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Introduction

Introduction

An appealing aspect of holography is its interpretation in terms of
the renormalization group of quantum field theories — the ‘radial
coordinate’ is a geometrization of the renormalization scale.
Its simplest incarnation is for CFTs

AdSd+1 ↔ CFTd

isometries ↔ global symmetries
scale isometry ↔ RG invariance

Usually, the correspondence is in terms of

weakly coupled gravity ↔ strongly coupled QFT

~ ↔ 1
N
∼
(
`Pl

`AdS

)4
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Introduction

Introduction

We regard gravity as a small sector of a much bigger theory, such
as a string theory (although most CMT applications ignore this...).
More generally, RG flows (couplings and correlators changing as
we coarse-grain) correspond to specific geometries that have
scale isometry only asymptotically.

RG scale z

space-time field theory data

(critical theory)

same field theory

(running couplings)

geometry nearly AdS

geometry 'flowing'
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Introduction

The Holographic Dictionary

In a field theory, we have operators. We can talk about adding
them to the action, with a corresponding coupling, and we can talk
about their expectation values.
In a CFT, operators have well-defined scaling properties

Ôz(x)→ λ∆Ôλz(λx)

In holography, for each such operator, there is a field propagating
in the geometry (satisfies classical equation of motion).
e.g., for a scalar field, Φ(z; x), EOM is second-order PDE, and
asymptotically (i.e., near the (conformal) boundary, corresponding
to near criticality)

Φ(z; x) ∼ z∆−ϕ(−)(x) + z∆+ϕ(+)(x)

with ∆± determined by mass of field

Rob Leigh (UIUC) HRG Kolymbari: September 2014 4 / 34



Introduction

The Holographic Dictionary

Given
Φ(z; x) ∼ z∆−ϕ(−)(x) + z∆+ϕ(+)(x)

The correspondence is:

ϕ(−)(x) → source 〈...e−
∫

x ϕ
(−)(x)Ô(x)〉

ϕ(+)(x) → expectation value 〈Ô(x)〉
∆+ → operator scaling dimension

This applies to all types of fields

gauge field Aµ(z; x) → conserved charge current ĵµ(x)

graviton gµν(z; x) → conserved en −mom tensor T̂µν(x)

local symmetry in bulk→ conserved quantity in field theory
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Introduction

Hamilton-Jacobi Interpretation

Of course, second order equations can be written as a pair of first
order equations
Thus, there is a Hamiltonian formalism, but with radial coordinate
z playing the role of time. (physical time remains one of the field
theory coordinates)
Source ϕ(−)(x) and expectation value ϕ(+)(x) are (boundary
values of) canonically conjugate pairs.
This fits well with Hamilton-Jacobi theory, which can be thought of
as a Dirichlet problem – specify initial values — determine
time-dependence of canonical variables.
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Introduction

Hamilton-Jacobi Interpretation

'time' z

z=z0

spacetime spacetime spacetime spacetime

ϕ(+−)(x) Φ(+−)(z,x)

initial values
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Introduction

Hamilton-Jacobi Interpretation

In this picture, the ’Hamilton equations’ ought to correspond to RG
equations — how things change as we change scale, or
coarse-grain.
[de Boer, Verlinde2 ’99]

[Skenderis ’02, Heemskerk & Polchinski ’10, Faulkner, Liu & Rangamani ’10 ...]

If the bulk dynamics↔ Hamilton-Jacobi, what is the ’Hamiltonian’?

∂

∂z
SHJ = −H

This should encode the entire set of RG equations.
But can this be formulated in strong coupling?
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Introduction

The Wilson-Polchinski Exact Renormalization Group

with Onkar Parrikar & Alex Weiss, 1402.1430, 1407.4574
Idea:

I apply ERG to weakly coupled field theories
I interpret ERG equations as Hamilton-Jacobi flow in one higher

dimension
I deduce geometric structure, emergence of AdS, etc.

