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@ Features of conduction in real systems



In-plane metal/insulator transitions
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[UcHiDA ET AL, PRB’91]
@ Drude-like feature at low frequencies for high doping

@ Incoherent transport at intermediate doping
@ Metal/insulator transition at low doping

@ Reorganisation of degrees of freedom assumed to be driven by
strong correlations



Metallic transport with Drude peaks

@ Drude model: postulates the existence of (quasi)-particles whose
momentum relaxes slowly on a typical scale 7

@ No quasi-particle assumption: use the memory matrix formalism
[ForsTer’75], when there is an almost-conserved quantity
(momentum) [HarTNOLL & Horman’12]: 'coherent’ metals
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o(w,T) =
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opc — +0o when 7 — 400 (no
momentum relaxation)



Quantum critical thermal transport at zero density

Above the Quantum Critical Point at the superfluid/insulator transition in
d spatial dimensions, temperature is the only scale [DamLe & Sacupev’97]:

scale-covariant
conductivity
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=
Y(0)=ct
¥ (00) ~ ct’ (%)_7

No Drude peak: ‘incoherent’ metal



e Can holography reproduce these possibilities (metals with and
without Drude peaks, insulators)?

@ Does weak momentum non-conservation (‘clean’ limit)
always imply coherent transport (Drude peak)?

@ Does strong momentum non-conservation ('dirty’ limit)
always imply incoherent transport (no Drude peak)?



@ Features of conduction in real systems
© Computing finite DC conductivities

© A holographic landscape of metals and insulators



© Computing finite DC conductivities



Philosophy

Assume the UV is Anti-de Sitter.
However, we wish to study the IR : different IR phases can compete.

How do we characterise these phases?



Effective holographic theories at low temperatures

Write down effective holographic theories describing the desired
dynamics and characterize the possible IR phases by their symmetries and
their behaviour under scaling transformations:

@ Phases with unbroken U(1) symmetry (fractionalized phases),
[CuarMoOUsIs, B.G., KiM, KIrRiTsIs & MEYER 10, B.G. & KiriTsis’11]

@ Phases with broken U(1) symmetry (e.g. cohesive phases like
superfluids or electron stars), [B.G. & Kirrtsis’12, B.G.’13];

@ This talk: holographic metals and insulators with broken translation
symmetry, [B.G.’14, Donos, B.G. & KiriTsis’14]



Effective holographic actions for momentum relaxation

Relax momentum by breaking translations to a helical Bianchi VII
subgroup:

5— / Exy/ g [R— 06 — Ze(d)F? — Zn(6) Fu® + V(9)]

o Contains gravity, an electric (finite density) and a magnetic field, a
neutral scalar [Cuarmousis, B.G., Kim, KIrIiTsis & MeveErR ’10].

@ In the metric Ansatz, replace the RY spatial factor by a helical,
Bianchi VII symmetry in a 5D bulk [T1zuxa er aL’12, Downos &
GAUNTLETT’ 12, Donos & HarTnoLL’12], [Donos, B.G. & KiriTsis’14].
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ds® = —Bdt2+%+z Ciwi?, Ae =Ac(r)dt, Am=An(r)ws
i=1

wy; =dx, wy = cos(kx)dy+sin(kx)dz, w3 = sin(kx)dy—cos(kx)dz
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Other options to have finite DC conductivities
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Turn on massless scalars (‘axions’) ¥; = kx' (preserves homogeneity
of the eoms: ODES) [ANDRADE & WITHERS’13, B.G.’14, Donos &
BLAKE’14, TAYLOR & WOODHEAD’14].

(similar mechanism to Q-lattices [Donos & GaunTLETT’13, ’14])

Break diffeomorphism invariance in the bulk: massive gravity
[VEGH’13, DAvison’13, BLAKE & TonNG’13, DAVISON, SCHALM & ZAANEN’13,
AworeTTI ET AL.’14]. Very similar to axions.

