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Towards collisions of
Inhomogeneous
shockwaves IN AdS ... seiomses

Daniel Fernandez
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Heavy lon Collisions

RHIC: Au-Au (Z =179) 1.36 TeV per nucleon
LHC: Pb-Pb (Z =82) ——— Torentz factor > 1000

Result: formation of a Quark Gluon Plasma

e Thermal fluid, new state of matter
e Temperature ~ 170 — 230 MeV Idealized dual gravitational description:

e Lasts for 7 ~ 10 fm/c Stable AdS black hole at same Temp.

Collisions of lumpy
* Long timescales: gluon fluctuations are short-lived gluon “shock waves”

* Strong interaction timescales:
gluon ﬂuctuations n quark baCkgrOUHd are dllated © Dynamics domlnated by gluons
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Out-of-equilibrium holography

Disclaimer:
N =4 SYM theory

in the limits
g°’N, = oo
N, — o0

e Initial stage after the collision?

— replace black hole by gravitational waves

Simplification:

Two planar sheets of finite thickness (and Gaussian profile),
propagating toward each other at the speed of light.

* Gluon dynamics, no quarks = Pure GR, no strings

* Lorentz contraction = Infinite planes

Output: Examine the evolution of the
post-collision stress-energy tensor.

Albacete, Kovchegov, Taliotis '08
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Outline

1. Ansatz and numerics abridged

2. Example: Completely homogeneous thermalization

3. Review of holographic shockwave collisions

4. Transverse inhomogeneities
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The characteristic formulation

1) Eddington-Finkelstein coordinates with null holographic coord.

* Fix part of diffeomorphism invariance

* Caustics? Not a problem in AdS!

2) Determinant of spatial metric is a function.

Future
horizon

Dynamics
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3) Derivatives along

outgoing null rays.
Sk i % Bondi, Sachs ‘62

x Fully covariant description

* AdS feature: boundary reachable through geodesics

= Most natural: start in null slice
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The metric ansatz
Chesler, Yaffe ‘09

ds? = = A dt? t dr + 2F; dt dz* + Zghij dx dr’

A ~

. N o

r : Null coordinate Inv. under reparametrizations of r: 3

r = oo : Boundary ¢

t : time coordinate of boundary we fix § = 2

det (hi;) =1 = Residual gauge freedom: r — r + &(z#)
- /

e Initial Condition:
Provide h;; (t = (g CUZ) and EE fix the rest.

No need for 15t time derivative.

e Boundary conditions:

Provide A, F; (¢, r = oo, z°).

e Solving nested linear ODEs:

) 1 * Solve for the f from EE. _
f= (8:5 i 514 8r> i S EE;; inv. under residual gauge, as is f

= The eqs. do not contain A.
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A simple example:

Homogeneous thermalization

ds> =2 dt dr — A dt* + 2 (e 2Bdy® + eBdi?)

Complete homogeneity in z* = (y,Z.). Heller, Mateos, van der
A, B, ¥ functions of (t,r). Schee, Trancanelli 12

e Normalizable modes: a4(t), by(t).

e Stress tensor:

e 0. VB, R
Thw) = ;\;3 s PTO(t) :
0, e P (),
where ; 9 : 1
P(t)= £~ ZAP(), Palt) = £ + 3 AP()
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Resolution of homogeneous case

e Einstein Equations:

3031 ) Do) Y ) Derivﬁgﬁflg/lzﬁ%goiylg geodesics:
INBLA3> B-F3B RN
A" +3B'B—122'%/¥2 + 4 =0
25T+ B2y — A'Y'=10 Pise

oY + B“Y =0

: 1
h' = 9% h =0, §A8Th

e Initial conditions: B(t = 0,r)

% Procedure: B— Y - —» B— A— §,B

L .‘s

e Boundary conditions: a4 Constraint

\

To be imposed at the boundary:
(?ta4 =0
Conservation of energy
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Horizons

e Event Horizon: Causal boundary of the black hole.

e Apparent Horizon: Surface where outgoing light rays are trapped.

Out of equilibrium, they do not coincide.

1
Oyren(t) — §A(t, T emkt) =]

. EH/AH
S(t, ran(t)) = 0

EH is teleological: Its eq needs to be supplemented with Final Condition: rgy (t) — 7l

t— oo

If AH exists, it always lies inside EH.

~
Important because:

x Their area is an easy-to-compute measure of entropy.
* We need to fix their position for numerical evolution.
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Collision of Shockwaves

ds® = 2 dt dr — A dt? + 2F dt dy + 22 (e *Pdy® + ePdz?)