Weak coupling in field theory is not weak gravity!
So what is it?
A conjecture of [Klebanov-Polyakov ’02]

I take vector model with O(N) global symmetry in 2+1
I have O(N)-singlet conserved currents ψm∂µ1 ...∂µsψ

m

I proposed holographic dual: higher spin gravity theory (Vasiliev)
I contains an infinite set of higher spin gauge fields propagating on

AdS spacetime, W a1...as
µ for s = 0,2,4, ...

see also [Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al ’11]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 9 / 34



Introduction

The Wilson-Polchinski Exact Renormalization Group

with Onkar Parrikar & Alex Weiss, 1402.1430, 1407.4574
Idea:

I apply ERG to weakly coupled field theories
I interpret ERG equations as Hamilton-Jacobi flow in one higher

dimension
I deduce geometric structure, emergence of AdS, etc.

Weak coupling in field theory is not weak gravity!
So what is it?
A conjecture of [Klebanov-Polyakov ’02]

I take vector model with O(N) global symmetry in 2+1
I have O(N)-singlet conserved currents ψm∂µ1 ...∂µsψ

m

I proposed holographic dual: higher spin gravity theory (Vasiliev)
I contains an infinite set of higher spin gauge fields propagating on

AdS spacetime, W a1...as
µ for s = 0,2,4, ...

see also [Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al ’11]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 9 / 34



Introduction

The Wilson-Polchinski Exact Renormalization Group

with Onkar Parrikar & Alex Weiss, 1402.1430, 1407.4574
Idea:

I apply ERG to weakly coupled field theories
I interpret ERG equations as Hamilton-Jacobi flow in one higher

dimension
I deduce geometric structure, emergence of AdS, etc.

Weak coupling in field theory is not weak gravity!
So what is it?
A conjecture of [Klebanov-Polyakov ’02]

I take vector model with O(N) global symmetry in 2+1
I have O(N)-singlet conserved currents ψm∂µ1 ...∂µsψ

m

I proposed holographic dual: higher spin gravity theory (Vasiliev)
I contains an infinite set of higher spin gauge fields propagating on

AdS spacetime, W a1...as
µ for s = 0,2,4, ...

see also [Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al ’11]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 9 / 34



Introduction

The Wilson-Polchinski Exact Renormalization Group

with Onkar Parrikar & Alex Weiss, 1402.1430, 1407.4574
Idea:

I apply ERG to weakly coupled field theories
I interpret ERG equations as Hamilton-Jacobi flow in one higher

dimension
I deduce geometric structure, emergence of AdS, etc.

Weak coupling in field theory is not weak gravity!
So what is it?
A conjecture of [Klebanov-Polyakov ’02]

I take vector model with O(N) global symmetry in 2+1
I have O(N)-singlet conserved currents ψm∂µ1 ...∂µsψ

m

I proposed holographic dual: higher spin gravity theory (Vasiliev)
I contains an infinite set of higher spin gauge fields propagating on

AdS spacetime, W a1...as
µ for s = 0,2,4, ...

see also [Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al ’11]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 9 / 34



Introduction

The Wilson-Polchinski Exact Renormalization Group

with Onkar Parrikar & Alex Weiss, 1402.1430, 1407.4574
Idea:

I apply ERG to weakly coupled field theories
I interpret ERG equations as Hamilton-Jacobi flow in one higher

dimension
I deduce geometric structure, emergence of AdS, etc.

Weak coupling in field theory is not weak gravity!
So what is it?
A conjecture of [Klebanov-Polyakov ’02]

I take vector model with O(N) global symmetry in 2+1
I have O(N)-singlet conserved currents ψm∂µ1 ...∂µsψ

m

I proposed holographic dual: higher spin gravity theory (Vasiliev)
I contains an infinite set of higher spin gauge fields propagating on

AdS spacetime, W a1...as
µ for s = 0,2,4, ...

see also [Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al ’11]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 9 / 34



Introduction

The Wilson-Polchinski Exact Renormalization Group

with Onkar Parrikar & Alex Weiss, 1402.1430, 1407.4574
Idea:

I apply ERG to weakly coupled field theories
I interpret ERG equations as Hamilton-Jacobi flow in one higher

dimension
I deduce geometric structure, emergence of AdS, etc.

Weak coupling in field theory is not weak gravity!
So what is it?
A conjecture of [Klebanov-Polyakov ’02]

I take vector model with O(N) global symmetry in 2+1
I have O(N)-singlet conserved currents ψm∂µ1 ...∂µsψ

m

I proposed holographic dual: higher spin gravity theory (Vasiliev)
I contains an infinite set of higher spin gauge fields propagating on

AdS spacetime, W a1...as
µ for s = 0,2,4, ...

see also [Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al ’11]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 9 / 34



Introduction

The Wilson-Polchinski Exact Renormalization Group

with Onkar Parrikar & Alex Weiss, 1402.1430, 1407.4574
Idea:

I apply ERG to weakly coupled field theories
I interpret ERG equations as Hamilton-Jacobi flow in one higher

dimension
I deduce geometric structure, emergence of AdS, etc.