Inhomogeneous lattices, [HorowiTz, SanTos & Tonc’12, Donos &
HarTNOLL’12, HorOwIiTZ & SANTOS’13, CHESLER, LUCAS & SACHDEV’13,

BLAKE, TONG & VEGH’13, WITHERS’14, JOKELA, JARVINEN & LIPPERT’14].

Random-field disorder, [HARTNOLL & HERZ0G’08, DAVISON, SCHALM &
ZAANEN’13, LucAs, SACHDEV & ScHALM’14].



The electric perturbation problem

The conductivity gives the response of the current to a small oscillating
electric field
6J, GR, (w,q=0
o(w, T) = - _ s.(@, 4 =0)
0E, tw

Turn on a small electric field along x on the boundary:
§Ax(r,w,q:0)~ (5AX(0) +r(5AX(1) +..., r—=0
This couples to other (vector) perturbations: gix, 0Am, Guyws- - -

The holographic dictionary tells us that the 2-point function (the
conductivity) is the variation of the vev wrt the source :

5AX(1)
o(w, T)= ——
w 6Ax(0)
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The DC conductivity

@ At w =0, there is a radially conserved quantity:

Orlo(r)] =0

@ It can be evaluated at the horizon (IR)!

opc = rlm o(r) = rIl_}rr;ﬁa(r) = [ -+ (o5t

[IgBAL & L1u’08, BLAKE & TonGg’13, ANDRADE & WiTHERS’13, B.G.’14,
DonNOS & GAUNTLETT’14]
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The DC conductivity: momentum relaxation term

ODC = Opc + omr

@ Model-dependent, dominates in the clean limit (momentum
conservation weakly broken).

@ Axions and massive gravity: [BrLaxe & Tonc’13], [ANDRADE &
WIiTHERS’13, B.G.’14, DonOs & GAUNTLETT’14]
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@ Bianchi Vllg: [Donos, B.G. & KiriTs1is’14]

Q3 GGG 2 o dr? : 2
mr — , = —B - W
o (G — Go)2 + GoZnA2) ds dt+B+ZCw

i=1
@ Similar result for random, perturbative disorder

[Lucas, SCHALM & SACHDEV’14]

@ Blows up if momentum is conserved (unless zero density)
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The DC conductivity: pair creation term

ODC = Opc + omr

1/2 5 3
Opc = Ze(9) <C21C3) ds? = —Bdt® + % + Z Ciw;?

i=1

r=rp

@ Independent of the relaxation mechanism, dominates in the dirty
limit (momentum conservation strongly broken);

@ production of charged particles in an electric field without heat flow

[Donos & GAUNTLETT ’14].

@ Unless there is no overlap between the current and momentum
operator (CFT at zero density), does not give rise to finite
conductivities by itself: o(w) ~ opc (J(w) + L)
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© A holographic landscape of metals and insulators



Effective holographic actions for momentum relaxation

Momentum relaxation by helical Bianchi VII lattices

5= / Bxy/ g [R— 06 — Zu(B)F2 — Zn(6)Fu? + V(9)]

In the IR, we can assume that the scalar ¢

settles in an extremum of its effective  has a runaway behaviour ¢ — £o0.

potential, ¢ = ¢,
Zom(9) ~ &m?, V(§) ~ Voe O
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Clean quantum critical phases

dt? dr?  dXs3)? -
dsg—rzj<— w12 X(3)>, ¢==klnr, s~ TF

2z 2 2

@ Translation symmetry is broken in the IR by irrelevant deformations

@ 6 =0 = constant scalar, hyperscaling solutions

AdSs Lifshitz AdS, x R3

@ 0 # 0 captures deviation from symmetry under
t— Mt, (r,x") — X(r,x")

hyperscaling violation desr = d — 0
[B.G. & KirIiTs1is’11, HUIJSE, SACHDEV & SWINGLE’11, DONG ET AL.’12]
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The conduction (or vector hyperscaling violation) exponent

Ar ~ Qer*%dt
A new exponent parameterizes the scaling of the electric potential,
[B.G. & KiriTs1s’12, B.G.’13]. It can behave in two ways:

o Tnawelis subleading in r compared to T, in Einstein’s equations.