Homogeneity only in & . Chesler, Yaffe 11
A, B, Y, F functions of (t,r,y).

e Normalizable modes: a4(t,y), ba(t,y), fa(t,y)
e Stress tensor: s
3 15
<Tw> i ’

272

Gl GRS (T
ogUoo
H“Uooo

0
0

Resolution

4
* Procedure: B—)Z—>F—>2—>B—>A—>8tB ata4:_§ayf4

wgad 1
* Constraints: eqs. for S, F/ — Boundary evolution: 9,f; = —Zaya4 —20,,bld

8/15
/ "::;:d-i



Initial condition

Single shock in Fefferman-Graham coord: Gaussian

: v o * 1 3 , ! A S Ayt
o= T (—dy+d’y_ + d’ri) + =) (d?“z Hh(y+) yi) where ¢4 =t+7g
then change into Eddington-Finkelstein coordinates, identify B:

Grr = Grz :0; g’rtzl A leog(g.CEJ_ﬂjJ_)_Q]‘OgE? E67“4:‘]2|g|2

o

T ory
... gcodesic traj_u:}:}}}_:_,
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' the residual gauge
the apparent horizon

FIXing -

Assume AH to lie at a fixed, constant r = r,. Then,

y
A= d (/ 33 (r, t,y) dy) =0 along normal null rays
5 (ds? = 0 and extremize dr — ;A dt)

: : 3
Result 3525 _ g, (EFE’,QB) ¢ §€25F221 —0 at r=r.

On the other hand: ds? = —A dt®> + 2 dt dr + 2F; dt da' + Ethj dx' dx’
= Residual gauge freedom: r — r + £(z#).

If rou(t, y), modify: < B il B T a S Choose &(t,y) so that ryy = 1.
1= %L;
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Facts and Motivation

e Linearizing the far-from-eq. state around the final state

provides a surprisingly accurate description: always within 20%.
Heller, Mateos, van der Schee, Trancanelli '12
e Plasma thermalizes very quickly:
hydrodynamics is applicable within a time 7,5, ~ 1/7.

Chesler, Yaffe ‘11
e Including radial flow,

- Fluctuations spread out rather quickly.

- Stress tensor of the fluctuation, governed by hydrodynamics within 0.4 fm.

Van der Schee ‘13
Why transverse dynamics might matter

* The experiments are not homogeneous at all.

* (Generalize the spectrum of QNM to non-zero momentum.
* See if transverse expansion rate is faster or slower.

* Make contact with elliptic flows, etc...

* Since symmetry is not forced, we may see turbulence.

Sorensen et al. '11
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Collision of Inhomogeneous
shockwaves

ds* = 2dt dr — A dt* + 2dt (F dy + G dz1) +
»- [66}—28 cosh D dy? + e~ cosh D ()I.”IJ? +2¢ B/2ginh D dy dxi + BB()EIIJS}

* We keep the determinant given by —X°.
* No homogeneity.
* A, B, %, F,C, D, G functions of (¢,7,y,x1).

. l.ﬁ ot : y L
Siniphiieation [h(t;ray::t:l) — ho(t,r,y) +ie et 51’&(“‘:"9)] keR

where CO = O, DO = 0, GO =0

e Input functions: By, 0B, 6C, oD

/ Free to choose

Shocks in EF coord.
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Collision of Inhomogeneous
shockwaves

e Stress tensor: 0

€ Sy Sy €~ Q4
<T > - N—CZ Sy Py T 0 h Sy ™ f4

TR R
T7 AP@ =y b47 C4q, d4

e Normalizable modes: ay4(t,y), ba(t,y), ca(t,y), da(t,y), fa(t,y), ga(t,y).

4
Orag = ~3 (Oy fa + 0z, 94)

e Boundary evolution:

1
8tf4 = 8w1d4 = Zay (CL4 e Sb4 e 4(34)

1
8tg4 = (‘?yd4 il Zaml (a4 + 404 - 454)
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Animations

Dynamic background Perturbation
B(t,z,y) (SB(t,Z,y)
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Results

Contributions to the stress-energy tensor:

E(t,y) 0E(t, y)

1 e etk

By
ut

; Inhomogeneity on longitudinal
Inhom. on pressure anisotropy (k = 0.2): e i
j y — . .

SP(t.
(t,y) i

Hy
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Outlook:

e Does the evolution of the fluctuations obey hydrodynamics?
e Can we read off quasinormal modes with k =% 0 of the BH?
e How much slower is the equilibration of fluctuations?

e Which modes are relevant /irrelevant depending on the value of k?

Thank you!



Technical Specs:
e 30 Chebychev points in z.

e 250 Fourier points in y.

e A timestep dt = 0.0002.

e Initial width 0.75, separation 2.6 (units of u).
e Background energy density 6 = 0.075.

Convergence check:
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