Weak coupling in field theory is not weak gravity!
So what is it?
A conjecture of [Klebanov-Polyakov ’02]

I take vector model with O(N) global symmetry in 2+1
I have O(N)-singlet conserved currents ψm∂µ1 ...∂µsψ

m

I proposed holographic dual: higher spin gravity theory (Vasiliev)
I contains an infinite set of higher spin gauge fields propagating on

AdS spacetime, W a1...as
µ for s = 0,2,4, ...

see also [Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al ’11]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 9 / 34



Introduction

The Wilson-Polchinski Exact Renormalization Group

with Onkar Parrikar & Alex Weiss, 1402.1430, 1407.4574
Idea:

I apply ERG to weakly coupled field theories
I interpret ERG equations as Hamilton-Jacobi flow in one higher

dimension
I deduce geometric structure, emergence of AdS, etc.

Weak coupling in field theory is not weak gravity!
So what is it?
A conjecture of [Klebanov-Polyakov ’02]

I take vector model with O(N) global symmetry in 2+1
I have O(N)-singlet conserved currents ψm∂µ1 ...∂µsψ

m

I proposed holographic dual: higher spin gravity theory (Vasiliev)
I contains an infinite set of higher spin gauge fields propagating on

AdS spacetime, W a1...as
µ for s = 0,2,4, ...

see also [Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al ’11]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 9 / 34



Introduction

The Wilson-Polchinski Exact Renormalization Group

with Onkar Parrikar & Alex Weiss, 1402.1430, 1407.4574
Idea:

I apply ERG to weakly coupled field theories
I interpret ERG equations as Hamilton-Jacobi flow in one higher

dimension
I deduce geometric structure, emergence of AdS, etc.

Weak coupling in field theory is not weak gravity!
So what is it?
A conjecture of [Klebanov-Polyakov ’02]

I take vector model with O(N) global symmetry in 2+1
I have O(N)-singlet conserved currents ψm∂µ1 ...∂µsψ

m

I proposed holographic dual: higher spin gravity theory (Vasiliev)
I contains an infinite set of higher spin gauge fields propagating on

AdS spacetime, W a1...as
µ for s = 0,2,4, ...

see also [Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al ’11]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 9 / 34



Introduction

The Wilson-Polchinski Exact Renormalization Group

with Onkar Parrikar & Alex Weiss, 1402.1430, 1407.4574
Idea:

I apply ERG to weakly coupled field theories
I interpret ERG equations as Hamilton-Jacobi flow in one higher

dimension
I deduce geometric structure, emergence of AdS, etc.

Weak coupling in field theory is not weak gravity!
So what is it?
A conjecture of [Klebanov-Polyakov ’02]

I take vector model with O(N) global symmetry in 2+1
I have O(N)-singlet conserved currents ψm∂µ1 ...∂µsψ

m

I proposed holographic dual: higher spin gravity theory (Vasiliev)
I contains an infinite set of higher spin gauge fields propagating on

AdS spacetime, W a1...as
µ for s = 0,2,4, ...

see also [Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al ’11]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 9 / 34



Introduction

The Wilson-Polchinski Exact Renormalization Group

with Onkar Parrikar & Alex Weiss, 1402.1430, 1407.4574
Idea:

I apply ERG to weakly coupled field theories
I interpret ERG equations as Hamilton-Jacobi flow in one higher

dimension
I deduce geometric structure, emergence of AdS, etc.

Weak coupling in field theory is not weak gravity!
So what is it?
A conjecture of [Klebanov-Polyakov ’02]

I take vector model with O(N) global symmetry in 2+1
I have O(N)-singlet conserved currents ψm∂µ1 ...∂µsψ

m

I proposed holographic dual: higher spin gravity theory (Vasiliev)
I contains an infinite set of higher spin gauge fields propagating on

AdS spacetime, W a1...as
µ for s = 0,2,4, ...

see also [Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al ’11]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 9 / 34



Introduction

The Wilson-Polchinski Exact Renormalization Group

with Onkar Parrikar & Alex Weiss, 1402.1430, 1407.4574
Idea:

I apply ERG to weakly coupled field theories
I interpret ERG equations as Hamilton-Jacobi flow in one higher

dimension
I deduce geometric structure, emergence of AdS, etc.

