Associated classical spin field: na(r) = 〈ψ(r)|σa|ψ(r)〉
Topological charge: Ntop = 1

4π

∫

d(2)r (∂x~n ∧ ∂y~n) · ~n
Because of large magnetic field, we impose that orbital
wave-functions Φα,a(r) lie in the lowest Landau level.
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Extra charges at ν = 1 induce Skyrmion textures

Sondhi, Karlhede, Kivelson, Rezayi, PRB 47, 16419, (1993)

〈Φα|(P − eA)2|Φα〉 = 〈χα|(P − eAeff)2 + Veff |χα〉
Veff = 〈∇ψ|∇ψ〉 − 〈∇ψ|ψ〉〈ψ|∇ψ〉

Aeff = A− Φ0
1

2π
A

Berry connection: A = 1
i
〈ψ|∇ψ〉

Generalized topological charge:
∮

A.dr = 2πNtop

(This coincides with the previous notion when d = 2).
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Extra charges at ν = 1 induce Skyrmion textures

Sondhi, Karlhede, Kivelson, Rezayi, PRB 47, 16419, (1993)

〈Φα|(P − eA)2|Φα〉 = 〈χα|(P − eAeff)2 + Veff |χα〉

Consequences:
The charge orbitals χα(r) lie in the lowest Landau level of Aeff .
There are Neff = Effective flux/Φ0 states in this level.
Condition to minimize Coulomb energy:

Nelectrons = Neff

Finally:
Nelectrons = N(ν = 1) −Ntop
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Picture of a Skyrmion crystal
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Skyrmion crystals in electronic systems

Theoretical prediction: Brey, Fertig, Côté and MacDonald, PRL
75, 2562 (1995)
Specific heat peak: Bayot et al. PRL 76, 4584 (1996) and PRL
79, 1718 (1997)
Increase in NMR relaxation: Gervais et al. PRL 94, 196803
(2005)
Raman spectroscopy: Gallais et al, PRL 100, 086806 (2008)
Microwave spectroscopy: Han Zhu et al. PRL 104, 226801
(2010)

Recent observation (neutron scattering) on the chiral itinerant

magnet MnSi: Mühlbauer et al, Science 323, 915 (2009)
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Textures in spinor condensates

M. Vengalattore et al. PRL 100, 170403 (2008)
“Helical spin textures in a 87Rb F = 1 spinor Bose-Einstein condensate are found to decay

spontaneously toward a spatially modulated structure of spin domains. The formation of this

modulated phase is ascribed to magnetic dipolar interactions that energetically favor the

short-wavelength domains over the long-wavelength spin helix.”
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Multi-Component Systems (Internal Degrees of Freedom)
La

nd
au

 le
ve

ls

|+>

|−>
d

ν   = 1/2

ν   = 1/2 ν   = ν   + ν   = 1

+

+ −− T

: A sublattice : B sublattice

τ

τ

2

3

1

2

e 1e

e

spin + isospin : SU(4)

A     physical spin: SU(2)

two−fold valley 
degeneracy

B     bilayer: SU(2) isospin

        SU(2) isospin

C     graphene (2D graphite)

(doubling of LLs)

exciton 
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Realistic anisotropies

Hamiltonian can approximately have high SU(4) symmetry

• Zeeman anisotropy: SU(2) → U(1)

• Graphene: valley weakly split, O(a/lB)

• Bilayers: charging energy: SU(2) → U(1); neglect tunnelling

∆ Ζ
∆ Τ

4πρS

τ  , σ  , τ  σz a z a

τ  , σ  , τ  σz z z z

σz

~ 30

0

~ 2
< 1

Energy scales [K] (for bilayers at 6T)

∆ Ζ

4πρS

zσ  , τ  , τ  σµ µz

zσ  , ?0

~ 380

~ 30
< 25∆ sb

τ  , σ  , τ  σa aµ µ

full SU(4) symmetry

Energy scales [K] (for graphene at 25T)
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NMR experiments in quantum Hall bilayers (I)

Heat or NMR pulse → increases effective electron Zeeman
energy
Nuclear spin relaxation is detected resistively

Spielman et al., Phys. Rev. Lett. 94, 076803, (2005)
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NMR experiments in quantum Hall bilayers (II)

