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A fundamental question : Why the holographic 
principle may be applicable beyond those 
explicit examples obtained from string theory? 
!
!
!
Intuitive answer : The radial dimension in the 
dual theory of gravity is the scale of a RG flow 
for (a subset of) degrees of freedom in the QFT. 
!
!
!
Can we make this precise and construct gravity 
from quantum field theory? 



Need to work on two fronts: 
!
(i) Learn how to extract scale-dependent 

observables in field theory from gravity

Questions: 
!
Can we write equations of gravity directly as a 
first order RG flow of field theory observables? 
!
What conditions on this (geometric) RG flow 
leads to regular space-time (that determines 
right values of field theory observables)?



Questions: 
!
How to unders tand emergence o f bu lk 
diffeomorphism symmetry? 
!
What are the field-theoretic principles that 
determine this RG flow which reproduces gravity?

Decode the geometric RG flow as a coarse-
graining in field theory 

(ii)



In this talk, we will show these questions can be 
answered in a special dynamical sector.

(i) S. Kuperstein and AM, arXiv:1105.4530 and 
arXiv:1307.1367 (published in JHEP) 

(ii) N. Behr and AM, arXiv:1409.xxxx

Related approaches : Polchinski et. al.; Liu, 
Rangamani et. al. (gravity side); S. S. Lee; R. Leigh 
et. al. (path-integral); B. Swingle and S. Ryu et. al. 
(entanglement renormalisation) 

References:



STRONGLY INTERACTING AND LARGE N LIMIT

Strongly interacting - a large gap in the scaling 
dimensions of operators

�gap ⇠ �k, k > 0

This gap is tuneable via some parameters in the 
theory



All these operators form an algebra generated via 
FINITE number of elements:

Tµ⌫

jµ

O

energy-momentum tensor

conserved currents

order parameters for various phases, etc.

Natural in supersymmetric theory — otherwise can be 
realised via consistent truncation of SUGRA in 
holography

These generators are the abstract versions of “single-
trace operators”.



There is another tuneable parameter “N” which leads to 
factorisation of expectation values in ALL states

hTµ⌫T⇢�i = hTµ⌫ihT⇢�i+O(
1

N2
), etc.

Note single trace operators will mix with all multi-trace 
operators under RG flow. !
!
This is why the dual gravity theory is non-linear.

Strongly interacting and large N limit implies that the dual 
gravity theory (if it exists) is similar to classical Einstein’s 
equations and tractable.



Basic Principle 

r

⌘µ⌫ , < Tµ⌫ >

Constraint : @µhTµ⌫i = 0

gµ⌫ , < Tµ⌫(⇤) > (r = ⇤�1)

New Constraint :rµhTµ⌫(⇤)i = 0

UV (Boundary)

Finite scale

x

µ

Hypersurface foliation: ⌃r Congruence of curves: C
r

x

µField-theory coordinates:Radial coordinate: 



The background metric becomes dynamical in 
RG flow in order to absorb effect of mixing of 
single-trace operators with multi-trace operators. 
(Polchinski et. al; Liu et. al.; Lee)

Here we will understand this in the Heisenberg 
picture. Advantage : Works for all states. 
!
Holography = A “highly efficient” RG flow which 
keeps the operator equations for “single trace” 
operators invariant in form by suitably redefining 
the background metric and sources. 
!
Necessary but not sufficient condition to see 
emergence of gravity



Consider projecting out certain fast degrees of 
freedom above a certain scale

Tµ⌫(⇤) = P†(⇤)TUV
µ⌫ P(⇤)

@µTUV
µ⌫ = 0

Can we define a sequence of projection operators 
such that

@µTµ⌫(⇤) =
1

4⇤4
@⌫

�
T↵�(⇤)T

↵�(⇤)
�
� 1

2⇤4
(@↵ TrT (⇤))T↵⌫(⇤)

+O(|T↵�(⇤)|3)



gµ⌫(⇤) = ⌘µ⌫ + ⇤�4Tµ⌫ + · · ·

Then redefining the background metric as

rµ
(⇤)Tµ⌫(⇤) = 0

the operator equation becomes:

Take expectation values, assume large N 
factorisation and r = ⇤�1

This reduces to the constraint of classical 
gravity equation at the hyper-surface.



gµ⌫(⇤) can be constructed from Tµ⌫(⇤)

Physical parameters in            should have first order 
RG evolution

Tµ⌫(⇤)

Therefore we should re-package classical gravity 
equations as: 
(i) First order evolution of physical parameters in  
(ii) Prove that an appropriate infrared fixed point 

determine the physical parameters (giving regularity 
of horizon) !! 