Weak coupling in field theory is not weak gravity!
So what is it?
A conjecture of [Klebanov-Polyakov ’02]

I take vector model with O(N) global symmetry in 2+1
I have O(N)-singlet conserved currents ψm∂µ1 ...∂µsψ

m

I proposed holographic dual: higher spin gravity theory (Vasiliev)
I contains an infinite set of higher spin gauge fields propagating on

AdS spacetime, W a1...as
µ for s = 0,2,4, ...

see also [Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al ’11]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 9 / 34



Introduction

The Wilson-Polchinski Exact Renormalization Group

with Onkar Parrikar & Alex Weiss, 1402.1430, 1407.4574
Idea:

I apply ERG to weakly coupled field theories
I interpret ERG equations as Hamilton-Jacobi flow in one higher

dimension
I deduce geometric structure, emergence of AdS, etc.

Weak coupling in field theory is not weak gravity!
So what is it?
A conjecture of [Klebanov-Polyakov ’02]

I take vector model with O(N) global symmetry in 2+1
I have O(N)-singlet conserved currents ψm∂µ1 ...∂µsψ

m

I proposed holographic dual: higher spin gravity theory (Vasiliev)
I contains an infinite set of higher spin gauge fields propagating on

AdS spacetime, W a1...as
µ for s = 0,2,4, ...

see also [Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al ’11]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 9 / 34



Introduction

Punch Lines

We will study free field theories perturbed by arbitrary bi-local
‘single-trace’ operators (→ still ‘free’, but the partition function
generates all correlation functions).
We identify a formulation in which the operator sources
correspond (amongst other things) manifestly to a connection on a
really big principal bundle — related to ’higher spin gauge
theories’
The ‘gauge group’ can be understood directly in terms of field
redefinitions in the path integral, and consequently there are exact
Ward identities that correspond to ERG equations.
This can be formulated conveniently in terms of a jet bundle.
The space-time structure extends in a natural way (governed by
ERG) to a geometric structure over a spacetime of one higher
dimension, and AdS emerges as a geometry corresponding to the
free fixed point.
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Introduction

Relation to Standard Holography?

it’s often conjectured that the higher spin
theory is some sort of tensionless limit of
a string theory
not clear that this can make any sense
however, one does expect that
interactions give anomalous dimensions
to almost all of the higher spin currents
in the bulk, the higher spin symmetries
are Higgsed, and the higher spin gauge
fields become massive

}
gravity (s=2)

massive states (s>2)

mstr

FREE STRING SPECTRUM

Dream: derive geometry of weakly coupled field theory, turn on
interactions and follow to strong coupling
Not clear what the analogue of this might be in terms of string
theory (rather than higher spin theory).
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Introduction

Majorana Fermions in d = 2 + 1

To be specific, it turns out to be convenient to first consider the
free Majorana fixed point in 2 + 1. This can be described by the
regulated action

S0 =

∫
x
ψ̃m(x)γµPF ;µψ

m(x) =

∫
x ,y
ψ̃m(x)γµPF ;µ(x , y)ψm(y)

Here PF ;µ is a regulated derivative operator [Polchinski ’84]

PF ;µ(x , y) = K−1
F (−�/M2)∂(x)

µ δ(x , y)

K(x)

x1
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Introduction

Majorana Fermions in d = 2 + 1

In 2+1, a complete basis of ‘single-trace’ operators consists of

Π̂(x , y) = ψ̃m(x)ψm(y), Π̂µ(x , y) = ψ̃m(x)γµψm(y)

We introduce bi-local sources for these operators in the action

Sint =
1
2

∫
x ,y
ψ̃m(x)

(
A(x , y) + γµWµ(x , y)

)
ψm(y)

One can think of these as collecting together infinite sets of local
operators, obtained by expanding near x → y . This quasi-local
expansion can be expressed through an expansion of the sources

A(x , y) =
∞∑

s=0

Aa1···as (x)∂
(x)
a1
· · · ∂(x)

as δ(x − y)

