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Introduction

What is the 1’ = 0 ground state of a charged
holographic system with several types of
matter ?
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Introduction
Simplest 7' = 0 charged solution: extremal RN-AdS black hole

e The charge is hidden behind a horizon;

o Large ground state entropy;
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Introduction
Simplest 7' = 0 charged solution: extremal RN-AdS black hole

o The charge 1s hidden behind a horizon;
o Large ground state entropy;
With bulk matter present, other solutions have lower free energy:

o Solutions with a bulk scalar condensate Horowitz, Roberts *09

. Field theory side: spontaneous breaking of global U (1)
(ground state 1s a superfluid).

« No charged horizon.
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Introduction
Simplest 7' = 0 charged solution: extremal RN-AdS black hole

o The charge 1s hidden behind a horizon;
o Large ground state entropy;
With bulk matter present, other solutions have lower free energy:

o Solutions with a bulk scalar condensate Horowitz, Roberts *09

. Field theory side: spontaneous breaking of global U (1)
(ground state 1s a superfluid).

« No charged horizon.

o Fermionic matter in the bulk. Hartnoll, Tavanfar *10
o In the fluid approximation, a bulk “Electron Star” solution:
fermionic matter fills part of the geometry.
« No horizon but IR Lifshitz scaling

. Field theory side: large n. of Fermi surfaces associated to
Fermion species coming from the states associated to
boundary fermionic Operatorsrerml surfaces and phase transitions in holographic mixed Bose-Fermi systems —p.2



Introduction

What happens in the presence of both Fermionic and Bosonic
charged matter ?
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Introduction

What happens in the presence of both Fermionic and Bosonic
charged matter ?

One can think of a bulk electron fluid interacting with a (possibly
emergent) scalar condensate. This may for example arise as a
composite of the fermions.
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What happens in the presence of both Fermionic and Bosonic
charged matter ?

One can think of a bulk electron fluid interacting with a (possibly
emergent) scalar condensate. This may for example arise as a
composite of the fermions.

o Competition of Fermionic and Bosonic components, new
quantum phase transitions.

o Deformation/destruction of Fermi surfaces in the presence of
the condensate.
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emergent) scalar condensate. This may for example arise as a
composite of the fermions.

o Competition of Fermionic and Bosonic components, new
quantum phase transitions.

o Deformation/destruction of Fermi surfaces in the presence of
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the ground state of charged holographic systems is as complex as it
can be
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Introduction

What happens in the presence of both Fermionic and Bosonic
charged matter ?

One can think of a bulk electron fluid interacting with a (possibly
emergent) scalar condensate. This may for example arise as a
composite of the fermions.

o Competition of Fermionic and Bosonic components, new
quantum phase transitions.

o Deformation/destruction of Fermi surfaces in the presence of
the condensate.

Lesson:

the ground state of charged holographic systems is as complex as it
can be

related work: Liu, Schalm, Sun, Zaanen, 1307.4572, 1404.0571
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Setup
4 1 6 1 ab
S= [ dxz\—g 9,2 R+ 72 ) T 122 Fap + Smatter

U(1) gauge field < Global U(1) symmetry in the dual field theory.
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Setup

1 6 1 .
S = /d4x vV —g [M <R+ L2> — 4—62FabF b] + Smatter

U(1) gauge field < Global U(1) symmetry in the dual field theory.

Two types of bulk matter:
o A charged scalar field v

1 . 9
Sscalar = 5 /d433'\/ —g (’apﬂp — %]A/ﬂ?\z T mgWP) 2 < m? <0
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Setup

1 6 1
— /d4x vV —3 [2/{2 ( _|_ L2> 4 2F F ] —l_ Smatter
U(1) gauge field < Global U(1) symmetry in the dual field theory.

Two types of bulk matter:
o A charged scalar field v

1 . 9
Sscalar = 5 /d4$\/ —g (’apﬂp — %]A/Mz T mgWP) 2 < m? <0

o A charged fermionic perfect fluid in local chemical equilibrium

Tﬂwd

a

(p + pP)uqup + PGab , JfCILuid — ou

—p(r) = p(r) — w(r)o(r), ( ) local bulk chemical potential
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Solutions
Static homogeneous isotropic solutions:

ds? [—f(r)dt2 + g(fr)d’r2 + %2 (da:2 + dy2)} :
A — h(?“)dt , Y= %D(T) ,  ut = (ut(r>7 0,0, 0)7 P fluid = IO(T)
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Solutions
Static homogeneous isotropic solutions:

ds? [—f(r)dt2 + g(r)dr? + %2 (dx2 + dyz)} :
A — h(?“)dt , Y= ¢(T) ,  ut = (ut(r)7 0,0, O)a P fluid = IO(T)