Current-pump and resistive detection

Kumada at al., Phys. Rev.
Lett. 94, 096802
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Phase coexistence scenario

• Theoretical suggestion of first order transition
(Schliemann, Girvin, MacDonald, 2001)

• Explanation of the longitudinal Coulomb drag peak
(Stern, Halperin, 2002)

Kellog et al. Phys. Rev. Lett. 90, 246801, (2003)
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The case for entangled textures (I)

Bourassa et al, Phys. Rev. B 74, 195320 (2006)
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The case for entangled textures (II)

Bilayer with charge imbal-
ance

Ezawa, Tsitsishvili,
Phys. Rev. B 70, 125304,
(2004)

Collective mode spectrum

Côté et al.,
Phys. Rev. B 76, 125320,
(2007)
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CP
(d−1) model for exchange energy

d-component spinor field |ψ(r)〉 parametrizes a Slater
determinant at ν = 1.
Assume SU(d) global symmetry and local gauge symmetry:
|ψ(r)〉 → eiφ(r)|ψ(r)〉.

Eex =

∫

d(2)r

(〈∇ψ|∇ψ〉
〈ψ|ψ〉 − 〈∇ψ|ψ〉〈ψ|∇ψ〉

〈ψ|ψ〉2
)

Berry connection: A = 1
i
〈ψ|∇ψ〉

Topological charge:
∮

A.dr = 2πNtop

E ≥ π|Ntop|

Lower bound is reached when |ψ(r)〉 is holomorphic or
anti-holomorphic: leading to a huge degeneracy.
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Spectrum of the Hessian matrix (I)

Consider small deviations |ψ〉 → |ψ〉 +
√

〈ψ|ψ〉|φ〉 away from
analytic spinor |ψ〉.

E = π|Ntop| + 2〈φ|M+PM |φ〉 + ...

M |φ〉 = |∂z̄φ〉 + 1
2
〈∂z̄ψ|ψ〉
〈ψ|ψ〉 |φ〉

P |φ〉 = |φ〉 − |ψ(z)〉〈ψ(z)|
〈ψ(z)|ψ(z)〉 |φ〉

Key property:
[M,M+] = 1

2
B(r) = πQ(r)

If B(r) constant, the spectrum of M+M is {B
2
n, n = 0, 1, 2, ...}.

At large d, we may expect that the effect of P is small.

Most likely, Hessian of CP (d−1) model is gapped, with an energy

gap of order e2

4πǫl
nl2. (l =

√

~/eB, Q(r) = n).
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Spectrum of the Hessian matrix (II)
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Variational evaluation of the hessian spectrum for d = 3
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Variational approach for lattice of textures

E = Eex + Eel, Eel = 1
2

∫

d(2)r1
∫

d(2)r2Q(r1)u(r1 − r2)Q(r2)

u(r) = e2

4πǫ|r|

Assume an average charge density Q(r) = n, then
Eel/Eex = ln1/2, where l =

√

~/eB. In the dilute limit, Eex ≫ Eel.
Main approximation: Minimize E among the configurations that
minimize Eex. That is, we look for holomorphic d-component
spinor configurations |Ψ(r)〉 with given Q(r) = n, such that Eel is
minimum.
Physical intuition: One should make Q(r) as homogeneous as
possible. In particular, it is natural to consider first periodic
patterns.
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Construction of periodic textures

Problem: construct periodic holomorphic maps from torus to
projective space
Answer: use Theta functions

γ1 = π
√
d

γ2 = π
√
dτ

γ1

γ2

θ(z + γ) = eaγz+bγθ(z)

γ = n1γ1 + n2γ2

n1 and n2 integers
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Fixing the topological charge d

1

i

∫

C(γ1,γ2)

θ′(z)

θ(z)
=

1

i
(aγ1γ2 − aγ2γ1) = 2πd

γ1

γ2

Theta functions of a fixed type carrying topological charge d on
the elementary (γ1, γ2) parallelogram form a complex vector
space of dimension d (Riemann Roch theorem on torus).
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Lattice of allowed translations

Twθ(z) = eµ(w)zθ(z − w)

Twθ(z + γ)

Twθ(z)
= eaγz+bγeµ(w)γ−aγw

Type conservation:

µ(w)γ − aγw ∈ 2πZZ

for any lattice vector γ.