(similarly for Wµ). The coefficients are sources for higher spin
local operators.
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Introduction

The O(L2) symmetry

the full action takes the form

S =
1
2

∫
x ,y
ψ̃m(x)

[
γµ(PF ;µ + Wµ)(x , y) + A(x , y)

]
ψm(y)

≡ ψ̃m ·
[
γµ(PF ;µ + Wµ) + A

]
· ψm

Now we consider the following map of elementary fields

ψm(x) 7→
∫

y
L(x , y)ψm(y)

The ψm are just integration variables in the path integral, and so
this is just a trivial change of integration variable. I’m using here
the same logic that might be familiar in the Fujikawa method for
the study of anomalies.
So, we ask, what does this do to the partition function?
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Introduction

The O(L2) symmetry

We look at the action

S = ψ̃m ·
[
γµ(PF ;µ + Wµ) + A

]
· ψm

→ ψ̃m · LT [γµ(PF ;µ + Wµ) + A
]
· L · ψm (1)

= ψ̃m · γµLT · L · PF ;µ · ψm (2)

+ψ̃m ·
[
γµ(LT ·

[
PF ;µ,L

]
+ LT ·Wµ · L) + LT · A · L

]
· ψm

Thus, if we take L to be orthogonal,
LT · L(x , y) =

∫
z L(z, x)L(z, y) = δ(x , y), the kinetic term is

invariant, while the sources transform as
O(L2) gauge symmetry

Wµ 7→ L−1 ·Wµ · L+ L−1 ·
[
PF ;µ,L

]
A 7→ L−1 · A · L
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Introduction

The O(L2) Ward Identity

But this was a trivial operation from the path integral point of view,
and so we conclude that there is an exact Ward identity

Z [M,g(0),Wµ,A] = Z [M,g(0),L−1 ·Wµ ·L+L−1 ·PF ;µ ·L,L−1 ·A ·L]

this is the usual notion of a background symmetry: a
transformation of the elementary fields is compensated by a
change in background
more generally, we can turn on sources for arbitrary multi-local
multi-trace operators — the sources will generally transform
tensorially under O(L2)
(see later, perhaps)
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The O(L2) symmetry

Note what is happening here: the O(L2) symmetry leaves
invariant the (regulated) free fixed point action. Wµ is interpreted
as a gauge field (connection) for this symmetry, while A transforms
tensorily. Dµ = PF ;µ + Wµ plays the role of covariant derivative.
More precisely, the free fixed point corresponds to any
configuration

(A,Wµ) = (0,W (0)
µ )

where W (0) is any flat connection

dW (0) + W (0) ∧W (0) = 0
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The O(L2) Symmetry

In fact, the subgroup of O(L2) leaving W (0) invariant is O(2,d),
the conformal group of the boundary theory
Thus the quasi-local expansion that we previously wrote

A(x , y) =
∞∑

s=0

Aa1···as (x)∂
(x)
a1
· · · ∂(x)

as δ(x − y)

should best be reformulated as a sum over conformal modules
(the representation of O(L2(Rd )) being reducible as a direct sum
of O(2,d) irreps)
soon, W (0) will be extended to a corresponding (Cartan)
connection in the bulk, and we will identify it with that
corresponding to AdS geometry
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The CO(L2) symmetry

We can generalize the O(L2) condition to include scale
transformations∫

z
L(z, x)L(z, y) = λ(x)2∆ψδ(x − y)

This is a symmetry (in the previous sense) provided we also
transform the metric, the cutoff and the sources

g(0) 7→ λ2g(0), M 7→ λ−1M

A 7→ L−1 · A · L

Wµ 7→ L−1 ·Wµ · L+ L−1 ·
[
PF ;µ,L

]
.

A convenient way to keep track of the scale is to introduce the
conformal factor g(0) = 1

z2 η. Then z 7→ λ−1z. This z should be
thought of as the renormalization scale.
Rob Leigh (UIUC) HRG Kolymbari: September 2014 19 / 34
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The Renormalization group

To study RG systematically, we proceed in two steps:

Step 1: Lower the cutoff M 7→ λM, by integrating out the “fast modes”

Z [M, z,A,W ] = Z [λM, z, Ã, W̃ ] (Polchinski)

Step 2: Perform a CO(L2) transformation to bring the cutoff back to M,
but in the process changing z 7→ λ−1z

Z [λM, z, Ã, W̃ ] = Z [M, λ−1z,L−1 · Ã · L,L−1 · W̃ · L+ L−1 · [PF ,L]]

We can now compare the sources at the same cutoff, but different
z. Thus, z becomes the natural flow parameter, and we can think
of the sources as being z-dependent.