Then z =1 and the charge density Q. sources an irrelevant mode:
d—10
d52:d502(1+Q82r2ﬂ_~_...), 6:%
B is the (anomalous) IR scaling dimension of the charge density
[B.G.’13,°14, Karcu’14].
¢ = d — 0 gives back the usual scaling in d — 8 dimensions.

maxwell ; ;
°o T,0 scales with r like Tlf’l,.

Then z # 1 and the charge density Q. sources a marginal mode
of the solution and ( =60 — d.
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DC conductivity for clean helical quantum critical phases

Two translation-breaking modes from the metric and the magnetic field.
The momentum-relaxing term dominates the DC conductivity

B R/ G G/G

Tm =42 (G — G2 + CoZmA2,)

@ 0 < z < +00: the modes are exponentially suppressed, as
expected from the dispersion relation w ~ k* — No dofs at finite
momentum if z < +00 [HARTNOLL&SHAGHOULIAN’12, ANANTUA ET AL.’12]

opc ~ %T = exp (2kT*%>

@ Semi-locally critical limit z — +o00, @ = nz: the exponent 8(k) of
the modes depends on wavevector k [HarTnoLL&HOFMAN®12]
Q 2
opc ~ 762 T+ bm

where (., is the irrelevant mode turning on the magnetic field.

@ Always metals. Matches memory matrix prediction.
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Dirty helical quantum critical phases

Anisotropic saddle points, with leading behaviour

dt?  12dr? +wi? wo? + Ar2ws?

2 20/3 1 2 3 2 92
ds® =r / (_,221+ r2 + r222 >(1+O(k r ))
¢:/{|nr+..., Ae:Qercle+...’ Am:Qmw2+"'
z21<0

The conductivity is pair creation dominated, and gives rise to
insulators (¢ < 2) or metals ({ > 2 + irrelevant density mode)

<

—2 d—2
opc ~ T =

# opc~ T =

(d=3)

unless ¢ = d — @ (scale-invariant limit where the charge density does not
have anomalous IR scaling dimension)

Universal scaling? Universal incoherent transport? [HarTnoLL’14]
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AC conductivity

21

At small frequency and zero temperature, there is a matched asymptotic
argument relating IR and UV retarded Green'’s functions [Dowos &
HARTNOLL’12]:

S[effY (. T = Z d's 65,6, (. T)]

The scaling of the AC conductivity is then given by the scaling of the
least irrelevant operator.

For the Bianchi VII solution: 3 propagating modes.



T = 0 IR asymptotics of the optical conductivity

Dirty, helical phase, pair-creation dominated

opc ~ T"<, oac(T =0) ~w™e, npc = >
1

Metallic phases with npc < 0
but nac > 0.

Reappearance of a delta
function?

Order of limits?
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Clean/dirty limits vs coherent/incoherent transport

b}

@ What happens to the optical conductivity when either term
dominates the DC conductivity? Is there always a Drude peak?

@ Charged axionic black hole analogous to the Reissner-Nordstrom
black hole with IR Ang x R? [BaArRDOUX, CALDARELLI & CHARMOUSIS’12,
ANDRADE & WrTHeErs ’13] with opc =1+ uz/kz.

Relo]
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Weak momentum non-conservation
(clean limit, k < )

Drude peak (coherent metal)
"Particle’-like physics

Strong momentum non-conservation
(dirty limit, k > p)

No Drude peak (incoherent metal)
"Unparticle’-like physics



Conclusions

@ Recipe to compute the DC conductivity analytically.

OpC = Opc + Omr

@ Either term can dominate: clean vs dirty limit.

@ Does the clean/dirty limit always imply coherent/incoherent
transport?

@ Breaking translation symmetry allows oac(T = 0) ~ w"c with
—1 < nac < 0. But not a mid-IR scaling. See S. Cremonini's talk
for intermediate scalings without breaking translation symmetry.

@ Insulators seem to require z < 0 — field theory interpretation?
Clearly the non-relativistic scaling w ~ k?* does not make sense. No
apparent mass gap.
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