(iii)Then reconstruct     from these physical 
parameters and the boundary metric

A major issue:

gµ⌫(⇤)

Tµ⌫(⇤)



However we require two additional conditions: 
!
(i) The RG flow has an automorphism of a 

special type that lifts Weyl symmetry at UV to 
an arbitrary scale — (this automorphism has 
full information about choice of           ) 

(ii) The flow ends at a good infrared fixed point 
(could end at a finite scale as in MERA 
approach).

Conjecture : This “highly efficient” RG flow 
reproduces classical gravity equations. 
!
We have constructed the explicit projection 
operators in a dynamical sector, but we have 
yet not proven this is the uniquely allowed 
construction.

⌃r, C



Exact asymptotic hydrodynamic expansion

At a sufficiently high temperature (greater than any 
microscopic or dynamically generated scale) the low 
energy modes of any system are hydrodynamic modes. 

The expectation values of all operators can be 
parametrised by hydrodynamic variables (velocity and 
temperature in locally charge neutral states) near 
equilibrium.

Example : Normal solutions of Boltzmann equation 
(Chapman and Enskog 1917)

This is an asymptotic series in the derivative expansion 
involving infinitely many terms — it is exact and 
involves no direct coarse graining.



The exact asymptotic hydrodynamic expansion is 
obtained by holography via fluid/gravity solutions (Son, 
Starinets, Policastro; Janik, Heller; Minwalla, 
Rangamani, Hubeny, Bhattacharyya).

Transport coefficients are 
determined by regularity of 
horizon. 
!
The asymptot ic series 
reproduces “hydrodynamic 
tails” of numerics (Janik 
and Heller).



We can “freeze” all other operators consistently so that 
only em-tensor has non-trivial state-dependence (pure 
gravity sector).

In this case, the only relevant equation is @µTUV
µ⌫ = 0

This gives hydrodynamic equations with infinite number of 
derivative corrections to Navier-Stokes.

Coarse-graining should improve the convergence of the 
asymptotic series. This justifies a RG flow with scale-
dependent equation of state, transport coefficients, etc.!
!
This RG flow of exact asymptotic hydrodynamic 
expansion should end at incompressible non-
relativistic Navier Stokes. In holography this is borne out 
by “membrane paradigm” (Damour, Thorne et. al.)



        Notations and basic expressions

uµ ! 1p
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s(n,m)

v(n,m)µ

t(n,m)
µ⌫

m = 1, · · · , ns

r · u, R, (r · u)2, �µ⌫�
µ⌫ , etc.

aµ, �µ⇢r↵�↵⇢, etc.

m = 1, · · · , nv

�µ⌫ , << Rµ⌫ >>,

<< � ⇢
µ�⇢⌫ >>, etc.

m = 1, · · · , nt

Hydro scalars 
with n derivatives

Hydro transverse 
vectors with n 
derivatives

Hydro t raceless 
transverse  tensors 
with n derivatives



Magic Ansatz for Gravity : Beta function formulation

uµ0 = ↵(0)uµ + ↵(1)
s (r · u)uµ + ↵(1)

v (u ·r)uµ

+
1X

n=2

nsX

m=1

↵(n,m)
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n=2

nvX
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nsX
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hTphys
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r = ⇤�1, 0 = @r = �⇤2@⇤



In Fefferman-Graham gauge this anstaz leads directly to 
the following without requiring us to solve  Einstein’s 
equations explicitly: 
!
(i) elimination of redundant variables in the evolution of 

hydro variables 
(ii) first order evolution of transport coefficients.

