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In-plane metal/insulator transitions

[Uchida et al, PRB’91]

[Cooper et al, PRB’91]

Drude-like feature at low frequencies for high doping
Incoherent transport at intermediate doping
Metal/insulator transition at low doping
Reorganisation of degrees of freedom assumed to be driven by
strong correlations

3



Metallic transport with Drude peaks

Drude model: postulates the existence of (quasi)-particles whose
momentum relaxes slowly on a typical scale τ

No quasi-particle assumption: use the memory matrix formalism
[Forster’75], when there is an almost-conserved quantity
(momentum) [Hartnoll & Hofman’12]: ’coherent’ metals

σ(ω,T ) =
χPJ

2χPP
−1

1− ıωτ

σDC → +∞ when τ → +∞ (no
momentum relaxation)
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Quantum critical thermal transport at zero density

Above the Quantum Critical Point at the superfluid/insulator transition in
d spatial dimensions, temperature is the only scale [Damle & Sachdev’97]:

scale-covariant
conductivity

σ ∼ T
d−2
z Σ

( ω
T

)
Σ (0) = ct

Σ(∞) ∼ ct ′
( ω

T

)− d−2
z

No Drude peak: ’incoherent’ metal
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Questions

Can holography reproduce these possibilities (metals with and
without Drude peaks, insulators)?

Does weak momentum non-conservation (’clean’ limit)
always imply coherent transport (Drude peak)?

Does strong momentum non-conservation (’dirty’ limit)
always imply incoherent transport (no Drude peak)?
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Philosophy

Assume the UV is Anti-de Sitter.
However, we wish to study the IR : different IR phases can compete.

How do we characterise these phases?
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Effective holographic theories at low temperatures

Write down effective holographic theories describing the desired
dynamics and characterize the possible IR phases by their symmetries and
their behaviour under scaling transformations:

Phases with unbroken U(1) symmetry (fractionalized phases),
[Charmousis, B.G., Kim, Kiritsis & Meyer ’10, B.G. & Kiritsis’11]

Phases with broken U(1) symmetry (e.g. cohesive phases like
superfluids or electron stars), [B.G. & Kiritsis’12, B.G.’13];

This talk: holographic metals and insulators with broken translation
symmetry, [B.G.’14, Donos, B.G. & Kiritsis’14]
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Effective holographic actions for momentum relaxation

Relax momentum by breaking translations to a helical Bianchi VII
subgroup:

S =

∫
d5x
√
−g
[
R − ∂φ2 − Ze(φ)Fe

2 − Zm(φ)Fm
2 + V (φ)

]

Contains gravity, an electric (finite density) and a magnetic field, a
neutral scalar [Charmousis, B.G., Kim, Kiritsis & Meyer ’10].

In the metric Ansatz, replace the Rd spatial factor by a helical,
Bianchi VII symmetry in a 5D bulk [Iizuka et al’12, Donos &
Gauntlett’12, Donos & Hartnoll’12], [Donos, B.G. & Kiritsis’14].

ds2 = −Bdt2+
dr2

B +
3∑

i=1
Ciωi

2 , Ae = Ae(r) dt , Am = Am(r)ω2

ω1 = dx , ω2 = cos(kx)dy+sin(kx)dz , ω3 = sin(kx)dy−cos(kx)dz
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Other options to have finite DC conductivities

Turn on massless scalars (’axions’) ψi = kx i (preserves homogeneity
of the eoms: ODEs) [Andrade & Withers’13, B.G.’14, Donos &
Blake’14, Taylor & Woodhead’14].
(similar mechanism to Q-lattices [Donos & Gauntlett’13,’14])

Break diffeomorphism invariance in the bulk: massive gravity
[Vegh’13, Davison’13, Blake & Tong’13, Davison, Schalm & Zaanen’13,
Amoretti et al.’14]. Very similar to axions.

Inhomogeneous lattices, [Horowitz, Santos & Tong’12, Donos &
Hartnoll’12, Horowitz & Santos’13, Chesler, Lucas & Sachdev’13,
Blake, Tong & Vegh’13, Withers’14, Jokela, Järvinen & Lippert’14].