I Thus we have the Polchinski formalism extended to include both a
cutoff and an RG scale — required for a holographic interpretation.
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The RG Equations

These equations have the form

∂zA+ [Wz ,A] = β(A)

∂zWµ − [PF ;µ,Wz ] + [Wz ,Wµ] = β(W)
µ

get ’gauge theory’ in d + 1 dimensions
fixed point (zero of β-fns↔ flat connection)
flat connection↔ AdS geometry
gauge group↔ higher spin symmetry
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Hamilton-Jacobi Structure

Indeed, if we identify Z = eiSHJ , then a fundamental relation in H-J
theory is

∂

∂z
SHJ = −H

We can thus read off the Hamiltonian of the theory, for which the
RG equations are the Hamilton equations

H = −Tr
{([
A,W

e(0)
z

]
+ β(A)

)
· P
}

−Tr
{([

PF ;µ +Wµ,We(0)
z

]
+ β(W)

µ

)
· Pµ

}
(3)

−N
2

Tr
{(

∆µ · Ŵµ + ∆z · Ŵ
e(0)

z

)}
Encodes all information (concerning O(N) singlet operators) in the
field theory.
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Remarks

We have seen how the rich symmetry structure of the free-fixed
point allows us to geometrize RG.
The resulting structure has striking similarities with Vasiliev higher
spin theory, and (at least in some cases) might be equivalent.
The β-functions encode the information about n-point functions,
which correspond to interactions in the bulk.
There are many generalizations of this scheme (e.g., to fixed
points with different symmetries/properties) that give rise to higher
spin theories with no Vasiliev analogue. [hep-th:1407.4574]

I e.g., the z = 2 free field theory has a holographic dual that is a new
higher spin theory on the Schrödinger geometry (rather than AdS).
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Geometry: The Infinite Jet bundle

we can put the non-local transformation ψ(x) 7→
∫

y L(x , y)ψ(y) in
more familiar terms by introducing the notion of a jet bundle
The simple idea is that we can think of a differential operator
L(x , y) as a matrix by “prolongating” the field

ψm(x) 7→
(
ψm(x),

∂ψm

∂xµ
(x),

∂2ψm

∂xµ∂xν
(x) · · ·

)
”jet”

Then, differential operators, such as Pµ(x , y) = ∂
(x)
µ δ(x − y) are

interpreted as matrices Pµ that act on these vectors
The bi-local transformations can be thought of as local gauge
transformations of the jet bundle.
The gauge field W is a connection 1-form on the jet bundle, while
A is a section of its endomorphism bundle.
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Introduction

Bosonic Relativistic Free Fixed Point

Another example consists of N complex scalar fields. In this case,
we formulate the single-trace deformations in terms of the CU(L2)
connection.

S =

∫
φ∗m ·

([
DF ;µ + Wµ

]2
+ B

)
· φm

The ERG equations give rise to an ‘A-model’ in any dimension.
Here though there is an extra background symmetry

Z [M, z,B,W (0)
µ , Ŵµ + Λµ] = Z [M, z,B + {Λµ,Dµ}+ Λµ · Λµ,W (0)

µ , Ŵµ]

this background symmetry allows for fixing Wµ →W (0)
µ , and the

corresponding transformed B sources all single-trace currents.
[This was the starting point of Douglas, et al, and so geometry was not manifest.]
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The Bulk Action and Correlation Functions

For the bosonic theory, the bulk phase space action is

I =

∫
dz Tr

{
P I ·

(
DIB− β

(B)
I

)
+ P IJ · F (0)

IJ + N ∆B ·B
}

Here ∆B is a derivative with respect to M of the cutoff function.
As in any holographic theory, we solve the bulk equations of
motion in terms of boundary data, and obtain the on-shell action,
which encodes the correlation functions of the field theory.
It is straightforward to carry this out exactly for the free fixed point.
Here we have

Io.s. = N
∫

∆B ·B

where now B is the bulk solution
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The Bulk Action and Correlation Functions

The RG equation[
D(0)

z ,B
]

