
Fermi surfaces and phase transitions in
holographic mixed Bose-Fermi systems

Francesco Nitti

APC, U. Paris VII

Kolymbari
September 5th 2014

Work with G. Policastro, T. Vanel, 1307.4558, 1407.0410

Fermi surfaces and phase transitions in holographic mixed Bose-Fermi systems – p.1



Introduction

What is the T = 0 ground state of a charged
holographic system with several types of
matter ?
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Introduction
Simplest T = 0 charged solution: extremal RN-AdS black hole

• The charge is hidden behind a horizon;

• Large ground state entropy;
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With bulk matter present, other solutions have lower free energy:

• Solutions with a bulk scalar condensate Horowitz, Roberts ’09

• Field theory side: spontaneous breaking of global U(1)
(ground state is a superfluid).

• No charged horizon.

Fermi surfaces and phase transitions in holographic mixed Bose-Fermi systems – p.2



Introduction
Simplest T = 0 charged solution: extremal RN-AdS black hole

• The charge is hidden behind a horizon;

• Large ground state entropy;

With bulk matter present, other solutions have lower free energy:

• Solutions with a bulk scalar condensate Horowitz, Roberts ’09

• Field theory side: spontaneous breaking of global U(1)
(ground state is a superfluid).

• No charged horizon.

• Fermionic matter in the bulk. Hartnoll, Tavanfar ’10

• In the fluid approximation, a bulk “Electron Star” solution:

fermionic matter fills part of the geometry.

• No horizon but IR Lifshitz scaling

• Field theory side: large n. of Fermi surfaces associated to

Fermion species coming from the states associated to

boundary fermionic operators.Fermi surfaces and phase transitions in holographic mixed Bose-Fermi systems – p.2
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What happens in the presence of both Fermionic and Bosonic
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Introduction

What happens in the presence of both Fermionic and Bosonic

charged matter ?

One can think of a bulk electron fluid interacting with a (possibly

emergent) scalar condensate. This may for example arise as a

composite of the fermions.

• Competition of Fermionic and Bosonic components, new

quantum phase transitions.

• Deformation/destruction of Fermi surfaces in the presence of

the condensate.

Lesson:

the ground state of charged holographic systems is as complex as it

can be

related work: Liu, Schalm, Sun, Zaanen, 1307.4572, 1404.0571

Fermi surfaces and phase transitions in holographic mixed Bose-Fermi systems – p.3



Setup

S =

∫

d4x
√
−g

[

1

2κ2

(

R+
6

L2

)

−
1

4e2
FabF

ab

]

+ Smatter

U(1) gauge field ⇔ Global U(1) symmetry in the dual field theory.
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U(1) gauge field ⇔ Global U(1) symmetry in the dual field theory.

Two types of bulk matter:
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U(1) gauge field ⇔ Global U(1) symmetry in the dual field theory.

Two types of bulk matter:

• A charged scalar field ψ

Sscalar = −
1

2

∫

d4x
√
−g

(

|∂µψ − iqAµψ|2 +m2
s|ψ|2

)

−
9

4
< m2

s < 0

• A charged fermionic perfect fluid in local chemical equilibrium

T fluid
ab = (ρ+ p)uaub + pgab , Ja

fluid = σua

−p(r) = ρ(r)− µl(r)σ(r), µl(r) = local bulk chemical potential
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Solutions
Static homogeneous isotropic solutions:

ds2 =
[

−f(r)dt2 + g(r)dr2 + 1
r2

(

dx2 + dy2
)]

,

A = h(r)dt , ψ = ψ(r) , ua = (ut(r), 0, 0, 0), ρfluid = ρ(r).
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r2

(

dx2 + dy2
)]

,

A = h(r)dt , ψ = ψ(r) , ua = (ut(r), 0, 0, 0), ρfluid = ρ(r).

Close to the UV boundary: AdS asymptotics, no scalar source.

r → 0 : f(r) ∼
1

r2
, h(r) ∼ µ− Qr , ψ ∼ ψ+ r∆

Fermi surfaces and phase transitions in holographic mixed Bose-Fermi systems – p.5



Solutions
Static homogeneous isotropic solutions:

ds2 =
[

−f(r)dt2 + g(r)dr2 + 1
r2

(

dx2 + dy2
)]

,

A = h(r)dt , ψ = ψ(r) , ua = (ut(r), 0, 0, 0), ρfluid = ρ(r).