Requiring that the flow ends at incompressible non-
relativistic Navier Stokes at a finite scale (horizon) gives 
unique solutions to all transport coefficients. 
!
!
Remarkably at the boundary we reproduce exactly those 
values of transport coefficients obtained via fluid/gravity 
solutions from regularity of horizon. 
The space-time metric can be reconstructed from RG flow 
once boundary metric is specified. 
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Incompressible Navier-Stokes at the horizon

Horizon is the scale r = r_H where P blows up.

have to be finite at horizon✏, ⌘, ⇣

Transport coefficient Corresponding scalar Allowed leading order near-horizon behaviour

δ3 (∇ · u)2 (rH − r)−1

δ4 ∇⊥
µ∇⊥µ ln s (rH − r)−3

δ5 ∇⊥
µ ln s∇⊥µ ln s (rH − r)−7

δ6 σµ
νσν

µ (rH − r)−1

δ7 ωµ
νων

µ (rH − r)−1

Table 2: Allowed leading order near-horizon behavior of δ3, δ4, δ4, δ5 and δ7 by the non-relativistic incompressible
Navier-Stokes scaling limit.

we can again use the incompressibility condition and the Navier-Stokes equations to show that:

∂j∂jP̃
non-rel = −ρ0∂i∂j(vivj) + ηH∂i∂j(∂ivj + ∂jvi), (6.15)

i.e. P̃ non-rel satisfies the same condition like P non-rel as in (6.8). We thus have the same equations for the

velocity fields as in non-relativistic incompressible Navier-Stokes after eliminating P̃ non-rel. Thus, even if

δ6 blows up like (rH − r)−1 at the horizon, the horizon fluid still follows non-relativistic incompressible

Navier-Stokes equations.

We can similarly constrain the behaviour of all second order scalar transport coefficients except δ1
and δ2 which involve the curvatures. The result is as in the Table 2. Once again these restrictions on

the near-horizon forms of other second order scalar transport coefficients will be sufficient to determine

the near-horizon forms of δ1 and δ2, as these will be sourcing the radial flow of the above transport

coefficients.

Let us now ask what could be the consistent scaling of the curvature of the metric in the frame of

the infalling observer. Clearly these curvatures need to be small as some power of ξ in order for a static

equilibrium (about which we are expanding in ξ expansion) to exist. In order to obtain the scaling of

the Riemann curvature, we need to understand how the fluctuations of the metric scale with ξ. We can

adopt Riemann normal coordinates for the infalling observer who is at say x = 0 and τ = 0 and at a

definite value of r̃. The hypersurface metric in the vicinity of this observer takes the form:

gµν = ηµν −
1

3
Rµρνσx

ρxσ +O(∇3). (6.16)

Let us call gµν − ηµν as δgµν . Our results will require

δgττ = O(ξ3), δgiτ = O(ξ2), δgij = O(ξ3) (6.17)

which will imply that

Rijkl = O(ξ3) and Riτjτ = O(ξ3). (6.18)

It is easy to see that with the above scaling the norm condition of uµ is preserved, as up to O(ξ2), the

form of uµ given by (1, ξvi)/
√

1− ξ2vjvj satisfies the norm with respect to the flat metric itself. It turns

– 40 –

For second order scalar transport coefficients:



For second order tensor transport coefficients:

Transport coefficient Corresponding tensor Near-horizon behaviour will be weaker than

γ3 (∇ · u)σµ
ν (rH − r)−1

γ4 ⟨∇⊥
µ∇⊥ν ln s⟩ (rH − r)−3

γ5 ⟨∇⊥
µ ln s∇⊥ν ln s⟩ (rH − r)−7

γ6 ⟨σµ
τστ

ν⟩ (rH − r)−1

γ7 ⟨ωµ
τωτ

ν⟩ (rH − r)−1

γ8 ⟨σµ
τωτ

ν⟩ (rH − r)−1

Table 1: Constraints on near-horizon behaviour of γ3, γ4, γ5, γ6, γ7 and γ8 from the non-relativistic incompressible
Navier-Stokes scaling limit.

We can similarly constrain the behaviour of other second order transport coefficients near the horizon,

except for γ1 and γ2 which involve the curvatures. The near horizon scaling of ∇⊥µ ln s is obtained as

follows. We use the leading order equations of motion (2.6) to relate it to c2sDuµ. Thus, we obtain that

at leading order, it scales like ξ4. The final result for the constraints on the near-horizon behavior of

the second order tensor transport coefficients γ3, γ4, γ5, γ7 and γ8 are as in the Table 1. Remarkably,

it will turn out that these restrictions will also be sufficient to determine the near-horizon forms of γ1
and γ2, as those will appear as source terms in the equations for the radial flow of the other second

order tensor transport coefficients. We will soon provide an additional argument to constrain the near-

horizon behaviour of these transport coefficients independently by studying the scaling of the hypersurface

curvature.