= β
(B)
z = B ·∆B ·B

can be solved iteratively

B = αB(1) + α2B(2) + ...,

[
D(0)

z ,B(1)

]
= 0[

D(0)
z ,B(2)

]
= B(1) ·∆B ·B(1)[

D(0)
z ,B(3)

]
= B(2) ·∆B ·B(1) + B(1) ·∆B ·B(2)

...
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The Bulk Action and Correlation Functions

The first equation is homogeneous and has the solution

B(1)(z; x , y) =

∫
x ′,y ′

K−1(z; x , x ′)b(0)(x ′, y ′)K (z; y ′, y)

where we have defined the boundary-to-bulk Wilson line

K (z) = P· exp
∫ z

ε
dz ′ W(0)

z (z ′)

with the boundary being placed at z = ε. (UV cutoff ∼ M/ε)
b(0) has the interpretation of a boundary source
this can then be inserted into the second order equation and the
whole system solved iteratively
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The Bulk Action and Correlation Functions

At k th order, one finds a contribution to the on-shell action

I(k)
o.s. = N

∫ ∞
ε

dz1

∫ z1

ε
dz2...

∫ zk−1

ε
dzk

×Tr H(z1) · b(0) · H(z2) · b(0) · ... · H(zk ) · b(0)

+permutations

where H(z) ≡ K−1(z) ·∆B(z) · K (z) = ∂zg(z)

b(0)

b(0) b(0)

The Witten diagram for the bulk on-shell action at third order.
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The Bulk Action and Correlation Functions

The z-integrals can be performed trivially, resulting in

I(k)
o.s. =

N
k

Tr
(
g(0) · b(0)

)k

where g(0) = g(∞) is the boundary free scalar propagator
These can be resummed, resulting in

Z [b(0)] = det−N (1− g(0)b(0)

)
which is the exact generating functional for the free fixed point.
Thus, this holographic theory does everything that it can for us.
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Remarks

What of standard gravitational holography?
A standard piece of higher spin lore is expected to kick in here —
when interactions in the field theory are included, the higher spin
symmetry of the bulk breaks spontaneously (the operators get
anomalous dimensions, corresponding to masses in the bulk).
Presumably, if we follow the theory to strong coupling, all that is
left behind is gravity.
It is an interesting challenge to show that precisely this happens
generically (!!).
Perturbatively nearby fixed points (e.g., large N saddle points) are
accessible, and will have an operator spectrum whose anomalous
dimensions scale as 1/Nx .

I N is insignificant prior to the introduction of field theory interactions
(1/N does not (yet) act as the bulk ~)
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Interactions

the free fixed point can always be thought of as a vectorial theory,
but interactions determine how to think of the field content
(depending on what the interactions do to the global symmetries)
the simplest possibility is to turn on all O(N)- (or U(N))-invariant
multi-trace interactions

∞∑
k=1

1
k !

∫
Bk (x1, y1; ...; xk , yk )φ∗m1

(x1)φm1(y1)...φ∗mk
(xk )φmk (yk )

the sources Bk are paired with vevs

Πk (x1, y1; ...; xk , yk ) ≡ 〈φ∗m1
(x1)φm1(y1)...φ∗mk

(xk )φmk (yk )〉

these objects are U(L2) tensors, corresponding to an infinite set of
canonically conjugate pairs in the bulk
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Interactions

the ERG equations couple all of these together – there is
generically no ‘consistent truncation’ (other than restricting to
single-trace ops, as before)
a solution to this system of equations corresponds to an RG fixed
point
indeed there are such solutions visible at large N, specified by a
choice of boundary values for the {Bk}— bare couplings
large N factorization here corresponds to a collapse of the phase
space to

Πk (x1, y1; ...; xk , yk ) = Π1(x1, y1)...Π1(xk , yk )

e.g., turn on the double-trace coupling: expect that essentially B1
and Π1 swap roles (Legendre transform). This is the interacting
critical point.
[RGL+OP, to appear]

Rob Leigh (UIUC) HRG Kolymbari: September 2014 33 / 34



Introduction

Open Questions

(interacting) matrix theories?
Gauge interactions (various)?
Geometry of global symmetries?
Emergence of just gravity?
Entanglement? MERA?
Other spacetime topologies?
Other states (e.g., finite temperature), corresponding geometries?
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