Close to the UV boundary: AdS asymptotics, no scalar source.

r → 0 : f(r) ∼
1

r2
, h(r) ∼ µ− Qr , ψ ∼ ψ+ r∆

• (µ,Q,ψ+): boundary theory parameters (chemical potential,

total charge, scalar condensate).

• ψ(r) obeys normalizable b.c. at r = 0.

Field theory side: spontaneous breaking of global U(1)
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Solutions
Static homogeneous isotropic solutions:

ds2 =
[

−f(r)dt2 + g(r)dr2 + 1
r2

(

dx2 + dy2
)]

,

A = h(r)dt , ψ = ψ(r) , ua = (ut(r), 0, 0, 0), ρfluid = ρ(r).

Close to the UV boundary: AdS asymptotics, no scalar source.

r → 0 : f(r) ∼
1

r2
, h(r) ∼ µ− Qr , ψ ∼ ψ+ r∆

• (µ,Q,ψ+): boundary theory parameters (chemical potential,

total charge, scalar condensate).

• ψ(r) obeys normalizable b.c. at r = 0.

Field theory side: spontaneous breaking of global U(1)

• ρ = ψ = 0: solution is extremal RN black hole:

h = µ−Qr, Q =
√
6/r2h, µ =

√
6/rh,
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The Electron Star Hartnoll, Tavanfar ’09

ψ(r) = 0, ρfluid(r) ̸= 0
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The Electron Star Hartnoll, Tavanfar ’09

ψ(r) = 0, ρfluid(r) ̸= 0

ρ(r) = β

∫ µl(r)

mf

dϵ ϵ2
√

ϵ2 −m2
f

µl(r) =
h(r)

√

f(r)
, 0 < mf < 1
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ψ(r) = 0, ρfluid(r) ̸= 0

ρ(r) = β

∫ µl(r)

mf

dϵ ϵ2
√

ϵ2 −m2
f

µl(r) =
h(r)

√

f(r)
, 0 < mf < 1

Need e2 ∼ ℓp/ℓAdS ≪ 1
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µl(r) =
h(r)
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f(r)
, 0 < mf < 1

Need e2 ∼ ℓp/ℓAdS ≪ 1

r → ∞ : h(r) ∼
h∞
rz

, f(r) ∼
1

r2z
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The Electron Star Hartnoll, Tavanfar ’09

ψ(r) = 0, ρfluid(r) ̸= 0

ρ(r) = β

∫ µl(r)

mf

dϵ ϵ2
√

ϵ2 −m2
f

µl(r) =
h(r)

√

f(r)
, 0 < mf < 1

Need e2 ∼ ℓp/ℓAdS ≪ 1

r → ∞ : h(r) ∼
h∞
rz

, f(r) ∼
1

r2z

For mf > 1 the ground state is again the RN black hole (no star)
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The T = 0 Holographic Superconductor

In the absence of fluid, the T = 0 ground state has ψ(r) ̸= 0. The IR

geometry has emergent (2 + 1)d Poincaré invariance,

r → ∞ : f(r) ∼
1

r2
, h(r) ∼ h0

(log r)1/2

rδ
, δ > 1.
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r → ∞ : f(r) ∼
1
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, h(r) ∼ h0

(log r)1/2
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How is the Electron Star modified if we turn on the condensate?
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The T = 0 Holographic Superconductor

In the absence of fluid, the T = 0 ground state has ψ(r) ̸= 0. The IR

geometry has emergent (2 + 1)d Poincaré invariance,

r → ∞ : f(r) ∼
1

r2
, h(r) ∼ h0

(log r)1/2

rδ
, δ > 1.

How is the Electron Star modified if we turn on the condensate?

Hint: µl =
h√
f
→ 0 as both r → 0 and r → ∞
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The Compact Star solution FN,Policastro,Vanel 1307.

Turning on ρ(r) and ψ(r) at the same time allows for new solutions:

A fluid layer sandwiched by the pure condensate solution.
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Phase Transitions

For a given choice of the microscopic parameters (mf ,β,ms, q), in

any class of solutions all boundary quantities scale trivially with µ
(the only scale on the boundary CFT at T = 0.)

ψ+ ∝ µ∆, Q ∝ µ2, . . .
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Phase Transitions

For a given choice of the microscopic parameters (mf ,β,ms, q), in

any class of solutions all boundary quantities scale trivially with µ
(the only scale on the boundary CFT at T = 0.)

ψ+ ∝ µ∆, Q ∝ µ2, . . .

