A holographic Kondo model: RG flow and time dependence

Johanna Erdmenger

Max-Planck-Institut für Physik, München

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

MAX-PLANCK-GESELLSCHAFT

Kondo effect

Kondo effect

Screening of a magnetic impurity by conduction electrons at low temperatures

Kondo effect

Screening of a magnetic impurity by conduction electrons at low temperatures

Metals: Fermi liquid + impurities:

$$\rho \sim \rho_0 + T^2$$

In the presence of magnetic impurities: $\rho \sim -\log(T)$

Holographic Kondo Model: Motivation

- Original Kondo problem well-understood in field theory
- Open question: Magnetic impurity coupled to strongly coupled electron gas (Luttinger liquid)
- Here: Realization in gauge/gravity duality
- Describes RG flow, condensation process
- Possible extensions: Backreaction, Time dependence, Kondo lattices

Holographic Kondo Model

- I. Kondo effect: Physics, CFT approach, large N
- 2. Holographic model: Similarities and differences
- 3. Backreaction, time dependence

Based on joint work with

C. Hoyos (Tel Aviv Univ.), A. O'Bannon (DAMTP Cambridge), J.Wu (NCTS Taiwan)

arXiv 1310.3271, published in JHEP

Physics of the Kondo effect

Free electrons + impurity spin

Impurity screened

Kondo model

Kondo '64, Affleck+Ludwig '90s

$$H = \frac{v_F}{2\pi} \psi_L^{\dagger} i \partial_x \psi_L + v_F \frac{\lambda_K}{\lambda_K} \delta(x) \,\vec{S} \cdot \psi_L^{\dagger} \frac{1}{2} \vec{\tau} \,\psi_L$$

Free electrons

Local interaction with magnetic impurity

Scattering with magnetic impurities

Antiferromagnetic coupling $\kappa < 0$

Logarithmic behaviour at low temperatures

Fig. 1. Comparison of experimental and theoretical ρ -T curves for dilute AuFe alloys.

Jun Kondo:

- Progress of Theoretical Physics
- Volume 32, Issue 1

• Pp. 37-49

$$\rho \sim \rho_0 \left(1 + \frac{\kappa}{|\epsilon - \epsilon_F|} \right)$$

$$\rho \sim \rho_0 \left(1 + \frac{\kappa \log \frac{T}{|\epsilon - \epsilon_F|}}{|\epsilon - \epsilon_F|} \right)$$

$$\rho \sim \rho_0 \left(1 + \kappa \log \frac{T}{|\epsilon - \epsilon_F|} \right)$$

 T_K : Kondo temperature

$$\rho \sim \rho_0 \left(1 + \kappa \log \frac{T}{|\epsilon - \epsilon_F|} \right)$$

 T_{K} : Kondo temperature

IR theory is strongly coupled!

$$\rho \sim \rho_0 \left(1 + \frac{\kappa}{|\epsilon - \epsilon_F|} \right)$$

 T_K : Kondo temperature

IR theory is strongly coupled!

$$T_K \sim \Lambda_{\rm QCD}$$

RG flow

The Kondo model was decisive in the development of the RG formalism. (Wilson)

- Negative beta function: $\beta_{\lambda} \propto -\lambda^2 + \mathcal{O}(\lambda^3)$
- UV fixed point: Free theory Asymptotic freedom

In some cases, the model flows to a strongly coupled IR fixed point.

CFT approach

- One-impurity problem: Spherical symmetry
- Reduces to I+I-dimensional system with boundary
- Consider only left-movers

CFT approach

Compare CFT's at UV and IR fixed points

UV: Free fermions, boundary condition $\psi_- = \psi_+$

IR: Free fermions, boundary condition $\psi_{-} = -\psi_{+}$

Change in boundary condition induces change in spectrum

Generalizations

Generalizations

Spin SU(N), k channels SU(k), Charge U(1)

Kac-Moody algebra: $SU(N)_k \times SU(k)_N \times U(1)$ $[J_n^a, J_m^b] = if^{abc} J_{n+m}^c + k \frac{n}{2} \delta^{ab} \delta_{n,-m}$

Generalizations

Spin SU(N), k channels SU(k), Charge U(1)

Kac-Moody algebra: $SU(N)_k \times SU(k)_N \times U(1)$ $[J_n^a, J_m^b] = if^{abc} J_{n+m}^c + k \frac{n}{2} \delta^{ab} \delta_{n,-m}$

Sugawara construction: Separation of spin, channel and charge currents

$$H = \frac{1}{2\pi(N+k)}J^{a}J^{a} + \frac{1}{2\pi(k+N)}J^{A}J^{A} + \frac{1}{4\pi Nk}J^{2} + \lambda_{K}\delta(x)\vec{S}\cdot\vec{J}$$

IR CFT

Redefinition of spin current:

$$\mathcal{J}^{a} \equiv J^{a} + \pi (N+k) \lambda_{K} \delta(x) S^{a}$$

Critical coupling

$$\lambda_{K} = \frac{2}{N+k}$$

• Hamiltonian:

$$H = \frac{1}{2\pi(N+k)}\mathcal{J}^{a}\mathcal{J}^{a} + \frac{1}{2\pi(k+N)}J^{A}J^{A} + \frac{1}{4\pi Nk}J^{2}$$

No impurity!

