Quantum Critical Transport and the Hall Angle

Mike Blake - DAMTP

arXiv:I406.1659 with Aristomenis Donos

Motivation

Could the existence of a quantum critical point explain the anomalous scaling of the Hall angle?

Drude model

$$
\vec{j}(\omega)=\sigma(\omega) \vec{E}(\omega)
$$

$$
m \frac{d \vec{v}}{d t}+\frac{m}{\tau} \vec{v}=q(\vec{E}+\vec{v} \times \vec{B}) \quad \vec{j}=n q \vec{v}
$$

A puzzle...

$$
B=0
$$

$B \neq 0$

Drude

$$
\sigma_{D C}=\frac{n q^{2} \tau}{m}
$$

$$
\theta_{H}=\frac{\sigma_{x y}}{\sigma_{x x}}=\frac{q B \tau}{m}
$$

Strange
 Metal

$$
\sigma_{D C} \sim \frac{1}{T}
$$

$$
\theta_{H} \sim \frac{1}{T^{2}}
$$

The strange metal experiments seem to imply different scattering times for electric and Hall currents.

Anderson
Coleman, Schofield \&
Tsvelik

Quantum Critical Transport

$\omega / T \ll 1$: Thermally excited
$\omega / T \gg 1$: Pair produced

Holographic conductivity

- Huge amount of recent progress in holographic lattice models.
- Exact analytic expressions for transport can be obtained from 'Q-lattices'.

Donos and Gauntlett

$$
\begin{gathered}
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[R-\frac{1}{2}(\partial \phi)^{2}+\Phi(\phi)\left(\left(\partial \chi_{1}\right)^{2}+\left(\partial \chi_{2}\right)^{2}\right)+V(\phi)-\frac{Z(\phi)}{4} F^{2}\right] \\
\chi_{1} \rightarrow k x \quad \chi_{2} \rightarrow k y
\end{gathered}
$$

DC conductivity

$$
\begin{gathered}
\sigma_{D C}=\sigma_{Q C}+\frac{\mathcal{Q}^{2}}{\mathcal{E}+\mathcal{P}} \tau_{L} \\
\sigma_{Q C}=\left.Z(\phi)\right|_{r_{+}} \quad \tau_{L}^{-1}=\left.\frac{s}{4 \pi} \frac{k^{2} \Phi(\phi)}{\mathcal{E}+\mathcal{P}}\right|_{r_{+}}
\end{gathered}
$$

`Inverse Matthiesen Law’

MB \& Tong; MB,Tong \& Vegh;
Gouteraux; Andrade \&Withers;
Gauntlett \& Donos...

Hall angle

$$
\theta_{H}=\left.\frac{B \mathcal{Q}}{e^{2 V} k^{2} \Phi}\left[\frac{B^{2} Z^{2}+\mathcal{Q}^{2}+2 Z e^{2 V} k^{2} \Phi}{B^{2} Z^{2}+\mathcal{Q}^{2}+Z e^{2 V} k^{2} \Phi}\right]\right|_{r_{+}}
$$

Hall angle

$$
\theta_{H} \sim \frac{B \mathcal{Q}}{\mathcal{E}+\mathcal{P}^{2}} \tau_{L}
$$

Hall angle

$$
\theta_{H} \sim \frac{B \mathcal{Q}}{\mathcal{E}+\mathcal{P}} \tau_{L}
$$

No analogous term to $\sigma_{Q C}$

Holes Particles

- Weak momentum dissipation $-\tau_{L} \rightarrow \infty$

$$
\sigma_{D C}=\frac{\mathcal{Q}^{2}}{\mathcal{E}+\mathcal{P}} \tau_{L} \quad \theta_{H}=\frac{B \mathcal{Q}}{\mathcal{E}+\mathcal{P}} \tau_{L}
$$

reproduces Drude-like results.

- Strong momentum dissipation - $\tau_{L} \rightarrow 0$

$$
\sigma_{D C}=\sigma_{Q C} \quad \theta_{H}=\frac{2 B \mathcal{Q}}{\mathcal{E}+\mathcal{P}} \tau_{L}
$$

can now get different scalings!

Comments

- Story can be applied more generally than to the specific lattice models studied here e.g. to hydro, probe branes.
- For strong momentum relaxation we expect a dichotomy in transport properties between those $\sigma_{Q C}$ contributes to and those it doesn't.
- Would be exciting to understand whether mechanism can be applied to the cuprates or other experimental systems.
" Over broad regions of doping, the two kinds of relaxation rates, the one for the conductivity and the one for the Hall rotation, seem to add as inverses: Conductivity is proportional to $1 / T+1 / T^{2}$-that is, it obeys an anti-Matthiessen law."

P.W.Anderson - Physics Today

Thank you!