Close to the UV boundary: AdS asymptotics, no scalar source.

ro 0 f)~ g, h() e Qb
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Solutions
Static homogeneous isotropic solutions:

ds? = [—f(r)dt2 + g(r)dr? + %2 (daz2 + dyz)} :
A — h(?“)dt , Y= %ﬁ("“) ,  ut = (ut(r)7 0,0, O)v P fluid = IO(T)

Close to the UV boundary: AdS asymptotics, no scalar source.
1 A
P 0 f)~ g, b = Qr, gty

e (1,Q,11): boundary theory parameters (chemical potential,
total charge, scalar condensate).

 9(r) obeys normalizable b.c. at r = 0.
Field theory side: spontaneous breaking of global U (1)
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Solutions
Static homogeneous isotropic solutions:

ds? = [—f(r)dt2 + g(r)dr? + %2 (daz2 + dyz)} :
A — h(?“)dt , Y= %ﬁ("“) ,  ut = (ut(r)7 0,0, O)v P fluid = IO(T)

Close to the UV boundary: AdS asymptotics, no scalar source.

ro 0 f)~ g, h() e Qb

e (1,Q,11): boundary theory parameters (chemical potential,
total charge, scalar condensate).

 9(r) obeys normalizable b.c. at r = 0.
Field theory side: spontaneous breaking of global U (1)

e p =1 = 0: solution is extremal RN black hole:

h=p—Qr, Q=V6/ri, =6/,
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The EleCtron Stal’ Hartnoll, Tavanfar ’09

Y(r) = 0, priwia(r) # 0
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The EleCtron Stal’ Hartnoll, Tavanfar ’09

Y(r) = 0, priwial(r) # 0

h(r)
f(r)
Need e ~ Up/lags < 1

(1) = , 0<my<1
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The EleCtron Stal’ Hartnoll, Tavanfar ’09

Y(r) = 0, priwial(r) # 0

mf
h
wi(r) = (r) , 0<my<1
fr)
Need e ~ Up/lags < 1
Poo 1
: h(r) ~ ~ ——
P00t h(r) ~ P pr) ~
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The EleCtron Star Hartnoll, Tavanfar ’09

my
h
wi(r) = (r) , 0<my<1
f(r)
Need e ~ Up/lags < 1
Poo 1
r—oo:  h(r)~ p ,f(r)NTTz

For m s > 1 the ground state is again the RN black hole (no star)
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The 7' = 0 Holographic Superconductor

In the absence of fluid, the 7" = 0 ground state has ¢)(r) # 0. The IR
geometry has emergent (2 + 1)d Poincaré invariance,

1/2
r— 00 : f(r) ~ 1 h(r) ~ hg (log )

, 0> 1.
0
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The 7' = 0 Holographic Superconductor

In the absence of fluid, the 7" = 0 ground state has ¢)(r) # 0. The IR
geometry has emergent (2 + 1)d Poincaré invariance,

1/2
r— 00 : f(r) ~ 1 h(r) ~ hg (log )

, 0> 1.
0

How 1is the Electron Star modified if we turn on the condensate?
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The 7' = 0 Holographic Superconductor

In the absence of fluid, the 7" = 0 ground state has ¢)(r) # 0. The IR
geometry has emergent (2 + 1)d Poincaré invariance,

1/2
r— 00 : f(r) ~ 1 h(r) ~ hg (log )

, 0> 1.
0

How 1is the Electron Star modified if we turn on the condensate?

Hint: j; = - — 0 as both » — 0 and r — oo

v
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The CompaCt Star solution FN,Policastro,Vanel 1307.

Turning on p(r) and () at the same time allows for new solutions:

A fluid layer sandwiched by the pure condensate solution.
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Phase Transitions

For a given choice of the microscopic parameters (my, 3, ms, q), in
any class of solutions all boundary quantities scale trivially with p
(the only scale on the boundary CFT at 7" = 0.)

by oo p®, Qo
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Phase Transitions

For a given choice of the microscopic parameters (my, 3, ms, q), in
any class of solutions all boundary quantities scale trivially with p
(the only scale on the boundary CFT at 7" = 0.)