Quantized translations:

w =
1

d
(m1γ1 +m2γ2)

µ(w) =
1

d
(m1aγ1 +m2aγ2)

TwTw′ = ei
2π
d

(m1m′

2
−m2m′

1
)Tw′Tw

(m1m
′
2 −m2m

′
1)/d =

topological charge inside
parallelogram delimited by
w and w′.
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Useful set of theta functions

θp(z) =
∑

n

ei(πτd(n−p/d)(n−1−p/d)+2
√
d(n−p/d)z)

T γ1

d
θp = ei

2πp

d θp

T γ2

d
θp = λθp+1

λ = exp (−iπτ(d+ 1/d))

Pattern of zeros (d=4)
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Useful set of theta functions

θp(z) =
∑

n

ei(πτd(n−p/d)(n−1−p/d)+2
√
d(n−p/d)z)

T γ1

d
θp = ei

2πp

d θp

T γ2

d
θp = λθp+1

λ = exp (−iπτ(d+ 1/d))

Pattern of zeros (d=4)

γ1

γ2

θ0
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Useful set of theta functions

θp(z) =
∑

n

ei(πτd(n−p/d)(n−1−p/d)+2
√
d(n−p/d)z)

T γ1

d
θp = ei

2πp

d θp

T γ2

d
θp = λθp+1

λ = exp (−iπτ(d+ 1/d))

Pattern of zeros (d=4)

γ1

γ2

θ1
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Useful set of theta functions

θp(z) =
∑

n

ei(πτd(n−p/d)(n−1−p/d)+2
√
d(n−p/d)z)

T γ1

d
θp = ei

2πp

d θp

T γ2

d
θp = λθp+1

λ = exp (−iπτ(d+ 1/d))

Pattern of zeros (d=4)

γ1

γ2

θ2
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Useful set of theta functions

θp(z) =
∑

n

ei(πτd(n−p/d)(n−1−p/d)+2
√
d(n−p/d)z)

T γ1

d
θp = ei

2πp

d θp

T γ2

d
θp = λθp+1

λ = exp (−iπτ(d+ 1/d))

Pattern of zeros (d=4)

γ1

γ2

θ3
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Periodic textures with lowest energy

|Ψ(z)〉 =

















θ0(z)
θ1(z)
.
.
.

θd−1(z)

















Pattern of zeros
(d=4)

γ1

γ2
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Periodic texture d = 2
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Periodic texture d = 4
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Spatial variations of topological charge

Q(r) is always γ1/d and γ2/d periodic.

At large d the modulation contains mostly the lowest harmonic,
and its amplitude decays exponentially with d.

Large d behavior for a square lattice:

Q(x, y) ≃ 2

π
−4de−πd/2[cos(2

√
dx)−2e−πd/2 cos2(4

√
dx)+(x↔ y)]+...

Only the triangular lattice seems to yield a true local energy
minimum. This is most directly seen by computing
eigenfrequencies of small deformation modes.
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Applications of a flat topological charge profile

N. Cooper and J. Dalibard, PRL 110, 185301 (2013); N. Cooper
and R. Moessner, PRL 109, 215302 (2012)

Tight binding model in momentum space with a non-zero
average flux (à la Hofstadter) corresponds, in the large N limit to
a periodic texture in real space r → |ψ(r)〉 with very flat Berry
curvature. After adding kinetic energy of atoms, this generates a
very flat effective orbital magnetic field.
For N = 3, Ω = 3ER, get Landau level with a bandwidth

W = 0.015ER.
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Collective mode spectrum (I)

Analogy with spin-wave theory:

ψa(r) = (δab + Uab(r))θb(r)

Uab(r) gives d2 degrees of freedom for each pseudo-momentum,
so there are d2 branches (positive frequencies) in the excitation
spectrum: the situation is reminiscent of a non-collinear
antiferromagnet.
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Consequences of U(d) symmetry

Zero-momentum sector (m1,m2) = (0, 0)
Hamiltonian system with N = d2 degrees of freedom.

If g ∈ U(d), the transformation
U → gU, (gU)ac(m1,m2) ≡ gabUbc(m1,m2) preserves equations
of motion.