[Affleck & Ludwig '95]

- IR CFT = UV CFT with shifted spectrum
- IR spin representations = UV spin representations + impurity spin

Critical, under- and overscreening Example of $SU(2)_k$:

• Underscreening: $2s_{imp} > k$ Fermi liquid + impurity of spin $|s_{imp} - k/2|$

• Critical screening: $2s_{imp} = k \text{ IR fixed point: } k \text{ free left-movers}$

• Overscreening: $2s_{imp} < k$

Non-trivial IR fixed point: non-Fermi liquid behavior

Qualitatively similar for higher spin

Spin of impurity: Young tableau with Q boxes

 $S^a = \chi^{\dagger} T^a \chi$ Totally antisymmetric representation

 $\chi^{\dagger}\chi = q, \ Q = q/N$

Spin of impurity: Young tableau with Q boxes

 $S^a = \chi^{\dagger} T^a \chi$ Totally antisymmetric representation

$$\chi^{\dagger}\chi = q, \quad Q = q/N$$

Kondo coupling as double-trace deformation:

$$\begin{split} \lambda_{K} \,\delta(x) \, J^{a} S^{a} &= \lambda_{K} \,\delta(x) \, \left(\psi_{L}^{\dagger} T^{a} \psi_{L} \right) \, \left(\chi^{\dagger} T^{a} \chi \right) \\ &= \frac{1}{2} \lambda_{K} \,\delta(x) \left(\psi_{L}^{\dagger} \chi \right) \left(\chi^{\dagger} \psi_{L} \right) \\ &= \frac{1}{2} \lambda_{K} \,\delta(x) \, \mathcal{O} \mathcal{O}^{\dagger} \end{split}$$

Spin of impurity: Young tableau with Q boxes

 $S^a = \chi^{\dagger} T^a \chi$ Totally antisymmetric representation $\chi^{\dagger} \chi = q, \ Q = q/N$

Kondo coupling as double-trace deformation:

$$\lambda_{K} \,\delta(x) \, J^{a} S^{a} = \lambda_{K} \,\delta(x) \, \left(\psi_{L}^{\dagger} T^{a} \psi_{L}\right) \, \left(\chi^{\dagger} T^{a} \chi\right)$$
$$= \frac{1}{2} \lambda_{K} \,\delta(x) \left(\psi_{L}^{\dagger} \chi\right) \left(\chi^{\dagger} \psi_{L}\right)$$
$$= \frac{1}{2} \lambda_{K} \,\delta(x) \, \mathcal{O} \mathcal{O}^{\dagger}$$

O SU(N) singlet, charged under $U(N_f) \times SU(k) \times U(1)$ [O] = 1/2

Sachdev, Senthil, Voijta cond-mat/0209144

Kondo effect corresponds to condensation of $\mathcal{O}=\psi_L^\dagger\chi$

Mean field transition:

 $T > T_K, \ \langle \mathcal{O}
angle = 0, \ SU(k) imes U(N_f) imes U(1)$ $T < T_K, \ \langle \mathcal{O}
angle \neq 0, \ SU(k) imes U(N_f) imes U(1)
ightarrow U(1)_D$

Why holography?

Why holography?

Gravity dual for well-understood RG flow

Why holography?

Gravity dual for well-understood RG flow

Note however: Holographic model and standard Kondo model have significant differences

Why holography?

Gravity dual for well-understood RG flow

Note however: Holographic model and standard Kondo model have significant differences

Extensions: Time dependence, entanglement entropy

Impurities in string holographic models

Supersymmetric defects with localized fermions

- D5/D3 AdS₂ ⊂ AdS₅
 [Kachru, Karch, Yaida] [Harrison, Kachru, Torroba]
- M2/D2 in ABJM AdS₂ ⊂ AdS₄
 [Jensen, Kachru, Karch, Polchinski, Silverstein]
- D6 in ABJM AdS₂ ⊂ AdS₄, [Benincasa, Ramallo] with backreaction [Itsios, Sfetsos, Zoakos]
- D(8 − p) in Dp background S^{7−p} ⊂ S^{8−p} [Benincasa, Ramallo] other sphere wrappings [Karaiskos, Sfetsos, Tsatis]
- Spectrum of Wilson loops
 [Mueck] [Faraggi, Pando Zayas] [Faraggi, Mueck, Pando Zayas]

New in our model:

- Model for entire RG flow
- Double-trace deformation
- Kondo temperature arises naturally
- Impurity screening
- Phase shift
- Power-law scalings at low T

Top-down probe brane model

- based on D7- and D5-probe branes in D3-brane background

	0	1	2	3	4	5	6	7	8	9
$N_c D3$	Х	X	Х	X			1.51	1.		1
$N_7 \text{ D7}$	Х	X			Х	Х	X	Х	X	X
$N_5 \text{ D5}$	Χ		i P		X	Х	X	X	X	

Defect theory

Harvey and Royston 0709.1482, 0804.2854 Buchbinder, Gomis, Passerini 0710.5170

	0	1	2	3	4	5	6	7	8	9
$N_c D3$	Х	X	Х	Х						
$N_7 \text{ D7}$	X	Х	. 21		Х	X	X	Х	X	Х

 N_7 (1+1)-dimensional chiral fermions ψ_L

$$S_{3-7} = \int dx^{+} dx^{-} \psi_{L}^{\dagger} (i\partial_{-} - A_{-}) \psi_{L}$$

Preserves I/4 of SUSY

D5-brane probes

D5-branes: Impurity

	0	1	2	3	4	5	6	7	8	9
N_c D3	X	X	X	X	11				i tai	
N_5 D5	X	1			X	Х	X	X	X	

Skenderis, Taylor hep-th/0204054 Camino, Paredes, Ramallo hep-th/0104082 Gomis and Passerini hep-th/0604007

(0+1)-dimensional fermions χ

$$\chi^{\dagger}\chi = q$$

Kondo interaction: Complex scalar

1.11	0	1	2	3	4	5	6	7	8	9
N_5 D5	Х				Х	Х	Х	Х	X	2.1
$N_7 \text{ D7}$	Х	Х	1.1.1		Х	X	Х	Х	X	Χ

Dual operator: ${\cal O}\equiv\psi^{\dagger}_L\chi$

Kondo interaction: Complex scalar

1.11	0	1	2	3	4	5	6	7	8	9
N_5 D5	Х				Х	Х	Х	Х	Х	201
$N_7 \text{ D7}$	X	Х			Х	Х	X	Х	X	X

Dual operator: $\mathcal{O} \equiv \psi_L^{\dagger} \chi$

TACHYON
$$m_{\text{tachyon}}^2 = -\frac{1}{4\alpha'}$$

D5 becomes magnetic flux in the D7

Holography - Top-down model for Kondo

	x ⁰	x^1	x^2	x ³	x ⁴	x ⁵	x ⁶	x ⁷	x ⁸	x ⁹
N_c D3	•	•	٠	•	=	=	120	-	-	-
N7 D7	•	•	-	-	•	•	•	•	•	•
N ₅ D5	•	-	-	-	•	•	•	•	•	-

- 3-7 strings = chiral fermions (current algebra)
- 3-5 strings = slave fermions
- 5-7 strings = bifundamental scalar (tachyon)

J.E., Hoyos, O'Bannon, Wu 1310.3271

Near-horizon limit

D3: $AdS_5 \times S^5$

D7: $\operatorname{AdS}_3 \times S^5 \longrightarrow \operatorname{CS} A_{\mu}$ dual to $J^{\mu} = \psi^{\dagger} \sigma^{\mu} \psi$ **D5:** $\operatorname{AdS}_2 \times S^4 \longrightarrow \begin{cases} \mathsf{YM} \ a_t \text{ dual to } \chi^{\dagger} \chi = q \\ \mathsf{Scalar} \Phi \text{ dual to } \psi^{\dagger} \chi \end{cases}$

Bottom-up model

Action

$$S = S_{CS} + S_{AdS_2},$$

$$S_{CS} = -\frac{N}{4\pi} \int \operatorname{tr} \left(A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right),$$

$$S_{AdS_2} = -N \int d^3x \,\delta(x) \sqrt{-g} \left[\frac{1}{4} \operatorname{tr} f^{mn} f_{mn} + g^{mn} \left(D_m \Phi \right)^{\dagger} D_n \Phi + V(\Phi^{\dagger} \Phi) \right]$$

BTZ black hole

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = \frac{1}{z^{2}}\left(\frac{dz^{2}}{h(z)} - h(z)dt^{2} + dx^{2}\right)$$
$$h(z) = 1 - \frac{z^{2}}{z^{H}} \qquad T = \frac{1}{(2\pi z_{H})}$$

Defect space

Bottom-up model

Spin group SU(N) gauged

 $U(k)_N$ Chern-Simons field dual to channel SU(k)_N , charge U(1) current k=1

Defect Yang-Mills field encodes impurity spin representation,

 $a_t(z) = \frac{Q}{z} + \mu$

 Φ complex scalar bifundamental under the two gauge fields, dual to ${\cal O}=\psi_L^\dagger\chi$