Random-field disorder, [Hartnoll & Herzog’08, Davison, Schalm &
Zaanen’13, Lucas, Sachdev & Schalm’14].
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The electric perturbation problem

The conductivity gives the response of the current to a small oscillating
electric field

σ(ω,T ) =
δJx
δEx

=
GR
JxJx (ω,q = 0)

ıω

Turn on a small electric field along x on the boundary:

δAx (r , ω,q = 0) ∼ δAx(0) + r δAx(1) + . . . , r → 0

This couples to other (vector) perturbations: gtx , δAm, gω2ω3 . . .

The holographic dictionary tells us that the 2-point function (the
conductivity) is the variation of the vev wrt the source :

σ(ω,T ) =
δAx(1)

ıω δAx(0)
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The DC conductivity

At ω = 0, there is a radially conserved quantity:

∂r [σ(r)] = 0

It can be evaluated at the horizon (IR)!

σDC = lim
r→0

σ(r) = lim
r→rh

σ(r) = σpc + σmr

[Iqbal & Liu’08, Blake & Tong’13, Andrade & Withers’13, B.G.’14,
Donos & Gauntlett’14]
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The DC conductivity: momentum relaxation term

σDC = σpc + σmr

Model-dependent, dominates in the clean limit (momentum
conservation weakly broken).
Axions and massive gravity: [Blake & Tong’13], [Andrade &
Withers’13, B.G.’14, Donos & Gauntlett’14]

σmr =
Qe

2

s m2
h

Bianchi VII0: [Donos, B.G. & Kiritsis’14]

σmr =
Qe

2
√

C2C3/C1

k2 ((C2 − C3)2 + C2ZmA2
m)

, ds2 = −Bdt2+
dr2

B +
3∑

i=1
Ciωi

2

Similar result for random, perturbative disorder
[Lucas, Schalm & Sachdev’14]

Blows up if momentum is conserved (unless zero density)
14



The DC conductivity: pair creation term

σDC = σpc + σmr

σpc = Ze(φ)

(
C2C3
C1

)1/2
∣∣∣∣∣
r=rh

ds2 = −Bdt2 +
dr2

B +
3∑

i=1
Ciωi

2

Independent of the relaxation mechanism, dominates in the dirty
limit (momentum conservation strongly broken);

production of charged particles in an electric field without heat flow
[Donos & Gauntlett ’14].

Unless there is no overlap between the current and momentum
operator (CFT at zero density), does not give rise to finite
conductivities by itself: σ(ω) ∼ σpc

(
δ(ω) + i

ω

)
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Effective holographic actions for momentum relaxation
Momentum relaxation by helical Bianchi VII lattices

S =

∫
d5x
√
−g
[
R − ∂φ2 − Ze(φ)Fe

2 − Zm(φ)Fm
2 + V (φ)

]
In the IR, we can assume that the scalar φ

settles in an extremum of its effective
potential, φ = φ?

has a runaway behaviour φ→ ±∞.

Ze,m(φ) ∼ eγe,mφ, V (φ) ∼ V0e−δφ
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Clean quantum critical phases

ds2
0 = r 2θ

d

(
−dt2

r2z + L2 dr2

r2 +
d~x(3)2

r2

)
, φ = κ ln r , s ∼ T

d−θ
z

Translation symmetry is broken in the IR by irrelevant deformations

θ = 0 ⇒ constant scalar, hyperscaling solutions

AdS5 Lifshitz AdS2 × R3

θ 6= 0 captures deviation from symmetry under

t → λz t , (r , x i)→ λ(r , x i)

hyperscaling violation deff = d − θ
[B.G. & Kiritsis’11, Huijse, Sachdev & Swingle’11, Dong et al.’12]
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The conduction (or vector hyperscaling violation) exponent

At ∼ Qer ζ−z dt
A new exponent parameterizes the scaling of the electric potential,
[B.G. & Kiritsis’12, B.G.’13]. It can behave in two ways:

Tmaxwell
µν is subleading in r compared to Tφ

µν in Einstein’s equations.