This gives f = d2 flat directions, tangent to the ground-state
manifold at the periodic texture configuration.

Finite momentum sector

Get one magnetophonon with ω ≃ k1+α/2 if u(r) ≃ r−α, and
d2 − 1 spin-waves with linear dispersion.
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Time-dependent Hartree-Fock equation

Impose that |Ψ(t)〉 is a Slater determinant. For a texture, this is
completely determined by the spinor configuration |ψ(r, t)〉.
Dynamics is obtained from S = S1 + S2 with :

S1 = i
∫ t2
t1
dt

∫

d(2)r 〈ψ(r,t)|ψ̇(r,t)〉
〈ψ(r,t)|ψ(r,t)〉dt

S2 = −1
2

∫ t2
t1
dt

∫

d(2)r1
∫

d(2)r2Q(r1)u(r1 − r2)Q(r2)

The variation of S has to be taken within the subspace of
analytic spinors.
Equations of motion have a similar structure as in Bogoliubov
theory of superfluids in the presence of a vortex lattice, see
Matveenko and Shlyapnikov, PRA, 83, 033604, (2011). Because
of high symmetry of the Q(r) profile, matrix structure breaks into
small blocks of size 2 by 2 !
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Collective mode spectrum (II)

Numerical spectrum for d = 3 and Coulomb interactions

D. Kovrizhin, B. D. and R. Moessner, Phys. Rev. Lett. 110, 186802, (2013)
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Quadratic Hamiltonians with flat directions (I)

N = 1, f = 1

H =
1

2
P 2

(

Ẋ

Ṗ

)

=

(

0 1
0 0

)(

X
P

)

flat direction: X axis

X

P

Moving away by ǫ along the P axis generates drift motion par-

allel to the flat direction with velocity ǫ.
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Quadratic Hamiltonians with flat directions (IIa)

N = 2, f = 2

Assume flat subspace is isotropic, generated by X1, X2

directions.

H =
1

2
P 2

1 +
1

2
P 2

2









Ẋ1

Ṗ1

Ẋ1

Ṗ1









=









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

















X1

P1

X2

P2









One Jordan block for each flat direction.

Generating functions of drift motions, P1 and P2 commute
everywhere, and in particular on the ground-state subspace.
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Quadratic Hamiltonians with flat directions (IIb)

N = 2, f = 2

Assume flat subspace is not isotropic, generated by X1, P1

directions.
H =

ω

2

(

X2
2 + P 2

2

)









Ẋ1

Ṗ1

Ẋ1

Ṗ1









=









0 0 0 0
0 0 0 0
0 0 0 ω
0 0 −ω 0

















X1

P1

X2

P2









Only one zero eigenvector for each flat direction (no Jordan
block). There is a finite frequency oscillator.

Generating functions of drift motions, X1 and P1 do not commute

on the ground-state subspace.
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Two spins with antiferromagnetic couplings

N = 2, f = 2

H = ~S1 · ~S2, ||~S1||2 = s1, ||~S2||2 = s2

Ground-state manifold: ~S1 = s1~n, ~S2 = −s2~n, ||~n|| = 1

n
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Two spins with antiferromagnetic couplings

N = 2, f = 2

H = ~S1 · ~S2, ||~S1||2 = s1, ||~S2||2 = s2

Ground-state manifold: ~S1 = s1~n, ~S2 = −s2~n, ||~n|| = 1

d~Si
dt

= (~S1 + ~S2) ∧ ~Si

Eigenvalue spectrum: {0, 0, s1 − s2, s2 − s1}

n
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Two spins with antiferromagnetic couplings

N = 2, f = 2

H = ~S1 · ~S2, ||~S1||2 = s1, ||~S2||2 = s2

Ground-state manifold: ~S1 = s1~n, ~S2 = −s2~n, ||~n|| = 1

If s1 6= s2: non-isotropic, one finite frequency oscillator.
~S1 + ~S2 6= 0 on ground-state manifold.

n
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Two spins with antiferromagnetic couplings

N = 2, f = 2

H = ~S1 · ~S2, ||~S1||2 = s1, ||~S2||2 = s2

Ground-state manifold: ~S1 = s1~n, ~S2 = −s2~n, ||~n|| = 1

If s1 = s2: isotropic, two Jordan blocks.
~S1+ ~S2 = 0 on ground-state
manifold.