We now turn to the possible behaviour of second order scalar transport coefficients near the horizon.

For this, we note that the rescaled pressure P non-rel at the horizon is not defined by the equation of

state, but via incompressible Navier-Stokes equations as a function of the velocity fields only as in (6.8).

We therefore have an additional freedom which involves reabsorbing some (not all) higher derivative

corrections to the Navier-Stokes equations via redefinition of P non-rel.

For definiteness, let us consider the relativistic term δ6σαβσαβ. If δ6 blows up like (rH − r)−k at the

horizon, then it’s contribution to Navier-Stokes equation will be

ξ2−kδ6H∂i(σjkσjk) (6.12)

and it’s contribution to the incompressibility condition is

ξ3−kδ6H(σijσij)∂kvk. (6.13)

In order to have a leading order contribution which should be the same as Navier-Stokes, we require

k = 1. It might seem that by doing so we are changing the Navier-Stokes equation at the horizon, which

we have said earlier to be disallowed. Nevertheless, we can readily see that if we redefine the pressure as

below:

P̃ non-rel = P non-rel + δ6H(σjkσjk), (6.14)
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Remarkably evidence shows all geometric counter-
terms that define the renormalised em-tensor also get 
fixed — for every gauge there is a UNIQUE geometric 
RG flow.



Field- theory Interpretation

u
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✓
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⌘
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◆
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✓
Teq
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◆
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✓
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◆
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The most general coarse graining consistent with 
derivative expansion:



After lot of algebraic manipulations one can solve all 
the unknown functions to match evolution by classical 
gravity equations in FG gauge. 

Only if equation of state and transport coefficients via 
FG geometric RG flow :

gµ⌫(⇤)There is a unique such that rµ
(⇤)hTµ⌫(⇤)i = 0.

We reproduce classical gravity completely but yet we 
have to find sufficient set of principles.



Emergence of bulk diffeomorphism symmetry

The bulk diffeomorphisms are the most general 
transformations for:

r = r̂ + ⇢(r̂, x̂)

x

µ = x̂

µ + �

µ(r̂, x̂)

⇤ = ⇤̂
⇣
1� ⇤̂⇢(⇤̂, x̂)

⌘

such that at all scales Weyl transformations in UV is 
lifted efficiently

ĝµ⌫ = gµ⌫ + ⇢ g0µ⌫ � 2
⇢

r̂
gµ⌫ + L�gµ⌫

T̂µ⌫ = Tµ⌫ + ⇢T0
µ⌫ + (d� 2)

⇢

r̂
Tµ⌫ + L�Tµ⌫ +O(r̂2)

r̂µT̂µ⌫ = 0



Furthermore in Fefferman-Graham gauge there is an 
automorphism of the RG flow for Penrose-Brown-
Henneaux transformations 

⇢ = r̂�(x̂), �

µ =

Z r̂

0
dr̃ r̃gµ⌫ @̂⌫�

In other coordinates related by a bulk-diffeo 
transformation      from FG, the automorphism is 

P

G G�1PG

The automorphism of the RG flow knows completely 
about the corresponding choice of gauge in the bulk!!!



Conjecture

It is sufficient to reproduce the Fefferman-Graham RG 
flow as we have justified bulk diffeomorphisms from 
“efficiency” principles.
Conjecture: Our construction of the coarse 
graining in field theory is the unique one such that!
(i) the effective equations can be rewritten as a 

conservation of energy and momentum in a 
redefined background metric!

(ii) the PBH transformations are automorphisms!
(iii)the flow ends at incompressible non-relativistic 

Navier-Stokes at thermal scale
Proving this will amount to constructing gravity from 
field theory in a specific dynamical sector.



Summary

We have repackaged classical gravity directly into first 
order RG flow of physical observables. There is strong 
evidence for unique choice of geometric counter-terms  
that leads to well defined infrared.

We have constructed a coarse graining in QFT which 
reproduces classical gravity equations.  
!
We have conjectured a set of sufficient principles for 
which this coarse graining is the unique answer.



This “highly efficient” RG flow may not be constructible 
in all strongly interacting large N theories — what are 
the constraints on transport coefficients under which 
our three principles can be realised?  
!
This will amount to understanding which QFTs may 
have pure gravity duals. 
!
We should try to go beyond the hydrodynamic sector 
and understand how the reconstruction of gravity from 
QFT works.

THANK YOU

Concluding Comments