Potential $V(\Phi)=m^2\Phi^\dagger\Phi~$, mass at Breitenlohner-Freedman bound

Double-trace operator marginal

$$\Phi = z^{1/2}(\alpha \log(z) + \beta)$$

RG flow

Double trace deformation by ${\cal O}{\cal O}^{\dagger}$

 $\Phi = z^{1/2} (\alpha \log(z) + \beta)$ Witten hep-th/0112258 $\alpha = \kappa \beta$

Renormalization:

$$\Phi = z^{1/2} \beta_0(\kappa_0 \log(\Lambda z) + 1) = z^{1/2} \beta(\kappa \log(\mu z) + 1)$$

Running coupling

 $\kappa = \frac{\kappa_0}{1 + \kappa_0 \ln\left(\frac{\Lambda}{\mu}\right)}$

Dynamical scale: $\Lambda_K = \Lambda e^{1/\kappa_0}$

Kondo coupling

Finite temperature solution:

 $\Phi = (z/z_H)^{1/2} \beta_T(\kappa_T \log(z/z_H) + 1) = \beta_0(\kappa_0 \log(\Lambda z) + 1)$

Temperature-dependent coupling

 $\kappa_{T} = \frac{\kappa_{0}}{1 + \kappa_{0} \ln\left(\frac{\Lambda}{2\pi T}\right)}$

Scale generation

Divergence of Kondo coupling determines Kondo temperature

Below this temperature, scalar condenses

Condensate

Mean field transition $\langle \mathcal{O} \rangle$ approaches constant for $T \to 0$

Phase with scalar condensate more stable below critical temperature

Electric flux at horizon

Impurity is screened

Phase shift

Below T_c , scalar transfers electric flux from 2dYM to 3d CS field

Wilson loop for 3d gauge field:

$$W(z) \equiv \oint dx \, A_x(z)$$

Leads to phase shift e^{iW} for chiral fermions

Phase shift: Equations of motion

$$J^{t}(r) = -2\sqrt{-g} g^{tt} a_{t} \phi^{2}$$

$$\varepsilon^{trx} F_{rx} = -\frac{4\pi}{N} \delta(x) J^{t}(r)$$

$$\partial_{r} \left(\sqrt{-g} g^{rr} g^{tt} f_{rt}\right) = -J^{t}(r)$$

$$T < T_{c} \qquad \phi(r) \neq 0 \qquad J^{t}(r) \neq 0$$

Phase Shift

Phase shift

No log behaviour due to strong coupling

No log behaviour due to strong coupling

No log behaviour due to strong coupling

IR fixed point stable: Flow near fixed point governed by operator dual to a_t

No log behaviour due to strong coupling

IR fixed point stable: Flow near fixed point governed by operator dual to a_t

Dimension
$$\Delta_+ = \frac{1}{2} + \sqrt{\frac{1}{4} + 2\phi_\infty^2}$$

Entropy density $s = s_0 + c_s \lambda_o^2 T^{-2+2\Delta_+}$

Resistivity
$$ho =
ho_0 + c_+ \lambda_O^2 T^{-1+2\Delta_+}$$

Including the backreaction

Flory, Newrzella, J.E., Hoyos, O'Bannon in progress

Impose Israel junction conditions

Defect Entanglement Entropy

Difference of EE with condensate (IR) minus EE without condensate (UV) as function of entangling region size for different temperatures

Time dependence

J.E., Flory, Newrzella, Strydom, Wu in progress

Look for time-dependent solutions of the equations of motion

 $A_x(z, x, t), a_t(z, t), a_z(z, t), \phi(z, t), \psi(z, t) \neq 0$

modelling the evolution of the system after turning on the Kondo interaction at $t = t_0$

T_c : Kondo coupling generating a Gaussian condensate pulse

J.E., Flory, Newrzella, Strydom, Wu (preliminary)

$$\phi(z) = \alpha \, z^{1/2} \ln\left(\Lambda z\right) + \beta \, z^{1/2} + \mathcal{O}\left(z^{3/2} \log\left(\Lambda z\right)\right)$$

Kondo coupling: κ

Condensate: $\alpha = \kappa \beta$

Scalar $\phi(z,t)$

Gaussian condensate pulse propagates to horizon and falls into black hole

J.E., Flory, Newrzella, Strydom, Wu (preliminary)

Time dependence

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

└─ *v*

1.0

— v

1.0

Time dependence

0.2

0.4

0.6

0.8

1.0

Conclusion

- Kondo effect at large N: (0+1)-dimensional superfluid
- Holographic model: $S = S_{CS} + S_{AdS_2}$
- Two couplings: 't Hooft coupling (large), coupling of double-trace operator (runs)
- RG flow, screening, phase shift, power-law scaling
- Backreaction, time dependence and further extensions under investigation