S1S2
−n n

Phase-space as cotangent
bundle, spanned by ~n and
~̇n. Gives rise to a non-
linear σ-model.

S = g

∫

dt

∫

d(2)r
[

(∂t~n)2 − (∂x~n)2 − (∂y~n)2
]
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An U(d) σ-model for collective dynamics? (I)

For zero momentum:

A Jordan block is associated to each flat direction.

U(d)-orbit of the periodic texture configuration is isotropic.

Small deviations from periodic texture: (Uab(m1,m2) small)

ψa(r) = θa(r) +
∑

b,m1,m2

Uab(m1,m2)χb(m1,m2)(r)
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An U(d) σ-model for collective dynamics? (II)

Linear spin-waves

ψa(r) = (δab + Uab(r))θb(r)

Uab(r) =
∑

~k e
i~k·~rŨab(~k)

Sigma model (gradient
expansion)

ψa(r) = gab(r)θb(r), gab(r)
unitary
S local functional of
derivatives of gab.
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An U(d) σ-model for collective dynamics ? (III)

Projection on a space of holomorphic functions not compatible
with unitarity condition

∑

b gba(r)gbc(r) = δac.
Our “spin-wave theory” has the following structure:

ψa(r) =
[

(δab + Ûab)θb

]

(r) with Ûab(r) = Phol
(

∑

~k Uab(
~k)ei

~k·~r
)

Suggests to construct gradient expansion using Phol:
ψa(r) = Phol (gab(r)θb) (r) ?
Note: PholfPholgθ = Phol(f⋆g)θ
But is there an optimal choice of Phol ?
S non-local functional of derivatives of gab. Can we approximate
it by a local one in the long wave-length limit ?
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Open questions

• Derivation of our effective CP (d−1) model from microscopic
model ?

• Is there a degeneracy lifting effect from zero point motion
energy of finite frequency modes of the Hessian ?

• Are the collective degrees of freedom described by an
emerging U(d) σ-model ?

• Role of non-commutativity of physical plane ?
• Role of quantum fluctuations → quantum melting of

Skyrmion crystal?

• Effect of non-infinite stiffness in CP (d−1) model → admixture
of non-analytic components.

• Extension to higher integer filing factors → CP (d−1) replaced
by Grassmanian manifolds.
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Effect of valley anisotropy (I)

AlAs quantum wells: three valleys with mass anisotropy,
λ = (mx/my)

1/2 ≃ 2

Nematic anisotropy term: HN = 2∆0κ
∑

i 6=j |ψi|2|ψj|2
Generalizes (Abanin, Parameswaran, Kivelson, Sondhi, PRB 82, 035428 (2010)).
For AlAs at nel = 2.5 × 1011 cm−1, ∆0κ = 2.5 K, ρs = 5.2 K.
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Effect of valley anisotropy (I)

AlAs quantum wells: three valleys with mass anisotropy,
λ = (mx/my)

1/2 ≃ 2

Nematic anisotropy term: HN = 2∆0κ
∑

i 6=j |ψi|2|ψj|2
Generalizes (Abanin, Parameswaran, Kivelson, Sondhi, PRB 82, 035428 (2010)).
For AlAs at nel = 2.5 × 1011 cm−1, ∆0κ = 2.5 K, ρs = 5.2 K.
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Effect of valley anisotropy (I)

AlAs quantum wells: three valleys with mass anisotropy,
λ = (mx/my)

1/2 ≃ 2

Nematic anisotropy term: HN = 2∆0κ
∑

i 6=j |ψi|2|ψj|2
Generalizes (Abanin, Parameswaran, Kivelson, Sondhi, PRB 82, 035428 (2010)).
For AlAs at nel = 2.5 × 1011 cm−1, ∆0κ = 2.5 K, ρs = 5.2 K.
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Effect of valley anisotropy (II)
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In presence of anisotropy, the three lowest states remain
gapless: the magnetophonon and two spin-waves associated to
a Cartan subalgebra of the su(3) Lie algebra.
A gap develops for the six remaining states which come in pairs.
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