Then z = 1 and the charge density Qe sources an irrelevant mode:

ds2 = ds0
2 (1 + Qe

2r2β + · · ·
)
, β =

ζ + d − θ
2

β is the (anomalous) IR scaling dimension of the charge density
[B.G.’13,’14, Karch’14].
ζ = d − θ gives back the usual scaling in d − θ dimensions.

Tmaxwell
µν scales with r like Tφ

µν .

Then z 6= 1 and the charge density Qe sources a marginal mode
of the solution and ζ = θ − d .
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DC conductivity for clean helical quantum critical phases
Two translation-breaking modes from the metric and the magnetic field.
The momentum-relaxing term dominates the DC conductivity

σmr =
Qe

2
√

C2C3/C1

k2 ((C2 − C3)2 + C2ZmA2
m)

0 < z < +∞: the modes are exponentially suppressed, as
expected from the dispersion relation ω ∼ kz – No dofs at finite
momentum if z < +∞ [Hartnoll&Shaghoulian’12, Anantua et al.’12]

σDC ∼
Qe

2

k2 T
z−1
z exp

(
2kT− 1

z

)
Semi-locally critical limit z → +∞, θ = ηz : the exponent β(k) of
the modes depends on wavevector k [Hartnoll&Hofman’12]

σDC ∼
Qe

2

k2 T η+βm

where βm is the irrelevant mode turning on the magnetic field.
Always metals. Matches memory matrix prediction.

19



Dirty helical quantum critical phases

Anisotropic saddle points, with leading behaviour

ds2 = r2θ/3
(
− dt2

r2z1
+

L2dr2 + ω1
2

r2 +
ω2

2 + λr−2ω3
2

r2z2

)(
1 + O(k2r2)

)
φ = κ ln r + · · · , Ae = Qer ζ−z1 + · · · , Am = Qmω2 + · · ·

z1 < 0

The conductivity is pair creation dominated, and gives rise to
insulators (ζ < 2) or metals (ζ > 2 + irrelevant density mode)

σDC ∼ T
ζ−2
z1 6= σDC ∼ T

d−2
z1 (d = 3)

unless ζ = d − θ (scale-invariant limit where the charge density does not
have anomalous IR scaling dimension)

Universal scaling? Universal incoherent transport? [Hartnoll’14]

20



AC conductivity

At small frequency and zero temperature, there is a matched asymptotic
argument relating IR and UV retarded Green’s functions [Donos &
Hartnoll’12]:

=
[
GR,UV
JxJx (ω,T )

]
=
∑
I

d I=
[
GR,IROIOI

(ω,T )
]

The scaling of the AC conductivity is then given by the scaling of the
least irrelevant operator.

For the Bianchi VII solution: 3 propagating modes.
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T = 0 IR asymptotics of the optical conductivity

Dirty, helical phase, pair-creation dominated

σDC ∼ T nDC , σAC (T = 0) ∼ ωnAC , nDC =
ζ − 2

z1

Metallic phases with nDC < 0
but nAC > 0.
Reappearance of a delta
function?
Order of limits?
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Clean/dirty limits vs coherent/incoherent transport

What happens to the optical conductivity when either term
dominates the DC conductivity? Is there always a Drude peak?

Charged axionic black hole analogous to the Reissner-Nordström
black hole with IR AdS2 × R2 [Bardoux, Caldarelli & Charmousis’12,
Andrade & Withers ’13] with σDC = 1 + µ2/k2.
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Weak momentum non-conservation
(clean limit, k � µ)
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’Particle’-like physics
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Strong momentum non-conservation
(dirty limit, k � µ)
No Drude peak (incoherent metal)
’Unparticle’-like physics
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Conclusions

Recipe to compute the DC conductivity analytically.

σDC = σpc + σmr

Either term can dominate: clean vs dirty limit.

Does the clean/dirty limit always imply coherent/incoherent
transport?

Breaking translation symmetry allows σAC (T = 0) ∼ ωnAC with
−1 < nAC < 0. But not a mid-IR scaling. See S. Cremonini’s talk
for intermediate scalings without breaking translation symmetry.

Insulators seem to require z < 0 – field theory interpretation?
Clearly the non-relativistic scaling ω ∼ kz does not make sense. No
apparent mass gap.
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