The Free energies of the various solutions will take the form:

Fi = ci(ms,mf , q)µ
3

• The quantity ci(ms,mf , q) determines which solution has

lowest free energy Fi at a given point in parameter space

• As we vary the control parameters (ms,mf , q) we can find

quantum phase transitions between the various classes of

solutions.
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Phase Transitions

Fermi surfaces and phase transitions in holographic mixed Bose-Fermi systems – p.10



Phase Transitions

The compact Electron star dominates whenever it exists.
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Adding current-current interaction
New interesting solutions arise if we add a direct current-current

coupling:

Lint = ηJsc
a Ja

fluid Jsc
a = −iq (ψ∗Daψ − ψ(Daψ)

∗)

On the isotropic condensate background with A = h(r)dt,ψ(r):

Jt = q2|ψ(r)|2h(r)
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Adding current-current interaction
New interesting solutions arise if we add a direct current-current

coupling:

Lint = ηJsc
a Ja

fluid Jsc
a = −iq (ψ∗Daψ − ψ(Daψ)

∗)

On the isotropic condensate background with A = h(r)dt,ψ(r):

Jt = q2|ψ(r)|2h(r)

µl(r) =
h(r)

√

f(r)

(

1− ηq2|ψ(r)|2
)

η > 0
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Compact Electron Stars

A positively charged fluid shell

is allowed.
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Compact Positron Stars

A negatively charged fluid shell

is allowed.
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Compact Positron Stars

A negatively charged fluid shell

is allowed.
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Polarized solutions

Two fluid shells of opposite

charge are allowed. The

screening effect of the conden-

sate keeps them apart.
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Field theory picture

Many Fermion species, such that zero energy level has a different

offset for different flavors, so that a given chemical potential

intersects the conductance band for some fermions and the valence

band for others.
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More phase Transitions
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More phase Transitions
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Low-energy spectrum and Fermi Surfaces

A Fermi surface on the Field theory side is signaled by a pole at zero

frequency and finite momentum kF in the two-point function

G(ω, k⃗) of a fermionic operator coupling to the bulk fermions.
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Low-energy spectrum and Fermi Surfaces

A Fermi surface on the Field theory side is signaled by a pole at zero

frequency and finite momentum kF in the two-point function

G(ω, k⃗) of a fermionic operator coupling to the bulk fermions.

To compute G(ω, k⃗) holographically, consider a probe bulk fermion

χ on top of the homogeneous backgrounds (ES, CES, etc)

Sχ =

∫

d4x
√
−g [−i (χ̄ΓaDaχ−mf χ̄χ) + ηχ̄ΓaχJ

a
sc]

Pole in G(0, k) ⇔ normalizable solution with ω = 0 and k = kF of

the Dirac equation for the bulk spinor χ(r,ω, k⃗).
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Fermi Surfaces: no condensate

Recast Dirac’s equation at ω = 0 into a Schrodinger problem, with

|⃗k|2 appearing as energy:

−∂2yϕ+ V (y)ϕ = −k2ϕ
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Fermi Surfaces: no condensate

Recast Dirac’s equation at ω = 0 into a Schrodinger problem, with

|⃗k|2 appearing as energy:

−∂2yϕ+ V (y)ϕ = −k2ϕ

Electron Star ψ = 0 Hartonll,Hofman,Vegh ’11
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Fermi Surfaces: no condensate

Recast Dirac’s equation at ω = 0 into a Schrodinger problem, with

|⃗k|2 appearing as energy:

−∂2yϕ+ V (y)ϕ = −k2ϕ

Electron Star ψ = 0 Hartonll,Hofman,Vegh ’11

States accumulate to-

wards zero:

kn ∝ e−n

⇒ an infinitenumber

of Fermi surfaces
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Fermi Surfaces: Compact stars

Turning on the scalar condensate changes the situation.

Electron star ψ = 0
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Fermi Surfaces: Compact stars

Turning on the scalar condensate changes the situation.

Compact stars ψ ̸= 0

Fermi surfaces and phase transitions in holographic mixed Bose-Fermi systems – p.19



Fermi Surfaces: Compact stars

Turning on the scalar condensate changes the situation.

Finite number of Fermi surfaces with momenta kmax > . . . > kmin

⇒ the condensate lifts most of the Fermi surfaces and leaves a finite

number of them.
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Conclusion

• Holographic systems with both bosonic and fermionic matter

exhibit a rich structure, with various continous transitions

between competing ground states.

• Among the solutions allowed, the ground state seems to always

be the one with more ingredients present at the same time.

• A scalar condensate can gap (most of the) Fermi surfaces in an

electron star.

• Investigate these systems further by computing conductivities.

• Examples in condensed matter systems ?
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Finite ω
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