Yy oS, Qox
The Free energies of the various solutions will take the form:

Fi = ci(ms,my, q)
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Phase Transitions

For a given choice of the microscopic parameters (my, 3, ms, q), in
any class of solutions all boundary quantities scale trivially with p
(the only scale on the boundary CFT at 7" = 0.)

by oo p®, Qo

The Free energies of the various solutions will take the form:

Fi = ci(ms,my, q)

o The quantity c;(m,, my, q) determines which solution has
lowest free energy JF; at a given point in parameter space

o As we vary the control parameters (mg, m¢, ¢) we can find
quantum phase transitions between the various classes of
solutions.
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Phase Transitions
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Phase Transitions

The compact Electron star dominates whenever it exists.
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Adding current-current interaction

New interesting solutions arise if we add a direct current-current
coupling:

Lint = UJCfCJ?zmd Joo = —iq (V" Doty — P(Datp)”)

On the isotropic condensate background with A = h(r)dt, ¥ (r):

Je = ¢*1p(r)|*h(r)
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Adding current-current interaction

New interesting solutions arise if we add a direct current-current
coupling:

Lint = UJCfCJ?zmd Joo = —iq (V" Doty — P(Datp)”)

On the isotropic condensate background with A = h(r)dt, ¥ (r):

Je = ¢*1p(r)|*h(r)

n >0
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Compact Electron Stars

A positively charged fluid shell
1s allowed.
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Compact Electron Stars

A positively charged fluid shell
1s allowed.
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Compact Positron Stars

A negatively charged fluid shell
1s allowed.
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Compact Positron Stars

A negatively charged fluid shell
1s allowed.

Fermi surfaces and phase transitions in holographic mixed Bose-Fermi systems —p.13



Polarized solutions

Two fluid shells of opposite
charge are allowed. The
screening effect of the conden-
sate keeps them apart.
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Polarized solutions

Two fluid shells of opposite
charge are allowed. The
screening effect of the conden-
sate keeps them apart.
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Field theory picture

Many Fermion species, such that zero energy level has a different
offset for different flavors, so that a given chemical potential
intersects the conductance band for some fermions and the valence
band for others.
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More phase Transitions
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More phase Transitions
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More phase Transitions
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Low-energy spectrum and Fermi Surfaces

A Fermi surface on the Field theory side is signaled by a pole at zero
frequency and finite momentum k5 in the two-point function

—

G(w, k) of a fermionic operator coupling to the bulk fermions.
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Low-energy spectrum and Fermi Surfaces

A Fermi surface on the Field theory side is signaled by a pole at zero
frequency and finite momentum k5 in the two-point function

—

G(w, k) of a fermionic operator coupling to the bulk fermions.

—

To compute GG(w, k) holographically, consider a probe bulk fermion
x on top of the homogeneous backgrounds (ES, CES, etc)

S\ = / d*zv/=g [=i (X" Dax — myxx) + nxTax /]

Pole in G(0, k) < normalizable solution with w = 0 and k£ = kp of

the Dirac equation for the bulk spinor (7, w, k).
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Fermi Surfaces: no condensate

Recast Dirac’s equation at w = 0 into a Schrodinger problem, with
k|2 appearing as energy:

5o+ V(y)p=—k¢
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Fermi Surfaces: no condensate

Recast Dirac’s equation at w = 0 into a Schrodinger problem, with
k|2 appearing as energy:

5o+ V(y)p=—k¢

Electron Star ¢ = 0 Hartonll,Hofman,Vegh *11

Fermi surfaces and phase transitions in holographic mixed Bose-Fermi systems —p.18



Fermi Surfaces: no condensate
Recast Dirac’s equation at w = 0 into a Schrodinger problem, with

k|2 appearing as energy:

o+ V(y)p=—k¢

States accumulate to-
wards zero:

k,oce ™

— an 1infinitenumber

of Fermi surfaces

Electron Star ¢ — () Hartonll,Hofman,Vegh ’11
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Fermi Surfaces: Compact stars

Turning on the scalar condensate changes the situation.

Electron star ¢) = 0
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Fermi Surfaces: Compact stars

Turning on the scalar condensate changes the situation.

Compact stars 1 # 0
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Fermi Surfaces: Compact stars

Turning on the scalar condensate changes the situation.

Finite number of Fermi surfaces with momenta %,,,,. > ... > kin
—> the condensate lifts most of the Fermi surfaces and leaves a finite

number of them.
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Conclusion

o Holographic systems with both bosonic and fermionic matter
exhibit a rich structure, with various continous transitions
between competing ground states.

o Among the solutions allowed, the ground state seems to always
be the one with more ingredients present at the same time.

o A scalar condensate can gap (most of the) Fermi surfaces in an
electron star.

o Investigate these systems further by computing conductivities.

« Examples in condensed matter systems ?

Fermi surfaces and phase transitions in holographic mixed Bose-Fermi systems —p.20



Finite w
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Finite w
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